Sub-surface thermal measurement in additive manufacturing via machine learning-enabled high-resolution fiber optic sensing

Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 7568 - 12
Main Authors Wang, Rongxuan, Wang, Ruixuan, Dou, Chaoran, Yang, Shuo, Gnanasambandam, Raghav, Wang, Anbo, Kong, Zhenyu (James)
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes. Measuring sub-surface thermal conditions during 3D printing is crucial for microstructure evolution understanding and control. Authors use embedded fiber optic sensors to measure sub-surface temperatures and use machine learning to improve sensor resolution to 30 µm, providing detailed data for thermal modeling and prediction.
AbstractList Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes.Measuring sub-surface thermal conditions during 3D printing is crucial for microstructure evolution understanding and control. Authors use embedded fiber optic sensors to measure sub-surface temperatures and use machine learning to improve sensor resolution to 30 µm, providing detailed data for thermal modeling and prediction.
Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes. Measuring sub-surface thermal conditions during 3D printing is crucial for microstructure evolution understanding and control. Authors use embedded fiber optic sensors to measure sub-surface temperatures and use machine learning to improve sensor resolution to 30 µm, providing detailed data for thermal modeling and prediction.
Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes.
Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes.Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes.
Abstract Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes.
ArticleNumber 7568
Author Gnanasambandam, Raghav
Dou, Chaoran
Yang, Shuo
Kong, Zhenyu (James)
Wang, Rongxuan
Wang, Ruixuan
Wang, Anbo
Author_xml – sequence: 1
  givenname: Rongxuan
  orcidid: 0000-0001-7327-3577
  surname: Wang
  fullname: Wang, Rongxuan
  organization: Department of Industrial and Systems Engineering, Auburn University
– sequence: 2
  givenname: Ruixuan
  orcidid: 0000-0003-1729-8416
  surname: Wang
  fullname: Wang, Ruixuan
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech
– sequence: 3
  givenname: Chaoran
  surname: Dou
  fullname: Dou, Chaoran
  organization: Grado Department of Industrial and Systems Engineering, Virginia Tech
– sequence: 4
  givenname: Shuo
  surname: Yang
  fullname: Yang, Shuo
  organization: Department of Biomedical Engineering, Washington University in Saint Louis
– sequence: 5
  givenname: Raghav
  orcidid: 0009-0004-2159-4837
  surname: Gnanasambandam
  fullname: Gnanasambandam, Raghav
  organization: The Department of Industrial and Manufacturing Engineering, Florida A&M University-Florida State University College of Engineering
– sequence: 6
  givenname: Anbo
  surname: Wang
  fullname: Wang, Anbo
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech
– sequence: 7
  givenname: Zhenyu (James)
  orcidid: 0000-0002-8827-502X
  surname: Kong
  fullname: Kong, Zhenyu (James)
  email: zkong@vt.edu
  organization: Grado Department of Industrial and Systems Engineering, Virginia Tech
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39217158$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAltiwCfg3jlcIVbRUqsQCWFu2czPxKLEHOxmpPD2eSSktC7yxdfzd46Pr-7I6CTFAVb0m-D3BrP2QOeGNrDHltSCUiVo-q84o5qQmkrKTR-fT6iLnLS6LKdJy_qI6ZYoSSUR7Vv36ttg6L6k3DtA8QJrMiCYwRYIJwox8QKbr_Oz3gCYTlgLOS_Jhg_beFMUNPgAawaRQxBqCsSN0aPCboU6Q47jMPgbUewsJxd3sHcoQcmFfVc97M2a4uN_Pqx9Xn79ffqlvv17fXH66rR1XdK4daRltLceN7TClpAHOeyK5oEL1veKcd1z0ohHG4s6qRoDBfdN0YDhhpQnsvLpZfbtotnqX_GTSnY7G66MQ00abVHKNoDlI5hqDW1WMO8ttL6hk3ElOpWuJLV4fV6_dYifoXOlQMuMT06c3wQ96E_eaENYIxQ5p3t07pPhzgTzryWcH42gCxCVrhpVqBZeqLejbf9BtXFIovTpSFAsmD9Sbx5Eesvz54wLQFXAp5pygf0AI1odZ0uss6TJL-jhLWpYithbl3eGzIf19-z9VvwHCusyw
Cites_doi 10.1364/OL.42.004219
10.3390/s21144632
10.3390/app12189031
10.3390/cryst11091065
10.1109/JLT.2020.2971240
10.3390/s20020360
10.1364/OL.21.001405
10.1109/50.618377
10.1364/OE.18.019844
10.1088/1361-665X/acae4c
10.3390/ma15176092
10.1109/LPT.2014.2345062
10.3390/s18072147
10.1109/LPT.2021.3055216
10.1109/LPT.2019.2913992
10.1088/0957-0233/17/6/023
10.1016/j.actamat.2017.02.069
10.1016/j.optcom.2021.127296
10.1109/50.618322
10.1038/s41598-021-99269-x
10.1007/s11837-020-04291-5
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-51235-7
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_4e73c6a089f94db4bf52734c7427c81b
PMC11365934
39217158
10_1038_s41467_024_51235_7
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-c18328b406bd02216e44f1745259ff9444d45f565ab0db965ea0f66dea4132043
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:16 EDT 2025
Thu Aug 21 18:31:54 EDT 2025
Fri Jul 11 02:36:22 EDT 2025
Wed Aug 13 09:52:15 EDT 2025
Wed Feb 19 02:04:45 EST 2025
Tue Jul 01 02:37:31 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-c18328b406bd02216e44f1745259ff9444d45f565ab0db965ea0f66dea4132043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7327-3577
0000-0003-1729-8416
0000-0002-8827-502X
0009-0004-2159-4837
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51235-7
PMID 39217158
PQID 3099205378
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_4e73c6a089f94db4bf52734c7427c81b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11365934
proquest_miscellaneous_3099854798
proquest_journals_3099205378
pubmed_primary_39217158
crossref_primary_10_1038_s41467_024_51235_7
springer_journals_10_1038_s41467_024_51235_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-31
PublicationDateYYYYMMDD 2024-08-31
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Marshall (CR18) 2010; 18
Erdogan (CR15) 1997; 15
Jiang, Chen, Liu (CR25) 2014; 26
Kersey (CR16) 1997; 15
Djurhuus (CR22) 2019; 31
Okugawa, Furushiro, Koizumi (CR2) 2022; 15
Lindwall (CR5) 2019; 27
CR13
Kürnsteiner (CR3) 2017; 129
CR11
CR10
Wang (CR6) 2022; 12
Zhao (CR21) 2021; 499
Wang (CR27) 2023; 66
Yang, Hu, Wang (CR29) 2017; 42
Tosi (CR20) 2018; 18
Li (CR24) 2022; 12
Hyer (CR8) 2023; 32
Ansari Dezfoli, Lo, Raza (CR1) 2021; 11
CR7
LeBlanc (CR19) 1996; 21
CR9
Nand (CR17) 2006; 17
Manie (CR26) 2020; 38
Sarkar (CR23) 2021; 33
Hooper (CR28) 2018; 22
Lee (CR4) 2018; 22
Hehr (CR12) 2020; 20
Guo (CR14) 2021; 21
H Jiang (51235_CR25) 2014; 26
51235_CR10
GD Marshall (51235_CR18) 2010; 18
51235_CR11
51235_CR13
HC Hyer (51235_CR8) 2023; 32
T Erdogan (51235_CR15) 1997; 15
Y Lee (51235_CR4) 2018; 22
D Tosi (51235_CR20) 2018; 18
MS Djurhuus (51235_CR22) 2019; 31
P Kürnsteiner (51235_CR3) 2017; 129
J Lindwall (51235_CR5) 2019; 27
S Yang (51235_CR29) 2017; 42
A Nand (51235_CR17) 2006; 17
R Wang (51235_CR6) 2022; 12
AD Kersey (51235_CR16) 1997; 15
S Li (51235_CR24) 2022; 12
M LeBlanc (51235_CR19) 1996; 21
PA Hooper (51235_CR28) 2018; 22
AR Ansari Dezfoli (51235_CR1) 2021; 11
YC Manie (51235_CR26) 2020; 38
B Zhao (51235_CR21) 2021; 499
Z Guo (51235_CR14) 2021; 21
R Wang (51235_CR27) 2023; 66
A Hehr (51235_CR12) 2020; 20
51235_CR9
51235_CR7
S Sarkar (51235_CR23) 2021; 33
M Okugawa (51235_CR2) 2022; 15
References_xml – volume: 42
  start-page: 4219
  year: 2017
  end-page: 4222
  ident: CR29
  article-title: Point-by-point fabrication and characterization of sapphire fiber Bragg gratings
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.004219
– volume: 21
  start-page: 4632
  year: 2021
  ident: CR14
  article-title: Ultimate spatial resolution realisation in optical frequency domain reflectometry with equal frequency resampling
  publication-title: Sensors
  doi: 10.3390/s21144632
– volume: 12
  start-page: 9031
  year: 2022
  ident: CR24
  article-title: Improvement of fiber bragg grating wavelength demodulation system by cascading generative adversarial network and dense neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app12189031
– volume: 11
  start-page: 1065
  year: 2021
  ident: CR1
  article-title: Microstructure and elements concentration of Inconel 713LC during laser powder bed fusion through a modified cellular automaton model
  publication-title: Crystals
  doi: 10.3390/cryst11091065
– volume: 22
  start-page: 548
  year: 2018
  end-page: 559
  ident: CR28
  article-title: Melt pool temperature and cooling rates in laser powder bed fusion
  publication-title: Addit. Manuf.
– ident: CR10
– volume: 38
  start-page: 1589
  year: 2020
  end-page: 1603
  ident: CR26
  article-title: Enhancement of the multiplexing capacity and measurement accuracy of FBG sensor system using IWDM technique and deep learning algorithm
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.2971240
– volume: 20
  start-page: 360
  year: 2020
  ident: CR12
  article-title: Smart build-plate for metal additive manufacturing processes
  publication-title: Sensors
  doi: 10.3390/s20020360
– volume: 12
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR6
  article-title: In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis
  publication-title: Sci. Rep.
– volume: 21
  start-page: 1405
  year: 1996
  end-page: 1407
  ident: CR19
  article-title: Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis
  publication-title: Opt. Lett.
  doi: 10.1364/OL.21.001405
– volume: 27
  start-page: 345
  year: 2019
  end-page: 352
  ident: CR5
  article-title: Thermal simulation and phase modeling of bulk metallic glass in the powder bed fusion process
  publication-title: Addit. Manuf.
– volume: 15
  start-page: 1442
  year: 1997
  end-page: 1463
  ident: CR16
  article-title: Fiber grating sensors
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.618377
– volume: 18
  start-page: 19844
  year: 2010
  end-page: 19859
  ident: CR18
  article-title: Point-by-point written fiber-Bragg gratings and their application in complex grating designs
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019844
– volume: 32
  start-page: 02LT01
  year: 2023
  ident: CR8
  article-title: Embedding thermocouples in SS316 with laser powder bed fusion
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/acae4c
– volume: 15
  start-page: 6092
  year: 2022
  ident: CR2
  article-title: Effect of rapid heating and cooling conditions on microstructure formation in powder bed fusion of Al-Si hypoeutectic alloy: A phase-field study
  publication-title: Materials
  doi: 10.3390/ma15176092
– volume: 26
  start-page: 2031
  year: 2014
  end-page: 2034
  ident: CR25
  article-title: Wavelength detection in spectrally overlapped FBG sensor network using extreme learning machine
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2014.2345062
– volume: 18
  start-page: 2147
  year: 2018
  ident: CR20
  article-title: Review of chirped fiber Bragg grating (CFBG) fiber-optic sensors and their applications
  publication-title: Sensors
  doi: 10.3390/s18072147
– volume: 33
  start-page: 876
  year: 2021
  end-page: 879
  ident: CR23
  article-title: Machine learning methods for discriminating strain and temperature effects on FBG-based sensors
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2021.3055216
– volume: 31
  start-page: 939
  year: 2019
  end-page: 942
  ident: CR22
  article-title: Machine learning assisted fiber bragg grating-based temperature sensing
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2019.2913992
– volume: 17
  start-page: 1436
  year: 2006
  ident: CR17
  article-title: Determination of the position of a localized heat source within a chirped fibre Bragg grating using a Fourier transform technique
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/6/023
– volume: 129
  start-page: 52
  year: 2017
  end-page: 60
  ident: CR3
  article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.069
– ident: CR13
– volume: 66
  start-page: 103449
  year: 2023
  ident: CR27
  article-title: Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform
  publication-title: Addit. Manuf.
– ident: CR11
– ident: CR9
– volume: 499
  start-page: 127296
  year: 2021
  ident: CR21
  article-title: A CNN-based FBG demodulation method adopting the GAF-assisted ascending dimension of complicated signal
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.127296
– ident: CR7
– volume: 15
  start-page: 1277
  year: 1997
  end-page: 1294
  ident: CR15
  article-title: Fiber grating spectra
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.618322
– volume: 22
  start-page: 516
  year: 2018
  end-page: 527
  ident: CR4
  article-title: Role of scan strategies on thermal gradient and solidification rate in electron beam powder bed fusion
  publication-title: Addit. Manuf.
– volume: 31
  start-page: 939
  year: 2019
  ident: 51235_CR22
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2019.2913992
– volume: 129
  start-page: 52
  year: 2017
  ident: 51235_CR3
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.069
– ident: 51235_CR11
– ident: 51235_CR13
– volume: 17
  start-page: 1436
  year: 2006
  ident: 51235_CR17
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/6/023
– volume: 15
  start-page: 1442
  year: 1997
  ident: 51235_CR16
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.618377
– volume: 66
  start-page: 103449
  year: 2023
  ident: 51235_CR27
  publication-title: Addit. Manuf.
– volume: 18
  start-page: 2147
  year: 2018
  ident: 51235_CR20
  publication-title: Sensors
  doi: 10.3390/s18072147
– volume: 21
  start-page: 4632
  year: 2021
  ident: 51235_CR14
  publication-title: Sensors
  doi: 10.3390/s21144632
– volume: 11
  start-page: 1065
  year: 2021
  ident: 51235_CR1
  publication-title: Crystals
  doi: 10.3390/cryst11091065
– volume: 38
  start-page: 1589
  year: 2020
  ident: 51235_CR26
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.2971240
– volume: 27
  start-page: 345
  year: 2019
  ident: 51235_CR5
  publication-title: Addit. Manuf.
– volume: 26
  start-page: 2031
  year: 2014
  ident: 51235_CR25
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2014.2345062
– volume: 12
  start-page: 1
  year: 2022
  ident: 51235_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99269-x
– ident: 51235_CR10
– volume: 22
  start-page: 548
  year: 2018
  ident: 51235_CR28
  publication-title: Addit. Manuf.
– volume: 15
  start-page: 6092
  year: 2022
  ident: 51235_CR2
  publication-title: Materials
  doi: 10.3390/ma15176092
– volume: 21
  start-page: 1405
  year: 1996
  ident: 51235_CR19
  publication-title: Opt. Lett.
  doi: 10.1364/OL.21.001405
– volume: 33
  start-page: 876
  year: 2021
  ident: 51235_CR23
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2021.3055216
– volume: 42
  start-page: 4219
  year: 2017
  ident: 51235_CR29
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.004219
– volume: 15
  start-page: 1277
  year: 1997
  ident: 51235_CR15
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.618322
– volume: 22
  start-page: 516
  year: 2018
  ident: 51235_CR4
  publication-title: Addit. Manuf.
– volume: 499
  start-page: 127296
  year: 2021
  ident: 51235_CR21
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.127296
– volume: 20
  start-page: 360
  year: 2020
  ident: 51235_CR12
  publication-title: Sensors
  doi: 10.3390/s20020360
– volume: 12
  start-page: 9031
  year: 2022
  ident: 51235_CR24
  publication-title: Appl. Sci.
  doi: 10.3390/app12189031
– volume: 32
  start-page: 02LT01
  year: 2023
  ident: 51235_CR8
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/acae4c
– ident: 51235_CR7
  doi: 10.1007/s11837-020-04291-5
– volume: 18
  start-page: 19844
  year: 2010
  ident: 51235_CR18
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019844
– ident: 51235_CR9
SSID ssj0000391844
Score 2.4774792
Snippet Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during...
Abstract Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7568
SubjectTerms 639/166/988
639/301/930/1032
639/624/1107/510
Additive manufacturing
Beds (process engineering)
Bragg gratings
Continuous fibers
Cooling rate
Demodulation
Embedding
Fiber optics
Finite element method
Heating
Humanities and Social Sciences
Laser cooling
Laser damage
Learning algorithms
Machine learning
Manufacturing
Manufacturing industry
Mathematical models
Measurement techniques
Mechanical properties
Melting
Microstructure
multidisciplinary
Optical measuring instruments
Optical properties
Science
Science (multidisciplinary)
Sensors
Spatial discrimination
Spatial resolution
Surface temperature
Temperature gradients
Temperature measurement
Thermal analysis
Thermal measurement
Three dimensional printing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QpUpcEJTX0oKCxA2izk6cTHKEqlWFBCcq9RYlM07Zw86i7i4S_Pramdltl4e4cE1ysGzH_pz4IcQbX_mEFjpV4xQVZI8qad2paE0dk8cql5Esnz7b8wv4eGku74z64pywoT3wwLhjwEa3NlbOZw9dgpS5ZRi0FNI1LWEutr7k8-4EU8UGa0-hC4xVMpV2x0soNoFckjJcH6qaHU9UGvb_CWX-niz5y49pcURnD8WDEUHK9wPlj8Q97A_E_jBT8sdj8ZNMgVqur3NsUTK6m9Ph-e1LoJz1kpOI2MzJeezXXNpQahXl91mkFU6uRDlOk7hSWIqrOsl9jRXF5qOqysypJnJBFqeVS86C76-eiIuz0y8n52ocsKBa8PVKtXyfXSKfnjry5VOLAJlCFEMxUSZ2A3RgMkG-mKoueWswVtnaDiNw5TXop2KvX_T4XEifEwFDAn9ddODRJW8wpQpbl6JtopuItxtmh29DH41Q_r-1C4NoAokmFNGEZiI-sDy2J7kHdlkgzQijZoR_acZEHG2kGcaLuQyaEHHNPWyIotfbbbpS_E8Se1yshzPOQOPpzLNB-FtKCE5Om6mhHbejFjuk7u70s6-lbTdPzzFew0S822jQLV1_58WL_8GLQ3G_ZtUvj-FHYm91vcaXhKZW6VW5ODdLpBz2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaxNk3FinxAgViskOLFSb5Yd26WHJkvTIsGvZ8ZxW5XX1fZhknl9Hs-DsZe61C404EUVZkFA1EG4uvbCNrKyTocyppEsnz43F5fwcS7nOeA25rTKnU1MhtoPHcXIz2qEMhU1H1Fvrr4JmhpFr6t5hMZ1doNal1FKVztv9zEW6n6uAHKtTFmrsxGSZUDHJCRViYr2yB-ltv1_w5p_pkz-9m6a3NH5HXY740j-dmL8XXYt9PfYzWmy5I_77CcaBDFu19F2gRPGW-Hh1SEeyJc9p1QiMnZ8ZfstFTikikX-fWlxhVIsA88zJRYipBIrz6m7scAbehZYHinhhA9odzo-Ui58v3jALs8_fHl_IfKYBdGBrjaiI61WDj278-jRZ00AiHhRkXgzilEDgAcZEfhZV3qnGxlsGZvGBwtUfw31Q3bSD314zLiODuEhQkBvFeignJbBuTJ0ytmmtapgr3Y_21xN3TRMegWvlZlYY5A1JrHGtAV7R_zYn6RO2GlhWC9MViwDoa27xpZKI6negYvUUg46vPK3HWLygp3uuGmyeo7mIEwFe7HfRsWi1xLbh2E7nVESWo1nHk3M31OCoHLWziTuqCOxOCL1eKdffk3Nu2mGjtQ1FOz1ToIOdP37Xzz5_2c8ZbcqEuoU7D5lJ5v1NjxDtLRxz5NK_AKo6hSz
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDI6WRUhcEG8GFhQkbhDRaZ00OcKI1QoJTqy0tyhpnWEO01nNA4n99Wun7awGlgPXxJWs2o6_JPYXId65wkU00KoSp6ggOVSxqloVjC5DdFik_CTLt-_m7By-XuiLI1GOvTC5aD9TWuZleqwO-7iBHNKUUZTm9k5V3xF3mbqdvXpmZvtzFWY8twBDf0xR2Vs-PchBmar_Nnz5d5nkH3elOQWdPhQPBuwoP_XaPhJH2D0W9_rXJH8_EVe0CKjNbp1Cg5Jx3ZKElzdngHLRSS4f4gVOLkO346aG3KUofy0CjXBZJcrhHYm5wtxW1UpmNFa0Kx-cVCYuMpErWmsaueH6927-VJyffvkxO1PD0wqqAVduVcORbCNl89hSFp8aBEi0OdG0G0rJAUALOhHYC7FoozMaQ5GMaTEA91xD9Uwcd6sOXwjpUiRISLCvDRYc2ug0xlhgY2MwdbAT8X782f6yZ9Dw-ea7sr43jSfT-GwaX0_EZ7bHXpLZr_PAaj33gzd4wLpqTCisI1XbCDExjRw0tM2vG8LhE3EyWtMPIbnxFWHhktlrSKO3-2kKJr4hCR2udr2M1VA7knneG3-vCQHJaT3VNGMP3OJA1cOZbvEzE3bzuznaVTARH0YPutHr3__i5f-JvxL3S3byfOB9Io636x2-JsS0jW9yiFwDHNQScQ
  priority: 102
  providerName: Springer Nature
Title Sub-surface thermal measurement in additive manufacturing via machine learning-enabled high-resolution fiber optic sensing
URI https://link.springer.com/article/10.1038/s41467-024-51235-7
https://www.ncbi.nlm.nih.gov/pubmed/39217158
https://www.proquest.com/docview/3099205378
https://www.proquest.com/docview/3099854798
https://pubmed.ncbi.nlm.nih.gov/PMC11365934
https://doaj.org/article/4e73c6a089f94db4bf52734c7427c81b
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA_3geCL-G3Ps0TwTaN7u7P5eBDplatH4Q5RC30LyW7SK9it1w_x_OudZHd7VOuLLy0kKR0yM5nfJPNByCuVKOs4lCx1J46BV47ZLCuZ4XlqrHKJjy1ZLi75-QiG43y8R9p2R80GLne6dqGf1Gjx7e3P65sPqPDv65Rx-W4JUd3R2rA8pH4ysU8O0TKJoKgXDdyPJ3Om0KGBJndm90-37FMs478Le_4dQvnHO2o0T4P75F6DK2mvFoQHZM9VD8mdutPkzSPyCw8ItlwvvCkcDZhvhotnt_eDdFrREFoUDj86M9U6JDzEDEb6Y2pwJIRcOtr0mJgwF1OuShqqHTP02BsBpj4EoNA5nkMFXYbY-GrymIwGZ1_756xpu8AKUOmKFUHLpUVLb0u08CfcAXh0XHL0lLxXAFBC7hEIGpuUVvHcmcRzXjoDIR8bsifkoJpX7hmhyluEiwgJSyNBOWlV7qxNXCGt4cLIDnndbrb-XlfX0PFVPJO6Zo1G1ujIGi065DTwY7MyVMaOA_PFRDeKpsGJrOAmkQpJLS1YH0rMQSEgFQVi9A45brmpW2nTGeLkNFS2QYpebqZR0cLriancfF2vkTkIhWue1szfUIIgE6Utxxm5JRZbpG7PVNOrWMw79NTJVQYd8qaVoFu6_r0XR___T8_J3TQIfLwYPyYHq8XavUBktbJdsi_GAj_l4GOXHPZ6wy9D_D49u_z0GUf7vN-NdxbdqFa_AY1RKmo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYi2BAkaCE1jNJC-JfUCIrZrS5dRKczN2Yg9zmKTMAio_it_Ie04yo2G79WpbkeO3ffbbGHuuYmVdDpVI3MAJ8MoJm6aVMHmWGKtc7ENLluOTfHgGn0bZaIv97HNhKKyy14lBUVdNSW_keylCmYSKj8g3518FdY0i72rfQqNli0N38R2vbPPXBx-Qvi-SZP_j6fuh6LoKiBJUshAlMbG0aMhshQZskDsAj7g8w4uA9woAKsg84hxj48qqPHMm9nleOQOUbgwpfvcKu4qGNyaJKkbF6k2Hqq1LgC43J07l3hyCJkJDKDLKShXFhv0LbQL-hm3_DNH8zU8bzN_-LXazw638bctot9mWq--wa20ny4u77AcqIDFfzrwpHSdMOcXF0_X7I5_UnEKXSLnyqamXlFARMiT5t4nBEQrpdLzrYTEWLqR0VZyqKYuZ6wWEewpw4Q3quZLPKfa-Ht9jZ5dCgPtsu25q94Bx5S3CUYSclZGgnLQqc9bGrpTW5IWREXvZH7Y-b6t36OB1T6VuSaORNDqQRhcRe0f0WK2kytthoJmNdSfIGlyRlrmJpcKtVhaspxJ2UBaQFCXeASK221NTd-pgrtfMG7Fnq2kUZPLOmNo1y3aNzKBQuGanJf5qJwhiB8Ugwxm5wRYbW92cqSdfQrFw6tmTqRQi9qrnoPW-_n0WD___G0_Z9eHp8ZE-Ojg5fMRuJMTg4aF9l20vZkv3GJHawj4J4sHZ58uWx1-B_k_E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLaGQSAuiJ3CAEaCE1hNk-fYPiAEDNUMAyMOjNRbsBO79NB06AIafhq_jvecpFXZbnO1rcjx2z77bYw9MYlxPodKpH7gBQTjhcuySthcptYZn4TYkuXDcX5wAu9GcrTDfna5MBRW2enEqKirWUlv5P0MoUxKxUd0P7RhER_3hy9PvwrqIEWe1q6dRsMiR_7sO17fFi8O95HWT9N0-PbTmwPRdhgQJZh0KUpiaO3QqLkKjdkg9wABMbrES0EIBgAqkAExj3VJ5UwuvU1CnlfeAqUeQ4bfvcAuqkwOSMbUSK3fd6jyugZo83SSTPcXELUSGkUhKUNVqC1bGFsG_A3n_hmu-ZvPNprC4TV2tcWw_FXDdNfZjq9vsEtNV8uzm-wHKiOxWM2DLT0nfDnFxdPNWySf1JzCmEjR8qmtV5RcEbMl-beJxREK7_S87WcxFj6md1WcKiuLue-EhQcKduEz1HklX1Acfj2-xU7OhQC32W49q_1dxk1wCE0RflZWg_HaGemdS3ypnc2V1T32rDvs4rSp5FFED3ymi4Y0BZKmiKQpVI-9JnqsV1IV7jgwm4-LVqgL8Corc5tog1utHLhA5eygVJCqEu8DPbbXUbNoVcOi2DByjz1eT6NQk6fG1n62atZoCcrgmjsN8dc7QUA7UAOJM3qLLba2uj1TT77EwuHUv0eaDHrsecdBm339-yzu_f83HrHLKInF-8Pjo_vsSkr8Hd_c99jucr7yDxC0Ld3DKB2cfT5vcfwFLgRT-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-surface+thermal+measurement+in+additive+manufacturing+via+machine+learning-enabled+high-resolution+fiber+optic+sensing&rft.jtitle=Nature+communications&rft.au=Wang%2C+Rongxuan&rft.au=Wang%2C+Ruixuan&rft.au=Dou%2C+Chaoran&rft.au=Yang%2C+Shuo&rft.date=2024-08-31&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-51235-7&rft.externalDocID=PMC11365934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon