Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting
Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak lear...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 39; no. 3; pp. 693 - 695 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.2001
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/36.911126 |
Cover
Loading…
Abstract | Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm. |
---|---|
AbstractList | Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. Our results confirmed the theoretical explanation that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm. (Author) Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm. |
Author | DeFries, R. Chengquan Huang Jonathan Cheung-Wai Chan |
Author_xml | – sequence: 1 surname: Jonathan Cheung-Wai Chan fullname: Jonathan Cheung-Wai Chan organization: Dept. of Geography, Maryland Univ., College Park, MD, USA – sequence: 2 surname: Chengquan Huang fullname: Chengquan Huang – sequence: 3 givenname: R. surname: DeFries fullname: DeFries, R. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=951250$$DView record in Pascal Francis |
BookMark | eNqNks9rHSEQx6Wk0Je0h157khYaetjEcXVXjyXkRyHQS3peXHd8Mezqi-4L5L-v2w0phNIWhNHxM1_HmTkkByEGJOQ9sBMApk_r5kQDAG9ekQ1IqSrWCHFANgx0U3Gl-RtymPMdYyAktBtyfx5uTbA4UDNuY_Lz7UR3mFxM0-KmZUNHEwZq4wMmakeTs3femtnHQF2KE004xRnHR5ox5CI0mNnQffZhS3uz3S52EehjzHM5vCWvnRkzvnuyR-THxfnN2VV1_f3y29nX68oKzecKGcjBsr7RzrS1bZ3jIJgVPViJgJwpo4ztVVmAPQhRG8Ukg0FqU2hRH5HjVXeX4v0e89xNPlscy28w7nOnlAJoBCzk57-SpWxSM63_A1zkNPwbbBTXXLcF_PgCvIv7FEpdSn6i1UxIWaBPT5DJ1owulc743O2Sn0x67LQELlmhvqyUTTHnhO4ZANYts9HVTbfORmFPX7DWz79aOifjxz9GfFgjPCL-fnq9_AkAeMWI |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_3390_rs14236002 crossref_primary_10_1016_j_rse_2007_02_001 crossref_primary_10_1109_TGRS_2015_2481938 crossref_primary_10_1016_j_aap_2020_105551 crossref_primary_10_1016_j_jag_2012_01_002 crossref_primary_10_1016_j_rse_2013_10_020 crossref_primary_10_1007_s11356_021_12893_y crossref_primary_10_1016_j_eswa_2008_07_041 crossref_primary_10_1016_j_patcog_2016_01_033 crossref_primary_10_1080_01431161_2012_675453 crossref_primary_10_3390_rs13214405 crossref_primary_10_3390_s22239065 crossref_primary_10_1007_s10021_005_0054_1 crossref_primary_10_1109_TGRS_2014_2361618 crossref_primary_10_1080_01431160802007624 crossref_primary_10_1016_j_jclepro_2023_136647 crossref_primary_10_1080_00207543_2011_631596 crossref_primary_10_1021_acs_molpharmaceut_7b00631 crossref_primary_10_32604_cmes_2022_020220 crossref_primary_10_1016_j_rse_2007_07_023 crossref_primary_10_3390_s23020659 crossref_primary_10_3390_rs1040620 crossref_primary_10_1080_01431161_2018_1433343 crossref_primary_10_1109_TGRS_2018_2890404 crossref_primary_10_1007_s11270_007_9612_9 crossref_primary_10_1016_j_scitotenv_2021_149811 crossref_primary_10_3390_rs14143507 crossref_primary_10_1016_j_cageo_2016_10_013 crossref_primary_10_1109_JSTARS_2022_3209902 crossref_primary_10_3390_ijgi9050329 crossref_primary_10_1080_02533839_2009_9671495 crossref_primary_10_1080_17538947_2012_713190 crossref_primary_10_14358_PERS_21_00035R3 crossref_primary_10_1186_s12889_024_17769_7 crossref_primary_10_1109_JSTARS_2021_3063507 crossref_primary_10_1080_01431161003777197 crossref_primary_10_1016_j_isprsjprs_2014_09_005 crossref_primary_10_1016_j_cie_2023_109670 crossref_primary_10_1109_JSTARS_2018_2824354 crossref_primary_10_1016_j_rse_2008_02_011 crossref_primary_10_2747_1548_1603_49_5_623 crossref_primary_10_3390_rs16142556 crossref_primary_10_1080_01431161_2011_591443 crossref_primary_10_1016_j_isprsjprs_2023_12_012 crossref_primary_10_3390_met10050685 crossref_primary_10_1080_10106049_2020_1837262 crossref_primary_10_1016_j_aap_2021_106193 crossref_primary_10_1109_TGRS_2022_3233102 crossref_primary_10_1155_2021_6664569 crossref_primary_10_3390_rs12101683 crossref_primary_10_1080_01431161_2015_1029096 crossref_primary_10_1016_j_ecolmodel_2006_05_021 |
Cites_doi | 10.1007/978-3-642-97610-0 10.1007/BF00058655 10.1109/36.752215 10.1007/BF00994018 10.7551/mitpress/1130.003.0015 10.1080/014311600210100 10.1080/014311697217099 10.1023/A:1007607513941 10.1080/014311698214235 |
ContentType | Journal Article |
Copyright | 2001 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
Copyright_xml | – notice: 2001 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
DBID | RIA RIE AAYXX CITATION IQODW 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7ST 7U6 |
DOI | 10.1109/36.911126 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts Sustainability Science Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | Environment Abstracts Technology Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Physics |
EISSN | 1558-0644 |
EndPage | 695 |
ExternalDocumentID | 2432817101 951250 10_1109_36_911126 911126 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG IQODW 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7ST 7U6 |
ID | FETCH-LOGICAL-c492t-e015dc0b69fa73c7ff2140c4b1c5e1e208a8acb8cb81eb1443a80501d59ac7f43 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Fri Jul 11 06:55:30 EDT 2025 Fri Jul 11 01:54:29 EDT 2025 Thu Jul 10 23:23:05 EDT 2025 Fri Jul 11 15:08:14 EDT 2025 Fri Jul 25 11:06:34 EDT 2025 Mon Jul 21 09:16:05 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Tue Jul 01 05:15:29 EDT 2025 Tue Aug 26 21:00:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | algorithms algorithm performance radiometry accuracy remote sensing classification high resolution |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-e015dc0b69fa73c7ff2140c4b1c5e1e208a8acb8cb81eb1443a80501d59ac7f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 884790455 |
PQPubID | 23500 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_888116414 proquest_miscellaneous_28959099 proquest_journals_884790455 proquest_miscellaneous_28414391 crossref_citationtrail_10_1109_36_911126 crossref_primary_10_1109_36_911126 ieee_primary_911126 proquest_miscellaneous_26829297 pascalfrancis_primary_951250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-03-01 |
PublicationDateYYYYMMDD | 2001-03-01 |
PublicationDate_xml | – month: 03 year: 2001 text: 2001-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2001 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 Bauer (ref3) 1998; 5 ref11 Freund (ref2) Kohonen (ref9) 1995 ref10 Maclin (ref4) ref1 ref7 ref6 Quinlan (ref8) 1993 Breiman (ref5) 1984 |
References_xml | – volume-title: C4.5: Programs for Machine Learning year: 1993 ident: ref8 – volume-title: Self Organizing Maps year: 1995 ident: ref9 doi: 10.1007/978-3-642-97610-0 – ident: ref1 doi: 10.1007/BF00058655 – start-page: 148 volume-title: Proc. 13th Int. Conf.: Mach. Learn. ident: ref2 article-title: Experiments with a new boosting algorithm – ident: ref7 doi: 10.1109/36.752215 – ident: ref11 doi: 10.1007/BF00994018 – ident: ref14 doi: 10.7551/mitpress/1130.003.0015 – volume: 5 start-page: 1 year: 1998 ident: ref3 article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants publication-title: Machine Learning – ident: ref13 doi: 10.1080/014311600210100 – ident: ref12 doi: 10.1080/014311697217099 – volume-title: Classification and Regression Trees year: 1984 ident: ref5 – volume-title: Proc. 14th Natl. Conf. Artificial Intelligence ident: ref4 article-title: An empirical evaluation of bagging and boosting – ident: ref10 doi: 10.1023/A:1007607513941 – ident: ref6 doi: 10.1080/014311698214235 |
SSID | ssj0014517 |
Score | 1.9060762 |
Snippet | Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation... Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. Our results confirmed the theoretical explanation that... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 693 |
SubjectTerms | Aggregates Applied geophysics Bagging Boosting Earth sciences Earth, ocean, space Exact sciences and technology Geography Image resolution Internal geophysics MODIS Pressing Radiometry Sampling methods Voting |
Title | Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting |
URI | https://ieeexplore.ieee.org/document/911126 https://www.proquest.com/docview/884790455 https://www.proquest.com/docview/26829297 https://www.proquest.com/docview/28414391 https://www.proquest.com/docview/28959099 https://www.proquest.com/docview/888116414 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RSgg48LGACC1gIQ5csnX8kThHhFpVSHCiUm-R7Ti7iG22bLKH8uuZcbK7FEqFlIOVTCIlHttv4vdmAN4JVwgnVJM2hQypKnKeOpyKSQUSQml9oyUJhT9_yU_P1KdzfT7m2Y5amBBCJJ-FKTXjXn699Gv6VXZEA1Pke7CHcdsg1dpuGCidjcroPMUYQoxJhDJeHsl8Otx4bemJtVSICWk7_BjNUMXirwk5rjInjwb5dheTExK55Pt03bup__lH6sb_fIHH8HBEm-zD4B5P4E5oJ_DgtxyEE7g3lkGfX03gbuSD-u4p_Dhu55EbwOxitlx96-cX7HKnMWDYYMSJZJ4ooMwTBifSUexnRpoVtgroBWFxxTqMlPFBxEVlRLOfMWfpP_eM0QMQ5XdEvX4GZyfHXz-epmN1htSrUvRpQCBRe-7ysrGF9EXTCAzWvHKZ1yELghtrrHcGjwwXBKWkNVzzrNboAkWj5HPYb5dteAHMUo4YqWvCd8oFZS23SnrbcO1qLm0C7zcdV_kxdTlV0FhUMYThZSXzavi2Cbzdml4O-TpuMppQ32wNNmcPrznD7jKCIs0TONj4RjWO864yuLiXiIp1Am-2V3GA0q6LbcNy3VUiNwIxaHGLhVEZCaBvsyh1iVg-AfYPC2NMhpFvpl7e-G4HcH9HnjuE_X61Dq8QTfXudRxHvwAYByCw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1BEWo58BGoMC10hThwcbqf9vqIUKsAbU-t1Ju1u1kniOCU2DmUX8_M2kkolArJB8seW7J31vPG-94MIe-Ey4UTqkqrXIZU5RlLHXyKUQUSQmF9pSUKhU_PstGF-nypL_s621ELE0KI5LMwxN24lj-e-yX-KjvEiSmy--QBhH3NO7HWeslAad5ro7MUsgjRlxHirDiU2bC79Ebwid1UkAtpG3gdVdfH4q9Pcowzx086AXcTyxMiveTbcNm6of_5R_HG_3yEp-Rxjzfph85BnpF7oR6QR79VIRyQ7b4R-vR6QB5GRqhvnpMfR_U0sgOonU3mi6_t9Du92qgMKOxQZEVSjyRQ6hGFI-0ojjRF1QpdBPCDMLumDeTKcCNko1Ik2k-os_ine0LxBoDzGyRfvyAXx0fnH0dp358h9aoQbRoASow9c1lR2Vz6vKoEpGteOe514EEwY431zsDGISQoJa1hmvGxBifIKyV3yVY9r8NLQi1WiZF6jAhPuaCsZVZJbyum3ZhJm5D3q4ErfV-8HHtozMqYxLCilFnZvduEvF2bXnUVO24zGuDYrA1WR_dvOMPmNMAizRKyt_KNsp_pTWkgvBeAi3VCDtZnYYriuoutw3zZlCIzAlBofoeFURwl0HdZFLoANJ8Q-g8LYwyH3JerV7c-2wHZHp2fnpQnn86-7JGdDZVun2y1i2V4DdiqdW_inPoFOowj-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+algorithm+performance+for+land+cover+classification+from+remotely+sensed+data+using+bagging+and+boosting&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chan%2C+Jonathan+Cheung-Wai&rft.au=Huang%2C+Chengquan&rft.au=DeFries%2C+R&rft.date=2001-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=39&rft.issue=3&rft.spage=693&rft_id=info:doi/10.1109%2F36.911126&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2432817101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |