Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity

Understanding the functional connectivity between brain regions and its emergent dynamics is a central challenge. Here we present a theory-experiment hybrid approach involving iteration between a minimal computational model and in vivo electrophysiological measurements. Our model not only predicted...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; p. 3542
Main Authors Choudhary, Krishna, Berberich, Sven, Hahn, Thomas T. G., McFarland, James M., Mehta, Mayank R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.05.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding the functional connectivity between brain regions and its emergent dynamics is a central challenge. Here we present a theory-experiment hybrid approach involving iteration between a minimal computational model and in vivo electrophysiological measurements. Our model not only predicted spontaneous persistent activity (SPA) during Up-Down-State oscillations, but also inactivity (SPI), which has never been reported. These were confirmed in vivo in the membrane potential of neurons, especially from layer 3 of the medial and lateral entorhinal cortices. The data was then used to constrain two free parameters, yielding a unique, experimentally determined model for each neuron. Analytic and computational analysis of the model generated a dozen quantitative predictions about network dynamics, which were all confirmed in vivo to high accuracy. Our technique predicted functional connectivity; e. g. the recurrent excitation is stronger in the medial than lateral entorhinal cortex. This too was confirmed with connectomics data. This technique uncovers how differential cortico-entorhinal dialogue generates SPA and SPI, which could form an energetically efficient working-memory substrate and influence the consolidation of memories during sleep. More broadly, our procedure can reveal the functional connectivity of large networks and a theory of their emergent dynamics. Cortico-entorhinal interactions remain poorly understood. Here, the authors demonstrate that a model of interacting networks predicts spontaneous persistent activity and inactivity in the medial, but not lateral, entorhinal cortex in vivo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47617-6