Zeolite membrane with sub-nanofluidic channels for superior blue energy harvesting

Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Cry...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 10489 - 11
Main Authors Wei, Ruicong, Liu, Xiaowei, Cao, Li, Chen, Cailing, Chen, I-Chun, Li, Zhen, Miao, Jun, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.12.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-024-54755-4

Cover

Loading…
Abstract Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes’ potential for blue energy, opening further opportunities in this field. Blue energy from salinity gradients provides sustainable power. Here, authors show that NaX zeolite membranes deliver high power density for blue energy, outperforming conventional membranes and functioning effectively in challenging conditions, including high alkalinity.
AbstractList Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes’ potential for blue energy, opening further opportunities in this field. Blue energy from salinity gradients provides sustainable power. Here, authors show that NaX zeolite membranes deliver high power density for blue energy, outperforming conventional membranes and functioning effectively in challenging conditions, including high alkalinity.
Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes’ potential for blue energy, opening further opportunities in this field.Blue energy from salinity gradients provides sustainable power. Here, authors show that NaX zeolite membranes deliver high power density for blue energy, outperforming conventional membranes and functioning effectively in challenging conditions, including high alkalinity.
Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes' potential for blue energy, opening further opportunities in this field.
Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes' potential for blue energy, opening further opportunities in this field.Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes' potential for blue energy, opening further opportunities in this field.
Abstract Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes’ potential for blue energy, opening further opportunities in this field.
ArticleNumber 10489
Author Liu, Xiaowei
Wei, Ruicong
Li, Zhen
Lai, Zhiping
Chen, Cailing
Miao, Jun
Cao, Li
Chen, I-Chun
Author_xml – sequence: 1
  givenname: Ruicong
  orcidid: 0000-0001-6295-9186
  surname: Wei
  fullname: Wei, Ruicong
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Xiaowei
  orcidid: 0000-0002-2577-0701
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-7087-9431
  surname: Cao
  fullname: Cao, Li
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Cailing
  orcidid: 0000-0003-2598-1354
  surname: Chen
  fullname: Chen, Cailing
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: I-Chun
  surname: Chen
  fullname: Chen, I-Chun
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Jun
  orcidid: 0000-0002-9429-4681
  surname: Miao
  fullname: Miao, Jun
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39622835$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1UREvpC7BAkdiwSfFlnJysEKq4VKqEhGDDxrKdcY6PEvtgJ6369rhN6YUFXtgjzze_Z8bzkhyEGJCQ14yeMio27zMwaNqacqgltFLW8IwccQqsZi0XB4_sQ3KS846WJTq2AXhBDkXXcL4R8oh8_4Vx9DNWE04m6YDVlZ-3VV5MHXSIblx8721ltzoEHHPlYirOPSZfDDMuWGHANFxXW50uMc8-DK_Ic6fHjCd35zH5-fnTj7Ov9cW3L-dnHy9qCx2f615Ly6nBptXYYg-dYRxM2wotHThkQm64pA3jLXNC900rpKHSCaBOdKKn4picr7p91Du1T37S6VpF7dXtRUyD0mn2dkTlUGOjreml7qEtu3GWomFF33FooGh9WLX2i5mwtxjmpMcnok89wW_VEC8VYyVD1vCi8O5OIcXfS-mEmny2OI6lp3HJSjCgHQcJXUHf_oPu4pJC6VWhBHRdqU8U6s3jlO5z-ft3BeArYFPMOaG7RxhVNzOi1hlRZUbU7Yyom0LFGpQLHAZMD2__J-oPgtC_Cg
Cites_doi 10.1021/jacs.7b02794
10.1007/978-3-662-03764-5_4
10.1038/s41467-020-14674-6
10.1126/science.aan5275
10.1021/acsnano.2c07813
10.1038/nature00785
10.1016/S0921-5093(03)00256-9
10.1016/j.nanoen.2018.09.015
10.1039/D2CP00847E
10.1038/s41467-020-19182-1
10.1021/ja00051a037
10.1038/s41467-019-11792-8
10.1002/adfm.201908804
10.1016/S1383-5866(03)00037-6
10.1016/S1387-1811(00)00340-1
10.1038/s41467-023-38738-5
10.1038/nature06419
10.1039/C39820001413
10.3390/ma14112832
10.1016/j.nanoen.2020.105468
10.1021/jacs.2c04223
10.1038/s41467-019-10885-8
10.1016/j.nanoen.2018.12.075
10.1021/acsami.1c10183
10.1016/j.matlet.2008.07.026
10.1126/sciadv.abe9924
10.1126/sciadv.aay3998
10.1038/nmat793
10.1038/nmat4173
10.1021/acsnano.9b01357
10.1038/s41563-019-0581-3
10.3390/membranes13020164
10.1016/j.micromeso.2007.12.024
10.1039/C5CS00292C
10.1038/s41467-022-31523-w
10.1073/pnas.2003898117
10.1021/ja503692z
10.17628/ecb.2018.7.93-97
10.1038/nnano.2008.274
10.1038/s41586-021-03410-9
10.1039/D1SC03568A
10.1002/ange.202110731
10.1126/sciadv.abm6741
10.1016/0144-2449(90)90058-Y
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-54755-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_feae6acbd5ad47d5abfc0eb1506f2464
PMC11612162
39622835
10_1038_s41467_024_54755_4
Genre Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: URF/1/3769-01
  funderid: https://doi.org/10.13039/501100004052
– fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: URF/1/3769-01
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-da5c20be67ae7ed49b124b773a5f4fe135825061271f3ad6735b05f340f393d03
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:28 EDT 2025
Thu Aug 21 18:35:34 EDT 2025
Fri Jul 11 06:02:27 EDT 2025
Wed Aug 13 09:17:58 EDT 2025
Wed Feb 19 02:02:08 EST 2025
Tue Jul 01 02:37:49 EDT 2025
Fri Feb 21 02:37:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-da5c20be67ae7ed49b124b773a5f4fe135825061271f3ad6735b05f340f393d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9555-6009
0000-0001-6295-9186
0000-0002-2577-0701
0000-0002-7087-9431
0000-0002-9429-4681
0000-0003-2598-1354
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-54755-4
PMID 39622835
PQID 3134993933
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_feae6acbd5ad47d5abfc0eb1506f2464
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11612162
proquest_miscellaneous_3140924549
proquest_journals_3134993933
pubmed_primary_39622835
crossref_primary_10_1038_s41467_024_54755_4
springer_journals_10_1038_s41467_024_54755_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-02
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Z Zhou (54755_CR25) 2020; 11
Y-C Liu (54755_CR14) 2021; 7
Z Ezzeddine (54755_CR22) 2018; 7
KP Gregory (54755_CR46) 2022; 24
N Rangnekar (54755_CR19) 2015; 44
L Kubelková (54755_CR35) 1988; 84
W Janusz (54755_CR39) 1999; 85
R Wei (54755_CR26) 2022; 8
J Ning (54755_CR28) 2003; 357
X Li (54755_CR16) 2023; 14
Y Xu (54755_CR1) 2021; 79
JP Morth (54755_CR9) 2007; 450
X Chi (54755_CR20) 2021; 592
L Fu (54755_CR44) 2021; 13
M Jian (54755_CR11) 2020; 6
A Urtiaga (54755_CR18) 2003; 32
H Awala (54755_CR24) 2015; 14
C-Y Lin (54755_CR43) 2019; 13
54755_CR31
54755_CR33
R Panek (54755_CR23) 2021; 14
54755_CR36
Z Zhang (54755_CR7) 2019; 10
R Li (54755_CR12) 2018; 53
Z Zhang (54755_CR4) 2020; 11
S Zhou (54755_CR3) 2021; 133
Y Fu (54755_CR8) 2019; 57
G Xiong (54755_CR30) 2001; 42
L Cao (54755_CR5) 2022; 144
54755_CR21
G-D Zhan (54755_CR27) 2003; 2
J Xu (54755_CR10) 2008; 3
W Xin (54755_CR2) 2019; 10
KP Gregory (54755_CR47) 2021; 12
MM Rahman (54755_CR40) 2023; 13
G Zhu (54755_CR48) 2008; 62
ME Davis (54755_CR15) 2002; 417
P Kumar (54755_CR17) 2020; 19
HK Beyer (54755_CR34) 1985; 81
Z Zhang (54755_CR37) 2022; 13
A Esfandiar (54755_CR45) 2017; 358
Z Zhang (54755_CR38) 2020; 117
C Wang (54755_CR13) 2020; 30
Z Zhang (54755_CR42) 2017; 139
L Cao (54755_CR6) 2022; 16
TL Barr (54755_CR32) 1990; 10
T Frising (54755_CR49) 2008; 114
M Huang (54755_CR29) 1992; 114
J Gao (54755_CR41) 2014; 136
References_xml – volume: 139
  start-page: 8905
  year: 2017
  ident: 54755_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02794
– ident: 54755_CR36
  doi: 10.1007/978-3-662-03764-5_4
– volume: 11
  year: 2020
  ident: 54755_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14674-6
– volume: 358
  start-page: 511
  year: 2017
  ident: 54755_CR45
  publication-title: Science
  doi: 10.1126/science.aan5275
– volume: 16
  start-page: 18910
  year: 2022
  ident: 54755_CR6
  publication-title: ACS nano
  doi: 10.1021/acsnano.2c07813
– volume: 417
  start-page: 813
  year: 2002
  ident: 54755_CR15
  publication-title: Nature
  doi: 10.1038/nature00785
– volume: 357
  start-page: 392
  year: 2003
  ident: 54755_CR28
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(03)00256-9
– volume: 53
  start-page: 643
  year: 2018
  ident: 54755_CR12
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.015
– volume: 24
  start-page: 12682
  year: 2022
  ident: 54755_CR46
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP00847E
– volume: 11
  year: 2020
  ident: 54755_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19182-1
– volume: 114
  start-page: 10005
  year: 1992
  ident: 54755_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a037
– volume: 10
  year: 2019
  ident: 54755_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11792-8
– volume: 30
  year: 2020
  ident: 54755_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908804
– volume: 32
  start-page: 207
  year: 2003
  ident: 54755_CR18
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(03)00037-6
– volume: 42
  start-page: 317
  year: 2001
  ident: 54755_CR30
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(00)00340-1
– volume: 14
  year: 2023
  ident: 54755_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38738-5
– volume: 450
  start-page: 1043
  year: 2007
  ident: 54755_CR9
  publication-title: Nature
  doi: 10.1038/nature06419
– ident: 54755_CR31
  doi: 10.1039/C39820001413
– volume: 14
  start-page: 2832
  year: 2021
  ident: 54755_CR23
  publication-title: Materials
  doi: 10.3390/ma14112832
– volume: 79
  year: 2021
  ident: 54755_CR1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105468
– ident: 54755_CR21
– volume: 144
  start-page: 12400
  year: 2022
  ident: 54755_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c04223
– volume: 10
  year: 2019
  ident: 54755_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10885-8
– volume: 57
  start-page: 783
  year: 2019
  ident: 54755_CR8
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.075
– volume: 13
  start-page: 35197
  year: 2021
  ident: 54755_CR44
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c10183
– volume: 62
  start-page: 4357
  year: 2008
  ident: 54755_CR48
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.07.026
– volume: 7
  year: 2021
  ident: 54755_CR14
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe9924
– volume: 6
  year: 2020
  ident: 54755_CR11
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay3998
– volume: 2
  start-page: 38
  year: 2003
  ident: 54755_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat793
– volume: 14
  start-page: 447
  year: 2015
  ident: 54755_CR24
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4173
– volume: 13
  start-page: 9868
  year: 2019
  ident: 54755_CR43
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01357
– volume: 81
  start-page: 2889
  year: 1985
  ident: 54755_CR34
  publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases
– volume: 85
  start-page: 135
  year: 1999
  ident: 54755_CR39
  publication-title: Surfactant Sci. Ser.
– volume: 19
  start-page: 443
  year: 2020
  ident: 54755_CR17
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0581-3
– volume: 13
  start-page: 164
  year: 2023
  ident: 54755_CR40
  publication-title: Membranes
  doi: 10.3390/membranes13020164
– volume: 114
  start-page: 27
  year: 2008
  ident: 54755_CR49
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2007.12.024
– volume: 44
  start-page: 7128
  year: 2015
  ident: 54755_CR19
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00292C
– volume: 13
  year: 2022
  ident: 54755_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31523-w
– volume: 117
  start-page: 13959
  year: 2020
  ident: 54755_CR38
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2003898117
– volume: 136
  start-page: 12265
  year: 2014
  ident: 54755_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503692z
– volume: 7
  start-page: 93
  year: 2018
  ident: 54755_CR22
  publication-title: Eur. Chem. Bull.
  doi: 10.17628/ecb.2018.7.93-97
– ident: 54755_CR33
– volume: 3
  start-page: 666
  year: 2008
  ident: 54755_CR10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.274
– volume: 592
  start-page: 551
  year: 2021
  ident: 54755_CR20
  publication-title: Nature
  doi: 10.1038/s41586-021-03410-9
– volume: 12
  start-page: 15007
  year: 2021
  ident: 54755_CR47
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC03568A
– volume: 133
  start-page: 26371
  year: 2021
  ident: 54755_CR3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202110731
– volume: 84
  start-page: 1447
  year: 1988
  ident: 54755_CR35
  publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases
– volume: 8
  year: 2022
  ident: 54755_CR26
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm6741
– volume: 10
  start-page: 760
  year: 1990
  ident: 54755_CR32
  publication-title: Zeolites
  doi: 10.1016/0144-2449(90)90058-Y
SSID ssj0000391844
Score 2.4982994
Snippet Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged...
Abstract Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10489
SubjectTerms 119/118
140/125
140/133
147/135
147/143
639/301/299/1013
639/4077/4072
Alkalinity
Amorphous materials
Channels
Charge density
Charge materials
Clean energy
Concentration gradient
Energy
Energy charge
Energy harvesting
Energy sources
Fluidics
Flux density
Humanities and Social Sciences
Membranes
multidisciplinary
Nanofluids
Porous materials
Rivers
Salinity
Salinity effects
Science
Science (multidisciplinary)
Sodium chloride
Sodium hydroxide
Sustainable energy
Zeolites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI365WieBNQ3fzuTlWsRRBD2KheAnJZmIftHml7-3B_76T7L5nnx948bIsmxyG32QyM5uZXwh5HToz-KAkE7EHJkPomDeWM0iaW9lzbyq7_qfP-vhEfjxVpzeu-io1YRM98ATcQQIP2g8hKh-lwWdIQ4sbjGp14lJXJlD0eTeSqboHC4upi5y7ZFrRH6xk3RPQJTEljVJM7niiStj_pyjz92LJX05MqyM6ukfuzhEkPZwkv09uQX5Abk93Sv54SL58g1LSBvQCLjATzkDLr1a6GgPLPi_T-biIi4GWht-MfpFi0IqDhe8YX8L5CBRqOyA981eVgiN_f0ROjj58fX_M5osT2CAtX7Po1cDbANp4MBClDejFgzHCqyQTdKU7VpXYxnRJ-KiNUKFVScg2CStiKx6TvbzM8JTQBOjCoVc2migHCR4NXnlMqn0QwqrUkDcbEN3lxI_h6rm26N0EuUPIXYXcyYa8KzhvZxZu6_oBNe5mjbt_abwh-xstudngVk4UmkWL0ouGvNoOo6mU8w_EejmWOZjMcokZcUOeTErdSiKsLkRAqiH9jrp3RN0dyYuzSsfddYWFTfOGvN2sjJ9y_R2LZ_8Di-fkDi9LutTX8H2yt74a4QVGSevwshrENSCyEPE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkj7jJC0u9NaK2HpY9im0pSEU2kNpYOlFSNYoWUjsdHd9yL_PjOzdsH1djLGMkT9pNA-NvmHsrS9N67xWXIYauPK-5M40gkOsRKNq4Uxi1__6rTo9U19mejYF3JZTWuV6TUwLdehbipEfSeLRayT638fXvzhVjaLd1amExn32gKjLKKXLzMwmxkLs57VS01mZQtZHS5VWBlRMXCujNVdb-ijR9v_N1vwzZfK3fdOkjk522ePJjsw_jAP_hN2D7il7OFaWvHnGvv8ESmyD_Aqu0B_uIKeAa74cPO9c18fLYR7mbU7HfjvUjjmarthIrMd44y8HyCEdCswv3CIRcXTnz9nZyecfn075VD6Bt6oRKx6cbkXhoTIODATVeNTl3hjpdFQRSjojq8nCMWWULlRGal_oKFUREeZQyBdsp-s72GN5BFTkUOsmmKBaBQ7FXjt0rZ2XstExY-_WINrrkSXDpt1tWdsRcouQ2wS5VRn7SDhv3iSG6_SgX5zbSWBsBAeVa33QLiiDVx_bAhUL9jgKVeFHDtejZCexW9q7SZKxN5tmFBjaBUGs-4HeQZdWKPSLM_ZyHNRNT2RTER2Qzli9NdxbXd1u6eYXiZS7LImLrRIZe7-eGXf9-jcW-___jQP2SNBkpfwZcch2VosBXqEVtPKv01S_Bbc9BkI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-L3VVSp402Cbj6Y56sNlEfQgLixeQtJMdh_s9sl7rwf_eydp--TpevBSSpOWYT46M8nMLwCvfa0755VkIrTIpPc1c9pwhrHhRrbc6Yyu__lLc3omP52r8wPgcy9MLtrPkJb5Nz1Xh73byGzS5FGYklopJm_B7QTdnrR60Sx26yoJ8byVcuqPqUR7w6t7PihD9d8UX_5dJvnHXml2QSf34d4UO5bvR2ofwAH2D-HOeJrkz0fw9TumYjYsr_GacuAey7TIWm4Gz3rXr-LVsAzLrkytvj15xJLCVRpMSMd0468GLDE3ApaXbp3BN_qLx3B28vHb4pRNRyawThq-ZcGpjlceG-1QY5DGk__2WgunooxYp75YlaIaXUfhQqOF8pWKQlZRGBEq8QQO-1WPR1BGJOeNrTJBB9lJdGTqylE67bwQRsUC3sxMtD9GZAybd7RFa0eWW2K5zSy3soAPic-7mQnVOj9YrS_sJGUb0WHjOh-UC1LT1ceuImdCFEcuG_rI8SwlO5naxooEsGiIelHAq90wGUna-SBer4Y0h9JYLikXLuDpKNQdJcI0CQJIFdDuiXuP1P2RfnmZgbjrOuGvNbyAt7Nm_Kbr37x49n_Tn8NdnpQ31dDwYzjcrgd8QZHQ1r_Mqv8LXX4EDA
  priority: 102
  providerName: Springer Nature
Title Zeolite membrane with sub-nanofluidic channels for superior blue energy harvesting
URI https://link.springer.com/article/10.1038/s41467-024-54755-4
https://www.ncbi.nlm.nih.gov/pubmed/39622835
https://www.proquest.com/docview/3134993933
https://www.proquest.com/docview/3140924549
https://pubmed.ncbi.nlm.nih.gov/PMC11612162
https://doaj.org/article/feae6acbd5ad47d5abfc0eb1506f2464
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED_tQ6C9IL4JjCpIvIEh8UccPyDUVStTpU1oUKniJbITe6vUpdAPif33nJ2kqNC9OJHtRKfzne_O9v0M8NakstRGcMKq3BJuTEq0VJRYl1HFc6plQNc_v8jOxnw0EZM96K47ahm43Bna-fukxovZh9-_bj-jwn9qUsbzj0se1B2tDRFcCkH4PhyiZZJeUc9bdz_MzExhQMPb3Jndnx7BfaYyDwojtkxVQPTf5Yb-f5ryny3VYKmGD-FB62LG_UYmHsGerR_DvebSydsncPnD-jNvNr6xNxgq1zb2a7Hxcm1Ireu5m62n1bSMfUZwjYYzRq8WGz0gMr6Y2drGNuQLxtd6ETA66qunMB6efh-ckfZmBVJyRVek0qKkibGZ1FbaiiuDZt5IybRw3NnUp88K7_zI1DFdZZIJkwjHeOKYYlXCnsFBPa_tC4idRRtvc6EqWfGSW40zgtAYdWvDmBIugncdE4ufDYBGETa-WV403C-Q-0XgfsEjOPF83vT04NehYr64KlpdKpzVNtOlqYSuuMTSuDJBm4MUO8oz_MlxN0pFJ1AF8ziMCqlnEbzZNKMu-Q0S5PV87ftgtEs5hswRPG8GdUNJJxQR5FvDvUXqdks9vQ543WnqYdoyGsH7TjL-0nU3L17eScMrOKJeZP2pGnoMB6vF2r5G32hlerAvJxLLfPilB4f9_ujbCJ8npxdfL7F2kA16YdWhFxTjDz-iEAw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2gQJDgBFYTP-LkgBCvaksfB9RKKy7Gju12pTYpuxuh_il-IzPOZqvldeslimIrmYxnPDO25xtCXthc1cZKQbkrPRXW5tSoilEfClaJkhkV0fX39ovRofg8luM18nPIhcFjlcOcGCdq19a4Rr7JEUev4hB_vz37TrFqFO6uDiU0erHY8ec_IGSbvdn-COP7krGtTwcfRnRRVYDWomJz6oysWWZ9oYxX3onKgomzSnEjgwg-x9RRiYZf5YEbVygubSYDF1mAr7uMw3uvkKtgeDPUKDVWyzUdRFsvhVjk5mS83JyJOBOBIaRSKCmpWLF_sUzA33zbP49o_rZPG83f1i1yc-G3pu96QbtN1nxzh1zrK1me3yVfvno8SOfTU38K8XfjU1zgTWedpY1p2nDSTdykTjHNuAFrnIKrDI2Isgw39qTzqY9JiOmxmUbgj-boHjm8FMbeJ-tN2_iHJA0eHAdfysopJ2rhDUwz0kAobyznlQwJeTUwUZ_1qBw67qbzUvcs18ByHVmuRULeI5-XPRFROz5op0d6oaA6eOMLU1snjRMKrjbUGRgyoDgwUcBLNoZR0gs1n-kLoUzI82UzKCjuugCv2w77QAjNBMThCXnQD-qSEl4VCD8kE1KuDPcKqastzeQ4goDnOWK_FSwhrwfJuKDr37x49P_feEaujw72dvXu9v7OY3KDoeDi2R22Qdbn084_AQ9sbp9GsU_Jt8vWs1_XMEIJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYhLxZtAgSDBCaxN_IiTA0JAWbUUKoSotOLi2vG4XanNtvsQ6l_j1zF2kq2W162XKIqjaDKe8czYM98Q8tzmqjZWCspdCVRYm1OjKkbBF6wSJTMqout_3iu298XHkRytkZ99LUxIq-zXxLhQu0kd9sgHPODoVRzj74Hv0iK-bA3fnJ7R0EEqnLT27TRaEdmF8x8Yvs1e72zhXL9gbPjh2_tt2nUYoLWo2Jw6I2uWWSiUAQVOVBbNnVWKG-mFhzyUkcrgBKjcc-MKxaXNpOci80iJyzh-9wq5io_zoGNqpJb7OwF5vRSiq9PJeDmYibgqoVGkUigpqVixhbFlwN_83D_TNX87s42mcHiTbHQ-bPq2FbpbZA2a2-Ra29Xy_A75-h1CUh2kJ3CCsXgDadjsTWcLSxvTTPzxYuzGdRpKjhu0zCm6zTgYEJfxxh4vIIVYkJgemWkEAWkO75L9S2HsPbLeTBp4QFIP6ERAKSunnKgFGFxypMGw3ljOK-kT8rJnoj5tETp0PFnnpW5ZrpHlOrJci4S8C3xevhnQteODyfRQd8qqPRgoTG2dNE4ovFpfZ2jUkGLPRIEf2exnSXcqP9MXApqQZ8thVNZwAoO8nizCOxhOM4ExeULut5O6pIRXRYAikgkpV6Z7hdTVkWZ8FAHB8zzgwBUsIa96ybig69-8ePj_33hKrqOG6U87e7uPyA0W5Dak8bBNsj6fLuAxOmNz-yRKfUoOLlvNfgHV8kY_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeolite+membrane+with+sub-nanofluidic+channels+for+superior+blue+energy+harvesting&rft.jtitle=Nature+communications&rft.au=Wei%2C+Ruicong&rft.au=Liu%2C+Xiaowei&rft.au=Cao%2C+Li&rft.au=Chen%2C+Cailing&rft.date=2024-12-02&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=10489&rft_id=info:doi/10.1038%2Fs41467-024-54755-4&rft_id=info%3Apmid%2F39622835&rft.externalDocID=39622835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon