Data-driven simulations for training AI-based segmentation of neutron images
Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured im...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; p. 6614 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs
→
Validate PDFs
→
Design Image Masks
→
Generate Intensities
→
Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks. |
---|---|
AbstractList | Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs
→
Validate PDFs
→
Design Image Masks
→
Generate Intensities
→
Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks. Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs Validate PDFs Design Image Masks Generate Intensities Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks. Abstract Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs $$\,\rightarrow \,$$ → Validate PDFs $$\,\rightarrow \,$$ → Design Image Masks $$\,\rightarrow \,$$ → Generate Intensities $$\,\rightarrow \,$$ → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks. Abstract Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs $$\,\rightarrow \,$$ → Validate PDFs $$\,\rightarrow \,$$ → Design Image Masks $$\,\rightarrow \,$$ → Generate Intensities $$\,\rightarrow \,$$ → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks. Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Validate PDFs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Design Image Masks \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Generate Intensities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks. Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs → Validate PDFs → Design Image Masks → Generate Intensities → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks. |
ArticleNumber | 6614 |
Author | Klimov, Nikolai N. Daugherty, M. Cyrus Hussey, Daniel S. Huber, Michael G. Murphy, Ryan P. Sathe, Pushkar S. Kienzle, Paul A. LaManna, Jacob M. Robinson, Sarah M. Wolf, Caitlyn M. Bajcsy, Peter Jacobson, David L. Weigandt, Katie M. Kim, Youngju |
Author_xml | – sequence: 1 givenname: Pushkar S. surname: Sathe fullname: Sathe, Pushkar S. organization: Information Technology Laboratory, NIST – sequence: 2 givenname: Caitlyn M. surname: Wolf fullname: Wolf, Caitlyn M. organization: NIST Center for Neutron Research – sequence: 3 givenname: Youngju surname: Kim fullname: Kim, Youngju organization: Physical Measurement Laboratory, Department of Chemistry and Biochemistry, University of Maryland – sequence: 4 givenname: Sarah M. surname: Robinson fullname: Robinson, Sarah M. organization: Physical Measurement Laboratory – sequence: 5 givenname: M. Cyrus surname: Daugherty fullname: Daugherty, M. Cyrus organization: Physical Measurement Laboratory – sequence: 6 givenname: Ryan P. surname: Murphy fullname: Murphy, Ryan P. organization: NIST Center for Neutron Research – sequence: 7 givenname: Jacob M. surname: LaManna fullname: LaManna, Jacob M. organization: Physical Measurement Laboratory – sequence: 8 givenname: Michael G. surname: Huber fullname: Huber, Michael G. organization: Physical Measurement Laboratory – sequence: 9 givenname: David L. surname: Jacobson fullname: Jacobson, David L. organization: Physical Measurement Laboratory – sequence: 10 givenname: Paul A. surname: Kienzle fullname: Kienzle, Paul A. organization: NIST Center for Neutron Research – sequence: 11 givenname: Katie M. surname: Weigandt fullname: Weigandt, Katie M. organization: NIST Center for Neutron Research – sequence: 12 givenname: Nikolai N. surname: Klimov fullname: Klimov, Nikolai N. organization: Physical Measurement Laboratory – sequence: 13 givenname: Daniel S. surname: Hussey fullname: Hussey, Daniel S. organization: Physical Measurement Laboratory – sequence: 14 givenname: Peter surname: Bajcsy fullname: Bajcsy, Peter email: peter.bajcsy@nist.gov organization: Information Technology Laboratory, NIST |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38503854$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEUhompsbX2D7gwk7hxM8rnDKxMU79uchM3uiYMHEZuZqDCTBP_vfROra0L2XACDw8c3ufoJKYICL0k-C3BTL4rnAglW0x5KzqOVcueoDOKuWgpo_TkQX2KLko54DoEVZyoZ-iUSVEdgp-h_QezmNblcAOxKWFeJ7OEFEvjU26WbEIMcWwud-1gCrimwDhDXI5Mk3wTYV1yLcNsRigv0FNvpgIXd_M5-v7p47erL-3-6-fd1eW-tVzRpbXCe-4d7kANzHaYdJS7nsteCsXtMHhKyGAwx1aAwYMfnLLQ4144BoQaw87RbvO6ZA76Otfb8y-dTNDHhZRHbfIS7ASacDlIAMEwI5wRWl29I6rDvWFYEFVd7zfX9TrM4GztLpvpkfTxTgw_9JhuNMFKECp5Nby5M-T0c4Wy6DkUC9NkIqS1aKp62mOuOlbR1_-gh7TmWP-qUp3spOKUVIpulM2plAz-_jUE69vw9Ra-ruHrY_j6Vv3qYR_3R_5EXQG2AaVuxRHy37v_o_0NUWu7XQ |
Cites_doi | 10.1038/s41467-019-13943-3 10.1063/1.2975848 10.1146/annurev.bb.12.060183.001035 10.1016/j.matdes.2017.12.001 10.1103/PhysRevA.95.043637 10.1613/jair.953 10.1007/s11263-018-1108-0 10.2307/2332539 10.3390/jimaging4010022 10.1109/JBHI.2020.3032060 10.1107/S0021889808026770 10.1038/nmeth.2019 10.1109/TPAMI.2017.2699184 10.1016/j.matdes.2020.109009 10.1016/S1369-7021(11)70139-0 10.2307/1932409 10.3390/app12031281 10.3390/info11020125 10.1088/1742-6596/2605/1/012015 10.1063/5.0045841 10.1016/j.coelec.2017.07.012 10.1109/TGRS.2018.2815613 10.1038/srep38307 10.2138/gselements.17.3.189 10.1186/s40537-019-0197-0 10.1016/j.phpro.2015.07.015 10.1016/j.artint.2015.12.003 10.1515/HF.2009.100 10.1038/s41598-017-13457-2 10.1038/s41598-019-55558-0 10.3390/app12020833 10.1149/2.1011902jes 10.1016/j.coal.2019.103325 10.1371/journal.pone.0078276 10.1073/pnas.2104906119 10.1016/j.inffus.2020.01.007 10.1038/s43586-021-00064-9 10.1214/aoms/1177730491 10.1016/j.cosrev.2023.100553 10.1109/CVPRW.2019.00145 10.1145/3338906.3338942 10.1109/CVPR.2009.5206848 10.1109/IROS.2017.8202133 10.1109/CVPR42600.2020.00271 10.1007/978-3-031-25069-9_30 10.1117/12.2305660 10.1109/ICRA.2019.8794443 10.1007/978-3-319-10602-1_48 |
ContentType | Journal Article |
Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 – notice: 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-56409-3 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 6614 |
ExternalDocumentID | oai_doaj_org_article_148b8ee530314312bd97d19607a30519 10_1038_s41598_024_56409_3 38503854 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of Standards and Technology funderid: http://dx.doi.org/10.13039/100000161 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. M48 PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c492t-c5ff4fd06e9b3c601624d74878594cbbf211ba040c5ea0bfbd9ce7075d3e12aa3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:16:42 EDT 2024 Tue Sep 17 21:29:07 EDT 2024 Sat Oct 26 05:57:57 EDT 2024 Sat Oct 26 13:22:45 EDT 2024 Fri Aug 23 03:15:18 EDT 2024 Sat Nov 02 11:59:13 EDT 2024 Fri Oct 11 20:55:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Data-driven simulation Semantic segmentation Neutron imaging INFER |
Language | English |
License | 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-c5ff4fd06e9b3c601624d74878594cbbf211ba040c5ea0bfbd9ce7075d3e12aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951284/ |
PMID | 38503854 |
PQID | 2968689421 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_148b8ee530314312bd97d19607a30519 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10951284 proquest_miscellaneous_2972704963 proquest_journals_2968689421 crossref_primary_10_1038_s41598_024_56409_3 pubmed_primary_38503854 springer_journals_10_1038_s41598_024_56409_3 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-19 |
PublicationDateYYYYMMDD | 2024-03-19 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Davis, Marcus (CR32) 2016; 233 Schindelin (CR50) 2012; 9 Iglesias, Talavera, Díaz-Álvarez (CR26) 2023; 48 Shorten, Khoshgoftaar (CR24) 2019; 6 Kim (CR48) 2023; 2605 CR36 Paszke (CR51) 2019; 32 CR35 Buslaev (CR25) 2020; 11 CR31 Bacak (CR10) 2020; 195 Boillat, Lehmann, Trtik, Cochet (CR16) 2017; 5 Johnson (CR49) 1949; 36 Siegwart (CR17) 2019; 166 Pushin (CR6) 2017; 95 Wen, Miao, Bennett, Adamo, Chen (CR22) 2013; 8 Dice (CR52) 1945; 26 Hotz (CR33) 2022; 119 Andersson, Van Heijkamp, De Schepper, Bouwman (CR29) 2008; 41 CR5 CR7 CR45 CR44 CR43 CR42 Santodonato (CR47) 2015; 69 CR41 Imani, Ghassemian (CR38) 2020; 59 Strobl (CR8) 2019; 9 Gaidon, Lopez, Perronnin (CR40) 2018; 126 Mann, Whitney (CR53) 1947; 18 Grünzweig (CR13) 2008; 93 Vivas, Yanes, Michels (CR30) 2017; 7 Ziesche (CR14) 2020; 11 Zaccai, Jacrot (CR2) 1983; 12 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR39) 2017; 40 Rauscher (CR12) 2016; 6 Schillinger (CR19) 2018; 4 Artioli, Hussey (CR20) 2021; 17 Mannes, Sonderegger, Hering, Lehmann, Niemz (CR18) 2009; 63 Stacke, Eilertsen, Unger, Lundstrom (CR46) 2021; 25 Jeffries (CR3) 2021; 1 Xu (CR4) 2020; 217 Kim (CR21) 2022; 12 Wei, Hore (CR9) 2021; 129 Chawla, Bowyer, Hall, Kegelmeyer (CR34) 2002; 16 Brooks (CR11) 2018; 140 CR28 CR27 CR23 Yang (CR37) 2018; 56 Kardjilov, Manke, Hilger, Strobl, Banhart (CR1) 2011; 14 Brooks (CR15) 2022; 12 M Bacak (56409_CR10) 2020; 195 D Mannes (56409_CR18) 2009; 63 G Artioli (56409_CR20) 2021; 17 H Wen (56409_CR22) 2013; 8 C Shorten (56409_CR24) 2019; 6 G Iglesias (56409_CR26) 2023; 48 M Siegwart (56409_CR17) 2019; 166 NV Chawla (56409_CR34) 2002; 16 B Schillinger (56409_CR19) 2018; 4 56409_CR41 H Xu (56409_CR4) 2020; 217 C Grünzweig (56409_CR13) 2008; 93 VJ Hotz (56409_CR33) 2022; 119 X Yang (56409_CR37) 2018; 56 RF Ziesche (56409_CR14) 2020; 11 56409_CR44 56409_CR45 A Paszke (56409_CR51) 2019; 32 56409_CR42 LR Dice (56409_CR52) 1945; 26 56409_CR43 CM Jeffries (56409_CR3) 2021; 1 A Buslaev (56409_CR25) 2020; 11 56409_CR7 P Rauscher (56409_CR12) 2016; 6 56409_CR5 AJ Brooks (56409_CR15) 2022; 12 L-C Chen (56409_CR39) 2017; 40 M Imani (56409_CR38) 2020; 59 NL Johnson (56409_CR49) 1949; 36 L Santodonato (56409_CR47) 2015; 69 K Stacke (56409_CR46) 2021; 25 56409_CR31 M Strobl (56409_CR8) 2019; 9 56409_CR35 56409_CR36 AJ Brooks (56409_CR11) 2018; 140 E Davis (56409_CR32) 2016; 233 N Kardjilov (56409_CR1) 2011; 14 Y Kim (56409_CR21) 2022; 12 LG Vivas (56409_CR30) 2017; 7 Y Wei (56409_CR9) 2021; 129 Y Kim (56409_CR48) 2023; 2605 56409_CR28 P Boillat (56409_CR16) 2017; 5 G Zaccai (56409_CR2) 1983; 12 DA Pushin (56409_CR6) 2017; 95 56409_CR23 R Andersson (56409_CR29) 2008; 41 56409_CR27 HB Mann (56409_CR53) 1947; 18 A Gaidon (56409_CR40) 2018; 126 J Schindelin (56409_CR50) 2012; 9 |
References_xml | – ident: CR45 – volume: 11 start-page: 777 year: 2020 ident: CR14 article-title: 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique publication-title: Nat. Commun. doi: 10.1038/s41467-019-13943-3 contributor: fullname: Ziesche – volume: 93 start-page: 1 year: 2008 end-page: 10 ident: CR13 article-title: Bulk magnetic domain structures visualized by neutron dark-field imaging publication-title: Appl. Phys. Lett. doi: 10.1063/1.2975848 contributor: fullname: Grünzweig – volume: 12 start-page: 139 year: 1983 end-page: 157 ident: CR2 article-title: Small angle neutron scattering publication-title: Annu. Rev. Biophys. Bioeng. doi: 10.1146/annurev.bb.12.060183.001035 contributor: fullname: Jacrot – volume: 140 start-page: 420 year: 2018 end-page: 430 ident: CR11 article-title: Neutron interferometry detection of early crack formation caused by bending fatigue in additively manufactured ss316 dogbones publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.12.001 contributor: fullname: Brooks – volume: 32 start-page: 8024 year: 2019 end-page: 8035 ident: CR51 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inform. Process. Syst. contributor: fullname: Paszke – volume: 95 year: 2017 ident: CR6 article-title: Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.043637 contributor: fullname: Pushin – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR34 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 contributor: fullname: Kegelmeyer – ident: CR35 – ident: CR42 – volume: 126 start-page: 899 year: 2018 end-page: 901 ident: CR40 article-title: The reasonable effectiveness of synthetic visual data publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1108-0 contributor: fullname: Perronnin – volume: 36 start-page: 149 year: 1949 end-page: 176 ident: CR49 article-title: Systems of frequency curves generated by methods of translation publication-title: Biometrika doi: 10.2307/2332539 contributor: fullname: Johnson – volume: 4 start-page: 22 year: 2018 ident: CR19 article-title: Neutron imaging in cultural heritage research at the FRM II reactor of the Heinz Maier-Leibnitz center publication-title: J. Imaging doi: 10.3390/jimaging4010022 contributor: fullname: Schillinger – volume: 25 start-page: 325 year: 2021 end-page: 336 ident: CR46 article-title: Measuring domain shift for deep learning in histopathology publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3032060 contributor: fullname: Lundstrom – volume: 41 start-page: 868 year: 2008 end-page: 885 ident: CR29 article-title: Analysis of spin-echo small-angle neutron scattering measurements publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808026770 contributor: fullname: Bouwman – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: CR50 article-title: Fiji: An open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 contributor: fullname: Schindelin – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: CR39 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 contributor: fullname: Yuille – volume: 195 year: 2020 ident: CR10 article-title: Neutron dark-field imaging applied to porosity and deformation-induced phase transitions in additively manufactured steels publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109009 contributor: fullname: Bacak – volume: 14 start-page: 248 year: 2011 end-page: 256 ident: CR1 article-title: Neutron imaging in materials science publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70139-0 contributor: fullname: Banhart – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: CR52 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 contributor: fullname: Dice – volume: 12 start-page: 1281 year: 2022 ident: CR15 article-title: Intact, commercial lithium-polymer batteries: Spatially resolved grating-based interferometry imaging, Bragg edge imaging, and neutron diffraction publication-title: Appl. Sci. doi: 10.3390/app12031281 contributor: fullname: Brooks – volume: 11 start-page: 125 year: 2020 ident: CR25 article-title: Albumentations: Fast and flexible image augmentations publication-title: Information doi: 10.3390/info11020125 contributor: fullname: Buslaev – volume: 2605 year: 2023 ident: CR48 article-title: Simulation framework for infer neutron grating interferometry experiments publication-title: J. Phys. doi: 10.1088/1742-6596/2605/1/012015 contributor: fullname: Kim – ident: CR36 – volume: 129 year: 2021 ident: CR9 article-title: Characterizing polymer structure with small-angle neutron scattering: A tutorial publication-title: J. Appl. Phys. doi: 10.1063/5.0045841 contributor: fullname: Hore – ident: CR5 – volume: 5 start-page: 3 year: 2017 end-page: 10 ident: CR16 article-title: Neutron imaging of fuel cells: Recent trends and future prospects publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.07.012 contributor: fullname: Cochet – volume: 56 start-page: 5408 year: 2018 end-page: 5423 ident: CR37 article-title: Hyperspectral image classification with deep learning models publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2815613 contributor: fullname: Yang – volume: 6 start-page: 38307 year: 2016 ident: CR12 article-title: The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging publication-title: Sci. Rep. doi: 10.1038/srep38307 contributor: fullname: Rauscher – volume: 17 start-page: 189 year: 2021 end-page: 194 ident: CR20 article-title: Imaging with neutrons publication-title: Elem. Int. Mag. Mineral. Geochem. Pet. doi: 10.2138/gselements.17.3.189 contributor: fullname: Hussey – volume: 6 start-page: 60 year: 2019 ident: CR24 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 contributor: fullname: Khoshgoftaar – volume: 69 start-page: 104 year: 2015 end-page: 108 ident: CR47 article-title: The CG-1D neutron imaging beamline at the Oak Ridge national laboratory high flux isotope reactor publication-title: Phys. Procedia doi: 10.1016/j.phpro.2015.07.015 contributor: fullname: Santodonato – ident: CR43 – volume: 233 start-page: 60 year: 2016 end-page: 72 ident: CR32 article-title: The scope and limits of simulation in automated reasoning publication-title: Artif. Intell. doi: 10.1016/j.artint.2015.12.003 contributor: fullname: Marcus – volume: 63 start-page: 589 year: 2009 end-page: 596 ident: CR18 article-title: Non-destructive determination and quantification of diffusion processes in wood by means of neutron imaging publication-title: Holzforschung doi: 10.1515/HF.2009.100 contributor: fullname: Niemz – volume: 7 start-page: 13060 year: 2017 ident: CR30 article-title: Small-angle neutron scattering modeling of spin disorder in nanoparticles publication-title: Sci. Rep. doi: 10.1038/s41598-017-13457-2 contributor: fullname: Michels – ident: CR27 – volume: 9 start-page: 19649 year: 2019 ident: CR8 article-title: Achromatic non-interferometric single grating neutron dark-field imaging publication-title: Sci. Rep. doi: 10.1038/s41598-019-55558-0 contributor: fullname: Strobl – ident: CR23 – volume: 12 start-page: 833 year: 2022 ident: CR21 article-title: Quantitative neutron dark-field imaging of milk: A feasibility study publication-title: Appl. Sci. doi: 10.3390/app12020833 contributor: fullname: Kim – ident: CR44 – volume: 166 start-page: F149 year: 2019 ident: CR17 article-title: Selective visualization of water in fuel cell gas diffusion layers with neutron dark-field imaging publication-title: J. Electrochem. Soc. doi: 10.1149/2.1011902jes contributor: fullname: Siegwart – volume: 217 year: 2020 ident: CR4 article-title: Probing nanopore structure and confined fluid behavior in shale matrix: A review on small-angle neutron scattering studies publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2019.103325 contributor: fullname: Xu – ident: CR31 – volume: 8 year: 2013 ident: CR22 article-title: Flexible retrospective phase stepping in X-ray scatter correction and phase contrast imaging using structured illumination publication-title: PLoS ONE doi: 10.1371/journal.pone.0078276 contributor: fullname: Chen – volume: 119 year: 2022 ident: CR33 article-title: Balancing data privacy and usability in the federal statistical system publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2104906119 contributor: fullname: Hotz – volume: 59 start-page: 59 year: 2020 end-page: 83 ident: CR38 article-title: An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.007 contributor: fullname: Ghassemian – volume: 1 start-page: 70 year: 2021 ident: CR3 article-title: Small-angle X-ray and neutron scattering publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00064-9 contributor: fullname: Jeffries – volume: 18 start-page: 50 year: 1947 end-page: 60 ident: CR53 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177730491 contributor: fullname: Whitney – ident: CR7 – volume: 48 year: 2023 ident: CR26 article-title: A survey on GANs for computer vision: Recent research, analysis and taxonomy publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100553 contributor: fullname: Díaz-Álvarez – ident: CR28 – ident: CR41 – volume: 126 start-page: 899 year: 2018 ident: 56409_CR40 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1108-0 contributor: fullname: A Gaidon – volume: 69 start-page: 104 year: 2015 ident: 56409_CR47 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2015.07.015 contributor: fullname: L Santodonato – volume: 12 start-page: 139 year: 1983 ident: 56409_CR2 publication-title: Annu. Rev. Biophys. Bioeng. doi: 10.1146/annurev.bb.12.060183.001035 contributor: fullname: G Zaccai – volume: 56 start-page: 5408 year: 2018 ident: 56409_CR37 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2815613 contributor: fullname: X Yang – ident: 56409_CR23 doi: 10.1109/CVPRW.2019.00145 – volume: 119 year: 2022 ident: 56409_CR33 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2104906119 contributor: fullname: VJ Hotz – volume: 14 start-page: 248 year: 2011 ident: 56409_CR1 publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70139-0 contributor: fullname: N Kardjilov – ident: 56409_CR35 doi: 10.1145/3338906.3338942 – volume: 233 start-page: 60 year: 2016 ident: 56409_CR32 publication-title: Artif. Intell. doi: 10.1016/j.artint.2015.12.003 contributor: fullname: E Davis – ident: 56409_CR45 doi: 10.1109/CVPR.2009.5206848 – volume: 48 year: 2023 ident: 56409_CR26 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100553 contributor: fullname: G Iglesias – volume: 40 start-page: 834 year: 2017 ident: 56409_CR39 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 contributor: fullname: L-C Chen – volume: 93 start-page: 1 year: 2008 ident: 56409_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2975848 contributor: fullname: C Grünzweig – volume: 6 start-page: 60 year: 2019 ident: 56409_CR24 publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 contributor: fullname: C Shorten – ident: 56409_CR41 doi: 10.1109/IROS.2017.8202133 – ident: 56409_CR42 doi: 10.1109/CVPR42600.2020.00271 – volume: 166 start-page: F149 year: 2019 ident: 56409_CR17 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1011902jes contributor: fullname: M Siegwart – volume: 129 year: 2021 ident: 56409_CR9 publication-title: J. Appl. Phys. doi: 10.1063/5.0045841 contributor: fullname: Y Wei – volume: 217 year: 2020 ident: 56409_CR4 publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2019.103325 contributor: fullname: H Xu – volume: 16 start-page: 321 year: 2002 ident: 56409_CR34 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 contributor: fullname: NV Chawla – volume: 32 start-page: 8024 year: 2019 ident: 56409_CR51 publication-title: Adv. Neural Inform. Process. Syst. contributor: fullname: A Paszke – volume: 4 start-page: 22 year: 2018 ident: 56409_CR19 publication-title: J. Imaging doi: 10.3390/jimaging4010022 contributor: fullname: B Schillinger – ident: 56409_CR7 – volume: 5 start-page: 3 year: 2017 ident: 56409_CR16 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.07.012 contributor: fullname: P Boillat – volume: 7 start-page: 13060 year: 2017 ident: 56409_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-017-13457-2 contributor: fullname: LG Vivas – ident: 56409_CR36 – volume: 18 start-page: 50 year: 1947 ident: 56409_CR53 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177730491 contributor: fullname: HB Mann – ident: 56409_CR28 doi: 10.1007/978-3-031-25069-9_30 – ident: 56409_CR44 doi: 10.1117/12.2305660 – volume: 12 start-page: 1281 year: 2022 ident: 56409_CR15 publication-title: Appl. Sci. doi: 10.3390/app12031281 contributor: fullname: AJ Brooks – ident: 56409_CR43 doi: 10.1109/ICRA.2019.8794443 – volume: 59 start-page: 59 year: 2020 ident: 56409_CR38 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.007 contributor: fullname: M Imani – ident: 56409_CR27 doi: 10.1007/978-3-319-10602-1_48 – volume: 8 year: 2013 ident: 56409_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0078276 contributor: fullname: H Wen – volume: 25 start-page: 325 year: 2021 ident: 56409_CR46 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3032060 contributor: fullname: K Stacke – volume: 9 start-page: 19649 year: 2019 ident: 56409_CR8 publication-title: Sci. Rep. doi: 10.1038/s41598-019-55558-0 contributor: fullname: M Strobl – volume: 12 start-page: 833 year: 2022 ident: 56409_CR21 publication-title: Appl. Sci. doi: 10.3390/app12020833 contributor: fullname: Y Kim – volume: 2605 year: 2023 ident: 56409_CR48 publication-title: J. Phys. doi: 10.1088/1742-6596/2605/1/012015 contributor: fullname: Y Kim – volume: 140 start-page: 420 year: 2018 ident: 56409_CR11 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.12.001 contributor: fullname: AJ Brooks – volume: 6 start-page: 38307 year: 2016 ident: 56409_CR12 publication-title: Sci. Rep. doi: 10.1038/srep38307 contributor: fullname: P Rauscher – volume: 95 year: 2017 ident: 56409_CR6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.043637 contributor: fullname: DA Pushin – volume: 11 start-page: 777 year: 2020 ident: 56409_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13943-3 contributor: fullname: RF Ziesche – volume: 9 start-page: 676 year: 2012 ident: 56409_CR50 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 contributor: fullname: J Schindelin – ident: 56409_CR31 – volume: 26 start-page: 297 year: 1945 ident: 56409_CR52 publication-title: Ecology doi: 10.2307/1932409 contributor: fullname: LR Dice – volume: 1 start-page: 70 year: 2021 ident: 56409_CR3 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00064-9 contributor: fullname: CM Jeffries – volume: 36 start-page: 149 year: 1949 ident: 56409_CR49 publication-title: Biometrika doi: 10.2307/2332539 contributor: fullname: NL Johnson – volume: 17 start-page: 189 year: 2021 ident: 56409_CR20 publication-title: Elem. Int. Mag. Mineral. Geochem. Pet. doi: 10.2138/gselements.17.3.189 contributor: fullname: G Artioli – volume: 195 year: 2020 ident: 56409_CR10 publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109009 contributor: fullname: M Bacak – volume: 63 start-page: 589 year: 2009 ident: 56409_CR18 publication-title: Holzforschung doi: 10.1515/HF.2009.100 contributor: fullname: D Mannes – volume: 41 start-page: 868 year: 2008 ident: 56409_CR29 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808026770 contributor: fullname: R Andersson – volume: 11 start-page: 125 year: 2020 ident: 56409_CR25 publication-title: Information doi: 10.3390/info11020125 contributor: fullname: A Buslaev – ident: 56409_CR5 |
SSID | ssj0000529419 |
Score | 2.456032 |
Snippet | Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm.... Abstract Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10... Abstract Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 6614 |
SubjectTerms | 639/301/930/12 639/301/930/2735 639/766/930 639/925/930 Artificial intelligence Automation Data-driven simulation Design Humanities and Social Sciences Image processing INFER Interferometry Mathematical models multidisciplinary Neutron imaging Neutrons Science Science (multidisciplinary) Semantic segmentation Simulation Statistical analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmA18SO2jy1QFYQ4Uak3y44nsIfNVs3ugX_PjJNdujzEhWvsw-gb2_NNxv6GsVc5Zgw0Noq6lBkVWBHBWAEYzcCbDjl5uSD7uT2_0B8vzeWNVl90J2ySB56AO0a6nhyAUaSzrhqZsrcZl01toyL6UU7f2t9IpiZVb-l14-dXMrVyxyNGKnpNJrUwraaC_14kKoL9f2KZv1-W_KViWgLR2T12d2aQ_GSy_JDdguE-uz31lPz-gH16F9dR5Gs6xfi4WM7tuUaO7JRvG0Lwkw-C4lfmI3xdzs-PBr7q-QAb-jnOF0s8aMaH7OLs_Ze352JumSAQVbkWnel73ee6BZ9UR1IrUmeLSYkzXncp9ZjvpYgbtzMQ69Qjmh1YpA1ZQSNjVI_YwbAa4AnjSWtwyVpX95gyehUthvqko9Gxq22bKvZ6C1-4mpQxQqloKxcmsAOCHQrYQVXslBDezSRV6_IBfR1mX4d_-bpiR1v_hHmrjUH61rXOa9lU7OVuGDcJVT7iAKsNzUGahrlQi3Y8nty5s0Q5UsQxumJuz9F7pu6PDItvRYi7IX6K8b1ib7Zr4qddf8fi6f_A4hm7I2kx09VCf8QO1tcbeI78aJ1elK3wAyatCGs priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gERIXtDy37IKCxA2ibfNo0hNaHqsFIU6sNLcoadJlDtMu05kD_x47TWc1vK5NDq7t2J_txCbkVXABHI12rExlRhE1c1FpFsGbxUa1gMnTBdmv9cWl_LxQi5xwG_O1ytkmJkMdhhZz5Ke8qU1tGsmrt9c_GE6NwupqHqFxm9ypOCgv6LNe6F2OBatYsmryW5lSmNMR_BW-KeOSqVpi2X_PH6W2_X_Dmn9emfytbprc0fkhuZ9xJD2bBP-A3Ir9Q3J3miz58xH58sFtHAtrtGV0XK7ykK6RAkal81gIevaJoRcLdIxXq_wIqadDR_u4xRQ5Xa7A3IyPyeX5x2_vL1genMCAt3zDWtV1sgtlHRsvWmy4wmXQEJoY1cjW-w6iPu_g-LYqutJ3PjRt1AAegogVd048IQf90McjQr2U0XitTdlB4NgIp8Hhe-mUdG2pa1-Q1zP77PXUH8OmurYwdmK2BWbbxGwrCvIOObzbib2t04dhfWXzUYFgxHgToxLYWV9UHKjTAQxFqZ1AwFmQk1k-Nh-40d6oR0Fe7pbhqGD9w_Vx2OIeAGsQEdVAx9NJnDtKhMG-OEoWxOwJeo_U_ZV--T21464QpYKXL8ibWSdu6Po3L579_zeOyT2OaopXB5sTcrBZb-NzwD8b_yIp-S8ndAHQ priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BERIXRPkMtMhI3MAiie3YPpaFqiDEiUq9WXbswB42WzW7B_49M052q5Ry4Bo70mjG4_fGY88AvI0-ItBoz8ucZhRJc5-U5gnRLFnVIifPF2S_N2fn8uuFupjK5NBbmFn-XpgPAwIMPQKrJVeNpDz9XbhHGExtGhbNYn-eQhkrWdnpXcztv86wJ5fov41X_n098kaONEPP6SN4OHFGdjIa-RDupP4x3B-7SP5-At8--Y3n8Yr2LTYsV1NDroEhH2W7FhDs5AsnxIpsSD9X04Ojnq071qctHYez5Qq3luEpnJ9-_rE441OTBI56rDe8VV0nu1g2yQbRUnGVWkaNYYhRVrYhdBjhBY-u2qrky9CFaNukkShEkarae_EMDvp1n14AC1ImE7Q2ZYdBohVeI7gH6ZX0bambUMC7nfrc5VgLw-UctjBuVLZDZbusbCcK-Ega3s-kOtb5A5rXTW6BgYcJJiUlqIq-qGqUTkfcFErtBZHLAo529nGTcw2uto1pjJV1VcCb_TC6BeU6fJ_WW5qDxAyjnwbleD6acy-JMFQDR8kCzMzQM1HnI_3yVy69XREjRUQv4P1uTVzL9W9dvPy_6a_gQU3Llq4N2iM42Fxt0zFyn014nRf9H9yq-qM priority: 102 providerName: Springer Nature |
Title | Data-driven simulations for training AI-based segmentation of neutron images |
URI | https://link.springer.com/article/10.1038/s41598-024-56409-3 https://www.ncbi.nlm.nih.gov/pubmed/38503854 https://www.proquest.com/docview/2968689421 https://search.proquest.com/docview/2972704963 https://pubmed.ncbi.nlm.nih.gov/PMC10951284 https://doaj.org/article/148b8ee530314312bd97d19607a30519 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUhcEG8CZWUkbpBuEr-P7dKqIKgqRKW9RXbstCuRbLXZPfDvGTvJwvK4cExiKaPxPL7xjGcA3jjj0NFIk2YxzUi9TI3nMvXozbzmFWLyWCB7Ic6v2Mc5n--BGO_CxKL9yi6O2m_NUbu4ibWVt001HevEppefZ3nABWhXp_uwjxL6S4zed_QuNMv1cEMmo2raoZcKN8kKlnLBQrJ_xwvFZv1_Q5h_Fkr-li2NTujsAdwf0CM57ql8CHu-fQR3-3mS3x_Dp_dmbVK3ChaMdItmGM3VEUSmZBwGQY4_pMF3OdL562a4etSSZU1avwkH42TRoJHpnsDV2enX2Xk6jEtIkaPFOq14XbPaZcJrS6vQZqVgTmJAorhmlbU1xnrWoNJW3JvM1tbpykuEDI76vDCGPoWDdtn650AsY15ZKVVWY7ioqZHo5i0znJkqk8Im8HZkX3nbd8UoYzabqrJndonMLiOzS5rASeDwdmXoaB1fLFfX5bCvGIIoq7znNPTTp3mB1EmH5iGThgaYmcDhuD_loGZdWWihhNKsyBN4vf2MChKyHqb1y01YgxAN4yCBdDzrt3NLCVWhGw5nCaidjd4hdfcLymRswj3KYALvRpn4Sde_efHi___0Eu4VQYRDMaE-hIP1auNfISJa2wmqwVxO4M7J6cXlF3yaidkkni5Momr8AIbpDbE |
link.rule.ids | 230,315,730,783,787,867,888,2109,12070,21402,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SZQwEjcwGo2tmPnhMqj2sLSUyvtzbJjp93DJmWze-i_74zjbLW8rrEPk7E9841n_A0h77314GiUZXlMM_KgmA1SsQDeLFSyBkweC2RPyumZ-D6X83Th1qeyytEmRkPtuxrvyA-KqtSlrkQx-XT5i2HXKMyuphYat8kd5OFC7nw1V9s7FsxiiUmV3srkXB_04K_wTVkhmCwFpv13_FGk7f8b1vyzZPK3vGl0R0cPyYOEI-nhsPCPyK3QPiZ3h86SV0_I7KtdW-ZXaMtov1imJl09BYxKx7YQ9PCYoRfztA_ny_QIqaVdQ9uwwStyuliCuemfkrOjb6dfpiw1TmCg22LNatk0ovF5GSrHayRcKYRXEJpoWYnauQaiPmfh-NYy2Nw1zld1UAAePA-Twlr-jOy1XRteEOqECNoppfMGAseKWwUO3wkrha1zVbqMfBjVZy4HfgwT89pcm0HZBpRtorINz8hn1PB2JnJbxw_d6tykowLBiHY6BMmRWZ9PCpBOeTAUubIcAWdG9sf1MenA9eZme2Tk3XYYjgrmP2wbug3OAbAGEVEJcjwflnMrCdfIiyNFRvTOQu-IujvSLi4iHfcEUSp4-Yx8HPfEjVz_1sXL___GW3JvevpzZmbHJz9ekfsFblksI6z2yd56tQmvAQut3Zu44a8BcLIEwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMQF8SZQwEjcwNpsbMfOCRXKqoWq4kClvVl27LR72KRsdg_9951xnK2W1zWOlMl4Ht94xjOEvPfWg6NRluUxzciDYjZIxQJ4s1DJGjB5LJA9LY_OxLe5nKf6pz6VVY42MRpq39V4Rj4pqlKXuhLFdNKksogfh7NPl78YTpDCTGsap3Gb3FECvg-yreZqe96CGS0xrdK9mZzrSQ--C--XFYLJUmAJwI5vii38_4Y7_yyf_C2HGl3T7CF5kDAlPRiE4BG5FdrH5O4wZfLqCTk5tGvL_ArtGu0XyzSwq6eAV-k4IoIeHDP0aJ724XyZLiS1tGtoGzZ4XE4XSzA9_VNyNvv688sRS0MUGPC5WLNaNo1ofF6GyvEam68UwisIU7SsRO1cAxGgs6DKtQw2d43zVR0UAAnPw7Swlj8je23XhheEOiGCdkrpvIEgsuJWgfN3wkph61yVLiMfRvaZy6FXhok5bq7NwGwDzDaR2YZn5DNyePsm9rmOD7rVuUlqA4GJdjoEybHLPp8WQJ3yYDRyZTmCz4zsj_tjkvL15kZUMvJuuwxqg7kQ24Zug-8AcIPoqAQ6ng_buaWEa-yRI0VG9M5G75C6u9IuLmJr7ikiVvD4Gfk4ysQNXf_mxcv__8Zbcg9k3Zwcn35_Re4XKLFYUVjtk731ahNeAyxauzdR3q8BzMsI9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+simulations+for+training+AI-based+segmentation+of+neutron+images&rft.jtitle=Scientific+reports&rft.au=Sathe%2C+Pushkar+S&rft.au=Wolf%2C+Caitlyn+M&rft.au=Kim%2C+Youngju&rft.au=Robinson%2C+Sarah+M&rft.date=2024-03-19&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=6614&rft.epage=6614&rft_id=info:doi/10.1038%2Fs41598-024-56409-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |