Probing nitric oxide signaling using molecular MRI

Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO a...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 191; pp. 241 - 248
Main Authors Barandov, Ali, Ghosh, Souparno, Jasanoff, Alan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology. [Display omitted] •Magnetic resonance imaging can detect hallmarks of nitrergic signaling.•A variety of NO-sensitive contrast agents have been developed.•Additional approaches target nitric oxide synthase function.•Detection of NO and NOS function has been shown in animal models.•Future work is needed to improve sensitivity and clinical potential.
AbstractList Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology. [Display omitted] •Magnetic resonance imaging can detect hallmarks of nitrergic signaling.•A variety of NO-sensitive contrast agents have been developed.•Additional approaches target nitric oxide synthase function.•Detection of NO and NOS function has been shown in animal models.•Future work is needed to improve sensitivity and clinical potential.
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Author Barandov, Ali
Jasanoff, Alan
Ghosh, Souparno
AuthorAffiliation 3 Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
1 Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
AuthorAffiliation_xml – name: 1 Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
– name: 3 Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
– name: 2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Author_xml – sequence: 1
  givenname: Ali
  surname: Barandov
  fullname: Barandov, Ali
  organization: Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
– sequence: 2
  givenname: Souparno
  surname: Ghosh
  fullname: Ghosh, Souparno
  organization: Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
– sequence: 3
  givenname: Alan
  orcidid: 0000-0002-2834-6359
  surname: Jasanoff
  fullname: Jasanoff, Alan
  email: jasanoff@mit.edu
  organization: Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36084790$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFv4BW4sIl6dixE1scUFUVqFQEQnC2vOPJ4lXWLnZSwb8n0bYV5dSLLXnefG8874QdxRSJsTccag68PdvVfSbKzm9C2pOvBQhRg65BimdsxXXXVFKZ9oitQBteKS3NMTspZQcAUjX6BTtuWtCyM7Bi4mtOmxC36xjGHHCdfgdP6xK20Q3L81SWc58Gwmlwef3529VL9rx3Q6FXd_cp-_Hh8vvFp-r6y8eri_PrCqURY4V959FsDLTKK0O8QfSSSKqWpAavRa8F74RvOgWqdUIRCXKN19hhg51vTtn7A_dm2sz_RIpjdoO9yWHv8h-bXLCPKzH8tNt0azkIkJy3M-HtHSGnXxOV0e5DQRoGFylNxYqOCy2VMIv09b9mDy73m5oF7w4CzKmUTP2DhINdcrE7-ygXu-RiQds5l7n7_L9uDKMbQ1omD8MTGZcHBs1Lvw2UbcFAEcmHTDhan8KTOH8BmYO0og
CitedBy_id crossref_primary_10_1038_s41563_024_02054_0
crossref_primary_10_1016_j_bioorg_2024_107505
crossref_primary_10_1016_j_saa_2024_125663
crossref_primary_10_1016_j_freeradbiomed_2023_01_005
crossref_primary_10_1021_acssensors_4c01604
crossref_primary_10_1021_acs_jmedchem_4c01813
crossref_primary_10_25207_1608_6228_2023_30_6_28_40
Cites_doi 10.1111/micc.12003
10.1038/nbt720
10.1146/annurev-biochem-061009-091643
10.1021/ic502005u
10.1016/j.bmc.2017.03.041
10.1016/0306-4522(92)90347-5
10.1055/s-2004-815678
10.1038/nmeth.2996
10.1038/nature09613
10.1038/s41467-020-16118-7
10.1016/j.redox.2015.05.002
10.1002/mrm.26250
10.1146/annurev.immunol.15.1.323
10.1097/00001756-199701200-00017
10.1021/ar020228m
10.1021/jacs.9b09149
10.1139/cjc-2016-0179
10.1111/bph.12217
10.1074/jbc.272.8.4959
10.1021/bi00424a003
10.1074/jbc.M001952200
10.1038/nbt0896-992
10.1002/cmmi.369
10.1042/bj3570593
10.1177/1073858417703033
10.1016/S1367-5931(98)80125-7
10.1002/(SICI)1522-2594(199908)42:2<235::AID-MRM4>3.0.CO;2-Y
10.1021/acssensors.0c00322
10.1038/nmeth.1641
10.1002/(SICI)1522-2594(199909)42:3<599::AID-MRM24>3.0.CO;2-Y
10.1097/MNH.0b013e32834ad579
10.1021/jacs.5b13337
10.1016/j.niox.2009.07.002
10.1117/1.3194136
10.1021/acs.chemrev.8b00363
10.1523/JNEUROSCI.4050-15.2016
10.1111/bph.14532
10.1002/mrm.21428
10.1089/ars.2010.3297
10.1021/ja00417a016
10.1148/radiology.216.1.r00jl10225
10.1126/science.1948051
10.1177/0271678X19870105
10.1097/00003246-200004001-00005
10.1073/pnas.0914794107
10.1523/JNEUROSCI.3287-09.2009
10.1166/jbn.2014.1833
10.1006/bbrc.1995.1226
10.1073/pnas.89.13.5951
10.1038/jcbfm.2009.211
10.1097/RLI.0000000000000731
10.1038/s41586-019-1584-6
10.1073/pnas.0702393104
10.1016/j.neuroimage.2006.03.035
10.1002/(SICI)1521-3773(19991102)38:21<3209::AID-ANIE3209>3.0.CO;2-6
10.1038/s41593-022-01014-8
10.1016/S0005-2728(99)00021-3
10.1074/jbc.273.42.27430
10.1016/j.conb.2018.03.009
10.1038/s41467-019-08558-7
10.1007/s00424-014-1621-0
10.1021/acs.accounts.1c00588
10.1038/sj.jcbfm.9600377
10.1126/science.1168877
10.1097/RCT.0b013e3181d5d503
10.1016/j.cbpa.2018.04.006
10.1021/cb600439h
10.1021/jacs.6b10898
10.1006/jmre.1999.1956
10.1038/ncomms13607
10.1073/pnas.98.1.355
10.1006/bbrc.1993.2170
10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO;2-H
10.1038/nn.4220
10.1002/mrm.1910250220
10.1021/ac303787p
10.1073/pnas.87.24.9868
10.1002/smll.201704256
10.1371/journal.pcbi.1008069
10.1126/science.1249380
10.1006/nimg.2002.1314
10.1016/S0092-8674(00)81053-3
10.1016/j.neuron.2016.09.048
10.1002/nbm.2899
10.1021/ja200299u
10.1002/anie.201710406
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.freeradbiomed.2022.08.042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 248
ExternalDocumentID PMC10204116
36084790
10_1016_j_freeradbiomed_2022_08_042
S0891584922005779
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: UF1 NS107712
– fundername: NEI NIH HHS
  grantid: R21 EY032369
– fundername: Howard Hughes Medical Institute
– fundername: NINDS NIH HHS
  grantid: U01 NS103470
– fundername: NINDS NIH HHS
  grantid: R01 NS121073
– fundername: NIMH NIH HHS
  grantid: UG3 MH126868
– fundername: NINDS NIH HHS
  grantid: U01 NS090451
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c492t-cf7dc9b9065d59e13ccd4ee456e480d82f82172d375056a25ee2ea3d8c7c3c7d3
IEDL.DBID .~1
ISSN 0891-5849
1873-4596
IngestDate Thu Aug 21 18:36:22 EDT 2025
Fri Jul 11 11:41:15 EDT 2025
Wed Feb 19 02:23:42 EST 2025
Tue Jul 01 01:11:41 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Fri Feb 23 02:35:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NO
eNOS
MRI
LPS
oAA
sGC
Gly
Contrast agent
Nitric oxide synthase
DO3A
iNOS
CEST
T1
T2
Molecular imaging
NOSTIC
CPu
MGD
Cit
NOS
Magnetic resonance imaging
Nitric oxide
DOTAM
Arg
nNOS
r1
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-cf7dc9b9065d59e13ccd4ee456e480d82f82172d375056a25ee2ea3d8c7c3c7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
contributed equally
ORCID 0000-0002-2834-6359
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10204116
PMID 36084790
PQID 2712845296
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10204116
proquest_miscellaneous_2712845296
pubmed_primary_36084790
crossref_primary_10_1016_j_freeradbiomed_2022_08_042
crossref_citationtrail_10_1016_j_freeradbiomed_2022_08_042
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2022_08_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Garvey, Oplinger, Furfine, Kiff, Laszlo, Whittle, Knowles (bib38) 1997; 272
Artunc, Rossi, Boss (bib72) 2011; 20
Yoshimura, Yokoyama, Fujii, Takayama, Oikawa, Kamada (bib26) 1996; 14
Thomas (bib42) 2015; 5
MacMicking, Xie, Nathan (bib36) 1997; 15
Stefanovic, Schwindt, Hoehn, Silva (bib60) 2007; 27
Daryaei, Pagel (bib47) 2015; 5
Gale, Mukherjee, Liu, Loving, Caravan (bib29) 2014; 53
Suchy, Li, Liu, Feng, Bartha, Hudson (bib50) 1996; 94
Prabhakar, Cheng, Michel (bib66) 2000; 275
Callaghan (bib4) 1994
Fujii, Berliner (bib22) 1999; 42
Fichtlscherer, Mulsch (bib23) 2000; 216
Buerk, Ances, Greenberg, Detre (bib14) 2003; 18
Pluth, Tomat, Lippard (bib20) 2011; 80
Kojima, Urano, Kikuchi, Higuchi, Hirata, Nagano (bib41) 1999; 38
Cowley, Adams, Atkinson, Cockett, Duckett, Green, Lohman, Kerssebaum, Kilgour, Mewis (bib53) 2011; 133
Adams, Aguilar, Atkinson, Cowley, Elliott, Duckett, Green, Khazal, Lopez-Serrano, Williamson (bib54) 2009; 323
Li, Meade (bib10) 2019; 141
Hall, Garthwaite (bib12) 2009; 21
Bandettini, Wong, Hinks, Tikofsky, Hyde (bib7) 1992; 25
Josephson, Perez, Weissleder (bib79) 2001; 40
Ogawa, Lee, Kay, Tank (bib61) 1990; 87
Bartelle, Barandov, Jasanoff (bib73) 2016; 36
Di Salle, Barone, Hacker, Smaltino, d'Ischia (bib39) 1997; 8
Kang, Liu, Wu, Chen (bib19) 2019; 574
Santos, Lourenco, Pomerleau, Huettl, Gerhardt, Laranjinha, Barbosa (bib69) 2011; 14
Hai, Cai, Lee, Lelyveld, Jasanoff (bib35) 2016; 92
Terreno, Castelli, Aime (bib46) 2010; 5
Toda, Okamura (bib56) 2015; 467
Liaudet, Soriano, Szabo (bib1) 2000; 28
Gale, Jones, Ramsay, Farrar, Caravan (bib31) 2016; 138
Daryaei, Randtke, Pagel (bib40) 2017; 77
Lee, Cai, Lelyveld, Hai, Jasanoff (bib34) 2014; 344
Ogawa, Tank, Menon, Ellermann, Kim, Merkle, Ugurbil (bib6) 1992; 89
Fujii, Wan, Zhong, Berliner, Yoshikawa (bib24) 1999; 42
Alderton, Cooper, Knowles (bib49) 2001; 357
Attwell, Buchan, Charpak, Lauritzen, Macvicar, Newman (bib57) 2010; 468
Garthwaite (bib85) 2019; 176
Mace, Montaldo, Cohen, Baulac, Fink, Tanter (bib78) 2011; 8
Hunter, Storm, Coneski, Schoenfisch (bib13) 2013; 85
Leithner, Royl, Offenhauser, Fuchtemeier, Kohl-Bareis, Villringer, Dirnagl, Lindauer (bib76) 2010; 30
Tsai, Kaufhold, Blinder, Friedman, Drew, Karten, Lyden, Kleinfeld (bib68) 2009; 29
Bohlen (bib16) 2013; 20
Wahsner, Gale, Rodriguez-Rodriguez, Caravan (bib88) 2019; 119
Lee, Stull (bib64) 1998; 273
Andersson, Perry, Gordon (bib37) 1992; 48
Stuber, Wise (bib75) 2016; 19
Marletta, Yoon, Iyengar, Leaf, Wishnok (bib51) 1988; 27
Burke, Buhrle (bib59) 2006; 32
Komarov, Mattson, Jones, Singh, Lai (bib25) 1993; 195
Fan, Elzibak, Boylan, Noseworthy (bib71) 2010; 34
Liu, Li, Pagel (bib48) 2007; 58
McQuade, Ma, Lowe, Ghatpande, Gelperin, Lippard (bib15) 2010; 107
Shuvaev, Akam, Caravan (bib11) 2021; 56
Hu, Maslov, Tsytsarev, Wang (bib77) 2009; 14
Ward, Aletras, Balaban (bib43) 2000; 143
Zhang, Merritt, Woessner, Lenkinski, Sherry (bib44) 2003; 36
Barandov, Ghosh, Li, Bartelle, Daher, Pegis, Collins, Jasanoff (bib33) 2020; 5
Nippert, Biesecker, Newman (bib58) 2018; 24
Brenman, Chao, Gee, McGee, Craven, Santillano, Wu, Huang, Xia, Peters, Froehner, Bredt (bib65) 1996; 84
Fernandez Diaz-Rullo, Zamberlan, Mewis, Fekete, Broche, Cheyne, Dall'Angelo, Duckett, Dawson, Zanda (bib52) 2017; 25
Desai, Slusarczyk, Chapin, Barch, Jasanoff (bib83) 2016; 7
Babu, Griffith (bib62) 1998; 2
Noseworthy, Bulte, Alfonsi (bib70) 2003; 7
Thomas, Liu, Kantrow, Lancaster (bib17) 2001; 98
Barandov, Bartelle, Williamson, Loucks, Lippard, Jasanoff (bib32) 2019; 10
Haselden, Kedarasetti, Drew (bib3) 2020; 16
Krawchuk, Ruff, Yang, Ross, Vazquez (bib67) 2020; 40
Ohlendorf, Wisniowska, Desai, Barandov, Slusarczyk, Li, Jasanoff (bib84) 2020; 11
Zhang, Lovejoy, Jasanoff, Lippard (bib28) 2007; 104
Fenno, Mattis, Ramakrishnan, Hyun, Lee, He, Tucciarone, Selimbeyoglu, Berndt, Grosenick, Zalocusky, Bernstein, Swanson, Perry, Diester, Boyce, Bass, Neve, Huang, Deisseroth (bib74) 2014; 11
Sanino, Dastru, Mainini, Delli Castelli, Aime, Terreno (bib82) 2014; 10
Lux, Sherry (bib9) 2018; 45
Cooper (bib21) 1999; 1411
Barandov, Bartelle, Gonzalez, White, Lippard, Jasanoff (bib30) 2016; 138
Ghosh, Li, Schwalm, Bartelle, Xie, Daher, Singh, Xie, DiNapoli, Evans, Chung, Jasanoff (bib63) 2022; 25
Wayland, Olson, Siddiqui (bib27) 1976; 98
Ghosh, Harvey, Simon, Jasanoff (bib8) 2018; 50
Tannenbaum, White (bib18) 2006; 1
Rayner, Duckett (bib55) 2018; 57
Heinrich, da Silva, Miranda, Switzer, Wink, Fukuto (bib2) 2013; 169
Belliveau, Kennedy, McKinstry, Buchbinder, Weisskoff, Cohen, Vevea, Brady, Rosen (bib5) 1991; 254
Perez, Josephson, O'Loughlin, Hogemann, Weissleder (bib80) 2002; 20
Yang, Zheng, Ratnakar, Adebesin, Do, Kovacs, Blount (bib81) 2018; 14
Lemon, Marletta (bib87) 2021; 54
Stone, Sands, Dunham, Marletta (bib86) 1995; 207
Liu, Song, Chan, McMahon (bib45) 2013; 26
Thomas (10.1016/j.freeradbiomed.2022.08.042_bib42) 2015; 5
Lux (10.1016/j.freeradbiomed.2022.08.042_bib9) 2018; 45
Haselden (10.1016/j.freeradbiomed.2022.08.042_bib3) 2020; 16
Fujii (10.1016/j.freeradbiomed.2022.08.042_bib22) 1999; 42
Fenno (10.1016/j.freeradbiomed.2022.08.042_bib74) 2014; 11
Ogawa (10.1016/j.freeradbiomed.2022.08.042_bib61) 1990; 87
Garthwaite (10.1016/j.freeradbiomed.2022.08.042_bib85) 2019; 176
Fichtlscherer (10.1016/j.freeradbiomed.2022.08.042_bib23) 2000; 216
Liu (10.1016/j.freeradbiomed.2022.08.042_bib45) 2013; 26
Yang (10.1016/j.freeradbiomed.2022.08.042_bib81) 2018; 14
Wahsner (10.1016/j.freeradbiomed.2022.08.042_bib88) 2019; 119
Ward (10.1016/j.freeradbiomed.2022.08.042_bib43) 2000; 143
Santos (10.1016/j.freeradbiomed.2022.08.042_bib69) 2011; 14
Noseworthy (10.1016/j.freeradbiomed.2022.08.042_bib70) 2003; 7
Lee (10.1016/j.freeradbiomed.2022.08.042_bib64) 1998; 273
McQuade (10.1016/j.freeradbiomed.2022.08.042_bib15) 2010; 107
Liaudet (10.1016/j.freeradbiomed.2022.08.042_bib1) 2000; 28
Ghosh (10.1016/j.freeradbiomed.2022.08.042_bib8) 2018; 50
Stuber (10.1016/j.freeradbiomed.2022.08.042_bib75) 2016; 19
Perez (10.1016/j.freeradbiomed.2022.08.042_bib80) 2002; 20
Terreno (10.1016/j.freeradbiomed.2022.08.042_bib46) 2010; 5
Bartelle (10.1016/j.freeradbiomed.2022.08.042_bib73) 2016; 36
Fernandez Diaz-Rullo (10.1016/j.freeradbiomed.2022.08.042_bib52) 2017; 25
Adams (10.1016/j.freeradbiomed.2022.08.042_bib54) 2009; 323
Stefanovic (10.1016/j.freeradbiomed.2022.08.042_bib60) 2007; 27
Ogawa (10.1016/j.freeradbiomed.2022.08.042_bib6) 1992; 89
Komarov (10.1016/j.freeradbiomed.2022.08.042_bib25) 1993; 195
Belliveau (10.1016/j.freeradbiomed.2022.08.042_bib5) 1991; 254
Leithner (10.1016/j.freeradbiomed.2022.08.042_bib76) 2010; 30
Bohlen (10.1016/j.freeradbiomed.2022.08.042_bib16) 2013; 20
Rayner (10.1016/j.freeradbiomed.2022.08.042_bib55) 2018; 57
Li (10.1016/j.freeradbiomed.2022.08.042_bib10) 2019; 141
Barandov (10.1016/j.freeradbiomed.2022.08.042_bib32) 2019; 10
MacMicking (10.1016/j.freeradbiomed.2022.08.042_bib36) 1997; 15
Alderton (10.1016/j.freeradbiomed.2022.08.042_bib49) 2001; 357
Buerk (10.1016/j.freeradbiomed.2022.08.042_bib14) 2003; 18
Desai (10.1016/j.freeradbiomed.2022.08.042_bib83) 2016; 7
Tannenbaum (10.1016/j.freeradbiomed.2022.08.042_bib18) 2006; 1
Hunter (10.1016/j.freeradbiomed.2022.08.042_bib13) 2013; 85
Callaghan (10.1016/j.freeradbiomed.2022.08.042_bib4) 1994
Kojima (10.1016/j.freeradbiomed.2022.08.042_bib41) 1999; 38
Burke (10.1016/j.freeradbiomed.2022.08.042_bib59) 2006; 32
Barandov (10.1016/j.freeradbiomed.2022.08.042_bib33) 2020; 5
Barandov (10.1016/j.freeradbiomed.2022.08.042_bib30) 2016; 138
Gale (10.1016/j.freeradbiomed.2022.08.042_bib29) 2014; 53
Gale (10.1016/j.freeradbiomed.2022.08.042_bib31) 2016; 138
Attwell (10.1016/j.freeradbiomed.2022.08.042_bib57) 2010; 468
Wayland (10.1016/j.freeradbiomed.2022.08.042_bib27) 1976; 98
Lemon (10.1016/j.freeradbiomed.2022.08.042_bib87) 2021; 54
Hai (10.1016/j.freeradbiomed.2022.08.042_bib35) 2016; 92
Daryaei (10.1016/j.freeradbiomed.2022.08.042_bib47) 2015; 5
Bandettini (10.1016/j.freeradbiomed.2022.08.042_bib7) 1992; 25
Liu (10.1016/j.freeradbiomed.2022.08.042_bib48) 2007; 58
Daryaei (10.1016/j.freeradbiomed.2022.08.042_bib40) 2017; 77
Ohlendorf (10.1016/j.freeradbiomed.2022.08.042_bib84) 2020; 11
Hall (10.1016/j.freeradbiomed.2022.08.042_bib12) 2009; 21
Fujii (10.1016/j.freeradbiomed.2022.08.042_bib24) 1999; 42
Krawchuk (10.1016/j.freeradbiomed.2022.08.042_bib67) 2020; 40
Artunc (10.1016/j.freeradbiomed.2022.08.042_bib72) 2011; 20
Suchy (10.1016/j.freeradbiomed.2022.08.042_bib50) 1996; 94
Shuvaev (10.1016/j.freeradbiomed.2022.08.042_bib11) 2021; 56
Thomas (10.1016/j.freeradbiomed.2022.08.042_bib17) 2001; 98
Mace (10.1016/j.freeradbiomed.2022.08.042_bib78) 2011; 8
Zhang (10.1016/j.freeradbiomed.2022.08.042_bib28) 2007; 104
Heinrich (10.1016/j.freeradbiomed.2022.08.042_bib2) 2013; 169
Brenman (10.1016/j.freeradbiomed.2022.08.042_bib65) 1996; 84
Stone (10.1016/j.freeradbiomed.2022.08.042_bib86) 1995; 207
Cowley (10.1016/j.freeradbiomed.2022.08.042_bib53) 2011; 133
Zhang (10.1016/j.freeradbiomed.2022.08.042_bib44) 2003; 36
Fan (10.1016/j.freeradbiomed.2022.08.042_bib71) 2010; 34
Nippert (10.1016/j.freeradbiomed.2022.08.042_bib58) 2018; 24
Yoshimura (10.1016/j.freeradbiomed.2022.08.042_bib26) 1996; 14
Garvey (10.1016/j.freeradbiomed.2022.08.042_bib38) 1997; 272
Sanino (10.1016/j.freeradbiomed.2022.08.042_bib82) 2014; 10
Di Salle (10.1016/j.freeradbiomed.2022.08.042_bib39) 1997; 8
Toda (10.1016/j.freeradbiomed.2022.08.042_bib56) 2015; 467
Tsai (10.1016/j.freeradbiomed.2022.08.042_bib68) 2009; 29
Pluth (10.1016/j.freeradbiomed.2022.08.042_bib20) 2011; 80
Josephson (10.1016/j.freeradbiomed.2022.08.042_bib79) 2001; 40
Marletta (10.1016/j.freeradbiomed.2022.08.042_bib51) 1988; 27
Cooper (10.1016/j.freeradbiomed.2022.08.042_bib21) 1999; 1411
Andersson (10.1016/j.freeradbiomed.2022.08.042_bib37) 1992; 48
Hu (10.1016/j.freeradbiomed.2022.08.042_bib77) 2009; 14
Ghosh (10.1016/j.freeradbiomed.2022.08.042_bib63) 2022; 25
Kang (10.1016/j.freeradbiomed.2022.08.042_bib19) 2019; 574
Prabhakar (10.1016/j.freeradbiomed.2022.08.042_bib66) 2000; 275
Babu (10.1016/j.freeradbiomed.2022.08.042_bib62) 1998; 2
Lee (10.1016/j.freeradbiomed.2022.08.042_bib34) 2014; 344
References_xml – volume: 7
  year: 2016
  ident: bib83
  article-title: Molecular imaging with engineered physiology
  publication-title: Nat. Commun.
– volume: 275
  start-page: 19416
  year: 2000
  end-page: 19421
  ident: bib66
  article-title: A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 1674
  year: 2020
  end-page: 1682
  ident: bib33
  article-title: Molecular magnetic resonance imaging of nitric oxide in biological systems
  publication-title: ACS Sens.
– volume: 25
  start-page: 390
  year: 2022
  end-page: 398
  ident: bib63
  article-title: Functional dissection of neural circuitry using a genetic reporter for fMRI
  publication-title: Nat. Neurosci.
– volume: 19
  start-page: 198
  year: 2016
  end-page: 205
  ident: bib75
  article-title: Lateral hypothalamic circuits for feeding and reward
  publication-title: Nat. Neurosci.
– volume: 468
  start-page: 232
  year: 2010
  end-page: 243
  ident: bib57
  article-title: Glial and neuronal control of brain blood flow
  publication-title: Nature
– volume: 11
  start-page: 763
  year: 2014
  end-page: 772
  ident: bib74
  article-title: Targeting cells with single vectors using multiple-feature Boolean logic
  publication-title: Nat. Methods
– volume: 10
  start-page: 1620
  year: 2014
  end-page: 1626
  ident: bib82
  article-title: Polymeric vesicles loaded with gadoteridol as reversible and concentration-independent magnetic resonance imaging thermometers
  publication-title: J. Biomed. Nanotechnol.
– volume: 18
  start-page: 1
  year: 2003
  end-page: 9
  ident: bib14
  article-title: Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats
  publication-title: Neuroimage
– volume: 104
  start-page: 10780
  year: 2007
  end-page: 10785
  ident: bib28
  article-title: Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 98
  start-page: 94
  year: 1976
  end-page: 98
  ident: bib27
  article-title: Nitric oxide complexes of manganese and chromium tetraphenylporphyrin
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2020
  ident: bib3
  article-title: Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics
  publication-title: PLoS Comput. Biol.
– volume: 77
  start-page: 1665
  year: 2017
  end-page: 1670
  ident: bib40
  article-title: A biomarker-responsive T2ex MRI contrast agent
  publication-title: Magn. Reson. Med.
– volume: 273
  start-page: 27430
  year: 1998
  end-page: 27437
  ident: bib64
  article-title: Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 323
  year: 1997
  end-page: 350
  ident: bib36
  article-title: Nitric oxide and macrophage function
  publication-title: Annu. Rev. Immunol.
– volume: 20
  start-page: 669
  year: 2011
  end-page: 675
  ident: bib72
  article-title: MRI to assess renal structure and function
  publication-title: Curr. Opin. Nephrol. Hypertens.
– volume: 14
  year: 2018
  ident: bib81
  article-title: Engineering a pH-sensitive liposomal MRI agent by modification of a bacterial channel
  publication-title: Small
– volume: 98
  start-page: 355
  year: 2001
  end-page: 360
  ident: bib17
  article-title: The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 2399
  year: 2020
  ident: bib84
  article-title: Target-responsive vasoactive probes for ultrasensitive molecular imaging
  publication-title: Nat. Commun.
– volume: 14
  start-page: 992
  year: 1996
  end-page: 994
  ident: bib26
  article-title: In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice
  publication-title: Nat. Biotechnol.
– volume: 85
  start-page: 1957
  year: 2013
  end-page: 1963
  ident: bib13
  article-title: Inaccuracies of nitric oxide measurement methods in biological media
  publication-title: Anal. Chem.
– volume: 27
  start-page: 741
  year: 2007
  end-page: 754
  ident: bib60
  article-title: Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase
  publication-title: J. Cerebr. Blood Flow Metabol.
– volume: 45
  start-page: 121
  year: 2018
  end-page: 130
  ident: bib9
  article-title: Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo
  publication-title: Curr. Opin. Chem. Biol.
– volume: 119
  start-page: 957
  year: 2019
  end-page: 1057
  ident: bib88
  article-title: Chemistry of MRI contrast agents: current challenges and new frontiers
  publication-title: Chem. Rev.
– volume: 323
  start-page: 1708
  year: 2009
  end-page: 1711
  ident: bib54
  article-title: Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer
  publication-title: Science
– volume: 1
  start-page: 615
  year: 2006
  end-page: 618
  ident: bib18
  article-title: Regulation and specificity of S-nitrosylation and denitrosylation
  publication-title: ACS Chem. Biol.
– volume: 32
  start-page: 1
  year: 2006
  end-page: 8
  ident: bib59
  article-title: BOLD response during uncoupling of neuronal activity and CBF
  publication-title: Neuroimage
– volume: 36
  start-page: 783
  year: 2003
  end-page: 790
  ident: bib44
  article-title: PARACEST agents: modulating MRI contrast via water proton exchange
  publication-title: Acc. Chem. Res.
– volume: 21
  start-page: 92
  year: 2009
  end-page: 103
  ident: bib12
  article-title: What is the real physiological NO concentration in vivo?
  publication-title: Nitric Oxide
– volume: 176
  start-page: 197
  year: 2019
  end-page: 211
  ident: bib85
  article-title: NO as a multimodal transmitter in the brain: discovery and current status
  publication-title: Br. J. Pharmacol.
– volume: 25
  start-page: 390
  year: 1992
  end-page: 397
  ident: bib7
  article-title: Time course EPI of human brain function during task activation
  publication-title: Magn. Reson. Med.
– volume: 7
  start-page: 307
  year: 2003
  end-page: 315
  ident: bib70
  article-title: BOLD magnetic resonance imaging of skeletal muscle
  publication-title: Semin. Muscoskel. Radiol.
– volume: 5
  start-page: 225
  year: 2015
  end-page: 233
  ident: bib42
  article-title: Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide
  publication-title: Redox Biol.
– volume: 357
  start-page: 593
  year: 2001
  end-page: 615
  ident: bib49
  article-title: Nitric oxide synthases: structure, function and inhibition
  publication-title: Biochem. J.
– volume: 28
  start-page: N37
  year: 2000
  end-page: N52
  ident: bib1
  article-title: Biology of nitric oxide signaling
  publication-title: Crit. Care Med.
– volume: 25
  start-page: 2730
  year: 2017
  end-page: 2742
  ident: bib52
  article-title: Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by (1)H NMR spectroscopy
  publication-title: Bioorg. Med. Chem.
– volume: 42
  start-page: 235
  year: 1999
  end-page: 239
  ident: bib24
  article-title: In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping
  publication-title: Magn. Reson. Med.
– volume: 272
  start-page: 4959
  year: 1997
  end-page: 4963
  ident: bib38
  article-title: 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo
  publication-title: J. Biol. Chem.
– volume: 50
  start-page: 201
  year: 2018
  end-page: 210
  ident: bib8
  article-title: Probing the brain with molecular fMRI
  publication-title: Curr. Opin. Neurobiol.
– volume: 207
  start-page: 572
  year: 1995
  end-page: 577
  ident: bib86
  article-title: Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 20
  start-page: 30
  year: 2013
  end-page: 41
  ident: bib16
  article-title: Is the real in vivo nitric oxide concentration pico or nano molar? Influence of electrode size on unstirred layers and NO consumption
  publication-title: Microcirculation
– volume: 10
  start-page: 897
  year: 2019
  ident: bib32
  article-title: Sensing intracellular calcium ions using a manganese-based MRI contrast agent
  publication-title: Nat. Commun.
– volume: 36
  start-page: 4139
  year: 2016
  end-page: 4148
  ident: bib73
  article-title: Molecular fMRI
  publication-title: J. Neurosci.
– volume: 30
  start-page: 311
  year: 2010
  end-page: 322
  ident: bib76
  article-title: Pharmacological uncoupling of activation induced increases in CBF and CMRO2
  publication-title: J. Cerebr. Blood Flow Metabol.
– volume: 344
  start-page: 533
  year: 2014
  end-page: 535
  ident: bib34
  article-title: Molecular-level functional magnetic resonance imaging of dopaminergic signaling
  publication-title: Science
– volume: 195
  start-page: 1191
  year: 1993
  end-page: 1198
  ident: bib25
  article-title: In vivo spin trapping of nitric oxide in mice
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 38
  start-page: 3209
  year: 1999
  end-page: 3212
  ident: bib41
  article-title: Fluorescent indicators for imaging nitric oxide production
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 254
  start-page: 716
  year: 1991
  end-page: 719
  ident: bib5
  article-title: Functional mapping of the human visual cortex by magnetic resonance imaging
  publication-title: Science
– volume: 53
  start-page: 10748
  year: 2014
  end-page: 10761
  ident: bib29
  article-title: Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes
  publication-title: Inorg. Chem.
– volume: 40
  start-page: 1427
  year: 2020
  end-page: 1440
  ident: bib67
  article-title: Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex
  publication-title: J. Cerebr. Blood Flow Metabol.
– volume: 27
  start-page: 8706
  year: 1988
  end-page: 8711
  ident: bib51
  article-title: Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate
  publication-title: Biochemistry
– volume: 58
  start-page: 1249
  year: 2007
  end-page: 1256
  ident: bib48
  article-title: Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide
  publication-title: Magn. Reson. Med.
– volume: 133
  start-page: 6134
  year: 2011
  end-page: 6137
  ident: bib53
  article-title: Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1011
  year: 2011
  end-page: 1021
  ident: bib69
  article-title: Brain nitric oxide inactivation is governed by the vasculature
  publication-title: Antioxidants Redox Signal.
– volume: 1411
  start-page: 290
  year: 1999
  end-page: 309
  ident: bib21
  article-title: Nitric oxide and iron proteins
  publication-title: Biochim. Biophys. Acta
– volume: 92
  start-page: 754
  year: 2016
  end-page: 765
  ident: bib35
  article-title: Molecular fMRI of serotonin transport
  publication-title: Neuron
– volume: 24
  start-page: 73
  year: 2018
  end-page: 83
  ident: bib58
  article-title: Mechanisms mediating functional hyperemia in the brain
  publication-title: Neuroscientist
– volume: 20
  start-page: 816
  year: 2002
  end-page: 820
  ident: bib80
  article-title: Magnetic relaxation switches capable of sensing molecular interactions
  publication-title: Nat. Biotechnol.
– volume: 574
  start-page: 206
  year: 2019
  end-page: 210
  ident: bib19
  article-title: Structural insights into the mechanism of human soluble guanylate cyclase
  publication-title: Nature
– volume: 138
  start-page: 15861
  year: 2016
  end-page: 15864
  ident: bib31
  article-title: A janus chelator enables biochemically responsive MRI contrast with exceptional dynamic range
  publication-title: J. Am. Chem. Soc.
– volume: 216
  start-page: 225
  year: 2000
  end-page: 231
  ident: bib23
  article-title: MR imaging of nitrosyl-iron complexes: experimental study in rats
  publication-title: Radiology
– volume: 107
  start-page: 8525
  year: 2010
  end-page: 8530
  ident: bib15
  article-title: Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 80
  start-page: 333
  year: 2011
  end-page: 355
  ident: bib20
  article-title: Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors
  publication-title: Annu. Rev. Biochem.
– volume: 94
  start-page: 715
  year: 1996
  end-page: 722
  ident: bib50
  article-title: Preliminary evaluation of PARACEST MRI agents for the detection of nitric oxide synthase
  publication-title: Can. J. Chem.
– year: 1994
  ident: bib4
  article-title: Principles of Nuclear Magnetic Resonance Microscopy
– volume: 48
  start-page: 169
  year: 1992
  end-page: 186
  ident: bib37
  article-title: The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues
  publication-title: Neuroscience
– volume: 34
  start-page: 523
  year: 2010
  end-page: 531
  ident: bib71
  article-title: Blood oxygen level-dependent magnetic resonance imaging of the human liver: preliminary results
  publication-title: J. Comput. Assist. Tomogr.
– volume: 8
  start-page: 662
  year: 2011
  end-page: 664
  ident: bib78
  article-title: Functional ultrasound imaging of the brain
  publication-title: Nat. Methods
– volume: 467
  start-page: 1165
  year: 2015
  end-page: 1178
  ident: bib56
  article-title: Recent advances in research on nitrergic nerve-mediated vasodilatation
  publication-title: Pflügers Archiv
– volume: 40
  start-page: 3204
  year: 2001
  end-page: 3206
  ident: bib79
  article-title: Magnetic nanosensors for the detection of oligonucleotide sequences
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 57
  start-page: 6742
  year: 2018
  end-page: 6753
  ident: bib55
  article-title: Signal amplification by reversible exchange (SABRE): from discovery to diagnosis
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 29
  start-page: 14553
  year: 2009
  end-page: 14570
  ident: bib68
  article-title: Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels
  publication-title: J. Neurosci.
– volume: 42
  start-page: 599
  year: 1999
  end-page: 602
  ident: bib22
  article-title: Ex vivo EPR detection of nitric oxide in brain tissue
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 78
  year: 2010
  end-page: 98
  ident: bib46
  article-title: Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents
  publication-title: Contrast Media Mol. Imaging
– volume: 87
  start-page: 9868
  year: 1990
  end-page: 9872
  ident: bib61
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 54
  start-page: 4565
  year: 2021
  end-page: 4575
  ident: bib87
  article-title: Designer heme proteins: achieving novel function with abiological heme analogues
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 491
  year: 1998
  end-page: 500
  ident: bib62
  article-title: Design of isoform-selective inhibitors of nitric oxide synthase
  publication-title: Curr. Opin. Chem. Biol.
– volume: 84
  start-page: 757
  year: 1996
  end-page: 767
  ident: bib65
  article-title: Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains
  publication-title: Cell
– volume: 14
  year: 2009
  ident: bib77
  article-title: Functional transcranial brain imaging by optical-resolution photoacoustic microscopy
  publication-title: J. Biomed. Opt.
– volume: 8
  start-page: 461
  year: 1997
  end-page: 464
  ident: bib39
  article-title: Nitric oxide-haemoglobin interaction: a new biochemical hypothesis for signal changes in fMRI
  publication-title: Neuroreport
– volume: 5
  start-page: 19
  year: 2015
  end-page: 32
  ident: bib47
  article-title: Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging
  publication-title: Res. Rep. Nucl. Med.
– volume: 138
  start-page: 5483
  year: 2016
  end-page: 5486
  ident: bib30
  article-title: Membrane-permeable Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  ident: bib43
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J. Magn. Reson.
– volume: 26
  start-page: 810
  year: 2013
  end-page: 828
  ident: bib45
  article-title: Nuts and bolts of chemical exchange saturation transfer MRI
  publication-title: NMR Biomed.
– volume: 169
  start-page: 1417
  year: 2013
  end-page: 1429
  ident: bib2
  article-title: Biological nitric oxide signalling: chemistry and terminology
  publication-title: Br. J. Pharmacol.
– volume: 141
  start-page: 17025
  year: 2019
  end-page: 17041
  ident: bib10
  article-title: Molecular magnetic resonance imaging with Gd(III)-Based contrast agents: challenges and key advances
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 20
  year: 2021
  end-page: 34
  ident: bib11
  article-title: Molecular MR contrast agents
  publication-title: Invest. Radiol.
– volume: 89
  start-page: 5951
  year: 1992
  end-page: 5955
  ident: bib6
  article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 30
  year: 2013
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib16
  article-title: Is the real in vivo nitric oxide concentration pico or nano molar? Influence of electrode size on unstirred layers and NO consumption
  publication-title: Microcirculation
  doi: 10.1111/micc.12003
– volume: 20
  start-page: 816
  year: 2002
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib80
  article-title: Magnetic relaxation switches capable of sensing molecular interactions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt720
– volume: 80
  start-page: 333
  year: 2011
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib20
  article-title: Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061009-091643
– volume: 53
  start-page: 10748
  year: 2014
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib29
  article-title: Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes
  publication-title: Inorg. Chem.
  doi: 10.1021/ic502005u
– volume: 5
  start-page: 19
  year: 2015
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib47
  article-title: Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging
  publication-title: Res. Rep. Nucl. Med.
– volume: 25
  start-page: 2730
  year: 2017
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib52
  article-title: Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by (1)H NMR spectroscopy
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2017.03.041
– volume: 48
  start-page: 169
  year: 1992
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib37
  article-title: The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(92)90347-5
– volume: 7
  start-page: 307
  year: 2003
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib70
  article-title: BOLD magnetic resonance imaging of skeletal muscle
  publication-title: Semin. Muscoskel. Radiol.
  doi: 10.1055/s-2004-815678
– volume: 11
  start-page: 763
  year: 2014
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib74
  article-title: Targeting cells with single vectors using multiple-feature Boolean logic
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2996
– volume: 468
  start-page: 232
  year: 2010
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib57
  article-title: Glial and neuronal control of brain blood flow
  publication-title: Nature
  doi: 10.1038/nature09613
– volume: 11
  start-page: 2399
  year: 2020
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib84
  article-title: Target-responsive vasoactive probes for ultrasensitive molecular imaging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16118-7
– volume: 5
  start-page: 225
  year: 2015
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib42
  article-title: Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.05.002
– volume: 77
  start-page: 1665
  year: 2017
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib40
  article-title: A biomarker-responsive T2ex MRI contrast agent
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26250
– volume: 15
  start-page: 323
  year: 1997
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib36
  article-title: Nitric oxide and macrophage function
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.323
– volume: 8
  start-page: 461
  year: 1997
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib39
  article-title: Nitric oxide-haemoglobin interaction: a new biochemical hypothesis for signal changes in fMRI
  publication-title: Neuroreport
  doi: 10.1097/00001756-199701200-00017
– volume: 36
  start-page: 783
  year: 2003
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib44
  article-title: PARACEST agents: modulating MRI contrast via water proton exchange
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020228m
– volume: 141
  start-page: 17025
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib10
  article-title: Molecular magnetic resonance imaging with Gd(III)-Based contrast agents: challenges and key advances
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09149
– volume: 94
  start-page: 715
  year: 1996
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib50
  article-title: Preliminary evaluation of PARACEST MRI agents for the detection of nitric oxide synthase
  publication-title: Can. J. Chem.
  doi: 10.1139/cjc-2016-0179
– volume: 169
  start-page: 1417
  year: 2013
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib2
  article-title: Biological nitric oxide signalling: chemistry and terminology
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12217
– volume: 272
  start-page: 4959
  year: 1997
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib38
  article-title: 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.8.4959
– volume: 27
  start-page: 8706
  year: 1988
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib51
  article-title: Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate
  publication-title: Biochemistry
  doi: 10.1021/bi00424a003
– volume: 275
  start-page: 19416
  year: 2000
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib66
  article-title: A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M001952200
– volume: 14
  start-page: 992
  year: 1996
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib26
  article-title: In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0896-992
– volume: 5
  start-page: 78
  year: 2010
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib46
  article-title: Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1002/cmmi.369
– volume: 357
  start-page: 593
  year: 2001
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib49
  article-title: Nitric oxide synthases: structure, function and inhibition
  publication-title: Biochem. J.
  doi: 10.1042/bj3570593
– volume: 24
  start-page: 73
  year: 2018
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib58
  article-title: Mechanisms mediating functional hyperemia in the brain
  publication-title: Neuroscientist
  doi: 10.1177/1073858417703033
– volume: 2
  start-page: 491
  year: 1998
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib62
  article-title: Design of isoform-selective inhibitors of nitric oxide synthase
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/S1367-5931(98)80125-7
– volume: 42
  start-page: 235
  year: 1999
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib24
  article-title: In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199908)42:2<235::AID-MRM4>3.0.CO;2-Y
– volume: 5
  start-page: 1674
  year: 2020
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib33
  article-title: Molecular magnetic resonance imaging of nitric oxide in biological systems
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c00322
– volume: 8
  start-page: 662
  year: 2011
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib78
  article-title: Functional ultrasound imaging of the brain
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1641
– volume: 42
  start-page: 599
  year: 1999
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib22
  article-title: Ex vivo EPR detection of nitric oxide in brain tissue
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:3<599::AID-MRM24>3.0.CO;2-Y
– volume: 20
  start-page: 669
  year: 2011
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib72
  article-title: MRI to assess renal structure and function
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0b013e32834ad579
– volume: 138
  start-page: 5483
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib30
  article-title: Membrane-permeable Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13337
– volume: 21
  start-page: 92
  year: 2009
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib12
  article-title: What is the real physiological NO concentration in vivo?
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2009.07.002
– volume: 14
  year: 2009
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib77
  article-title: Functional transcranial brain imaging by optical-resolution photoacoustic microscopy
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3194136
– volume: 119
  start-page: 957
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib88
  article-title: Chemistry of MRI contrast agents: current challenges and new frontiers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00363
– volume: 36
  start-page: 4139
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib73
  article-title: Molecular fMRI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4050-15.2016
– volume: 176
  start-page: 197
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib85
  article-title: NO as a multimodal transmitter in the brain: discovery and current status
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14532
– volume: 58
  start-page: 1249
  year: 2007
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib48
  article-title: Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21428
– volume: 14
  start-page: 1011
  year: 2011
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib69
  article-title: Brain nitric oxide inactivation is governed by the vasculature
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2010.3297
– volume: 98
  start-page: 94
  year: 1976
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib27
  article-title: Nitric oxide complexes of manganese and chromium tetraphenylporphyrin
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00417a016
– volume: 216
  start-page: 225
  year: 2000
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib23
  article-title: MR imaging of nitrosyl-iron complexes: experimental study in rats
  publication-title: Radiology
  doi: 10.1148/radiology.216.1.r00jl10225
– volume: 254
  start-page: 716
  year: 1991
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib5
  article-title: Functional mapping of the human visual cortex by magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.1948051
– volume: 40
  start-page: 1427
  year: 2020
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib67
  article-title: Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex
  publication-title: J. Cerebr. Blood Flow Metabol.
  doi: 10.1177/0271678X19870105
– volume: 28
  start-page: N37
  year: 2000
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib1
  article-title: Biology of nitric oxide signaling
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-200004001-00005
– volume: 107
  start-page: 8525
  year: 2010
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib15
  article-title: Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0914794107
– volume: 29
  start-page: 14553
  year: 2009
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib68
  article-title: Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3287-09.2009
– volume: 10
  start-page: 1620
  year: 2014
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib82
  article-title: Polymeric vesicles loaded with gadoteridol as reversible and concentration-independent magnetic resonance imaging thermometers
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2014.1833
– volume: 207
  start-page: 572
  year: 1995
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib86
  article-title: Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1995.1226
– volume: 89
  start-page: 5951
  year: 1992
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib6
  article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.13.5951
– volume: 30
  start-page: 311
  year: 2010
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib76
  article-title: Pharmacological uncoupling of activation induced increases in CBF and CMRO2
  publication-title: J. Cerebr. Blood Flow Metabol.
  doi: 10.1038/jcbfm.2009.211
– volume: 56
  start-page: 20
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib11
  article-title: Molecular MR contrast agents
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0000000000000731
– volume: 574
  start-page: 206
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib19
  article-title: Structural insights into the mechanism of human soluble guanylate cyclase
  publication-title: Nature
  doi: 10.1038/s41586-019-1584-6
– volume: 104
  start-page: 10780
  year: 2007
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib28
  article-title: Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0702393104
– volume: 32
  start-page: 1
  year: 2006
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib59
  article-title: BOLD response during uncoupling of neuronal activity and CBF
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.03.035
– volume: 38
  start-page: 3209
  year: 1999
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib41
  article-title: Fluorescent indicators for imaging nitric oxide production
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/(SICI)1521-3773(19991102)38:21<3209::AID-ANIE3209>3.0.CO;2-6
– volume: 25
  start-page: 390
  year: 2022
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib63
  article-title: Functional dissection of neural circuitry using a genetic reporter for fMRI
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01014-8
– volume: 1411
  start-page: 290
  year: 1999
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib21
  article-title: Nitric oxide and iron proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2728(99)00021-3
– volume: 273
  start-page: 27430
  year: 1998
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib64
  article-title: Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.42.27430
– volume: 50
  start-page: 201
  year: 2018
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib8
  article-title: Probing the brain with molecular fMRI
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.03.009
– volume: 10
  start-page: 897
  year: 2019
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib32
  article-title: Sensing intracellular calcium ions using a manganese-based MRI contrast agent
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08558-7
– volume: 467
  start-page: 1165
  year: 2015
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib56
  article-title: Recent advances in research on nitrergic nerve-mediated vasodilatation
  publication-title: Pflügers Archiv
  doi: 10.1007/s00424-014-1621-0
– volume: 54
  start-page: 4565
  year: 2021
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib87
  article-title: Designer heme proteins: achieving novel function with abiological heme analogues
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00588
– volume: 27
  start-page: 741
  year: 2007
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib60
  article-title: Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase
  publication-title: J. Cerebr. Blood Flow Metabol.
  doi: 10.1038/sj.jcbfm.9600377
– volume: 323
  start-page: 1708
  year: 2009
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib54
  article-title: Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer
  publication-title: Science
  doi: 10.1126/science.1168877
– volume: 34
  start-page: 523
  year: 2010
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib71
  article-title: Blood oxygen level-dependent magnetic resonance imaging of the human liver: preliminary results
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/RCT.0b013e3181d5d503
– volume: 45
  start-page: 121
  year: 2018
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib9
  article-title: Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2018.04.006
– volume: 1
  start-page: 615
  year: 2006
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib18
  article-title: Regulation and specificity of S-nitrosylation and denitrosylation
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb600439h
– volume: 138
  start-page: 15861
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib31
  article-title: A janus chelator enables biochemically responsive MRI contrast with exceptional dynamic range
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10898
– volume: 143
  start-page: 79
  year: 2000
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib43
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1999.1956
– volume: 7
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib83
  article-title: Molecular imaging with engineered physiology
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13607
– volume: 98
  start-page: 355
  year: 2001
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib17
  article-title: The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.98.1.355
– volume: 195
  start-page: 1191
  year: 1993
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib25
  article-title: In vivo spin trapping of nitric oxide in mice
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1993.2170
– volume: 40
  start-page: 3204
  year: 2001
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib79
  article-title: Magnetic nanosensors for the detection of oligonucleotide sequences
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO;2-H
– volume: 19
  start-page: 198
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib75
  article-title: Lateral hypothalamic circuits for feeding and reward
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4220
– volume: 25
  start-page: 390
  year: 1992
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib7
  article-title: Time course EPI of human brain function during task activation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910250220
– year: 1994
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib4
– volume: 85
  start-page: 1957
  year: 2013
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib13
  article-title: Inaccuracies of nitric oxide measurement methods in biological media
  publication-title: Anal. Chem.
  doi: 10.1021/ac303787p
– volume: 87
  start-page: 9868
  year: 1990
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib61
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.87.24.9868
– volume: 14
  year: 2018
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib81
  article-title: Engineering a pH-sensitive liposomal MRI agent by modification of a bacterial channel
  publication-title: Small
  doi: 10.1002/smll.201704256
– volume: 16
  year: 2020
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib3
  article-title: Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008069
– volume: 344
  start-page: 533
  year: 2014
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib34
  article-title: Molecular-level functional magnetic resonance imaging of dopaminergic signaling
  publication-title: Science
  doi: 10.1126/science.1249380
– volume: 18
  start-page: 1
  year: 2003
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib14
  article-title: Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1314
– volume: 84
  start-page: 757
  year: 1996
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib65
  article-title: Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81053-3
– volume: 92
  start-page: 754
  year: 2016
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib35
  article-title: Molecular fMRI of serotonin transport
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.09.048
– volume: 26
  start-page: 810
  year: 2013
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib45
  article-title: Nuts and bolts of chemical exchange saturation transfer MRI
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.2899
– volume: 133
  start-page: 6134
  year: 2011
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib53
  article-title: Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200299u
– volume: 57
  start-page: 6742
  year: 2018
  ident: 10.1016/j.freeradbiomed.2022.08.042_bib55
  article-title: Signal amplification by reversible exchange (SABRE): from discovery to diagnosis
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201710406
SSID ssj0004538
Score 2.438974
SecondaryResourceType review_article
Snippet Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241
SubjectTerms Animals
Contrast agent
Contrast Media
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Molecular imaging
Molecular Probes
Nitric oxide
Nitric Oxide - metabolism
Nitric oxide synthase
Nitric Oxide Synthase - genetics
Nitric Oxide Synthase - metabolism
Title Probing nitric oxide signaling using molecular MRI
URI https://dx.doi.org/10.1016/j.freeradbiomed.2022.08.042
https://www.ncbi.nlm.nih.gov/pubmed/36084790
https://www.proquest.com/docview/2712845296
https://pubmed.ncbi.nlm.nih.gov/PMC10204116
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_EovgirZ-nVlIqvq23yWY3Gx8KhyhniyKtgm8hX6snuid6gr70b29mP66eIgg-7m6yhJkkM8n85jcAW6mgUppCRKkLx1UutIskBnkzpqnxVDMjMTn56Djrn_Gf5-n5FOy1uTAIq2z2_npPr3br5k23kWb3djDo_olzSYP5lAwvRoTAJD7OBc7ynb_0GWN4Vc0aG0fYeha-_8d4FXfeY8i6ynQPh0XGKj5Pzt6yUq-90JdgymfW6eAzzDduJenVI_8CU75cgMVeGY7UN09km1RAz-oGfQFm6vqTT4vATpCFqbwgYV2H_ZAMHwfOE4R0aMxSJwiKvyA3bQVdcvT7cAnODvZP9_pRU0QhskE0o8gWwllpZHA1XCo9Tax13PvgN3mexy5nRY41qlwi0BfSLPWeeZ243AqbWOGSZZguh6VfBeK4dKnVvihMyo1GJrc4uG-mCPMgs5npwG4rNGUbhnEsdHGtWijZlZqQuEKJKyyDyVkH-LjzbU208b5uP1rtqIl5o4JJeN8PvrU6VWFlYbhEl374cK-YQNuNcekOrNQ6Ho8syeJg1mXcgXxC--MGyNo9-aUcXFbs3RTTkSnN1j468nWYw6caWbgB06O7B_81eEgjs1ktgU341Dv81T_-B0MEE-0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_sidUXqdrqaVsjLX1bbjeb3Wx8EA5R7qp3lFbBt5CvtSe6J3qC_vdm9uPqWQTB102yhJkkM8n85jcA3xMeCaFzHiTWX1cZVzYQGORNqYq0ixTVApOTB8O0d8p-niVnc7Df5MIgrLI--6szvTyt6y-dWpqd69Go8yfMROTNp6D4MMK5eAfzyE6VtGC-2z_qDZ-QhpcFrbF_gAPew7d_MK_8xjmMWpfJ7v6-SGlJ6cnoS4bqf0f0OZ7yiYE6_ADLtWdJutXkV2DOFauw1i38rfrqgfwgJdazfERfhYWqBOXDGtBfSMRUnBO_tf2RSMb3I-sIojoUJqoTxMWfk6umiC4Z_O5_hNPDg5P9XlDXUQiMl84kMDm3RmjhvQ2bCBfFxljmnHedHMtCm9E8wzJVNuboDimaOEedim1muIkNt_EnaBXjwm0AsUzYxCiX5zphWiGZW-g9OJ37pZCaVLdhtxGaNDXJONa6uJQNmuxCzkhcosQlVsJktA1sOvi64tp43bC9RjtyZulIbxVe94OdRqfSby6MmKjCje9uJeVovjE03Yb1SsfTmcVp6C27CNuQzWh_2gGJu2dbitHfksA7wozkKEo33zrzbVjsnQyO5XF_eLQFS9hSAQ0_Q2tyc-e-eIdpor_WG-IRoBUWng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+nitric+oxide+signaling+using+molecular+MRI&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Barandov%2C+Ali&rft.au=Ghosh%2C+Souparno&rft.au=Jasanoff%2C+Alan&rft.date=2022-10-01&rft.issn=0891-5849&rft.volume=191&rft.spage=241&rft.epage=248&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2022.08.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2022_08_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon