Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting

Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak lear...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 39; no. 3; pp. 693 - 695
Main Authors Jonathan Cheung-Wai Chan, Chengquan Huang, DeFries, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/36.911126

Cover

Loading…
Abstract Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm.
AbstractList Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm
Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. Our results confirmed the theoretical explanation that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm. (Author)
Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm.
Author DeFries, R.
Chengquan Huang
Jonathan Cheung-Wai Chan
Author_xml – sequence: 1
  surname: Jonathan Cheung-Wai Chan
  fullname: Jonathan Cheung-Wai Chan
  organization: Dept. of Geography, Maryland Univ., College Park, MD, USA
– sequence: 2
  surname: Chengquan Huang
  fullname: Chengquan Huang
– sequence: 3
  givenname: R.
  surname: DeFries
  fullname: DeFries, R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=951250$$DView record in Pascal Francis
BookMark eNqNks9rHSEQx6Wk0Je0h157khYaetjEcXVXjyXkRyHQS3peXHd8Mezqi-4L5L-v2w0phNIWhNHxM1_HmTkkByEGJOQ9sBMApk_r5kQDAG9ekQ1IqSrWCHFANgx0U3Gl-RtymPMdYyAktBtyfx5uTbA4UDNuY_Lz7UR3mFxM0-KmZUNHEwZq4wMmakeTs3femtnHQF2KE004xRnHR5ox5CI0mNnQffZhS3uz3S52EehjzHM5vCWvnRkzvnuyR-THxfnN2VV1_f3y29nX68oKzecKGcjBsr7RzrS1bZ3jIJgVPViJgJwpo4ztVVmAPQhRG8Ukg0FqU2hRH5HjVXeX4v0e89xNPlscy28w7nOnlAJoBCzk57-SpWxSM63_A1zkNPwbbBTXXLcF_PgCvIv7FEpdSn6i1UxIWaBPT5DJ1owulc743O2Sn0x67LQELlmhvqyUTTHnhO4ZANYts9HVTbfORmFPX7DWz79aOifjxz9GfFgjPCL-fnq9_AkAeMWI
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_rs14236002
crossref_primary_10_1016_j_rse_2007_02_001
crossref_primary_10_1109_TGRS_2015_2481938
crossref_primary_10_1016_j_aap_2020_105551
crossref_primary_10_1016_j_jag_2012_01_002
crossref_primary_10_1016_j_rse_2013_10_020
crossref_primary_10_1007_s11356_021_12893_y
crossref_primary_10_1016_j_eswa_2008_07_041
crossref_primary_10_1016_j_patcog_2016_01_033
crossref_primary_10_1080_01431161_2012_675453
crossref_primary_10_3390_rs13214405
crossref_primary_10_3390_s22239065
crossref_primary_10_1007_s10021_005_0054_1
crossref_primary_10_1109_TGRS_2014_2361618
crossref_primary_10_1080_01431160802007624
crossref_primary_10_1016_j_jclepro_2023_136647
crossref_primary_10_1080_00207543_2011_631596
crossref_primary_10_1021_acs_molpharmaceut_7b00631
crossref_primary_10_32604_cmes_2022_020220
crossref_primary_10_1016_j_rse_2007_07_023
crossref_primary_10_3390_s23020659
crossref_primary_10_3390_rs1040620
crossref_primary_10_1080_01431161_2018_1433343
crossref_primary_10_1109_TGRS_2018_2890404
crossref_primary_10_1007_s11270_007_9612_9
crossref_primary_10_1016_j_scitotenv_2021_149811
crossref_primary_10_3390_rs14143507
crossref_primary_10_1016_j_cageo_2016_10_013
crossref_primary_10_1109_JSTARS_2022_3209902
crossref_primary_10_3390_ijgi9050329
crossref_primary_10_1080_02533839_2009_9671495
crossref_primary_10_1080_17538947_2012_713190
crossref_primary_10_14358_PERS_21_00035R3
crossref_primary_10_1186_s12889_024_17769_7
crossref_primary_10_1109_JSTARS_2021_3063507
crossref_primary_10_1080_01431161003777197
crossref_primary_10_1016_j_isprsjprs_2014_09_005
crossref_primary_10_1016_j_cie_2023_109670
crossref_primary_10_1109_JSTARS_2018_2824354
crossref_primary_10_1016_j_rse_2008_02_011
crossref_primary_10_2747_1548_1603_49_5_623
crossref_primary_10_3390_rs16142556
crossref_primary_10_1080_01431161_2011_591443
crossref_primary_10_1016_j_isprsjprs_2023_12_012
crossref_primary_10_3390_met10050685
crossref_primary_10_1080_10106049_2020_1837262
crossref_primary_10_1016_j_aap_2021_106193
crossref_primary_10_1109_TGRS_2022_3233102
crossref_primary_10_1155_2021_6664569
crossref_primary_10_3390_rs12101683
crossref_primary_10_1080_01431161_2015_1029096
crossref_primary_10_1016_j_ecolmodel_2006_05_021
Cites_doi 10.1007/978-3-642-97610-0
10.1007/BF00058655
10.1109/36.752215
10.1007/BF00994018
10.7551/mitpress/1130.003.0015
10.1080/014311600210100
10.1080/014311697217099
10.1023/A:1007607513941
10.1080/014311698214235
ContentType Journal Article
Copyright 2001 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
Copyright_xml – notice: 2001 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
DBID RIA
RIE
AAYXX
CITATION
IQODW
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7ST
7U6
DOI 10.1109/36.911126
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList Environment Abstracts
Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Physics
EISSN 1558-0644
EndPage 695
ExternalDocumentID 2432817101
951250
10_1109_36_911126
911126
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
IQODW
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7ST
7U6
ID FETCH-LOGICAL-c492t-e015dc0b69fa73c7ff2140c4b1c5e1e208a8acb8cb81eb1443a80501d59ac7f43
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Fri Jul 11 06:55:30 EDT 2025
Fri Jul 11 01:54:29 EDT 2025
Thu Jul 10 23:23:05 EDT 2025
Fri Jul 11 15:08:14 EDT 2025
Fri Jul 25 11:06:34 EDT 2025
Mon Jul 21 09:16:05 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Tue Jul 01 05:15:29 EDT 2025
Tue Aug 26 21:00:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords algorithms
algorithm performance
radiometry
accuracy
remote sensing
classification
high resolution
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-e015dc0b69fa73c7ff2140c4b1c5e1e208a8acb8cb81eb1443a80501d59ac7f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 884790455
PQPubID 23500
PageCount 3
ParticipantIDs proquest_miscellaneous_888116414
proquest_miscellaneous_28959099
proquest_journals_884790455
proquest_miscellaneous_28414391
crossref_citationtrail_10_1109_36_911126
crossref_primary_10_1109_36_911126
ieee_primary_911126
proquest_miscellaneous_26829297
pascalfrancis_primary_951250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-03-01
PublicationDateYYYYMMDD 2001-03-01
PublicationDate_xml – month: 03
  year: 2001
  text: 2001-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2001
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
Bauer (ref3) 1998; 5
ref11
Freund (ref2)
Kohonen (ref9) 1995
ref10
Maclin (ref4)
ref1
ref7
ref6
Quinlan (ref8) 1993
Breiman (ref5) 1984
References_xml – volume-title: C4.5: Programs for Machine Learning
  year: 1993
  ident: ref8
– volume-title: Self Organizing Maps
  year: 1995
  ident: ref9
  doi: 10.1007/978-3-642-97610-0
– ident: ref1
  doi: 10.1007/BF00058655
– start-page: 148
  volume-title: Proc. 13th Int. Conf.: Mach. Learn.
  ident: ref2
  article-title: Experiments with a new boosting algorithm
– ident: ref7
  doi: 10.1109/36.752215
– ident: ref11
  doi: 10.1007/BF00994018
– ident: ref14
  doi: 10.7551/mitpress/1130.003.0015
– volume: 5
  start-page: 1
  year: 1998
  ident: ref3
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Machine Learning
– ident: ref13
  doi: 10.1080/014311600210100
– ident: ref12
  doi: 10.1080/014311697217099
– volume-title: Classification and Regression Trees
  year: 1984
  ident: ref5
– volume-title: Proc. 14th Natl. Conf. Artificial Intelligence
  ident: ref4
  article-title: An empirical evaluation of bagging and boosting
– ident: ref10
  doi: 10.1023/A:1007607513941
– ident: ref6
  doi: 10.1080/014311698214235
SSID ssj0014517
Score 1.9060762
Snippet Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation...
Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. Our results confirmed the theoretical explanation that...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 693
SubjectTerms Aggregates
Applied geophysics
Bagging
Boosting
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geography
Image resolution
Internal geophysics
MODIS
Pressing
Radiometry
Sampling methods
Voting
Title Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting
URI https://ieeexplore.ieee.org/document/911126
https://www.proquest.com/docview/884790455
https://www.proquest.com/docview/26829297
https://www.proquest.com/docview/28414391
https://www.proquest.com/docview/28959099
https://www.proquest.com/docview/888116414
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RSgg48LGACC1gIQ5csnX8kThHhFpVSHCiUm-R7Ti7iG22bLKH8uuZcbK7FEqFlIOVTCIlHttv4vdmAN4JVwgnVJM2hQypKnKeOpyKSQUSQml9oyUJhT9_yU_P1KdzfT7m2Y5amBBCJJ-FKTXjXn699Gv6VXZEA1Pke7CHcdsg1dpuGCidjcroPMUYQoxJhDJeHsl8Otx4bemJtVSICWk7_BjNUMXirwk5rjInjwb5dheTExK55Pt03bup__lH6sb_fIHH8HBEm-zD4B5P4E5oJ_DgtxyEE7g3lkGfX03gbuSD-u4p_Dhu55EbwOxitlx96-cX7HKnMWDYYMSJZJ4ooMwTBifSUexnRpoVtgroBWFxxTqMlPFBxEVlRLOfMWfpP_eM0QMQ5XdEvX4GZyfHXz-epmN1htSrUvRpQCBRe-7ysrGF9EXTCAzWvHKZ1yELghtrrHcGjwwXBKWkNVzzrNboAkWj5HPYb5dteAHMUo4YqWvCd8oFZS23SnrbcO1qLm0C7zcdV_kxdTlV0FhUMYThZSXzavi2Cbzdml4O-TpuMppQ32wNNmcPrznD7jKCIs0TONj4RjWO864yuLiXiIp1Am-2V3GA0q6LbcNy3VUiNwIxaHGLhVEZCaBvsyh1iVg-AfYPC2NMhpFvpl7e-G4HcH9HnjuE_X61Dq8QTfXudRxHvwAYByCw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1BEWo58BGoMC10hThwcbqf9vqIUKsAbU-t1Ju1u1kniOCU2DmUX8_M2kkolArJB8seW7J31vPG-94MIe-Ey4UTqkqrXIZU5RlLHXyKUQUSQmF9pSUKhU_PstGF-nypL_s621ELE0KI5LMwxN24lj-e-yX-KjvEiSmy--QBhH3NO7HWeslAad5ro7MUsgjRlxHirDiU2bC79Ebwid1UkAtpG3gdVdfH4q9Pcowzx086AXcTyxMiveTbcNm6of_5R_HG_3yEp-Rxjzfph85BnpF7oR6QR79VIRyQ7b4R-vR6QB5GRqhvnpMfR_U0sgOonU3mi6_t9Du92qgMKOxQZEVSjyRQ6hGFI-0ojjRF1QpdBPCDMLumDeTKcCNko1Ik2k-os_ine0LxBoDzGyRfvyAXx0fnH0dp358h9aoQbRoASow9c1lR2Vz6vKoEpGteOe514EEwY431zsDGISQoJa1hmvGxBifIKyV3yVY9r8NLQi1WiZF6jAhPuaCsZVZJbyum3ZhJm5D3q4ErfV-8HHtozMqYxLCilFnZvduEvF2bXnUVO24zGuDYrA1WR_dvOMPmNMAizRKyt_KNsp_pTWkgvBeAi3VCDtZnYYriuoutw3zZlCIzAlBofoeFURwl0HdZFLoANJ8Q-g8LYwyH3JerV7c-2wHZHp2fnpQnn86-7JGdDZVun2y1i2V4DdiqdW_inPoFOowj-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+algorithm+performance+for+land+cover+classification+from+remotely+sensed+data+using+bagging+and+boosting&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chan%2C+Jonathan+Cheung-Wai&rft.au=Huang%2C+Chengquan&rft.au=DeFries%2C+R&rft.date=2001-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=39&rft.issue=3&rft.spage=693&rft_id=info:doi/10.1109%2F36.911126&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2432817101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon