Electrical conductivity in the mantle transition zone beneath eastern Central Asian Orogenic Belt revealed by geomagnetic signals
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upwa...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 1299 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the
C
-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on
L
1
-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture. |
---|---|
AbstractList | Abstract In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L 1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture. In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L -norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture. In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture. In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C -response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L 1 -norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture. In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture. |
ArticleNumber | 1299 |
Author | Zhang, Yuyan Zhang, Yanhui Ma, Mina Hu, Yujia |
Author_xml | – sequence: 1 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui email: global_em@163.com organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University – sequence: 2 givenname: Yujia surname: Hu fullname: Hu, Yujia organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University – sequence: 3 givenname: Mina surname: Ma fullname: Ma, Mina organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University – sequence: 4 givenname: Yuyan surname: Zhang fullname: Zhang, Yuyan organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39779790$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kj1vFDEQhlcoiHyQP0CBLNHQLPjz7K1QOIUQKVIaqC2vd7zn054dbN9JR8c_x5cNIaHAzVieZ16_Y89pcxRigKZ5Q_AHgpn6mDkRnWox5a0SuBMtf9GcUMxFSxmlR0_2x815zmtcl6AdJ92r5ph1UnaywyfNr8sJbEnemgnZGIatLX7nyx75gMoK0MaEMgEqyYTsi48B_aw-UA8BTFkhMLlACmgJoSITusjeBHSb4gjBW_QZpoIS7MBMMKB-j0aIGzMGKDWZ_RjMlF83L10NcP4Qz5rvXy6_Lb-2N7dX18uLm9byjpbWdph1mFsFg-BUCaYcx4MyinTEUkIZkc441SvXcwfYGdELKqVwfEFBSMHOmutZd4hmre-S35i019F4fX8Q06hNqr4m0NgsesFACDFYPhhQzPRV0BlMQFLsqtanWetu229gsHP3z0SfZ4Jf6THuNCGSVK-0Krx_UEjxxxZy0RufLUyTCRC3WTNSO1T1DxcVffcPuo7bdHi6A0UVJlKSSr19aunRy5-vrgCdAZtizgncI0KwPoyUnkdK15HS9yOleS1ic1GucBgh_b37P1W_AdxWz_c |
Cites_doi | 10.1029/2018TC005170 10.1093/gji/ggt095 10.1029/2020GC009016 10.1190/1.2816650 10.1144/0016-764903-146 10.1002/2014JB011078 10.1016/j.jseaes.2013.04.003 10.1007/s11430-018-9429-3 10.1016/j.chemgeo.2010.05.013 10.1016/j.earscirev.2019.03.003 10.1016/j.jseaes.2010.04.035 10.1016/B978-0-12-490920-5.50014-4 10.1029/2011TC002896 10.1016/j.epsl.2016.03.042 10.1007/s11430-017-9174-1 10.1038/s41598-024-78193-w 10.1029/2007TC002175 10.1080/00206814.2013.804664 10.18654/1000-0569/2022.12.04 10.1016/S0040-1951(99)00042-6 10.1016/S0040-1951(01)00271-2 10.1111/j.1365-246X.2004.02203.x 10.1038/s41598-019-52181-x 10.1016/j.lithos.2015.01.012 10.1016/j.gr.2014.09.010 10.1190/1.3114023 10.1046/j.1365-246X.1999.00743.x 10.1111/j.1365-246X.1969.tb00252.x 10.1029/2005JB004066 10.1046/j.1365-246X.2000.00051.x 10.1038/nature03426 10.1016/j.pepi.2017.11.003 10.1029/98JB02467 10.1016/0040-1951(86)90067-3 10.1016/0040-1951(90)90005-S 10.1016/j.lithos.2019.03.016 10.1038/s41598-019-43103-y 10.1093/gji/ggaa059 10.1016/j.gr.2010.03.011 10.1111/j.1365-246X.2008.03717.x 10.1016/j.tecto.2020.228559 10.1029/2022JB024905 10.1016/j.pepi.2008.11.009 10.1016/j.pepi.2022.106955 10.1016/j.gr.2014.08.010 10.1029/1999RG000068 10.1016/S0040-1951(03)00195-1 10.1038/nature08257 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-85095-4 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_0a6b53e555dc4dae83abfa5fa01e720f PMC11711232 39779790 10_1038_s41598_024_85095_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42104079 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 42104079 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-c903904c8ed5428538f40d8a8191c212317faf8b8fb4fe0fa5b52775f462e5753 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:26:19 EDT 2025 Thu Aug 21 18:28:46 EDT 2025 Fri Jul 11 03:44:21 EDT 2025 Wed Aug 13 07:01:22 EDT 2025 Thu Apr 03 06:59:06 EDT 2025 Tue Jul 01 02:06:42 EDT 2025 Fri Feb 21 02:34:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mongol-Okhotsk suture Electrical conductivity structure Geomagnetic Three-dimensional inversion Subduction |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-c903904c8ed5428538f40d8a8191c212317faf8b8fb4fe0fa5b52775f462e5753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3152801771?pq-origsite=%requestingapplication% |
PMID | 39779790 |
PQID | 3152801771 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a6b53e555dc4dae83abfa5fa01e720f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11711232 proquest_miscellaneous_3153882046 proquest_journals_3152801771 pubmed_primary_39779790 crossref_primary_10_1038_s41598_024_85095_4 springer_journals_10_1038_s41598_024_85095_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-08 |
PublicationDateYYYYMMDD | 2025-01-08 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JY Ren (85095_CR1) 2002; 344 M Maruyama (85095_CR43) 1986; 127 85095_CR23 85095_CR28 G Kimura (85095_CR44) 1990; 181 W Wang (85095_CR6) 2015; 218–219 W Xu (85095_CR14) 2019; 44 T Wang (85095_CR4) 2022; 5 AJ Schaeffer (85095_CR13) 2013; 194 R Ge (85095_CR9) 2009; 33 AH Weng (85095_CR31) 2015; 58 J He (85095_CR38) 2020; 63 U Schmucker (85095_CR26) 1999; 136 W Xu (85095_CR8) 2013; 29 FD Munch (85095_CR20) 2017; 123 85095_CR37 F Yang (85095_CR19) 2021; 64 D Zhao (85095_CR40) 2009; 173 85095_CR35 YA Zorin (85095_CR15) 1999; 306 EH Fritzell (85095_CR54) 2016; 445 85095_CR39 A Kelbert (85095_CR21) 2008; 173 GE Shephard (85095_CR55) 2014; 119 RJ Banks (85095_CR24) 1969; 17 J Huang (85095_CR12) 2006; 111 J Tang (85095_CR3) 2018; 61 Y Fukao (85095_CR10) 2001; 39 H Bijwaard (85095_CR11) 1998; 103 GC Farquharson (85095_CR29) 2008; 73 S Li (85095_CR5) 2019; 192 M Uyeshima (85095_CR32) 2000; 140 VV Yarmolyuk (85095_CR45) 2001 WL Xu (85095_CR17) 2013; 74 O Tomurtogoo (85095_CR47) 2005; 162 Y Zhang (85095_CR22) 2020; 221 M Sun (85095_CR18) 2018; 37 A Kelbert (85095_CR33) 2009; 460 T Wang (85095_CR7) 2011; 30 HG Ouyang (85095_CR42) 2015; 27 AD Chave (85095_CR27) 2004; 157 JF Ying (85095_CR46) 2010; 39 JH Zhang (85095_CR16) 2010; 276 85095_CR52 85095_CR53 D Sun (85095_CR48) 2013; 55 85095_CR57 J Ma (85095_CR36) 2018; 274 YT Yang (85095_CR49) 2015; 28 X Huang (85095_CR50) 2005; 434 QK Xia (85095_CR51) 2022; 38 Q Meng (85095_CR2) 2003; 369 N Espurt (85095_CR56) 2008; 27 A Semenov (85095_CR25) 2012; 191 D Avdeev (85095_CR30) 2009; 74 FQ Zhang (85095_CR41) 2011; 19 Y Zhang (85095_CR34) 2022; 333 |
References_xml | – volume: 5 start-page: 167 year: 2022 ident: 85095_CR4 publication-title: Natl. Sci. Rev. – volume: 37 start-page: 3893 year: 2018 ident: 85095_CR18 publication-title: Tectonics doi: 10.1029/2018TC005170 – start-page: 203 volume-title: Tectonics, Magmatism, and Metallogeny of Mongolia year: 2001 ident: 85095_CR45 – volume: 194 start-page: 417 issue: 1 year: 2013 ident: 85095_CR13 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt095 – ident: 85095_CR23 doi: 10.1029/2020GC009016 – volume: 73 start-page: K1 issue: 1 year: 2008 ident: 85095_CR29 publication-title: Geophysics doi: 10.1190/1.2816650 – volume: 162 start-page: 125 year: 2005 ident: 85095_CR47 publication-title: J. Geol. Soc. Lond. doi: 10.1144/0016-764903-146 – volume: 119 start-page: 7889 year: 2014 ident: 85095_CR55 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011078 – volume: 191 start-page: 965 issue: 3 year: 2012 ident: 85095_CR25 publication-title: Geophys. J. Int. – volume: 74 start-page: 167 year: 2013 ident: 85095_CR17 publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2013.04.003 – volume: 63 start-page: 548 year: 2020 ident: 85095_CR38 publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-018-9429-3 – volume: 276 start-page: 144 issue: 3–4 year: 2010 ident: 85095_CR16 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2010.05.013 – volume: 192 start-page: 91 year: 2019 ident: 85095_CR5 publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.03.003 – volume: 39 start-page: 786 year: 2010 ident: 85095_CR46 publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2010.04.035 – ident: 85095_CR28 doi: 10.1016/B978-0-12-490920-5.50014-4 – volume: 30 start-page: TC6007 year: 2011 ident: 85095_CR7 publication-title: Tectonics doi: 10.1029/2011TC002896 – volume: 445 start-page: 1 year: 2016 ident: 85095_CR54 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.03.042 – volume: 61 start-page: 527 issue: 5 year: 2018 ident: 85095_CR3 publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-017-9174-1 – volume: 29 start-page: 339 issue: 2 year: 2013 ident: 85095_CR8 publication-title: Acta Petrologica Sinica – volume: 58 start-page: 697 issue: 2 year: 2015 ident: 85095_CR31 publication-title: Chin. J. Geophys. – ident: 85095_CR52 doi: 10.1038/s41598-024-78193-w – volume: 27 start-page: TC3011 year: 2008 ident: 85095_CR56 publication-title: Tectonics doi: 10.1029/2007TC002175 – volume: 55 start-page: 1801 issue: 14 year: 2013 ident: 85095_CR48 publication-title: Int. Geol. Rev. doi: 10.1080/00206814.2013.804664 – volume: 38 start-page: 3631 issue: 12 year: 2022 ident: 85095_CR51 publication-title: Acta Petrologica Sinica doi: 10.18654/1000-0569/2022.12.04 – volume: 33 start-page: 346 issue: 4 year: 2009 ident: 85095_CR9 publication-title: J. Geol. – volume: 306 start-page: 33 issue: 1 year: 1999 ident: 85095_CR15 publication-title: Tectonophysics doi: 10.1016/S0040-1951(99)00042-6 – volume: 344 start-page: 175 year: 2002 ident: 85095_CR1 publication-title: Tectonophysics doi: 10.1016/S0040-1951(01)00271-2 – volume: 157 start-page: 988 issue: 3 year: 2004 ident: 85095_CR27 publication-title: Geophys. J. Roy. Astron. Soc. doi: 10.1111/j.1365-246X.2004.02203.x – ident: 85095_CR57 doi: 10.1038/s41598-019-52181-x – volume: 218–219 start-page: 73 year: 2015 ident: 85095_CR6 publication-title: Lithos doi: 10.1016/j.lithos.2015.01.012 – volume: 28 start-page: 1096 year: 2015 ident: 85095_CR49 publication-title: Gondwana Res. doi: 10.1016/j.gr.2014.09.010 – volume: 74 start-page: F45 issue: 3 year: 2009 ident: 85095_CR30 publication-title: Geophysics doi: 10.1190/1.3114023 – volume: 136 start-page: 455 year: 1999 ident: 85095_CR26 publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.1999.00743.x – volume: 17 start-page: 457 issue: 5 year: 1969 ident: 85095_CR24 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1969.tb00252.x – volume: 111 start-page: B09305 issue: B9 year: 2006 ident: 85095_CR12 publication-title: J. Phys. Res. doi: 10.1029/2005JB004066 – volume: 140 start-page: 636 issue: 3 year: 2000 ident: 85095_CR32 publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2000.00051.x – volume: 434 start-page: 746 issue: 7034 year: 2005 ident: 85095_CR50 publication-title: Nature doi: 10.1038/nature03426 – volume: 274 start-page: 105 year: 2018 ident: 85095_CR36 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2017.11.003 – volume: 44 start-page: 1620 issue: 5 year: 2019 ident: 85095_CR14 publication-title: Earth Sci. – volume: 103 start-page: B12 year: 1998 ident: 85095_CR11 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/98JB02467 – volume: 123 start-page: 31 year: 2017 ident: 85095_CR20 publication-title: J. Phys. Res. – volume: 127 start-page: 305 issue: 3–4 year: 1986 ident: 85095_CR43 publication-title: Tectonophysics doi: 10.1016/0040-1951(86)90067-3 – volume: 181 start-page: 15 issue: 1–4 year: 1990 ident: 85095_CR44 publication-title: Tectonophysics doi: 10.1016/0040-1951(90)90005-S – ident: 85095_CR35 doi: 10.1016/j.lithos.2019.03.016 – volume: 64 start-page: 4406 issue: 12 year: 2021 ident: 85095_CR19 publication-title: Chin. J. Geophys. – ident: 85095_CR53 doi: 10.1038/s41598-019-43103-y – volume: 221 start-page: 1110 issue: 2 year: 2020 ident: 85095_CR22 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa059 – volume: 19 start-page: 163 year: 2011 ident: 85095_CR41 publication-title: Gondwana Res. doi: 10.1016/j.gr.2010.03.011 – volume: 173 start-page: 365 issue: 2 year: 2008 ident: 85095_CR21 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2008.03717.x – ident: 85095_CR37 doi: 10.1016/j.tecto.2020.228559 – ident: 85095_CR39 doi: 10.1029/2022JB024905 – volume: 173 start-page: 197 issue: 3 year: 2009 ident: 85095_CR40 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2008.11.009 – volume: 333 start-page: 106955 year: 2022 ident: 85095_CR34 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2022.106955 – volume: 27 start-page: 1153 year: 2015 ident: 85095_CR42 publication-title: Gondwana Res. doi: 10.1016/j.gr.2014.08.010 – volume: 39 start-page: 291 issue: 3 year: 2001 ident: 85095_CR10 publication-title: Rev. Geophys. doi: 10.1029/1999RG000068 – volume: 369 start-page: 155 issue: 3–4 year: 2003 ident: 85095_CR2 publication-title: Tract? Tectonophysics doi: 10.1016/S0040-1951(03)00195-1 – volume: 460 start-page: 1003 year: 2009 ident: 85095_CR33 publication-title: Nature doi: 10.1038/nature08257 |
SSID | ssj0000529419 |
Score | 2.4374979 |
Snippet | In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy... Abstract In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1299 |
SubjectTerms | 704/2151 704/2151/214 704/2151/2809 Electrical conductivity Electrical conductivity structure Finite difference method Geomagnetic Humanities and Social Sciences Island arcs Lithosphere Mongol-Okhotsk suture multidisciplinary Observatories Oceanic crust Science Science (multidisciplinary) Software Subduction Three-dimensional inversion Transition zone Upwelling Volcanic rocks Volcanoes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaI6fqztY4taVRzgQqXeLDsel5XabLXdHsqNf86Mk126PMSFaxwlo5mxv2_s8Qxjb5WDksDKtgdcAnXUsk0QfWtzgk4kSCbWbItPs-MT_fHUnN5q9UU5YWN54FFxeyLOklFgjMm9zhGciqlEU6Lo8Bei0OqLmHcrmBqrekuvOz_dkhHK7V0hUtFtMqlbhyBpWr2FRLVg_59Y5u_Jkr-cmFYgOnrA7k8Mku-Pkj9kd2B4xO6OPSVvHrPvh7WxDemeY6xL5Vxrfwg-HziSPX6BqjwHviKMqula_NtiAJ5wzUMyyKmVDywHPu368n26ZMk_LxfoaPOeH8D5ilPVJ8SVzNMNP4PFRTwb6Cokp1wQ9OYn7OTo8MuH43bqs9D22stV23uhvNC9g2wwGsElsGiRXaRYrido62yJxSVXki4gUPvJSGtN0TMJSPfUU7YzoKjPGcdgyvReZpXBa4PfSAmEt1nmorLofcPerXUeLsdyGqEegysXRgsFtFCoFgq6YQdkls2bVAq7PkAHCZODhH85SMN210YN0_y8CgppC2KztV3D3myGcWbRcUkcYHFd31EYfwg9a9iz0Qc2khBt9taLhrkt79gSdXtkmH-t1bu7znbEYxv2fu1IP-X6uy5e_A9dvGT3JPUvpi0kt8t2VstreIWkapVe1_nzA0kDIkQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXxJtAQUbiBgEnttf2AaEWtaqQgAsr9RbZ8Xi70jaBNJVYbvxzxk6yaGHhmpcmM2PPN7ZnPkJecA3BgSrzGnAKFFaUuQNrcuUdFMyBkzadtvg0O52LD2fybI9MdEejAi93pnaRT2rerV5__7Z-hwP-7VAyrt9cYhCKhWKlyDXGP5mLa-Q6RiYVGQ0-jnB_6PVdGlGYsXZm96tb8Sm18d-FPf8-QvnHPmoKTye3ya0RV9LDwRHukD1o7pIbA9Pk-h75eZzobqJFKGbAsclrYo2gy4YiBKQXqOAV0D5GrnSIi_5oG6AOZ0KEiDQS_EDX0HEtmB7G0kv6uWvR_ZY1PYJVT2MvKIw2nro1XUB7YRdNLJCk8YQI6vo-mZ8cf3l_mo_sC3ktTNnntWHcMFFr8BJzFJwYg2Be25jh1THgFSrYoJ0OTgRgwUonS6VkELMSEATyB2S_QVEfEYoplqxN6bkHIyR-wzlgRvnSB-5ZbTLyctJ59XVoslGlzXGuq8FCFVqoShaqREaOolk2T8YG2elC2y2qcbxVzM6c5CCl9LXwFjS3DkUMlhXomSxk5GAyajU5XcURzGDEVqrIyPPNbRxvcRPFNtBepWc4ZiVMzDLycPCBjSQRTBtlWEb0lndsibp9p1mep57eRaGKiG4z8mpypN9y_VsXj___G0_IzTLyFcclI31A9vvuCp4iiOrdszQyfgEhSRuD priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDeBgozEDSIcP9b2cYtaVXuAA1TqzbLj8bJSm6Bteig3_jljJ7tooRy4Jk408oxnvvG8CHkrDKQAmtctoAqUXvI6gLe1jgEaFiAoX7ItPs1Oz-TiXJ3vEb6phSlJ-6WlZVHTm-ywD1doaHIxGJe1QRunanmHHORW7SjbB_P54stie7OSY1eysVOFDBPmlo93rFBp1n8bwvw7UfKPaGkxQicPyP0JPdL5SO9DsgfdI3J3nCd585j8PC5DbfK-U_RzcyvXMhuCrjqKQI9e4jZeAB2yfSqpWvRH3wENqO8QCNI8xgfWHZ1ufOk8F1jSz-sehWzV0iO4GGju-IQ2JdJwQ5fQX_pll8sgac4DQUl-Qs5Ojr9-PK2nGQt1Ky0f6tYyYZlsDUSFngiqvyRZND77cW02a41OPplgUpAJWPIqKK61SnLGAaGeeEr2OyT1OaHoSKnW8igiWKnwHyEAszrymERkra3Iu82eu-9jKw1XQuDCuJFDDjnkCoecrMhRZst2ZW6DXR7066WbxMIxPwtKgFIqtjJ6MMIHJDF51qD8sVSRww1T3XQ2r5xAyIJ2WeumIm-2r_FU5VCJ76C_LmsE-h5MzirybJSBLSUZMlttWUXMjnTskLr7plt9K527m0Y3GcNW5P1GkH7T9e-9ePF_y1-SezxPKc4XReaQ7A_ra3iF0GkIr6ez8guRLReP priority: 102 providerName: Springer Nature |
Title | Electrical conductivity in the mantle transition zone beneath eastern Central Asian Orogenic Belt revealed by geomagnetic signals |
URI | https://link.springer.com/article/10.1038/s41598-024-85095-4 https://www.ncbi.nlm.nih.gov/pubmed/39779790 https://www.proquest.com/docview/3152801771 https://www.proquest.com/docview/3153882046 https://pubmed.ncbi.nlm.nih.gov/PMC11711232 https://doaj.org/article/0a6b53e555dc4dae83abfa5fa01e720f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9swUGwtg72Mfc9bFzTY22YqW1IkPY0kpJTAurGtkDcjWVIaaO0uSR_at_7z3SlOSvb1YoMkzFl3um_dEfKe6xBdUGVeB2CBwooyd8GaXHkXCuaCkzZlW5z0j0_FZCqnncNt2aVVbnhiYtS-rdFHfshB0AA3Var4dPkzx65RGF3tWmjcJ_tYugypWk3V1seCUSxRmO6uDOP6cAnyCu-UlSLXICplLnbkUSrb_zdd88-Uyd_ipkkcHT0mjzo9kg7WiH9C7oXmKXmw7ix5_YzcjlN7G8QABYsXi7qmLhF03lBQ-egFbOh5oCuUVClpi960TaAOOB-ohBQb-oRFQzvfLx3gVUv6ZdECuc1rOgznK4q1n0C6eOqu6Sy0F3bW4IVIihkhQNPPyenR-MfoOO-6LeS1MOUqrw3jholaBy_BJgFGGAXz2qJFV6OAK1S0UTsdnYiBRSudLJWSUfTLAEoff0H2GgD1FaFgUsnalJ77YISEbzgXmFG-9JF7VpuMfNjseXW5LqpRpWA419UaQxVgqEoYqkRGhoiW7UosiJ0G2sWs6s5XxWzfSR6klL4W3gbNrQMQo2UFUCKLGTnYILXqTumyuqOpjLzbTsP5wqCJbUJ7ldZwsEKY6Gfk5ZoGtpCg8myUYRnRO9SxA-ruTDM_SzW8i0IVqM1m5OOGkO7g-vdevP7_b7whD0vsT4wuIn1A9laLq_AWlKaV66WT0SP7g8Hk-wTew_HJ128wOuqPeskRAc_PQv8C1JseGA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFGdxF47B4RaaLWlpVxaaW_Gju1lpTYpu1uh5cYf4jcy4yRbLa9br0kUTTJvz-Mj5EWhfLBe5mnlwQRyw_PUelOm0lmfMeutMLHb4nAwPOYfRmK0Rn72szDYVtnbxGioXVPhGflmAY4GrKmU2duzrymiRmF1tYfQaMVi3y--Qco2e7P3Hvj7Ms93d47eDdMOVSCteJnP06pkkOfzSnknIPYGhQ-cOWUwc6nQkGcymKCsCpYHz4IRVuRSisAHuYfgpoD3XiFXwfEyTPbkSC7PdLBqxrOym81hhdqcgX_EGbacpwpcs0j5iv-LMAF_i23_bNH8rU4b3d_uLXKzi1vpVitot8mar--Qay2S5eIu-bET4XSQ4xQybFwiG1Ep6KSmEGLSU2Dgiadz9IyxSYx-b2pPLVhaCEEpAgj5aU27s2a6haOd9NO0AfGeVHTbn8wp7poCb-aoXdCxb07NuMYBTIodKKBD98jxpfDhPlmvgdSHhEIKJ6oyd4XzJRfwDms9K6XLXSgcq8qEvOr_uT5rl3joWHwvlG45pIFDOnJI84RsI1uWT-IC7nihmY51p8-amYEVhRdCuIo741VhLJAYDMtA8llIyEbPVN1ZhZm-kOGEPF_eBn3GIo2pfXMenykg62F8kJAHrQwsKcFgvZQlS4hakY4VUlfv1JMvcWd4lskMo-eEvO4F6YKuf_-LR___jGfk-vDo44E-2Dvcf0xu5IiNjMdTaoOsz6fn_gkEbHP7NGoJJZ8vWy1_Ac1_U-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Cytndj-4BQQ1O1FIUKUak3s-vdDZFauySpULjxt_h1zKztVOF169W2rLHnvfP4AJ4nmXXapnFYWjSBQok41FblYWq0jbi2WirfbTEe7B2Jd8fyeAN-drMw1FbZ2URvqE1d0hl5P0FHg9Y0TaO-a9siDnd235x9DQlBiiqtHZxGIyIHdvkN07f56_0d5PWLON4dfXq7F7YIA2Ep8ngRljnHnF-UmTUS43BUfie4yRRlMSUZ9Sh1ymU6c1o4y52SWsZpKp0YxBYDnQTfewU2U8qKerA5HI0PP65OeKiGJqK8ndThSdafo7ekibZYhBk6ahmKNW_oQQP-Fun-2bD5W9XWO8Pdm3CjjWLZdiN2t2DDVrfhaoNrubwDP0YeXIf4zzDfppWyHqOCTSuGASc7RXaeWLYgP-lbxtj3urJMo93FgJQRnJCdVaw9eWbbNOjJPsxqFPZpyYb2ZMFo8xT6NsP0kk1sfaomFY1jMupHQY26C0eXwol70KuQ1AfAMKGTZR6bxNhcSHyH1pbnqYmNSwwv8wBedv-8OGtWehS-FJ9kRcOhAjlUeA4VIoAhsWX1JK3j9hfq2aRotbvgaqBlYqWUphRG2SxRGkl0ikeoB9wFsNUxtWhtxLy4kOgAnq1uo3ZTyUZVtj73zySYA3ExCOB-IwMrSih0z9OcB5CtSccaqet3qukXv0E8itKIYukAXnWCdEHXv__Fw_9_xlO4hipZvN8fHzyC6zEBJdNZVbYFvcXs3D7G6G2hn7RqwuDzZWvmL2mCWYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+conductivity+in+the+mantle+transition+zone+beneath+eastern+Central+Asian+Orogenic+Belt+revealed+by+geomagnetic+signals&rft.jtitle=Scientific+reports&rft.date=2025-01-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1299&rft_id=info:doi/10.1038%2Fs41598-024-85095-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |