Probing nitric oxide signaling using molecular MRI
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO a...
Saved in:
Published in | Free radical biology & medicine Vol. 191; pp. 241 - 248 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
[Display omitted]
•Magnetic resonance imaging can detect hallmarks of nitrergic signaling.•A variety of NO-sensitive contrast agents have been developed.•Additional approaches target nitric oxide synthase function.•Detection of NO and NOS function has been shown in animal models.•Future work is needed to improve sensitivity and clinical potential. |
---|---|
AbstractList | Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
[Display omitted]
•Magnetic resonance imaging can detect hallmarks of nitrergic signaling.•A variety of NO-sensitive contrast agents have been developed.•Additional approaches target nitric oxide synthase function.•Detection of NO and NOS function has been shown in animal models.•Future work is needed to improve sensitivity and clinical potential. Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology. Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology. Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology. |
Author | Barandov, Ali Jasanoff, Alan Ghosh, Souparno |
AuthorAffiliation | 3 Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA 2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA 1 Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA |
AuthorAffiliation_xml | – name: 1 Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA – name: 3 Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA – name: 2 Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA |
Author_xml | – sequence: 1 givenname: Ali surname: Barandov fullname: Barandov, Ali organization: Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA – sequence: 2 givenname: Souparno surname: Ghosh fullname: Ghosh, Souparno organization: Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA – sequence: 3 givenname: Alan orcidid: 0000-0002-2834-6359 surname: Jasanoff fullname: Jasanoff, Alan email: jasanoff@mit.edu organization: Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36084790$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv1DAQhS1URLeFv4BW4sIl6dixE1scUFUVqFQEQnC2vOPJ4lXWLnZSwb8n0bYV5dSLLXnefG8874QdxRSJsTccag68PdvVfSbKzm9C2pOvBQhRg65BimdsxXXXVFKZ9oitQBteKS3NMTspZQcAUjX6BTtuWtCyM7Bi4mtOmxC36xjGHHCdfgdP6xK20Q3L81SWc58Gwmlwef3529VL9rx3Q6FXd_cp-_Hh8vvFp-r6y8eri_PrCqURY4V959FsDLTKK0O8QfSSSKqWpAavRa8F74RvOgWqdUIRCXKN19hhg51vTtn7A_dm2sz_RIpjdoO9yWHv8h-bXLCPKzH8tNt0azkIkJy3M-HtHSGnXxOV0e5DQRoGFylNxYqOCy2VMIv09b9mDy73m5oF7w4CzKmUTP2DhINdcrE7-ygXu-RiQds5l7n7_L9uDKMbQ1omD8MTGZcHBs1Lvw2UbcFAEcmHTDhan8KTOH8BmYO0og |
CitedBy_id | crossref_primary_10_1038_s41563_024_02054_0 crossref_primary_10_1016_j_bioorg_2024_107505 crossref_primary_10_1016_j_saa_2024_125663 crossref_primary_10_1016_j_freeradbiomed_2023_01_005 crossref_primary_10_1021_acssensors_4c01604 crossref_primary_10_1021_acs_jmedchem_4c01813 crossref_primary_10_25207_1608_6228_2023_30_6_28_40 |
Cites_doi | 10.1111/micc.12003 10.1038/nbt720 10.1146/annurev-biochem-061009-091643 10.1021/ic502005u 10.1016/j.bmc.2017.03.041 10.1016/0306-4522(92)90347-5 10.1055/s-2004-815678 10.1038/nmeth.2996 10.1038/nature09613 10.1038/s41467-020-16118-7 10.1016/j.redox.2015.05.002 10.1002/mrm.26250 10.1146/annurev.immunol.15.1.323 10.1097/00001756-199701200-00017 10.1021/ar020228m 10.1021/jacs.9b09149 10.1139/cjc-2016-0179 10.1111/bph.12217 10.1074/jbc.272.8.4959 10.1021/bi00424a003 10.1074/jbc.M001952200 10.1038/nbt0896-992 10.1002/cmmi.369 10.1042/bj3570593 10.1177/1073858417703033 10.1016/S1367-5931(98)80125-7 10.1002/(SICI)1522-2594(199908)42:2<235::AID-MRM4>3.0.CO;2-Y 10.1021/acssensors.0c00322 10.1038/nmeth.1641 10.1002/(SICI)1522-2594(199909)42:3<599::AID-MRM24>3.0.CO;2-Y 10.1097/MNH.0b013e32834ad579 10.1021/jacs.5b13337 10.1016/j.niox.2009.07.002 10.1117/1.3194136 10.1021/acs.chemrev.8b00363 10.1523/JNEUROSCI.4050-15.2016 10.1111/bph.14532 10.1002/mrm.21428 10.1089/ars.2010.3297 10.1021/ja00417a016 10.1148/radiology.216.1.r00jl10225 10.1126/science.1948051 10.1177/0271678X19870105 10.1097/00003246-200004001-00005 10.1073/pnas.0914794107 10.1523/JNEUROSCI.3287-09.2009 10.1166/jbn.2014.1833 10.1006/bbrc.1995.1226 10.1073/pnas.89.13.5951 10.1038/jcbfm.2009.211 10.1097/RLI.0000000000000731 10.1038/s41586-019-1584-6 10.1073/pnas.0702393104 10.1016/j.neuroimage.2006.03.035 10.1002/(SICI)1521-3773(19991102)38:21<3209::AID-ANIE3209>3.0.CO;2-6 10.1038/s41593-022-01014-8 10.1016/S0005-2728(99)00021-3 10.1074/jbc.273.42.27430 10.1016/j.conb.2018.03.009 10.1038/s41467-019-08558-7 10.1007/s00424-014-1621-0 10.1021/acs.accounts.1c00588 10.1038/sj.jcbfm.9600377 10.1126/science.1168877 10.1097/RCT.0b013e3181d5d503 10.1016/j.cbpa.2018.04.006 10.1021/cb600439h 10.1021/jacs.6b10898 10.1006/jmre.1999.1956 10.1038/ncomms13607 10.1073/pnas.98.1.355 10.1006/bbrc.1993.2170 10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO;2-H 10.1038/nn.4220 10.1002/mrm.1910250220 10.1021/ac303787p 10.1073/pnas.87.24.9868 10.1002/smll.201704256 10.1371/journal.pcbi.1008069 10.1126/science.1249380 10.1006/nimg.2002.1314 10.1016/S0092-8674(00)81053-3 10.1016/j.neuron.2016.09.048 10.1002/nbm.2899 10.1021/ja200299u 10.1002/anie.201710406 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.freeradbiomed.2022.08.042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 248 |
ExternalDocumentID | PMC10204116 36084790 10_1016_j_freeradbiomed_2022_08_042 S0891584922005779 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: UF1 NS107712 – fundername: NEI NIH HHS grantid: R21 EY032369 – fundername: Howard Hughes Medical Institute – fundername: NINDS NIH HHS grantid: U01 NS103470 – fundername: NINDS NIH HHS grantid: R01 NS121073 – fundername: NIMH NIH HHS grantid: UG3 MH126868 – fundername: NINDS NIH HHS grantid: U01 NS090451 |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c492t-cf7dc9b9065d59e13ccd4ee456e480d82f82172d375056a25ee2ea3d8c7c3c7d3 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Thu Aug 21 18:36:22 EDT 2025 Fri Jul 11 11:41:15 EDT 2025 Wed Feb 19 02:23:42 EST 2025 Tue Jul 01 01:11:41 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Fri Feb 23 02:35:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NO eNOS MRI LPS oAA sGC Gly Contrast agent Nitric oxide synthase DO3A iNOS CEST T1 T2 Molecular imaging NOSTIC CPu MGD Cit NOS Magnetic resonance imaging Nitric oxide DOTAM Arg nNOS r1 |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-cf7dc9b9065d59e13ccd4ee456e480d82f82172d375056a25ee2ea3d8c7c3c7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 contributed equally |
ORCID | 0000-0002-2834-6359 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10204116 |
PMID | 36084790 |
PQID | 2712845296 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10204116 proquest_miscellaneous_2712845296 pubmed_primary_36084790 crossref_primary_10_1016_j_freeradbiomed_2022_08_042 crossref_citationtrail_10_1016_j_freeradbiomed_2022_08_042 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2022_08_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Garvey, Oplinger, Furfine, Kiff, Laszlo, Whittle, Knowles (bib38) 1997; 272 Artunc, Rossi, Boss (bib72) 2011; 20 Yoshimura, Yokoyama, Fujii, Takayama, Oikawa, Kamada (bib26) 1996; 14 Thomas (bib42) 2015; 5 MacMicking, Xie, Nathan (bib36) 1997; 15 Stefanovic, Schwindt, Hoehn, Silva (bib60) 2007; 27 Daryaei, Pagel (bib47) 2015; 5 Gale, Mukherjee, Liu, Loving, Caravan (bib29) 2014; 53 Suchy, Li, Liu, Feng, Bartha, Hudson (bib50) 1996; 94 Prabhakar, Cheng, Michel (bib66) 2000; 275 Callaghan (bib4) 1994 Fujii, Berliner (bib22) 1999; 42 Fichtlscherer, Mulsch (bib23) 2000; 216 Buerk, Ances, Greenberg, Detre (bib14) 2003; 18 Pluth, Tomat, Lippard (bib20) 2011; 80 Kojima, Urano, Kikuchi, Higuchi, Hirata, Nagano (bib41) 1999; 38 Cowley, Adams, Atkinson, Cockett, Duckett, Green, Lohman, Kerssebaum, Kilgour, Mewis (bib53) 2011; 133 Adams, Aguilar, Atkinson, Cowley, Elliott, Duckett, Green, Khazal, Lopez-Serrano, Williamson (bib54) 2009; 323 Li, Meade (bib10) 2019; 141 Hall, Garthwaite (bib12) 2009; 21 Bandettini, Wong, Hinks, Tikofsky, Hyde (bib7) 1992; 25 Josephson, Perez, Weissleder (bib79) 2001; 40 Ogawa, Lee, Kay, Tank (bib61) 1990; 87 Bartelle, Barandov, Jasanoff (bib73) 2016; 36 Di Salle, Barone, Hacker, Smaltino, d'Ischia (bib39) 1997; 8 Kang, Liu, Wu, Chen (bib19) 2019; 574 Santos, Lourenco, Pomerleau, Huettl, Gerhardt, Laranjinha, Barbosa (bib69) 2011; 14 Hai, Cai, Lee, Lelyveld, Jasanoff (bib35) 2016; 92 Terreno, Castelli, Aime (bib46) 2010; 5 Toda, Okamura (bib56) 2015; 467 Liaudet, Soriano, Szabo (bib1) 2000; 28 Gale, Jones, Ramsay, Farrar, Caravan (bib31) 2016; 138 Daryaei, Randtke, Pagel (bib40) 2017; 77 Lee, Cai, Lelyveld, Hai, Jasanoff (bib34) 2014; 344 Ogawa, Tank, Menon, Ellermann, Kim, Merkle, Ugurbil (bib6) 1992; 89 Fujii, Wan, Zhong, Berliner, Yoshikawa (bib24) 1999; 42 Alderton, Cooper, Knowles (bib49) 2001; 357 Attwell, Buchan, Charpak, Lauritzen, Macvicar, Newman (bib57) 2010; 468 Garthwaite (bib85) 2019; 176 Mace, Montaldo, Cohen, Baulac, Fink, Tanter (bib78) 2011; 8 Hunter, Storm, Coneski, Schoenfisch (bib13) 2013; 85 Leithner, Royl, Offenhauser, Fuchtemeier, Kohl-Bareis, Villringer, Dirnagl, Lindauer (bib76) 2010; 30 Tsai, Kaufhold, Blinder, Friedman, Drew, Karten, Lyden, Kleinfeld (bib68) 2009; 29 Bohlen (bib16) 2013; 20 Wahsner, Gale, Rodriguez-Rodriguez, Caravan (bib88) 2019; 119 Lee, Stull (bib64) 1998; 273 Andersson, Perry, Gordon (bib37) 1992; 48 Stuber, Wise (bib75) 2016; 19 Marletta, Yoon, Iyengar, Leaf, Wishnok (bib51) 1988; 27 Burke, Buhrle (bib59) 2006; 32 Komarov, Mattson, Jones, Singh, Lai (bib25) 1993; 195 Fan, Elzibak, Boylan, Noseworthy (bib71) 2010; 34 Liu, Li, Pagel (bib48) 2007; 58 McQuade, Ma, Lowe, Ghatpande, Gelperin, Lippard (bib15) 2010; 107 Shuvaev, Akam, Caravan (bib11) 2021; 56 Hu, Maslov, Tsytsarev, Wang (bib77) 2009; 14 Ward, Aletras, Balaban (bib43) 2000; 143 Zhang, Merritt, Woessner, Lenkinski, Sherry (bib44) 2003; 36 Barandov, Ghosh, Li, Bartelle, Daher, Pegis, Collins, Jasanoff (bib33) 2020; 5 Nippert, Biesecker, Newman (bib58) 2018; 24 Brenman, Chao, Gee, McGee, Craven, Santillano, Wu, Huang, Xia, Peters, Froehner, Bredt (bib65) 1996; 84 Fernandez Diaz-Rullo, Zamberlan, Mewis, Fekete, Broche, Cheyne, Dall'Angelo, Duckett, Dawson, Zanda (bib52) 2017; 25 Desai, Slusarczyk, Chapin, Barch, Jasanoff (bib83) 2016; 7 Babu, Griffith (bib62) 1998; 2 Noseworthy, Bulte, Alfonsi (bib70) 2003; 7 Thomas, Liu, Kantrow, Lancaster (bib17) 2001; 98 Barandov, Bartelle, Williamson, Loucks, Lippard, Jasanoff (bib32) 2019; 10 Haselden, Kedarasetti, Drew (bib3) 2020; 16 Krawchuk, Ruff, Yang, Ross, Vazquez (bib67) 2020; 40 Ohlendorf, Wisniowska, Desai, Barandov, Slusarczyk, Li, Jasanoff (bib84) 2020; 11 Zhang, Lovejoy, Jasanoff, Lippard (bib28) 2007; 104 Fenno, Mattis, Ramakrishnan, Hyun, Lee, He, Tucciarone, Selimbeyoglu, Berndt, Grosenick, Zalocusky, Bernstein, Swanson, Perry, Diester, Boyce, Bass, Neve, Huang, Deisseroth (bib74) 2014; 11 Sanino, Dastru, Mainini, Delli Castelli, Aime, Terreno (bib82) 2014; 10 Lux, Sherry (bib9) 2018; 45 Cooper (bib21) 1999; 1411 Barandov, Bartelle, Gonzalez, White, Lippard, Jasanoff (bib30) 2016; 138 Ghosh, Li, Schwalm, Bartelle, Xie, Daher, Singh, Xie, DiNapoli, Evans, Chung, Jasanoff (bib63) 2022; 25 Wayland, Olson, Siddiqui (bib27) 1976; 98 Ghosh, Harvey, Simon, Jasanoff (bib8) 2018; 50 Tannenbaum, White (bib18) 2006; 1 Rayner, Duckett (bib55) 2018; 57 Heinrich, da Silva, Miranda, Switzer, Wink, Fukuto (bib2) 2013; 169 Belliveau, Kennedy, McKinstry, Buchbinder, Weisskoff, Cohen, Vevea, Brady, Rosen (bib5) 1991; 254 Perez, Josephson, O'Loughlin, Hogemann, Weissleder (bib80) 2002; 20 Yang, Zheng, Ratnakar, Adebesin, Do, Kovacs, Blount (bib81) 2018; 14 Lemon, Marletta (bib87) 2021; 54 Stone, Sands, Dunham, Marletta (bib86) 1995; 207 Liu, Song, Chan, McMahon (bib45) 2013; 26 Thomas (10.1016/j.freeradbiomed.2022.08.042_bib42) 2015; 5 Lux (10.1016/j.freeradbiomed.2022.08.042_bib9) 2018; 45 Haselden (10.1016/j.freeradbiomed.2022.08.042_bib3) 2020; 16 Fujii (10.1016/j.freeradbiomed.2022.08.042_bib22) 1999; 42 Fenno (10.1016/j.freeradbiomed.2022.08.042_bib74) 2014; 11 Ogawa (10.1016/j.freeradbiomed.2022.08.042_bib61) 1990; 87 Garthwaite (10.1016/j.freeradbiomed.2022.08.042_bib85) 2019; 176 Fichtlscherer (10.1016/j.freeradbiomed.2022.08.042_bib23) 2000; 216 Liu (10.1016/j.freeradbiomed.2022.08.042_bib45) 2013; 26 Yang (10.1016/j.freeradbiomed.2022.08.042_bib81) 2018; 14 Wahsner (10.1016/j.freeradbiomed.2022.08.042_bib88) 2019; 119 Ward (10.1016/j.freeradbiomed.2022.08.042_bib43) 2000; 143 Santos (10.1016/j.freeradbiomed.2022.08.042_bib69) 2011; 14 Noseworthy (10.1016/j.freeradbiomed.2022.08.042_bib70) 2003; 7 Lee (10.1016/j.freeradbiomed.2022.08.042_bib64) 1998; 273 McQuade (10.1016/j.freeradbiomed.2022.08.042_bib15) 2010; 107 Liaudet (10.1016/j.freeradbiomed.2022.08.042_bib1) 2000; 28 Ghosh (10.1016/j.freeradbiomed.2022.08.042_bib8) 2018; 50 Stuber (10.1016/j.freeradbiomed.2022.08.042_bib75) 2016; 19 Perez (10.1016/j.freeradbiomed.2022.08.042_bib80) 2002; 20 Terreno (10.1016/j.freeradbiomed.2022.08.042_bib46) 2010; 5 Bartelle (10.1016/j.freeradbiomed.2022.08.042_bib73) 2016; 36 Fernandez Diaz-Rullo (10.1016/j.freeradbiomed.2022.08.042_bib52) 2017; 25 Adams (10.1016/j.freeradbiomed.2022.08.042_bib54) 2009; 323 Stefanovic (10.1016/j.freeradbiomed.2022.08.042_bib60) 2007; 27 Ogawa (10.1016/j.freeradbiomed.2022.08.042_bib6) 1992; 89 Komarov (10.1016/j.freeradbiomed.2022.08.042_bib25) 1993; 195 Belliveau (10.1016/j.freeradbiomed.2022.08.042_bib5) 1991; 254 Leithner (10.1016/j.freeradbiomed.2022.08.042_bib76) 2010; 30 Bohlen (10.1016/j.freeradbiomed.2022.08.042_bib16) 2013; 20 Rayner (10.1016/j.freeradbiomed.2022.08.042_bib55) 2018; 57 Li (10.1016/j.freeradbiomed.2022.08.042_bib10) 2019; 141 Barandov (10.1016/j.freeradbiomed.2022.08.042_bib32) 2019; 10 MacMicking (10.1016/j.freeradbiomed.2022.08.042_bib36) 1997; 15 Alderton (10.1016/j.freeradbiomed.2022.08.042_bib49) 2001; 357 Buerk (10.1016/j.freeradbiomed.2022.08.042_bib14) 2003; 18 Desai (10.1016/j.freeradbiomed.2022.08.042_bib83) 2016; 7 Tannenbaum (10.1016/j.freeradbiomed.2022.08.042_bib18) 2006; 1 Hunter (10.1016/j.freeradbiomed.2022.08.042_bib13) 2013; 85 Callaghan (10.1016/j.freeradbiomed.2022.08.042_bib4) 1994 Kojima (10.1016/j.freeradbiomed.2022.08.042_bib41) 1999; 38 Burke (10.1016/j.freeradbiomed.2022.08.042_bib59) 2006; 32 Barandov (10.1016/j.freeradbiomed.2022.08.042_bib33) 2020; 5 Barandov (10.1016/j.freeradbiomed.2022.08.042_bib30) 2016; 138 Gale (10.1016/j.freeradbiomed.2022.08.042_bib29) 2014; 53 Gale (10.1016/j.freeradbiomed.2022.08.042_bib31) 2016; 138 Attwell (10.1016/j.freeradbiomed.2022.08.042_bib57) 2010; 468 Wayland (10.1016/j.freeradbiomed.2022.08.042_bib27) 1976; 98 Lemon (10.1016/j.freeradbiomed.2022.08.042_bib87) 2021; 54 Hai (10.1016/j.freeradbiomed.2022.08.042_bib35) 2016; 92 Daryaei (10.1016/j.freeradbiomed.2022.08.042_bib47) 2015; 5 Bandettini (10.1016/j.freeradbiomed.2022.08.042_bib7) 1992; 25 Liu (10.1016/j.freeradbiomed.2022.08.042_bib48) 2007; 58 Daryaei (10.1016/j.freeradbiomed.2022.08.042_bib40) 2017; 77 Ohlendorf (10.1016/j.freeradbiomed.2022.08.042_bib84) 2020; 11 Hall (10.1016/j.freeradbiomed.2022.08.042_bib12) 2009; 21 Fujii (10.1016/j.freeradbiomed.2022.08.042_bib24) 1999; 42 Krawchuk (10.1016/j.freeradbiomed.2022.08.042_bib67) 2020; 40 Artunc (10.1016/j.freeradbiomed.2022.08.042_bib72) 2011; 20 Suchy (10.1016/j.freeradbiomed.2022.08.042_bib50) 1996; 94 Shuvaev (10.1016/j.freeradbiomed.2022.08.042_bib11) 2021; 56 Thomas (10.1016/j.freeradbiomed.2022.08.042_bib17) 2001; 98 Mace (10.1016/j.freeradbiomed.2022.08.042_bib78) 2011; 8 Zhang (10.1016/j.freeradbiomed.2022.08.042_bib28) 2007; 104 Heinrich (10.1016/j.freeradbiomed.2022.08.042_bib2) 2013; 169 Brenman (10.1016/j.freeradbiomed.2022.08.042_bib65) 1996; 84 Stone (10.1016/j.freeradbiomed.2022.08.042_bib86) 1995; 207 Cowley (10.1016/j.freeradbiomed.2022.08.042_bib53) 2011; 133 Zhang (10.1016/j.freeradbiomed.2022.08.042_bib44) 2003; 36 Fan (10.1016/j.freeradbiomed.2022.08.042_bib71) 2010; 34 Nippert (10.1016/j.freeradbiomed.2022.08.042_bib58) 2018; 24 Yoshimura (10.1016/j.freeradbiomed.2022.08.042_bib26) 1996; 14 Garvey (10.1016/j.freeradbiomed.2022.08.042_bib38) 1997; 272 Sanino (10.1016/j.freeradbiomed.2022.08.042_bib82) 2014; 10 Di Salle (10.1016/j.freeradbiomed.2022.08.042_bib39) 1997; 8 Toda (10.1016/j.freeradbiomed.2022.08.042_bib56) 2015; 467 Tsai (10.1016/j.freeradbiomed.2022.08.042_bib68) 2009; 29 Pluth (10.1016/j.freeradbiomed.2022.08.042_bib20) 2011; 80 Josephson (10.1016/j.freeradbiomed.2022.08.042_bib79) 2001; 40 Marletta (10.1016/j.freeradbiomed.2022.08.042_bib51) 1988; 27 Cooper (10.1016/j.freeradbiomed.2022.08.042_bib21) 1999; 1411 Andersson (10.1016/j.freeradbiomed.2022.08.042_bib37) 1992; 48 Hu (10.1016/j.freeradbiomed.2022.08.042_bib77) 2009; 14 Ghosh (10.1016/j.freeradbiomed.2022.08.042_bib63) 2022; 25 Kang (10.1016/j.freeradbiomed.2022.08.042_bib19) 2019; 574 Prabhakar (10.1016/j.freeradbiomed.2022.08.042_bib66) 2000; 275 Babu (10.1016/j.freeradbiomed.2022.08.042_bib62) 1998; 2 Lee (10.1016/j.freeradbiomed.2022.08.042_bib34) 2014; 344 |
References_xml | – volume: 7 year: 2016 ident: bib83 article-title: Molecular imaging with engineered physiology publication-title: Nat. Commun. – volume: 275 start-page: 19416 year: 2000 end-page: 19421 ident: bib66 article-title: A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae publication-title: J. Biol. Chem. – volume: 5 start-page: 1674 year: 2020 end-page: 1682 ident: bib33 article-title: Molecular magnetic resonance imaging of nitric oxide in biological systems publication-title: ACS Sens. – volume: 25 start-page: 390 year: 2022 end-page: 398 ident: bib63 article-title: Functional dissection of neural circuitry using a genetic reporter for fMRI publication-title: Nat. Neurosci. – volume: 19 start-page: 198 year: 2016 end-page: 205 ident: bib75 article-title: Lateral hypothalamic circuits for feeding and reward publication-title: Nat. Neurosci. – volume: 468 start-page: 232 year: 2010 end-page: 243 ident: bib57 article-title: Glial and neuronal control of brain blood flow publication-title: Nature – volume: 11 start-page: 763 year: 2014 end-page: 772 ident: bib74 article-title: Targeting cells with single vectors using multiple-feature Boolean logic publication-title: Nat. Methods – volume: 10 start-page: 1620 year: 2014 end-page: 1626 ident: bib82 article-title: Polymeric vesicles loaded with gadoteridol as reversible and concentration-independent magnetic resonance imaging thermometers publication-title: J. Biomed. Nanotechnol. – volume: 18 start-page: 1 year: 2003 end-page: 9 ident: bib14 article-title: Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats publication-title: Neuroimage – volume: 104 start-page: 10780 year: 2007 end-page: 10785 ident: bib28 article-title: Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 98 start-page: 94 year: 1976 end-page: 98 ident: bib27 article-title: Nitric oxide complexes of manganese and chromium tetraphenylporphyrin publication-title: J. Am. Chem. Soc. – volume: 16 year: 2020 ident: bib3 article-title: Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics publication-title: PLoS Comput. Biol. – volume: 77 start-page: 1665 year: 2017 end-page: 1670 ident: bib40 article-title: A biomarker-responsive T2ex MRI contrast agent publication-title: Magn. Reson. Med. – volume: 273 start-page: 27430 year: 1998 end-page: 27437 ident: bib64 article-title: Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase publication-title: J. Biol. Chem. – volume: 15 start-page: 323 year: 1997 end-page: 350 ident: bib36 article-title: Nitric oxide and macrophage function publication-title: Annu. Rev. Immunol. – volume: 20 start-page: 669 year: 2011 end-page: 675 ident: bib72 article-title: MRI to assess renal structure and function publication-title: Curr. Opin. Nephrol. Hypertens. – volume: 14 year: 2018 ident: bib81 article-title: Engineering a pH-sensitive liposomal MRI agent by modification of a bacterial channel publication-title: Small – volume: 98 start-page: 355 year: 2001 end-page: 360 ident: bib17 article-title: The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 2399 year: 2020 ident: bib84 article-title: Target-responsive vasoactive probes for ultrasensitive molecular imaging publication-title: Nat. Commun. – volume: 14 start-page: 992 year: 1996 end-page: 994 ident: bib26 article-title: In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice publication-title: Nat. Biotechnol. – volume: 85 start-page: 1957 year: 2013 end-page: 1963 ident: bib13 article-title: Inaccuracies of nitric oxide measurement methods in biological media publication-title: Anal. Chem. – volume: 27 start-page: 741 year: 2007 end-page: 754 ident: bib60 article-title: Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase publication-title: J. Cerebr. Blood Flow Metabol. – volume: 45 start-page: 121 year: 2018 end-page: 130 ident: bib9 article-title: Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo publication-title: Curr. Opin. Chem. Biol. – volume: 119 start-page: 957 year: 2019 end-page: 1057 ident: bib88 article-title: Chemistry of MRI contrast agents: current challenges and new frontiers publication-title: Chem. Rev. – volume: 323 start-page: 1708 year: 2009 end-page: 1711 ident: bib54 article-title: Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer publication-title: Science – volume: 1 start-page: 615 year: 2006 end-page: 618 ident: bib18 article-title: Regulation and specificity of S-nitrosylation and denitrosylation publication-title: ACS Chem. Biol. – volume: 32 start-page: 1 year: 2006 end-page: 8 ident: bib59 article-title: BOLD response during uncoupling of neuronal activity and CBF publication-title: Neuroimage – volume: 36 start-page: 783 year: 2003 end-page: 790 ident: bib44 article-title: PARACEST agents: modulating MRI contrast via water proton exchange publication-title: Acc. Chem. Res. – volume: 21 start-page: 92 year: 2009 end-page: 103 ident: bib12 article-title: What is the real physiological NO concentration in vivo? publication-title: Nitric Oxide – volume: 176 start-page: 197 year: 2019 end-page: 211 ident: bib85 article-title: NO as a multimodal transmitter in the brain: discovery and current status publication-title: Br. J. Pharmacol. – volume: 25 start-page: 390 year: 1992 end-page: 397 ident: bib7 article-title: Time course EPI of human brain function during task activation publication-title: Magn. Reson. Med. – volume: 7 start-page: 307 year: 2003 end-page: 315 ident: bib70 article-title: BOLD magnetic resonance imaging of skeletal muscle publication-title: Semin. Muscoskel. Radiol. – volume: 5 start-page: 225 year: 2015 end-page: 233 ident: bib42 article-title: Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide publication-title: Redox Biol. – volume: 357 start-page: 593 year: 2001 end-page: 615 ident: bib49 article-title: Nitric oxide synthases: structure, function and inhibition publication-title: Biochem. J. – volume: 28 start-page: N37 year: 2000 end-page: N52 ident: bib1 article-title: Biology of nitric oxide signaling publication-title: Crit. Care Med. – volume: 25 start-page: 2730 year: 2017 end-page: 2742 ident: bib52 article-title: Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by (1)H NMR spectroscopy publication-title: Bioorg. Med. Chem. – volume: 42 start-page: 235 year: 1999 end-page: 239 ident: bib24 article-title: In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping publication-title: Magn. Reson. Med. – volume: 272 start-page: 4959 year: 1997 end-page: 4963 ident: bib38 article-title: 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo publication-title: J. Biol. Chem. – volume: 50 start-page: 201 year: 2018 end-page: 210 ident: bib8 article-title: Probing the brain with molecular fMRI publication-title: Curr. Opin. Neurobiol. – volume: 207 start-page: 572 year: 1995 end-page: 577 ident: bib86 article-title: Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase publication-title: Biochem. Biophys. Res. Commun. – volume: 20 start-page: 30 year: 2013 end-page: 41 ident: bib16 article-title: Is the real in vivo nitric oxide concentration pico or nano molar? Influence of electrode size on unstirred layers and NO consumption publication-title: Microcirculation – volume: 10 start-page: 897 year: 2019 ident: bib32 article-title: Sensing intracellular calcium ions using a manganese-based MRI contrast agent publication-title: Nat. Commun. – volume: 36 start-page: 4139 year: 2016 end-page: 4148 ident: bib73 article-title: Molecular fMRI publication-title: J. Neurosci. – volume: 30 start-page: 311 year: 2010 end-page: 322 ident: bib76 article-title: Pharmacological uncoupling of activation induced increases in CBF and CMRO2 publication-title: J. Cerebr. Blood Flow Metabol. – volume: 344 start-page: 533 year: 2014 end-page: 535 ident: bib34 article-title: Molecular-level functional magnetic resonance imaging of dopaminergic signaling publication-title: Science – volume: 195 start-page: 1191 year: 1993 end-page: 1198 ident: bib25 article-title: In vivo spin trapping of nitric oxide in mice publication-title: Biochem. Biophys. Res. Commun. – volume: 38 start-page: 3209 year: 1999 end-page: 3212 ident: bib41 article-title: Fluorescent indicators for imaging nitric oxide production publication-title: Angew Chem. Int. Ed. Engl. – volume: 254 start-page: 716 year: 1991 end-page: 719 ident: bib5 article-title: Functional mapping of the human visual cortex by magnetic resonance imaging publication-title: Science – volume: 53 start-page: 10748 year: 2014 end-page: 10761 ident: bib29 article-title: Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes publication-title: Inorg. Chem. – volume: 40 start-page: 1427 year: 2020 end-page: 1440 ident: bib67 article-title: Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex publication-title: J. Cerebr. Blood Flow Metabol. – volume: 27 start-page: 8706 year: 1988 end-page: 8711 ident: bib51 article-title: Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate publication-title: Biochemistry – volume: 58 start-page: 1249 year: 2007 end-page: 1256 ident: bib48 article-title: Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide publication-title: Magn. Reson. Med. – volume: 133 start-page: 6134 year: 2011 end-page: 6137 ident: bib53 article-title: Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1011 year: 2011 end-page: 1021 ident: bib69 article-title: Brain nitric oxide inactivation is governed by the vasculature publication-title: Antioxidants Redox Signal. – volume: 1411 start-page: 290 year: 1999 end-page: 309 ident: bib21 article-title: Nitric oxide and iron proteins publication-title: Biochim. Biophys. Acta – volume: 92 start-page: 754 year: 2016 end-page: 765 ident: bib35 article-title: Molecular fMRI of serotonin transport publication-title: Neuron – volume: 24 start-page: 73 year: 2018 end-page: 83 ident: bib58 article-title: Mechanisms mediating functional hyperemia in the brain publication-title: Neuroscientist – volume: 20 start-page: 816 year: 2002 end-page: 820 ident: bib80 article-title: Magnetic relaxation switches capable of sensing molecular interactions publication-title: Nat. Biotechnol. – volume: 574 start-page: 206 year: 2019 end-page: 210 ident: bib19 article-title: Structural insights into the mechanism of human soluble guanylate cyclase publication-title: Nature – volume: 138 start-page: 15861 year: 2016 end-page: 15864 ident: bib31 article-title: A janus chelator enables biochemically responsive MRI contrast with exceptional dynamic range publication-title: J. Am. Chem. Soc. – volume: 216 start-page: 225 year: 2000 end-page: 231 ident: bib23 article-title: MR imaging of nitrosyl-iron complexes: experimental study in rats publication-title: Radiology – volume: 107 start-page: 8525 year: 2010 end-page: 8530 ident: bib15 article-title: Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 80 start-page: 333 year: 2011 end-page: 355 ident: bib20 article-title: Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors publication-title: Annu. Rev. Biochem. – volume: 94 start-page: 715 year: 1996 end-page: 722 ident: bib50 article-title: Preliminary evaluation of PARACEST MRI agents for the detection of nitric oxide synthase publication-title: Can. J. Chem. – year: 1994 ident: bib4 article-title: Principles of Nuclear Magnetic Resonance Microscopy – volume: 48 start-page: 169 year: 1992 end-page: 186 ident: bib37 article-title: The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues publication-title: Neuroscience – volume: 34 start-page: 523 year: 2010 end-page: 531 ident: bib71 article-title: Blood oxygen level-dependent magnetic resonance imaging of the human liver: preliminary results publication-title: J. Comput. Assist. Tomogr. – volume: 8 start-page: 662 year: 2011 end-page: 664 ident: bib78 article-title: Functional ultrasound imaging of the brain publication-title: Nat. Methods – volume: 467 start-page: 1165 year: 2015 end-page: 1178 ident: bib56 article-title: Recent advances in research on nitrergic nerve-mediated vasodilatation publication-title: Pflügers Archiv – volume: 40 start-page: 3204 year: 2001 end-page: 3206 ident: bib79 article-title: Magnetic nanosensors for the detection of oligonucleotide sequences publication-title: Angew Chem. Int. Ed. Engl. – volume: 57 start-page: 6742 year: 2018 end-page: 6753 ident: bib55 article-title: Signal amplification by reversible exchange (SABRE): from discovery to diagnosis publication-title: Angew Chem. Int. Ed. Engl. – volume: 29 start-page: 14553 year: 2009 end-page: 14570 ident: bib68 article-title: Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels publication-title: J. Neurosci. – volume: 42 start-page: 599 year: 1999 end-page: 602 ident: bib22 article-title: Ex vivo EPR detection of nitric oxide in brain tissue publication-title: Magn. Reson. Med. – volume: 5 start-page: 78 year: 2010 end-page: 98 ident: bib46 article-title: Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents publication-title: Contrast Media Mol. Imaging – volume: 87 start-page: 9868 year: 1990 end-page: 9872 ident: bib61 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 54 start-page: 4565 year: 2021 end-page: 4575 ident: bib87 article-title: Designer heme proteins: achieving novel function with abiological heme analogues publication-title: Acc. Chem. Res. – volume: 2 start-page: 491 year: 1998 end-page: 500 ident: bib62 article-title: Design of isoform-selective inhibitors of nitric oxide synthase publication-title: Curr. Opin. Chem. Biol. – volume: 84 start-page: 757 year: 1996 end-page: 767 ident: bib65 article-title: Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains publication-title: Cell – volume: 14 year: 2009 ident: bib77 article-title: Functional transcranial brain imaging by optical-resolution photoacoustic microscopy publication-title: J. Biomed. Opt. – volume: 8 start-page: 461 year: 1997 end-page: 464 ident: bib39 article-title: Nitric oxide-haemoglobin interaction: a new biochemical hypothesis for signal changes in fMRI publication-title: Neuroreport – volume: 5 start-page: 19 year: 2015 end-page: 32 ident: bib47 article-title: Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging publication-title: Res. Rep. Nucl. Med. – volume: 138 start-page: 5483 year: 2016 end-page: 5486 ident: bib30 article-title: Membrane-permeable Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 79 year: 2000 end-page: 87 ident: bib43 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J. Magn. Reson. – volume: 26 start-page: 810 year: 2013 end-page: 828 ident: bib45 article-title: Nuts and bolts of chemical exchange saturation transfer MRI publication-title: NMR Biomed. – volume: 169 start-page: 1417 year: 2013 end-page: 1429 ident: bib2 article-title: Biological nitric oxide signalling: chemistry and terminology publication-title: Br. J. Pharmacol. – volume: 141 start-page: 17025 year: 2019 end-page: 17041 ident: bib10 article-title: Molecular magnetic resonance imaging with Gd(III)-Based contrast agents: challenges and key advances publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 20 year: 2021 end-page: 34 ident: bib11 article-title: Molecular MR contrast agents publication-title: Invest. Radiol. – volume: 89 start-page: 5951 year: 1992 end-page: 5955 ident: bib6 article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 30 year: 2013 ident: 10.1016/j.freeradbiomed.2022.08.042_bib16 article-title: Is the real in vivo nitric oxide concentration pico or nano molar? Influence of electrode size on unstirred layers and NO consumption publication-title: Microcirculation doi: 10.1111/micc.12003 – volume: 20 start-page: 816 year: 2002 ident: 10.1016/j.freeradbiomed.2022.08.042_bib80 article-title: Magnetic relaxation switches capable of sensing molecular interactions publication-title: Nat. Biotechnol. doi: 10.1038/nbt720 – volume: 80 start-page: 333 year: 2011 ident: 10.1016/j.freeradbiomed.2022.08.042_bib20 article-title: Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061009-091643 – volume: 53 start-page: 10748 year: 2014 ident: 10.1016/j.freeradbiomed.2022.08.042_bib29 article-title: Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes publication-title: Inorg. Chem. doi: 10.1021/ic502005u – volume: 5 start-page: 19 year: 2015 ident: 10.1016/j.freeradbiomed.2022.08.042_bib47 article-title: Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging publication-title: Res. Rep. Nucl. Med. – volume: 25 start-page: 2730 year: 2017 ident: 10.1016/j.freeradbiomed.2022.08.042_bib52 article-title: Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by (1)H NMR spectroscopy publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2017.03.041 – volume: 48 start-page: 169 year: 1992 ident: 10.1016/j.freeradbiomed.2022.08.042_bib37 article-title: The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues publication-title: Neuroscience doi: 10.1016/0306-4522(92)90347-5 – volume: 7 start-page: 307 year: 2003 ident: 10.1016/j.freeradbiomed.2022.08.042_bib70 article-title: BOLD magnetic resonance imaging of skeletal muscle publication-title: Semin. Muscoskel. Radiol. doi: 10.1055/s-2004-815678 – volume: 11 start-page: 763 year: 2014 ident: 10.1016/j.freeradbiomed.2022.08.042_bib74 article-title: Targeting cells with single vectors using multiple-feature Boolean logic publication-title: Nat. Methods doi: 10.1038/nmeth.2996 – volume: 468 start-page: 232 year: 2010 ident: 10.1016/j.freeradbiomed.2022.08.042_bib57 article-title: Glial and neuronal control of brain blood flow publication-title: Nature doi: 10.1038/nature09613 – volume: 11 start-page: 2399 year: 2020 ident: 10.1016/j.freeradbiomed.2022.08.042_bib84 article-title: Target-responsive vasoactive probes for ultrasensitive molecular imaging publication-title: Nat. Commun. doi: 10.1038/s41467-020-16118-7 – volume: 5 start-page: 225 year: 2015 ident: 10.1016/j.freeradbiomed.2022.08.042_bib42 article-title: Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide publication-title: Redox Biol. doi: 10.1016/j.redox.2015.05.002 – volume: 77 start-page: 1665 year: 2017 ident: 10.1016/j.freeradbiomed.2022.08.042_bib40 article-title: A biomarker-responsive T2ex MRI contrast agent publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26250 – volume: 15 start-page: 323 year: 1997 ident: 10.1016/j.freeradbiomed.2022.08.042_bib36 article-title: Nitric oxide and macrophage function publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.323 – volume: 8 start-page: 461 year: 1997 ident: 10.1016/j.freeradbiomed.2022.08.042_bib39 article-title: Nitric oxide-haemoglobin interaction: a new biochemical hypothesis for signal changes in fMRI publication-title: Neuroreport doi: 10.1097/00001756-199701200-00017 – volume: 36 start-page: 783 year: 2003 ident: 10.1016/j.freeradbiomed.2022.08.042_bib44 article-title: PARACEST agents: modulating MRI contrast via water proton exchange publication-title: Acc. Chem. Res. doi: 10.1021/ar020228m – volume: 141 start-page: 17025 year: 2019 ident: 10.1016/j.freeradbiomed.2022.08.042_bib10 article-title: Molecular magnetic resonance imaging with Gd(III)-Based contrast agents: challenges and key advances publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09149 – volume: 94 start-page: 715 year: 1996 ident: 10.1016/j.freeradbiomed.2022.08.042_bib50 article-title: Preliminary evaluation of PARACEST MRI agents for the detection of nitric oxide synthase publication-title: Can. J. Chem. doi: 10.1139/cjc-2016-0179 – volume: 169 start-page: 1417 year: 2013 ident: 10.1016/j.freeradbiomed.2022.08.042_bib2 article-title: Biological nitric oxide signalling: chemistry and terminology publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12217 – volume: 272 start-page: 4959 year: 1997 ident: 10.1016/j.freeradbiomed.2022.08.042_bib38 article-title: 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.8.4959 – volume: 27 start-page: 8706 year: 1988 ident: 10.1016/j.freeradbiomed.2022.08.042_bib51 article-title: Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate publication-title: Biochemistry doi: 10.1021/bi00424a003 – volume: 275 start-page: 19416 year: 2000 ident: 10.1016/j.freeradbiomed.2022.08.042_bib66 article-title: A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M001952200 – volume: 14 start-page: 992 year: 1996 ident: 10.1016/j.freeradbiomed.2022.08.042_bib26 article-title: In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice publication-title: Nat. Biotechnol. doi: 10.1038/nbt0896-992 – volume: 5 start-page: 78 year: 2010 ident: 10.1016/j.freeradbiomed.2022.08.042_bib46 article-title: Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents publication-title: Contrast Media Mol. Imaging doi: 10.1002/cmmi.369 – volume: 357 start-page: 593 year: 2001 ident: 10.1016/j.freeradbiomed.2022.08.042_bib49 article-title: Nitric oxide synthases: structure, function and inhibition publication-title: Biochem. J. doi: 10.1042/bj3570593 – volume: 24 start-page: 73 year: 2018 ident: 10.1016/j.freeradbiomed.2022.08.042_bib58 article-title: Mechanisms mediating functional hyperemia in the brain publication-title: Neuroscientist doi: 10.1177/1073858417703033 – volume: 2 start-page: 491 year: 1998 ident: 10.1016/j.freeradbiomed.2022.08.042_bib62 article-title: Design of isoform-selective inhibitors of nitric oxide synthase publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(98)80125-7 – volume: 42 start-page: 235 year: 1999 ident: 10.1016/j.freeradbiomed.2022.08.042_bib24 article-title: In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199908)42:2<235::AID-MRM4>3.0.CO;2-Y – volume: 5 start-page: 1674 year: 2020 ident: 10.1016/j.freeradbiomed.2022.08.042_bib33 article-title: Molecular magnetic resonance imaging of nitric oxide in biological systems publication-title: ACS Sens. doi: 10.1021/acssensors.0c00322 – volume: 8 start-page: 662 year: 2011 ident: 10.1016/j.freeradbiomed.2022.08.042_bib78 article-title: Functional ultrasound imaging of the brain publication-title: Nat. Methods doi: 10.1038/nmeth.1641 – volume: 42 start-page: 599 year: 1999 ident: 10.1016/j.freeradbiomed.2022.08.042_bib22 article-title: Ex vivo EPR detection of nitric oxide in brain tissue publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<599::AID-MRM24>3.0.CO;2-Y – volume: 20 start-page: 669 year: 2011 ident: 10.1016/j.freeradbiomed.2022.08.042_bib72 article-title: MRI to assess renal structure and function publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0b013e32834ad579 – volume: 138 start-page: 5483 year: 2016 ident: 10.1016/j.freeradbiomed.2022.08.042_bib30 article-title: Membrane-permeable Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13337 – volume: 21 start-page: 92 year: 2009 ident: 10.1016/j.freeradbiomed.2022.08.042_bib12 article-title: What is the real physiological NO concentration in vivo? publication-title: Nitric Oxide doi: 10.1016/j.niox.2009.07.002 – volume: 14 year: 2009 ident: 10.1016/j.freeradbiomed.2022.08.042_bib77 article-title: Functional transcranial brain imaging by optical-resolution photoacoustic microscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.3194136 – volume: 119 start-page: 957 year: 2019 ident: 10.1016/j.freeradbiomed.2022.08.042_bib88 article-title: Chemistry of MRI contrast agents: current challenges and new frontiers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00363 – volume: 36 start-page: 4139 year: 2016 ident: 10.1016/j.freeradbiomed.2022.08.042_bib73 article-title: Molecular fMRI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4050-15.2016 – volume: 176 start-page: 197 year: 2019 ident: 10.1016/j.freeradbiomed.2022.08.042_bib85 article-title: NO as a multimodal transmitter in the brain: discovery and current status publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14532 – volume: 58 start-page: 1249 year: 2007 ident: 10.1016/j.freeradbiomed.2022.08.042_bib48 article-title: Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21428 – volume: 14 start-page: 1011 year: 2011 ident: 10.1016/j.freeradbiomed.2022.08.042_bib69 article-title: Brain nitric oxide inactivation is governed by the vasculature publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2010.3297 – volume: 98 start-page: 94 year: 1976 ident: 10.1016/j.freeradbiomed.2022.08.042_bib27 article-title: Nitric oxide complexes of manganese and chromium tetraphenylporphyrin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00417a016 – volume: 216 start-page: 225 year: 2000 ident: 10.1016/j.freeradbiomed.2022.08.042_bib23 article-title: MR imaging of nitrosyl-iron complexes: experimental study in rats publication-title: Radiology doi: 10.1148/radiology.216.1.r00jl10225 – volume: 254 start-page: 716 year: 1991 ident: 10.1016/j.freeradbiomed.2022.08.042_bib5 article-title: Functional mapping of the human visual cortex by magnetic resonance imaging publication-title: Science doi: 10.1126/science.1948051 – volume: 40 start-page: 1427 year: 2020 ident: 10.1016/j.freeradbiomed.2022.08.042_bib67 article-title: Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex publication-title: J. Cerebr. Blood Flow Metabol. doi: 10.1177/0271678X19870105 – volume: 28 start-page: N37 year: 2000 ident: 10.1016/j.freeradbiomed.2022.08.042_bib1 article-title: Biology of nitric oxide signaling publication-title: Crit. Care Med. doi: 10.1097/00003246-200004001-00005 – volume: 107 start-page: 8525 year: 2010 ident: 10.1016/j.freeradbiomed.2022.08.042_bib15 article-title: Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0914794107 – volume: 29 start-page: 14553 year: 2009 ident: 10.1016/j.freeradbiomed.2022.08.042_bib68 article-title: Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3287-09.2009 – volume: 10 start-page: 1620 year: 2014 ident: 10.1016/j.freeradbiomed.2022.08.042_bib82 article-title: Polymeric vesicles loaded with gadoteridol as reversible and concentration-independent magnetic resonance imaging thermometers publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2014.1833 – volume: 207 start-page: 572 year: 1995 ident: 10.1016/j.freeradbiomed.2022.08.042_bib86 article-title: Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1995.1226 – volume: 89 start-page: 5951 year: 1992 ident: 10.1016/j.freeradbiomed.2022.08.042_bib6 article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.13.5951 – volume: 30 start-page: 311 year: 2010 ident: 10.1016/j.freeradbiomed.2022.08.042_bib76 article-title: Pharmacological uncoupling of activation induced increases in CBF and CMRO2 publication-title: J. Cerebr. Blood Flow Metabol. doi: 10.1038/jcbfm.2009.211 – volume: 56 start-page: 20 year: 2021 ident: 10.1016/j.freeradbiomed.2022.08.042_bib11 article-title: Molecular MR contrast agents publication-title: Invest. Radiol. doi: 10.1097/RLI.0000000000000731 – volume: 574 start-page: 206 year: 2019 ident: 10.1016/j.freeradbiomed.2022.08.042_bib19 article-title: Structural insights into the mechanism of human soluble guanylate cyclase publication-title: Nature doi: 10.1038/s41586-019-1584-6 – volume: 104 start-page: 10780 year: 2007 ident: 10.1016/j.freeradbiomed.2022.08.042_bib28 article-title: Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0702393104 – volume: 32 start-page: 1 year: 2006 ident: 10.1016/j.freeradbiomed.2022.08.042_bib59 article-title: BOLD response during uncoupling of neuronal activity and CBF publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.035 – volume: 38 start-page: 3209 year: 1999 ident: 10.1016/j.freeradbiomed.2022.08.042_bib41 article-title: Fluorescent indicators for imaging nitric oxide production publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3209::AID-ANIE3209>3.0.CO;2-6 – volume: 25 start-page: 390 year: 2022 ident: 10.1016/j.freeradbiomed.2022.08.042_bib63 article-title: Functional dissection of neural circuitry using a genetic reporter for fMRI publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01014-8 – volume: 1411 start-page: 290 year: 1999 ident: 10.1016/j.freeradbiomed.2022.08.042_bib21 article-title: Nitric oxide and iron proteins publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2728(99)00021-3 – volume: 273 start-page: 27430 year: 1998 ident: 10.1016/j.freeradbiomed.2022.08.042_bib64 article-title: Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.42.27430 – volume: 50 start-page: 201 year: 2018 ident: 10.1016/j.freeradbiomed.2022.08.042_bib8 article-title: Probing the brain with molecular fMRI publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.03.009 – volume: 10 start-page: 897 year: 2019 ident: 10.1016/j.freeradbiomed.2022.08.042_bib32 article-title: Sensing intracellular calcium ions using a manganese-based MRI contrast agent publication-title: Nat. Commun. doi: 10.1038/s41467-019-08558-7 – volume: 467 start-page: 1165 year: 2015 ident: 10.1016/j.freeradbiomed.2022.08.042_bib56 article-title: Recent advances in research on nitrergic nerve-mediated vasodilatation publication-title: Pflügers Archiv doi: 10.1007/s00424-014-1621-0 – volume: 54 start-page: 4565 year: 2021 ident: 10.1016/j.freeradbiomed.2022.08.042_bib87 article-title: Designer heme proteins: achieving novel function with abiological heme analogues publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00588 – volume: 27 start-page: 741 year: 2007 ident: 10.1016/j.freeradbiomed.2022.08.042_bib60 article-title: Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase publication-title: J. Cerebr. Blood Flow Metabol. doi: 10.1038/sj.jcbfm.9600377 – volume: 323 start-page: 1708 year: 2009 ident: 10.1016/j.freeradbiomed.2022.08.042_bib54 article-title: Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer publication-title: Science doi: 10.1126/science.1168877 – volume: 34 start-page: 523 year: 2010 ident: 10.1016/j.freeradbiomed.2022.08.042_bib71 article-title: Blood oxygen level-dependent magnetic resonance imaging of the human liver: preliminary results publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/RCT.0b013e3181d5d503 – volume: 45 start-page: 121 year: 2018 ident: 10.1016/j.freeradbiomed.2022.08.042_bib9 article-title: Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2018.04.006 – volume: 1 start-page: 615 year: 2006 ident: 10.1016/j.freeradbiomed.2022.08.042_bib18 article-title: Regulation and specificity of S-nitrosylation and denitrosylation publication-title: ACS Chem. Biol. doi: 10.1021/cb600439h – volume: 138 start-page: 15861 year: 2016 ident: 10.1016/j.freeradbiomed.2022.08.042_bib31 article-title: A janus chelator enables biochemically responsive MRI contrast with exceptional dynamic range publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10898 – volume: 143 start-page: 79 year: 2000 ident: 10.1016/j.freeradbiomed.2022.08.042_bib43 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J. Magn. Reson. doi: 10.1006/jmre.1999.1956 – volume: 7 year: 2016 ident: 10.1016/j.freeradbiomed.2022.08.042_bib83 article-title: Molecular imaging with engineered physiology publication-title: Nat. Commun. doi: 10.1038/ncomms13607 – volume: 98 start-page: 355 year: 2001 ident: 10.1016/j.freeradbiomed.2022.08.042_bib17 article-title: The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.98.1.355 – volume: 195 start-page: 1191 year: 1993 ident: 10.1016/j.freeradbiomed.2022.08.042_bib25 article-title: In vivo spin trapping of nitric oxide in mice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1993.2170 – volume: 40 start-page: 3204 year: 2001 ident: 10.1016/j.freeradbiomed.2022.08.042_bib79 article-title: Magnetic nanosensors for the detection of oligonucleotide sequences publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO;2-H – volume: 19 start-page: 198 year: 2016 ident: 10.1016/j.freeradbiomed.2022.08.042_bib75 article-title: Lateral hypothalamic circuits for feeding and reward publication-title: Nat. Neurosci. doi: 10.1038/nn.4220 – volume: 25 start-page: 390 year: 1992 ident: 10.1016/j.freeradbiomed.2022.08.042_bib7 article-title: Time course EPI of human brain function during task activation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910250220 – year: 1994 ident: 10.1016/j.freeradbiomed.2022.08.042_bib4 – volume: 85 start-page: 1957 year: 2013 ident: 10.1016/j.freeradbiomed.2022.08.042_bib13 article-title: Inaccuracies of nitric oxide measurement methods in biological media publication-title: Anal. Chem. doi: 10.1021/ac303787p – volume: 87 start-page: 9868 year: 1990 ident: 10.1016/j.freeradbiomed.2022.08.042_bib61 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.87.24.9868 – volume: 14 year: 2018 ident: 10.1016/j.freeradbiomed.2022.08.042_bib81 article-title: Engineering a pH-sensitive liposomal MRI agent by modification of a bacterial channel publication-title: Small doi: 10.1002/smll.201704256 – volume: 16 year: 2020 ident: 10.1016/j.freeradbiomed.2022.08.042_bib3 article-title: Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008069 – volume: 344 start-page: 533 year: 2014 ident: 10.1016/j.freeradbiomed.2022.08.042_bib34 article-title: Molecular-level functional magnetic resonance imaging of dopaminergic signaling publication-title: Science doi: 10.1126/science.1249380 – volume: 18 start-page: 1 year: 2003 ident: 10.1016/j.freeradbiomed.2022.08.042_bib14 article-title: Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats publication-title: Neuroimage doi: 10.1006/nimg.2002.1314 – volume: 84 start-page: 757 year: 1996 ident: 10.1016/j.freeradbiomed.2022.08.042_bib65 article-title: Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains publication-title: Cell doi: 10.1016/S0092-8674(00)81053-3 – volume: 92 start-page: 754 year: 2016 ident: 10.1016/j.freeradbiomed.2022.08.042_bib35 article-title: Molecular fMRI of serotonin transport publication-title: Neuron doi: 10.1016/j.neuron.2016.09.048 – volume: 26 start-page: 810 year: 2013 ident: 10.1016/j.freeradbiomed.2022.08.042_bib45 article-title: Nuts and bolts of chemical exchange saturation transfer MRI publication-title: NMR Biomed. doi: 10.1002/nbm.2899 – volume: 133 start-page: 6134 year: 2011 ident: 10.1016/j.freeradbiomed.2022.08.042_bib53 article-title: Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200299u – volume: 57 start-page: 6742 year: 2018 ident: 10.1016/j.freeradbiomed.2022.08.042_bib55 article-title: Signal amplification by reversible exchange (SABRE): from discovery to diagnosis publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201710406 |
SSID | ssj0004538 |
Score | 2.438974 |
SecondaryResourceType | review_article |
Snippet | Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 241 |
SubjectTerms | Animals Contrast agent Contrast Media Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Molecular imaging Molecular Probes Nitric oxide Nitric Oxide - metabolism Nitric oxide synthase Nitric Oxide Synthase - genetics Nitric Oxide Synthase - metabolism |
Title | Probing nitric oxide signaling using molecular MRI |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2022.08.042 https://www.ncbi.nlm.nih.gov/pubmed/36084790 https://www.proquest.com/docview/2712845296 https://pubmed.ncbi.nlm.nih.gov/PMC10204116 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_EovgirZ-nVlIqvq23yWY3Gx8KhyhniyKtgm8hX6snuid6gr70b29mP66eIgg-7m6yhJkkM8n85jcAW6mgUppCRKkLx1UutIskBnkzpqnxVDMjMTn56Djrn_Gf5-n5FOy1uTAIq2z2_npPr3br5k23kWb3djDo_olzSYP5lAwvRoTAJD7OBc7ynb_0GWN4Vc0aG0fYeha-_8d4FXfeY8i6ynQPh0XGKj5Pzt6yUq-90JdgymfW6eAzzDduJenVI_8CU75cgMVeGY7UN09km1RAz-oGfQFm6vqTT4vATpCFqbwgYV2H_ZAMHwfOE4R0aMxSJwiKvyA3bQVdcvT7cAnODvZP9_pRU0QhskE0o8gWwllpZHA1XCo9Tax13PvgN3mexy5nRY41qlwi0BfSLPWeeZ243AqbWOGSZZguh6VfBeK4dKnVvihMyo1GJrc4uG-mCPMgs5npwG4rNGUbhnEsdHGtWijZlZqQuEKJKyyDyVkH-LjzbU208b5uP1rtqIl5o4JJeN8PvrU6VWFlYbhEl374cK-YQNuNcekOrNQ6Ho8syeJg1mXcgXxC--MGyNo9-aUcXFbs3RTTkSnN1j468nWYw6caWbgB06O7B_81eEgjs1ktgU341Dv81T_-B0MEE-0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_sidUXqdrqaVsjLX1bbjeb3Wx8EA5R7qp3lFbBt5CvtSe6J3qC_vdm9uPqWQTB102yhJkkM8n85jcA3xMeCaFzHiTWX1cZVzYQGORNqYq0ixTVApOTB8O0d8p-niVnc7Df5MIgrLI--6szvTyt6y-dWpqd69Go8yfMROTNp6D4MMK5eAfzyE6VtGC-2z_qDZ-QhpcFrbF_gAPew7d_MK_8xjmMWpfJ7v6-SGlJ6cnoS4bqf0f0OZ7yiYE6_ADLtWdJutXkV2DOFauw1i38rfrqgfwgJdazfERfhYWqBOXDGtBfSMRUnBO_tf2RSMb3I-sIojoUJqoTxMWfk6umiC4Z_O5_hNPDg5P9XlDXUQiMl84kMDm3RmjhvQ2bCBfFxljmnHedHMtCm9E8wzJVNuboDimaOEedim1muIkNt_EnaBXjwm0AsUzYxCiX5zphWiGZW-g9OJ37pZCaVLdhtxGaNDXJONa6uJQNmuxCzkhcosQlVsJktA1sOvi64tp43bC9RjtyZulIbxVe94OdRqfSby6MmKjCje9uJeVovjE03Yb1SsfTmcVp6C27CNuQzWh_2gGJu2dbitHfksA7wozkKEo33zrzbVjsnQyO5XF_eLQFS9hSAQ0_Q2tyc-e-eIdpor_WG-IRoBUWng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+nitric+oxide+signaling+using+molecular+MRI&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Barandov%2C+Ali&rft.au=Ghosh%2C+Souparno&rft.au=Jasanoff%2C+Alan&rft.date=2022-10-01&rft.issn=0891-5849&rft.volume=191&rft.spage=241&rft.epage=248&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2022.08.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2022_08_042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |