Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235 The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 279; no. 5; pp. H2486 - H2492
Main Authors Crandall, C. G, Zhang, R, Levine, B. D
Format Journal Article
LanguageEnglish
Published Legacy CDMS 01.11.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235 The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0.25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P  < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 ± 0.06 to 0.54   ± 0.6 beats · min 1 · mmHg 1 ; P  < 0.001) without significantly affecting the gain in the low-frequency range ( P  = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress. baroreceptor; orthostatic intolerance; transfer function analysis; spectral analysis
AbstractList Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235 The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0.25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P  < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 ± 0.06 to 0.54   ± 0.6 beats · min 1 · mmHg 1 ; P  < 0.001) without significantly affecting the gain in the low-frequency range ( P  = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress. baroreceptor; orthostatic intolerance; transfer function analysis; spectral analysis
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0.25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2–0.3 Hz), reduced SBP variability within the low-frequency range (0.03–0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 ± 0.06 to 0.54 ± 0.6 beats · min −1 · mmHg −1 ; P < 0.001) without significantly affecting the gain in the low-frequency range ( P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.
Audience PUBLIC
Author Crandall, C. G
Zhang, R
Levine, B. D
Author_xml – sequence: 1
  fullname: Crandall, C. G
– sequence: 2
  fullname: Zhang, R
– sequence: 3
  fullname: Levine, B. D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11045986$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1P3DAYhC1EBQvlH1SVe-ktwR9xEqunCkGphNTLqlfLduxNkGOndiLIv8fbXQqXnnyYZ2ZezwU49cEbAL5gVGLMyLV8nHoj41wShFBJGl6ysidVW5-ATdZJgRnlp2CDaE2LGlN2Di5Seswwa2p6Bs4xRhXjbb0Bv2-tNXpOMFj41AdnoArdCnP8PPgdDB52q5fjoKGSMURjnXmG0ewWl4GsZtvfU2CUs4GDh_0ySp8-gg9WumSuju8l2N7dbm_ui4dfP37efH8odMXJXHSEK9JWCllNG6WpZrWukEbIKkNsTU2tpdKN7DAn2iJtaMtV18pKY9QQSi_B10PsFMOfxaRZjEPSxjnpTViSyAzjDKMM8gOoY0gpf0NMcRhlXAVGYr-peN1U7DcVeVPBxP1-0-z9fCxZ1Gi6N-dxxAx8OgBeJin8HNM-pEIYkwZVWf52kPth1z8N0YipX9MQXNit4m5xbmue53_975rF1Nnsvv6_--3od_e-AFUCp5I
CitedBy_id crossref_primary_10_1152_ajpregu_00176_2016
crossref_primary_10_1371_journal_pone_0079513
crossref_primary_10_1113_JP280883
crossref_primary_10_1186_1550_2783_10_2
crossref_primary_10_1016_j_autneu_2010_12_005
crossref_primary_10_1186_s12576_020_00762_1
crossref_primary_10_1152_japplphysiol_00212_2016
crossref_primary_10_1590_S1980_65742012000100017
crossref_primary_10_1111_j_1748_1716_2010_02119_x
crossref_primary_10_1152_ajpheart_00790_2003
crossref_primary_10_1152_japplphysiol_01019_2001
crossref_primary_10_1152_physrev_00006_2018
crossref_primary_10_14814_phy2_13672
crossref_primary_10_1088_1361_6579_aca0d9
crossref_primary_10_1152_ajpheart_00918_2014
crossref_primary_10_1249_MSS_0b013e318180bc98
crossref_primary_10_1113_EP089069
crossref_primary_10_1152_ajpheart_01069_2008
crossref_primary_10_1152_japplphysiol_00233_2010
crossref_primary_10_1016_j_jtherbio_2023_103683
crossref_primary_10_1038_s41598_019_39172_8
crossref_primary_10_1152_japplphysiol_00502_2017
crossref_primary_10_1152_ajpheart_00025_2005
crossref_primary_10_3389_fnins_2017_00727
crossref_primary_10_1016_j_jcin_2010_09_025
crossref_primary_10_1016_j_jtherbio_2005_05_006
crossref_primary_10_1046_j_1365_201X_2003_01076_x
crossref_primary_10_1111_cpf_12605
crossref_primary_10_1152_japplphysiol_00717_2003
crossref_primary_10_1038_s41598_022_24216_3
crossref_primary_10_1080_23328940_2022_2109931
crossref_primary_10_1111_cpf_12102
crossref_primary_10_1152_ajpregu_90900_2008
crossref_primary_10_7600_jpfsm_1_271
crossref_primary_10_1016_j_jtherbio_2016_08_011
crossref_primary_10_1016_j_resp_2023_104120
crossref_primary_10_14814_phy2_15699
crossref_primary_10_2492_jsir_25_32
crossref_primary_10_1152_ajpregu_00195_2002
crossref_primary_10_1007_s11897_014_0191_y
crossref_primary_10_1152_ajpregu_00337_2001
crossref_primary_10_1152_japplphysiol_00063_2003
Cites_doi 10.1161/01.CIR.95.6.1441
10.1161/01.HYP.10.5.538
10.1152/ajpheart.1997.272.2.H776
10.1152/jappl.1984.56.2.441
10.1152/jappl.1990.68.3.1220
10.1161/01.CIR.97.14.1362
10.1161/01.CIR.84.2.482
10.1161/01.RES.59.2.178
10.1007/s004840050042
10.1161/01.RES.51.1.73
10.1152/jappl.1972.33.4.418
10.1152/ajplegacy.1965.209.6.1267
10.1161/01.CIR.96.9.3224
10.1016/S0165-1838(96)00134-8
10.1109/10.8688
10.1152/ajpheart.2000.279.4.H1955
10.1152/ajpheart.1999.277.6.H2348
10.1152/ajpheart.1991.261.4.H1231
10.1152/ajplegacy.1970.218.1.124
10.1152/ajpheart.1997.272.1.H485
10.1152/ajpheart.1985.248.1.H151
10.1152/jappl.1973.35.6.798
10.1126/science.6166045
10.1152/ajpregu.1998.275.3.R844
10.1152/jappl.1968.25.3.268
10.1161/01.CIR.93.8.1527
ContentType Journal Article
Contributor Crandall, C G
Contributor_xml – sequence: 1
  givenname: C G
  surname: Crandall
  fullname: Crandall, C G
  organization: Presbyterian Hosp, Dallas, TX
DBID CYE
CYI
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1152/ajpheart.2000.279.5.h2486
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H2492
ExternalDocumentID 10_1152_ajpheart_2000_279_5_H2486
11045986
20040112704
ajpheart_279_5_H2486
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Clinical Trial
Journal Article
GrantInformation HL-61388
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-61388
GroupedDBID -
02
23M
2WC
39C
53G
5GY
5VS
8M5
ABFLS
ABPTK
ACIWK
ACPRK
ADACO
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
E3Z
EBS
EJD
F5P
GX1
H13
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
WH7
WOQ
---
6J9
AAFWJ
ABJNI
ACBEA
BTFSW
CYE
CYI
EMOBN
ITBOX
RPRKH
TR2
W8F
XSW
YSK
~02
3O-
4.4
AFFNX
BKKCC
CGR
CUY
CVF
ECM
EIF
NPM
UKR
YYP
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c492t-d29b284b0fc37bc3c56c40c00fbe2f63e6cabc7ad192cf0ce389bd8a4c107233
ISSN 0363-6135
IngestDate Fri Aug 16 09:06:46 EDT 2024
Thu Sep 12 16:21:37 EDT 2024
Sat Sep 28 08:46:11 EDT 2024
Fri Sep 20 14:27:00 EDT 2024
Tue Jan 05 18:07:58 EST 2021
Mon May 06 11:41:44 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Clinical Trial
Non-Nasa Center
Nasa Discipline Cardiopulmonary
NASA Discipline Cardiopulmonary
Non-NASA Center
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c492t-d29b284b0fc37bc3c56c40c00fbe2f63e6cabc7ad192cf0ce389bd8a4c107233
Notes CDMS
Legacy CDMS
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11045986
PQID 72359510
PQPubID 23479
ParticipantIDs crossref_primary_10_1152_ajpheart_2000_279_5_H2486
nasa_ntrs_20040112704
proquest_miscellaneous_72359510
pubmed_primary_11045986
highwire_physiology_ajpheart_279_5_H2486
PublicationCentury 2000
PublicationDate 2000-11-01
PublicationDateYYYYMMDD 2000-11-01
PublicationDate_xml – month: 11
  year: 2000
  text: 2000-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Legacy CDMS
PublicationPlace_xml – name: Legacy CDMS
– name: United States
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2000
References B20
B22
B23
B24
B26
B27
Gebber GL (B7) 1970; 218
B10
B11
B12
B13
B14
B15
B16
B17
B18
Reis DJ (B21) 1965; 209
B19
B1
B2
B3
B4
B5
B6
B8
B9
References_xml – ident: B18
  doi: 10.1161/01.CIR.95.6.1441
– ident: B22
  doi: 10.1161/01.HYP.10.5.538
– ident: B24
  doi: 10.1152/ajpheart.1997.272.2.H776
– ident: B9
  doi: 10.1152/jappl.1984.56.2.441
– ident: B11
  doi: 10.1152/jappl.1990.68.3.1220
– ident: B19
  doi: 10.1161/01.CIR.97.14.1362
– ident: B14
  doi: 10.1161/01.CIR.84.2.482
– ident: B17
  doi: 10.1161/01.RES.59.2.178
– ident: B27
  doi: 10.1007/s004840050042
– ident: B8
  doi: 10.1161/01.RES.51.1.73
– ident: B2
  doi: 10.1152/jappl.1972.33.4.418
– volume: 209
  start-page: 1267
  year: 1965
  ident: B21
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1965.209.6.1267
  contributor:
    fullname: Reis DJ
– ident: B6
  doi: 10.1161/01.CIR.96.9.3224
– ident: B16
  doi: 10.1016/S0165-1838(96)00134-8
– ident: B3
  doi: 10.1109/10.8688
– ident: B4
  doi: 10.1152/ajpheart.2000.279.4.H1955
– ident: B5
  doi: 10.1152/ajpheart.1999.277.6.H2348
– ident: B23
  doi: 10.1152/ajpheart.1991.261.4.H1231
– volume: 218
  start-page: 124
  year: 1970
  ident: B7
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1970.218.1.124
  contributor:
    fullname: Gebber GL
– ident: B12
  doi: 10.1152/ajpheart.1997.272.1.H485
– ident: B20
  doi: 10.1152/ajpheart.1985.248.1.H151
– ident: B10
  doi: 10.1152/jappl.1973.35.6.798
– ident: B1
  doi: 10.1126/science.6166045
– ident: B15
  doi: 10.1152/ajpregu.1998.275.3.R844
– ident: B13
  doi: 10.1152/jappl.1968.25.3.268
– ident: B26
  doi: 10.1161/01.CIR.93.8.1527
SSID ssj0005763
Score 1.9328722
Snippet Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and Department of Internal Medicine, University of Texas...
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects,...
SourceID proquest
crossref
pubmed
nasa
highwire
SourceType Aggregation Database
Index Database
Publisher
Enrichment Source
StartPage H2486
SubjectTerms Adult
Baroreflex - physiology
Blood Flow Velocity - physiology
Blood Pressure - physiology
Body Temperature - physiology
Diastole
Female
Heart Rate - physiology
Hot Temperature
Humans
Life Sciences (General)
Male
Respiration
Skin - blood supply
Skin Temperature - physiology
Space life sciences
Systole
Title Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans
URI http://ajpheart.physiology.org/cgi/content/abstract/279/5/H2486
https://ntrs.nasa.gov/citations/20040112704
https://www.ncbi.nlm.nih.gov/pubmed/11045986
https://search.proquest.com/docview/72359510
Volume 279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ti9MwGA-icPhF9O7U-RpBRCitXdp068dzng71RGXK-SkkacqdaDe6Hnr-9T5P0jY93ED9UkZZmiW_39Ln_SHkcW7M1GSchbmeYkrOlIcqM2moeB4rUCcKbSsxHb3L5p_S18f82Ify2uySRkX618a8kv9BFe4Brpgl-w_I9g-FG_AZ8IUrIAzXv8L40Adj_MA-t4FaFuco-7lY5iooXL_5QMkaG4p8Mz-D2jWf93Ji3QRYLgINH7Zh33oor_YOnUGFCWsMsdb4CLOYahejrk9rDGm1Pnv_jd7FUaPFwrk4ZlHwKvrDYP2xv_UW3tXOzvo8Cl5EF-wScZug548v9BCDsMCHZy1znWNaUvHNZzjHmrDy68pugc0limBcxKMTlm6qmz37sqluNhIFDi82wWqxV-ABHCM-33zwxeRB1Uo6Vzb-0B3yqJ3_2dbZL4ovXUlpeJ9Xci23aylWWllcJ9daNYMeOM7cIJdMtUv2DirA5_s5fULf9wjtkp2jNr5ij3xuGUWXJbWMosgo2jKKLivaMop6RlHPKBxmF0SRUfS0oo5R-2Tx8nAxm4dt541QpzlrwoLlCuQWFZc6mSidaJ7pNNZxXCrDyiwxmZZKT2QB-oEuY21A7FXFVKZ6HE9YktyE_VhW5jahPCtKkISMzEqdlmmWy7FRrACpiEmsRjgirNtPsXL1VYTVSzkTHQjYKjUWAILgYo4gjEja7bzwjBZotFkACfqBgyFiVZQj8nTTMD_NcIZ9BFRUTb0WAyaNyMMOYQHnMDrXZGWWZ2sBy-aorYzILQe8X84Y1KZ8mt3Z8sy75Kr__9wjl5v6zNwHSbdRDyxffwMQ96jw
link.rule.ids 315,786,790,27955,27956
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+whole+body+heating+on+dynamic+baroreflex+regulation+of+heart+rate+in+humans&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Crandall%2C+C.+G.&rft.au=Zhang%2C+R.&rft.au=Levine%2C+B.+D.&rft.date=2000-11-01&rft.issn=0363-6135&rft.volume=279&rft.issue=5&rft_id=info:doi/10.1152%2Fajpheart.2000.279.5.h2486&rft.externalDBID=CYI&rft.externalDocID=20040112704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon