Electrical conductivity in the mantle transition zone beneath eastern Central Asian Orogenic Belt revealed by geomagnetic signals

In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upwa...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 1299 - 13
Main Authors Zhang, Yanhui, Hu, Yujia, Ma, Mina, Zhang, Yuyan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C -response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L 1 -norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.
AbstractList Abstract In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L 1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L -norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C -response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L 1 -norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity. This paper intends to obtain the deep structure beneath the eastern CAOB based on the geomagnetic depth sounding (GDS) method. First, the data of geomagnetic observatories in the study region are collected and processed, and the C-response curves are obtained by the bounded influence remote reference processing method (BIRRP). Then, the staggered grid finite difference method is used for forward modeling, and the finite memory quasi-Newton method based on L1-norm is used for three-dimensional (3-D) inversion. After that, 3-D inversion is carried out in spherical coordinates. Finally, the electrical conductivity model is obtained. The inversion model shows that there are two high conductivity anomalies in the MTZ beneath the Mongol-Okhotsk suture. Combined with the geological background of the structural domain, and constrained by the spatiotemporal variations in magmatism, we speculate that the high conductivity anomaly bodies are the stagnant oceanic crust material of the Okhotsk Ocean or the delaminated island arc accretionary wedge. The sinking slab or the detached lithosphere residual descending into the lower MTZ causes the upwelling of hot mantle material, forming widely distributed volcanic rocks on both sides of the Mongol-Okhotsk suture.
ArticleNumber 1299
Author Zhang, Yuyan
Zhang, Yanhui
Ma, Mina
Hu, Yujia
Author_xml – sequence: 1
  givenname: Yanhui
  surname: Zhang
  fullname: Zhang, Yanhui
  email: global_em@163.com
  organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University
– sequence: 2
  givenname: Yujia
  surname: Hu
  fullname: Hu, Yujia
  organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University
– sequence: 3
  givenname: Mina
  surname: Ma
  fullname: Ma, Mina
  organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University
– sequence: 4
  givenname: Yuyan
  surname: Zhang
  fullname: Zhang, Yuyan
  organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Collaborative Innovation Center for Performance and Security of Large-scale Infrastructure, Shijiazhuang Tiedao University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39779790$$D View this record in MEDLINE/PubMed
BookMark eNp9kj1vFDEQhlcoiHyQP0CBLNHQLPjz7K1QOIUQKVIaqC2vd7zn054dbN9JR8c_x5cNIaHAzVieZ16_Y89pcxRigKZ5Q_AHgpn6mDkRnWox5a0SuBMtf9GcUMxFSxmlR0_2x815zmtcl6AdJ92r5ph1UnaywyfNr8sJbEnemgnZGIatLX7nyx75gMoK0MaEMgEqyYTsi48B_aw-UA8BTFkhMLlACmgJoSITusjeBHSb4gjBW_QZpoIS7MBMMKB-j0aIGzMGKDWZ_RjMlF83L10NcP4Qz5rvXy6_Lb-2N7dX18uLm9byjpbWdph1mFsFg-BUCaYcx4MyinTEUkIZkc441SvXcwfYGdELKqVwfEFBSMHOmutZd4hmre-S35i019F4fX8Q06hNqr4m0NgsesFACDFYPhhQzPRV0BlMQFLsqtanWetu229gsHP3z0SfZ4Jf6THuNCGSVK-0Krx_UEjxxxZy0RufLUyTCRC3WTNSO1T1DxcVffcPuo7bdHi6A0UVJlKSSr19aunRy5-vrgCdAZtizgncI0KwPoyUnkdK15HS9yOleS1ic1GucBgh_b37P1W_AdxWz_c
Cites_doi 10.1029/2018TC005170
10.1093/gji/ggt095
10.1029/2020GC009016
10.1190/1.2816650
10.1144/0016-764903-146
10.1002/2014JB011078
10.1016/j.jseaes.2013.04.003
10.1007/s11430-018-9429-3
10.1016/j.chemgeo.2010.05.013
10.1016/j.earscirev.2019.03.003
10.1016/j.jseaes.2010.04.035
10.1016/B978-0-12-490920-5.50014-4
10.1029/2011TC002896
10.1016/j.epsl.2016.03.042
10.1007/s11430-017-9174-1
10.1038/s41598-024-78193-w
10.1029/2007TC002175
10.1080/00206814.2013.804664
10.18654/1000-0569/2022.12.04
10.1016/S0040-1951(99)00042-6
10.1016/S0040-1951(01)00271-2
10.1111/j.1365-246X.2004.02203.x
10.1038/s41598-019-52181-x
10.1016/j.lithos.2015.01.012
10.1016/j.gr.2014.09.010
10.1190/1.3114023
10.1046/j.1365-246X.1999.00743.x
10.1111/j.1365-246X.1969.tb00252.x
10.1029/2005JB004066
10.1046/j.1365-246X.2000.00051.x
10.1038/nature03426
10.1016/j.pepi.2017.11.003
10.1029/98JB02467
10.1016/0040-1951(86)90067-3
10.1016/0040-1951(90)90005-S
10.1016/j.lithos.2019.03.016
10.1038/s41598-019-43103-y
10.1093/gji/ggaa059
10.1016/j.gr.2010.03.011
10.1111/j.1365-246X.2008.03717.x
10.1016/j.tecto.2020.228559
10.1029/2022JB024905
10.1016/j.pepi.2008.11.009
10.1016/j.pepi.2022.106955
10.1016/j.gr.2014.08.010
10.1029/1999RG000068
10.1016/S0040-1951(03)00195-1
10.1038/nature08257
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-85095-4
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_0a6b53e555dc4dae83abfa5fa01e720f
PMC11711232
39779790
10_1038_s41598_024_85095_4
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42104079
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 42104079
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-c903904c8ed5428538f40d8a8191c212317faf8b8fb4fe0fa5b52775f462e5753
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:26:19 EDT 2025
Thu Aug 21 18:28:46 EDT 2025
Fri Jul 11 03:44:21 EDT 2025
Wed Aug 13 07:01:22 EDT 2025
Thu Apr 03 06:59:06 EDT 2025
Tue Jul 01 02:06:42 EDT 2025
Fri Feb 21 02:34:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mongol-Okhotsk suture
Electrical conductivity structure
Geomagnetic
Three-dimensional inversion
Subduction
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-c903904c8ed5428538f40d8a8191c212317faf8b8fb4fe0fa5b52775f462e5753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3152801771?pq-origsite=%requestingapplication%
PMID 39779790
PQID 3152801771
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0a6b53e555dc4dae83abfa5fa01e720f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11711232
proquest_miscellaneous_3153882046
proquest_journals_3152801771
pubmed_primary_39779790
crossref_primary_10_1038_s41598_024_85095_4
springer_journals_10_1038_s41598_024_85095_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-08
PublicationDateYYYYMMDD 2025-01-08
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JY Ren (85095_CR1) 2002; 344
M Maruyama (85095_CR43) 1986; 127
85095_CR23
85095_CR28
G Kimura (85095_CR44) 1990; 181
W Wang (85095_CR6) 2015; 218–219
W Xu (85095_CR14) 2019; 44
T Wang (85095_CR4) 2022; 5
AJ Schaeffer (85095_CR13) 2013; 194
R Ge (85095_CR9) 2009; 33
AH Weng (85095_CR31) 2015; 58
J He (85095_CR38) 2020; 63
U Schmucker (85095_CR26) 1999; 136
W Xu (85095_CR8) 2013; 29
FD Munch (85095_CR20) 2017; 123
85095_CR37
F Yang (85095_CR19) 2021; 64
D Zhao (85095_CR40) 2009; 173
85095_CR35
YA Zorin (85095_CR15) 1999; 306
EH Fritzell (85095_CR54) 2016; 445
85095_CR39
A Kelbert (85095_CR21) 2008; 173
GE Shephard (85095_CR55) 2014; 119
RJ Banks (85095_CR24) 1969; 17
J Huang (85095_CR12) 2006; 111
J Tang (85095_CR3) 2018; 61
Y Fukao (85095_CR10) 2001; 39
H Bijwaard (85095_CR11) 1998; 103
GC Farquharson (85095_CR29) 2008; 73
S Li (85095_CR5) 2019; 192
M Uyeshima (85095_CR32) 2000; 140
VV Yarmolyuk (85095_CR45) 2001
WL Xu (85095_CR17) 2013; 74
O Tomurtogoo (85095_CR47) 2005; 162
Y Zhang (85095_CR22) 2020; 221
M Sun (85095_CR18) 2018; 37
A Kelbert (85095_CR33) 2009; 460
T Wang (85095_CR7) 2011; 30
HG Ouyang (85095_CR42) 2015; 27
AD Chave (85095_CR27) 2004; 157
JF Ying (85095_CR46) 2010; 39
JH Zhang (85095_CR16) 2010; 276
85095_CR52
85095_CR53
D Sun (85095_CR48) 2013; 55
85095_CR57
J Ma (85095_CR36) 2018; 274
YT Yang (85095_CR49) 2015; 28
X Huang (85095_CR50) 2005; 434
QK Xia (85095_CR51) 2022; 38
Q Meng (85095_CR2) 2003; 369
N Espurt (85095_CR56) 2008; 27
A Semenov (85095_CR25) 2012; 191
D Avdeev (85095_CR30) 2009; 74
FQ Zhang (85095_CR41) 2011; 19
Y Zhang (85095_CR34) 2022; 333
References_xml – volume: 5
  start-page: 167
  year: 2022
  ident: 85095_CR4
  publication-title: Natl. Sci. Rev.
– volume: 37
  start-page: 3893
  year: 2018
  ident: 85095_CR18
  publication-title: Tectonics
  doi: 10.1029/2018TC005170
– start-page: 203
  volume-title: Tectonics, Magmatism, and Metallogeny of Mongolia
  year: 2001
  ident: 85095_CR45
– volume: 194
  start-page: 417
  issue: 1
  year: 2013
  ident: 85095_CR13
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt095
– ident: 85095_CR23
  doi: 10.1029/2020GC009016
– volume: 73
  start-page: K1
  issue: 1
  year: 2008
  ident: 85095_CR29
  publication-title: Geophysics
  doi: 10.1190/1.2816650
– volume: 162
  start-page: 125
  year: 2005
  ident: 85095_CR47
  publication-title: J. Geol. Soc. Lond.
  doi: 10.1144/0016-764903-146
– volume: 119
  start-page: 7889
  year: 2014
  ident: 85095_CR55
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2014JB011078
– volume: 191
  start-page: 965
  issue: 3
  year: 2012
  ident: 85095_CR25
  publication-title: Geophys. J. Int.
– volume: 74
  start-page: 167
  year: 2013
  ident: 85095_CR17
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2013.04.003
– volume: 63
  start-page: 548
  year: 2020
  ident: 85095_CR38
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-018-9429-3
– volume: 276
  start-page: 144
  issue: 3–4
  year: 2010
  ident: 85095_CR16
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2010.05.013
– volume: 192
  start-page: 91
  year: 2019
  ident: 85095_CR5
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.03.003
– volume: 39
  start-page: 786
  year: 2010
  ident: 85095_CR46
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2010.04.035
– ident: 85095_CR28
  doi: 10.1016/B978-0-12-490920-5.50014-4
– volume: 30
  start-page: TC6007
  year: 2011
  ident: 85095_CR7
  publication-title: Tectonics
  doi: 10.1029/2011TC002896
– volume: 445
  start-page: 1
  year: 2016
  ident: 85095_CR54
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2016.03.042
– volume: 61
  start-page: 527
  issue: 5
  year: 2018
  ident: 85095_CR3
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-017-9174-1
– volume: 29
  start-page: 339
  issue: 2
  year: 2013
  ident: 85095_CR8
  publication-title: Acta Petrologica Sinica
– volume: 58
  start-page: 697
  issue: 2
  year: 2015
  ident: 85095_CR31
  publication-title: Chin. J. Geophys.
– ident: 85095_CR52
  doi: 10.1038/s41598-024-78193-w
– volume: 27
  start-page: TC3011
  year: 2008
  ident: 85095_CR56
  publication-title: Tectonics
  doi: 10.1029/2007TC002175
– volume: 55
  start-page: 1801
  issue: 14
  year: 2013
  ident: 85095_CR48
  publication-title: Int. Geol. Rev.
  doi: 10.1080/00206814.2013.804664
– volume: 38
  start-page: 3631
  issue: 12
  year: 2022
  ident: 85095_CR51
  publication-title: Acta Petrologica Sinica
  doi: 10.18654/1000-0569/2022.12.04
– volume: 33
  start-page: 346
  issue: 4
  year: 2009
  ident: 85095_CR9
  publication-title: J. Geol.
– volume: 306
  start-page: 33
  issue: 1
  year: 1999
  ident: 85095_CR15
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(99)00042-6
– volume: 344
  start-page: 175
  year: 2002
  ident: 85095_CR1
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(01)00271-2
– volume: 157
  start-page: 988
  issue: 3
  year: 2004
  ident: 85095_CR27
  publication-title: Geophys. J. Roy. Astron. Soc.
  doi: 10.1111/j.1365-246X.2004.02203.x
– ident: 85095_CR57
  doi: 10.1038/s41598-019-52181-x
– volume: 218–219
  start-page: 73
  year: 2015
  ident: 85095_CR6
  publication-title: Lithos
  doi: 10.1016/j.lithos.2015.01.012
– volume: 28
  start-page: 1096
  year: 2015
  ident: 85095_CR49
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2014.09.010
– volume: 74
  start-page: F45
  issue: 3
  year: 2009
  ident: 85095_CR30
  publication-title: Geophysics
  doi: 10.1190/1.3114023
– volume: 136
  start-page: 455
  year: 1999
  ident: 85095_CR26
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.1999.00743.x
– volume: 17
  start-page: 457
  issue: 5
  year: 1969
  ident: 85095_CR24
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1969.tb00252.x
– volume: 111
  start-page: B09305
  issue: B9
  year: 2006
  ident: 85095_CR12
  publication-title: J. Phys. Res.
  doi: 10.1029/2005JB004066
– volume: 140
  start-page: 636
  issue: 3
  year: 2000
  ident: 85095_CR32
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2000.00051.x
– volume: 434
  start-page: 746
  issue: 7034
  year: 2005
  ident: 85095_CR50
  publication-title: Nature
  doi: 10.1038/nature03426
– volume: 274
  start-page: 105
  year: 2018
  ident: 85095_CR36
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2017.11.003
– volume: 44
  start-page: 1620
  issue: 5
  year: 2019
  ident: 85095_CR14
  publication-title: Earth Sci.
– volume: 103
  start-page: B12
  year: 1998
  ident: 85095_CR11
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/98JB02467
– volume: 123
  start-page: 31
  year: 2017
  ident: 85095_CR20
  publication-title: J. Phys. Res.
– volume: 127
  start-page: 305
  issue: 3–4
  year: 1986
  ident: 85095_CR43
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(86)90067-3
– volume: 181
  start-page: 15
  issue: 1–4
  year: 1990
  ident: 85095_CR44
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(90)90005-S
– ident: 85095_CR35
  doi: 10.1016/j.lithos.2019.03.016
– volume: 64
  start-page: 4406
  issue: 12
  year: 2021
  ident: 85095_CR19
  publication-title: Chin. J. Geophys.
– ident: 85095_CR53
  doi: 10.1038/s41598-019-43103-y
– volume: 221
  start-page: 1110
  issue: 2
  year: 2020
  ident: 85095_CR22
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa059
– volume: 19
  start-page: 163
  year: 2011
  ident: 85095_CR41
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2010.03.011
– volume: 173
  start-page: 365
  issue: 2
  year: 2008
  ident: 85095_CR21
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.03717.x
– ident: 85095_CR37
  doi: 10.1016/j.tecto.2020.228559
– ident: 85095_CR39
  doi: 10.1029/2022JB024905
– volume: 173
  start-page: 197
  issue: 3
  year: 2009
  ident: 85095_CR40
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2008.11.009
– volume: 333
  start-page: 106955
  year: 2022
  ident: 85095_CR34
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2022.106955
– volume: 27
  start-page: 1153
  year: 2015
  ident: 85095_CR42
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2014.08.010
– volume: 39
  start-page: 291
  issue: 3
  year: 2001
  ident: 85095_CR10
  publication-title: Rev. Geophys.
  doi: 10.1029/1999RG000068
– volume: 369
  start-page: 155
  issue: 3–4
  year: 2003
  ident: 85095_CR2
  publication-title: Tract? Tectonophysics
  doi: 10.1016/S0040-1951(03)00195-1
– volume: 460
  start-page: 1003
  year: 2009
  ident: 85095_CR33
  publication-title: Nature
  doi: 10.1038/nature08257
SSID ssj0000529419
Score 2.4374979
Snippet In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy...
Abstract In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1299
SubjectTerms 704/2151
704/2151/214
704/2151/2809
Electrical conductivity
Electrical conductivity structure
Finite difference method
Geomagnetic
Humanities and Social Sciences
Island arcs
Lithosphere
Mongol-Okhotsk suture
multidisciplinary
Observatories
Oceanic crust
Science
Science (multidisciplinary)
Software
Subduction
Three-dimensional inversion
Transition zone
Upwelling
Volcanic rocks
Volcanoes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaI6fqztY4taVRzgQqXeLDsel5XabLXdHsqNf86Mk126PMSFaxwlo5mxv2_s8Qxjb5WDksDKtgdcAnXUsk0QfWtzgk4kSCbWbItPs-MT_fHUnN5q9UU5YWN54FFxeyLOklFgjMm9zhGciqlEU6Lo8Bei0OqLmHcrmBqrekuvOz_dkhHK7V0hUtFtMqlbhyBpWr2FRLVg_59Y5u_Jkr-cmFYgOnrA7k8Mku-Pkj9kd2B4xO6OPSVvHrPvh7WxDemeY6xL5Vxrfwg-HziSPX6BqjwHviKMqula_NtiAJ5wzUMyyKmVDywHPu368n26ZMk_LxfoaPOeH8D5ilPVJ8SVzNMNP4PFRTwb6Cokp1wQ9OYn7OTo8MuH43bqs9D22stV23uhvNC9g2wwGsElsGiRXaRYrido62yJxSVXki4gUPvJSGtN0TMJSPfUU7YzoKjPGcdgyvReZpXBa4PfSAmEt1nmorLofcPerXUeLsdyGqEegysXRgsFtFCoFgq6YQdkls2bVAq7PkAHCZODhH85SMN210YN0_y8CgppC2KztV3D3myGcWbRcUkcYHFd31EYfwg9a9iz0Qc2khBt9taLhrkt79gSdXtkmH-t1bu7znbEYxv2fu1IP-X6uy5e_A9dvGT3JPUvpi0kt8t2VstreIWkapVe1_nzA0kDIkQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXxJtAQUbiBgEnttf2AaEWtaqQgAsr9RbZ8Xi70jaBNJVYbvxzxk6yaGHhmpcmM2PPN7ZnPkJecA3BgSrzGnAKFFaUuQNrcuUdFMyBkzadtvg0O52LD2fybI9MdEejAi93pnaRT2rerV5__7Z-hwP-7VAyrt9cYhCKhWKlyDXGP5mLa-Q6RiYVGQ0-jnB_6PVdGlGYsXZm96tb8Sm18d-FPf8-QvnHPmoKTye3ya0RV9LDwRHukD1o7pIbA9Pk-h75eZzobqJFKGbAsclrYo2gy4YiBKQXqOAV0D5GrnSIi_5oG6AOZ0KEiDQS_EDX0HEtmB7G0kv6uWvR_ZY1PYJVT2MvKIw2nro1XUB7YRdNLJCk8YQI6vo-mZ8cf3l_mo_sC3ktTNnntWHcMFFr8BJzFJwYg2Be25jh1THgFSrYoJ0OTgRgwUonS6VkELMSEATyB2S_QVEfEYoplqxN6bkHIyR-wzlgRvnSB-5ZbTLyctJ59XVoslGlzXGuq8FCFVqoShaqREaOolk2T8YG2elC2y2qcbxVzM6c5CCl9LXwFjS3DkUMlhXomSxk5GAyajU5XcURzGDEVqrIyPPNbRxvcRPFNtBepWc4ZiVMzDLycPCBjSQRTBtlWEb0lndsibp9p1mep57eRaGKiG4z8mpypN9y_VsXj___G0_IzTLyFcclI31A9vvuCp4iiOrdszQyfgEhSRuD
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDeBgozEDSIcP9b2cYtaVXuAA1TqzbLj8bJSm6Bteig3_jljJ7tooRy4Jk408oxnvvG8CHkrDKQAmtctoAqUXvI6gLe1jgEaFiAoX7ItPs1Oz-TiXJ3vEb6phSlJ-6WlZVHTm-ywD1doaHIxGJe1QRunanmHHORW7SjbB_P54stie7OSY1eysVOFDBPmlo93rFBp1n8bwvw7UfKPaGkxQicPyP0JPdL5SO9DsgfdI3J3nCd585j8PC5DbfK-U_RzcyvXMhuCrjqKQI9e4jZeAB2yfSqpWvRH3wENqO8QCNI8xgfWHZ1ufOk8F1jSz-sehWzV0iO4GGju-IQ2JdJwQ5fQX_pll8sgac4DQUl-Qs5Ojr9-PK2nGQt1Ky0f6tYyYZlsDUSFngiqvyRZND77cW02a41OPplgUpAJWPIqKK61SnLGAaGeeEr2OyT1OaHoSKnW8igiWKnwHyEAszrymERkra3Iu82eu-9jKw1XQuDCuJFDDjnkCoecrMhRZst2ZW6DXR7066WbxMIxPwtKgFIqtjJ6MMIHJDF51qD8sVSRww1T3XQ2r5xAyIJ2WeumIm-2r_FU5VCJ76C_LmsE-h5MzirybJSBLSUZMlttWUXMjnTskLr7plt9K527m0Y3GcNW5P1GkH7T9e-9ePF_y1-SezxPKc4XReaQ7A_ra3iF0GkIr6ez8guRLReP
  priority: 102
  providerName: Springer Nature
Title Electrical conductivity in the mantle transition zone beneath eastern Central Asian Orogenic Belt revealed by geomagnetic signals
URI https://link.springer.com/article/10.1038/s41598-024-85095-4
https://www.ncbi.nlm.nih.gov/pubmed/39779790
https://www.proquest.com/docview/3152801771
https://www.proquest.com/docview/3153882046
https://pubmed.ncbi.nlm.nih.gov/PMC11711232
https://doaj.org/article/0a6b53e555dc4dae83abfa5fa01e720f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9swUGwtg72Mfc9bFzTY22YqW1IkPY0kpJTAurGtkDcjWVIaaO0uSR_at_7z3SlOSvb1YoMkzFl3um_dEfKe6xBdUGVeB2CBwooyd8GaXHkXCuaCkzZlW5z0j0_FZCqnncNt2aVVbnhiYtS-rdFHfshB0AA3Var4dPkzx65RGF3tWmjcJ_tYugypWk3V1seCUSxRmO6uDOP6cAnyCu-UlSLXICplLnbkUSrb_zdd88-Uyd_ipkkcHT0mjzo9kg7WiH9C7oXmKXmw7ix5_YzcjlN7G8QABYsXi7qmLhF03lBQ-egFbOh5oCuUVClpi960TaAOOB-ohBQb-oRFQzvfLx3gVUv6ZdECuc1rOgznK4q1n0C6eOqu6Sy0F3bW4IVIihkhQNPPyenR-MfoOO-6LeS1MOUqrw3jholaBy_BJgFGGAXz2qJFV6OAK1S0UTsdnYiBRSudLJWSUfTLAEoff0H2GgD1FaFgUsnalJ77YISEbzgXmFG-9JF7VpuMfNjseXW5LqpRpWA419UaQxVgqEoYqkRGhoiW7UosiJ0G2sWs6s5XxWzfSR6klL4W3gbNrQMQo2UFUCKLGTnYILXqTumyuqOpjLzbTsP5wqCJbUJ7ldZwsEKY6Gfk5ZoGtpCg8myUYRnRO9SxA-ruTDM_SzW8i0IVqM1m5OOGkO7g-vdevP7_b7whD0vsT4wuIn1A9laLq_AWlKaV66WT0SP7g8Hk-wTew_HJ128wOuqPeskRAc_PQv8C1JseGA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFGdxF47B4RaaLWlpVxaaW_Gju1lpTYpu1uh5cYf4jcy4yRbLa9br0kUTTJvz-Mj5EWhfLBe5mnlwQRyw_PUelOm0lmfMeutMLHb4nAwPOYfRmK0Rn72szDYVtnbxGioXVPhGflmAY4GrKmU2duzrymiRmF1tYfQaMVi3y--Qco2e7P3Hvj7Ms93d47eDdMOVSCteJnP06pkkOfzSnknIPYGhQ-cOWUwc6nQkGcymKCsCpYHz4IRVuRSisAHuYfgpoD3XiFXwfEyTPbkSC7PdLBqxrOym81hhdqcgX_EGbacpwpcs0j5iv-LMAF_i23_bNH8rU4b3d_uLXKzi1vpVitot8mar--Qay2S5eIu-bET4XSQ4xQybFwiG1Ep6KSmEGLSU2Dgiadz9IyxSYx-b2pPLVhaCEEpAgj5aU27s2a6haOd9NO0AfGeVHTbn8wp7poCb-aoXdCxb07NuMYBTIodKKBD98jxpfDhPlmvgdSHhEIKJ6oyd4XzJRfwDms9K6XLXSgcq8qEvOr_uT5rl3joWHwvlG45pIFDOnJI84RsI1uWT-IC7nihmY51p8-amYEVhRdCuIo741VhLJAYDMtA8llIyEbPVN1ZhZm-kOGEPF_eBn3GIo2pfXMenykg62F8kJAHrQwsKcFgvZQlS4hakY4VUlfv1JMvcWd4lskMo-eEvO4F6YKuf_-LR___jGfk-vDo44E-2Dvcf0xu5IiNjMdTaoOsz6fn_gkEbHP7NGoJJZ8vWy1_Ac1_U-0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Cytndj-4BQQ1O1FIUKUak3s-vdDZFauySpULjxt_h1zKztVOF169W2rLHnvfP4AJ4nmXXapnFYWjSBQok41FblYWq0jbi2WirfbTEe7B2Jd8fyeAN-drMw1FbZ2URvqE1d0hl5P0FHg9Y0TaO-a9siDnd235x9DQlBiiqtHZxGIyIHdvkN07f56_0d5PWLON4dfXq7F7YIA2Ep8ngRljnHnF-UmTUS43BUfie4yRRlMSUZ9Sh1ymU6c1o4y52SWsZpKp0YxBYDnQTfewU2U8qKerA5HI0PP65OeKiGJqK8ndThSdafo7ekibZYhBk6ahmKNW_oQQP-Fun-2bD5W9XWO8Pdm3CjjWLZdiN2t2DDVrfhaoNrubwDP0YeXIf4zzDfppWyHqOCTSuGASc7RXaeWLYgP-lbxtj3urJMo93FgJQRnJCdVaw9eWbbNOjJPsxqFPZpyYb2ZMFo8xT6NsP0kk1sfaomFY1jMupHQY26C0eXwol70KuQ1AfAMKGTZR6bxNhcSHyH1pbnqYmNSwwv8wBedv-8OGtWehS-FJ9kRcOhAjlUeA4VIoAhsWX1JK3j9hfq2aRotbvgaqBlYqWUphRG2SxRGkl0ikeoB9wFsNUxtWhtxLy4kOgAnq1uo3ZTyUZVtj73zySYA3ExCOB-IwMrSih0z9OcB5CtSccaqet3qukXv0E8itKIYukAXnWCdEHXv__Fw_9_xlO4hipZvN8fHzyC6zEBJdNZVbYFvcXs3D7G6G2hn7RqwuDzZWvmL2mCWYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+conductivity+in+the+mantle+transition+zone+beneath+eastern+Central+Asian+Orogenic+Belt+revealed+by+geomagnetic+signals&rft.jtitle=Scientific+reports&rft.date=2025-01-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1299&rft_id=info:doi/10.1038%2Fs41598-024-85095-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon