Development of a deep learning model that predicts critical events of pediatric patients admitted to general wards

Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to detect or prevent major events such as cardiopulmonary resuscitation, but previously developed tools are often complicated and time-consuming, rendering...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 4707
Main Authors Jeon, Yonghyuk, Kim, You Sun, Jang, Wonjin, Park, June Dong, Lee, Bongjin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.02.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to detect or prevent major events such as cardiopulmonary resuscitation, but previously developed tools are often complicated and time-consuming, rendering them impractical. To overcome this problem, we designed this study to create a deep learning prediction model that predicts critical events with simplified variables. This retrospective observational study included patients under the age of 18 who were admitted to the general ward of a tertiary children’s hospital between 2020 and 2022. A critical event was defined as cardiopulmonary resuscitation, unplanned transfer to the intensive care unit, or mortality. The vital signs measured during hospitalization, their measurement intervals, sex, and age were used to train a critical event prediction model. Age-specific z-scores were used to normalize the variability of the normal range by age. The entire dataset was classified into a training dataset and a test dataset at an 8:2 ratio, and model learning and testing were performed on each dataset. The predictive performance of the developed model showed excellent results, with an area under the receiver operating characteristics curve of 0.986 and an area under the precision-recall curve of 0.896. We developed a deep learning model with outstanding predictive power using simplified variables to effectively predict critical events while reducing the workload of medical staff. Nevertheless, because this was a single-center trial, no external validation was carried out, prompting further investigation.
AbstractList Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to detect or prevent major events such as cardiopulmonary resuscitation, but previously developed tools are often complicated and time-consuming, rendering them impractical. To overcome this problem, we designed this study to create a deep learning prediction model that predicts critical events with simplified variables. This retrospective observational study included patients under the age of 18 who were admitted to the general ward of a tertiary children's hospital between 2020 and 2022. A critical event was defined as cardiopulmonary resuscitation, unplanned transfer to the intensive care unit, or mortality. The vital signs measured during hospitalization, their measurement intervals, sex, and age were used to train a critical event prediction model. Age-specific z-scores were used to normalize the variability of the normal range by age. The entire dataset was classified into a training dataset and a test dataset at an 8:2 ratio, and model learning and testing were performed on each dataset. The predictive performance of the developed model showed excellent results, with an area under the receiver operating characteristics curve of 0.986 and an area under the precision-recall curve of 0.896. We developed a deep learning model with outstanding predictive power using simplified variables to effectively predict critical events while reducing the workload of medical staff. Nevertheless, because this was a single-center trial, no external validation was carried out, prompting further investigation.
Abstract Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to detect or prevent major events such as cardiopulmonary resuscitation, but previously developed tools are often complicated and time-consuming, rendering them impractical. To overcome this problem, we designed this study to create a deep learning prediction model that predicts critical events with simplified variables. This retrospective observational study included patients under the age of 18 who were admitted to the general ward of a tertiary children’s hospital between 2020 and 2022. A critical event was defined as cardiopulmonary resuscitation, unplanned transfer to the intensive care unit, or mortality. The vital signs measured during hospitalization, their measurement intervals, sex, and age were used to train a critical event prediction model. Age-specific z-scores were used to normalize the variability of the normal range by age. The entire dataset was classified into a training dataset and a test dataset at an 8:2 ratio, and model learning and testing were performed on each dataset. The predictive performance of the developed model showed excellent results, with an area under the receiver operating characteristics curve of 0.986 and an area under the precision-recall curve of 0.896. We developed a deep learning model with outstanding predictive power using simplified variables to effectively predict critical events while reducing the workload of medical staff. Nevertheless, because this was a single-center trial, no external validation was carried out, prompting further investigation.
Abstract Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to detect or prevent major events such as cardiopulmonary resuscitation, but previously developed tools are often complicated and time-consuming, rendering them impractical. To overcome this problem, we designed this study to create a deep learning prediction model that predicts critical events with simplified variables. This retrospective observational study included patients under the age of 18 who were admitted to the general ward of a tertiary children’s hospital between 2020 and 2022. A critical event was defined as cardiopulmonary resuscitation, unplanned transfer to the intensive care unit, or mortality. The vital signs measured during hospitalization, their measurement intervals, sex, and age were used to train a critical event prediction model. Age-specific z-scores were used to normalize the variability of the normal range by age. The entire dataset was classified into a training dataset and a test dataset at an 8:2 ratio, and model learning and testing were performed on each dataset. The predictive performance of the developed model showed excellent results, with an area under the receiver operating characteristics curve of 0.986 and an area under the precision-recall curve of 0.896. We developed a deep learning model with outstanding predictive power using simplified variables to effectively predict critical events while reducing the workload of medical staff. Nevertheless, because this was a single-center trial, no external validation was carried out, prompting further investigation.
ArticleNumber 4707
Author Jeon, Yonghyuk
Park, June Dong
Kim, You Sun
Jang, Wonjin
Lee, Bongjin
Author_xml – sequence: 1
  givenname: Yonghyuk
  surname: Jeon
  fullname: Jeon, Yonghyuk
  organization: Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 2
  givenname: You Sun
  surname: Kim
  fullname: Kim, You Sun
  organization: Department of Pediatrics, National Medical Center
– sequence: 3
  givenname: Wonjin
  surname: Jang
  fullname: Jang, Wonjin
  organization: Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 4
  givenname: June Dong
  surname: Park
  fullname: Park, June Dong
  organization: Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 5
  givenname: Bongjin
  surname: Lee
  fullname: Lee, Bongjin
  email: pedbjl@snu.ac.kr
  organization: Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Hospital, Innovative Medical Technology Research Institute, Seoul National University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38409469$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUnZgaW2v_gAtD4sbNKJ8zsDKmfjVp4kbXhBkuU15mYAReG_-99E2trQvZwL33nAOHnOfNUYgBmuYlwW8JZvJd5kQo2WLKWyEElS150pxQzEVLGaVHD87HzVnOO1yXoIoT9aw5ZpJjxTt10qSPcA1zXBcIBUWHDLIAK5rBpODDhJZoYUblyhS0JrB-LBmNyRc_mhlVaqh1pa11ZEryI1pN8YeusYsvBSwqEU0QIFXCjUk2v2ieOjNnOLvbT5sfnz99P__aXn77cnH-4bIduaKlHVivGHcDc45IMgyO404Z3sNIrJJYskFyavqO205JCUYOVjDaV8PYYUoUO20uNl0bzU6vyS8m_dLReH1oxDRpk6qRGTSWQuEOOB9szx0dDWUdkZwxB9QZPFSt95vWuh8WsGN1WP08En08Cf5KT_FaEyxVTwStCm_uFFL8uYdc9OLzCPNsAsR91lQxylnPSVehr_-B7uI-hfpXtygiO8EVrii6ocYUc07g7l9DsL6NiN4iomtE9CEimlTSq4c-7il_AlEBbAPkOgoTpL93_0f2N_UUyQM
Cites_doi 10.1136/adc.2010.187617
10.1016/j.aucc.2016.10.003
10.1016/j.pedn.2012.12.002
10.1016/j.resplu.2022.100354
10.1136/adc.2008.142026
10.1016/j.resuscitation.2014.04.009
10.1016/j.bj.2021.01.003
10.1186/cc7998
10.1001/jama.295.1.50
10.1093/pch/16.3.e18
10.1093/ije/dyq115
10.1007/s10822-020-00314-0
10.1016/j.pedn.2016.10.005
10.1111/acem.12514
10.1016/j.resuscitation.2008.09.019
10.1136/archdischild-2016-311088
10.1371/journal.pone.0264184
10.1016/j.heliyon.2022.e10955
10.1016/j.jcrc.2015.06.019
10.1177/0962280212473302
10.1136/bmjopen-2016-014497
10.5546/aap.2020.eng.399
10.1002/sim.1861
10.1016/j.jcrc.2006.06.007
10.1136/bmjopen-2018-022105
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-55528-1
DatabaseName Springer_OA刊
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database

MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 4707
ExternalDocumentID oai_doaj_org_article_085906e44bd74f2ca23618433fe2fa0b
10_1038_s41598_024_55528_1
38409469
Genre Journal Article
Observational Study
GrantInformation_xml – fundername: Department of Pediatrics Designated Fund at Seoul National University College of Medicine
  grantid: 800-20220390
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c492t-b37934fb3ff181bbf4069a47ec1d98083b842a764d6988ea8bd53273220f02193
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:13:41 EDT 2024
Tue Sep 17 21:28:45 EDT 2024
Fri Oct 25 04:12:01 EDT 2024
Sat Oct 26 15:30:33 EDT 2024
Fri Aug 23 03:15:05 EDT 2024
Sat Nov 02 12:29:50 EDT 2024
Fri Oct 11 20:56:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-b37934fb3ff181bbf4069a47ec1d98083b842a764d6988ea8bd53273220f02193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897152/
PMID 38409469
PQID 2931865490
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_085906e44bd74f2ca23618433fe2fa0b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10897152
proquest_miscellaneous_2932437416
proquest_journals_2931865490
crossref_primary_10_1038_s41598_024_55528_1
pubmed_primary_38409469
springer_journals_10_1038_s41598_024_55528_1
PublicationCentury 2000
PublicationDate 2024-02-27
PublicationDateYYYYMMDD 2024-02-27
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Pedregosa (CR24) 2011; 12
Ullah (CR29) 2022; 8
Park (CR16) 2022; 45
Olotu (CR2) 2009; 80
Rigby, Stasinopoulos (CR20) 2004; 23
Mandell (CR13) 2015; 30
Parshuram, Bayliss, Reimer, Middaugh, Blanchard (CR19) 2011; 16
Rigby, Stasinopoulos (CR21) 2014; 23
Nadkarni (CR1) 2006; 295
Parshuram, Hutchison, Middaugh (CR6) 2009; 13
Balwi, Yee, Thukiman, Haziqah (CR28) 2021; 13
McLellan, Gauvreau, Connor (CR11) 2017; 32
Gold, Mihalov, Cohen (CR14) 2014; 21
Chapman (CR9) 2017; 102
Robson, Cooper, Medicus, Quintero, Zuniga (CR12) 2013; 28
Elencwajg (CR8) 2020; 118
Paszke (CR25) 2019; 32
Shimoda-Sakano, Paiva, Schvartsman, Reis (CR3) 2023; 13
Trubey (CR10) 2019; 9
Edwards, Mason, Oliver, Powell (CR7) 2011; 96
Duncan, Hutchison, Parshuram (CR4) 2006; 21
Edwards, Powell, Mason, Oliver (CR18) 2009; 94
Hwang, Lee (CR17) 2022; 17
Cole, Donaldson, Ben-Shlomo (CR22) 2010; 39
Le Lagadec, Dwyer (CR27) 2017; 30
Lambert, Matthews, MacDonell, Fitzsimons (CR5) 2017; 7
Zhai (CR15) 2014; 85
Schmidt-Hieber (CR23) 2020; 48
Rodriguez-Perez, Bajorath (CR26) 2020; 34
ED Edwards (55528_CR7) 2011; 96
VM Nadkarni (55528_CR1) 2006; 295
CS Parshuram (55528_CR19) 2011; 16
F Pedregosa (55528_CR24) 2011; 12
TJ Cole (55528_CR22) 2010; 39
MKM Balwi (55528_CR28) 2021; 13
MA Robson (55528_CR12) 2013; 28
H Duncan (55528_CR4) 2006; 21
S Hwang (55528_CR17) 2022; 17
E Ullah (55528_CR29) 2022; 8
SJ Park (55528_CR16) 2022; 45
J Schmidt-Hieber (55528_CR23) 2020; 48
TM Shimoda-Sakano (55528_CR3) 2023; 13
R Trubey (55528_CR10) 2019; 9
RA Rigby (55528_CR20) 2004; 23
ED Edwards (55528_CR18) 2009; 94
DL Gold (55528_CR14) 2014; 21
MD Le Lagadec (55528_CR27) 2017; 30
RA Rigby (55528_CR21) 2014; 23
H Zhai (55528_CR15) 2014; 85
A Olotu (55528_CR2) 2009; 80
M Elencwajg (55528_CR8) 2020; 118
A Paszke (55528_CR25) 2019; 32
IM Mandell (55528_CR13) 2015; 30
V Lambert (55528_CR5) 2017; 7
CS Parshuram (55528_CR6) 2009; 13
MC McLellan (55528_CR11) 2017; 32
R Rodriguez-Perez (55528_CR26) 2020; 34
SM Chapman (55528_CR9) 2017; 102
References_xml – volume: 96
  start-page: 174
  year: 2011
  end-page: 179
  ident: CR7
  article-title: Cohort study to test the predictability of the Melbourne criteria for activation of the medical emergency team
  publication-title: Arch. Dis. Child
  doi: 10.1136/adc.2010.187617
  contributor:
    fullname: Powell
– volume: 13
  start-page: 2
  year: 2021
  ident: CR28
  article-title: The relationship between workload and burnout among the medical staff in hospital
  publication-title: Sains Humanika
  contributor:
    fullname: Haziqah
– volume: 30
  start-page: 211
  year: 2017
  end-page: 218
  ident: CR27
  article-title: Scoping review: The use of early warning systems for the identification of in-hospital patients at risk of deterioration
  publication-title: Aust. Crit. Care
  doi: 10.1016/j.aucc.2016.10.003
  contributor:
    fullname: Dwyer
– volume: 28
  start-page: e33
  year: 2013
  end-page: 41
  ident: CR12
  article-title: Comparison of three acute care pediatric early warning scoring tools
  publication-title: J. Pediatr. Nurs.
  doi: 10.1016/j.pedn.2012.12.002
  contributor:
    fullname: Zuniga
– volume: 13
  start-page: 100354
  year: 2023
  ident: CR3
  article-title: Factors associated with survival and neurologic outcome after in-hospital cardiac arrest in children: A cohort study
  publication-title: Resusc. Plus
  doi: 10.1016/j.resplu.2022.100354
  contributor:
    fullname: Reis
– volume: 94
  start-page: 602
  year: 2009
  end-page: 606
  ident: CR18
  article-title: Prospective cohort study to test the predictability of the Cardiff and Vale paediatric early warning system
  publication-title: Arch. Dis. Child
  doi: 10.1136/adc.2008.142026
  contributor:
    fullname: Oliver
– volume: 85
  start-page: 1065
  year: 2014
  end-page: 1071
  ident: CR15
  article-title: Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2014.04.009
  contributor:
    fullname: Zhai
– volume: 45
  start-page: 155
  year: 2022
  end-page: 168
  ident: CR16
  article-title: Development and validation of a deep-learning-based pediatric early warning system: A single-center study
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2021.01.003
  contributor:
    fullname: Park
– volume: 13
  start-page: R135
  year: 2009
  ident: CR6
  article-title: Development and initial validation of the bedside paediatric early warning system score
  publication-title: Crit. Care
  doi: 10.1186/cc7998
  contributor:
    fullname: Middaugh
– volume: 295
  start-page: 50
  year: 2006
  end-page: 57
  ident: CR1
  article-title: First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults
  publication-title: JAMA
  doi: 10.1001/jama.295.1.50
  contributor:
    fullname: Nadkarni
– volume: 16
  start-page: e18
  year: 2011
  end-page: 22
  ident: CR19
  article-title: Implementing the bedside paediatric early warning system in a community hospital: A prospective observational study
  publication-title: Paediatr. Child Health
  doi: 10.1093/pch/16.3.e18
  contributor:
    fullname: Blanchard
– volume: 39
  start-page: 1558
  year: 2010
  end-page: 1566
  ident: CR22
  article-title: SITAR—A useful instrument for growth curve analysis
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyq115
  contributor:
    fullname: Ben-Shlomo
– volume: 34
  start-page: 1013
  year: 2020
  end-page: 1026
  ident: CR26
  article-title: Interpretation of machine learning models using shapley values: Application to compound potency and multi-target activity predictions
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-020-00314-0
  contributor:
    fullname: Bajorath
– volume: 32
  start-page: 52
  year: 2017
  end-page: 58
  ident: CR11
  article-title: Validation of the children's hospital early warning system for critical deterioration recognition
  publication-title: J. Pediatr. Nurs.
  doi: 10.1016/j.pedn.2016.10.005
  contributor:
    fullname: Connor
– volume: 21
  start-page: 1249
  year: 2014
  end-page: 1256
  ident: CR14
  article-title: Evaluating the pediatric early warning score (PEWS) system for admitted patients in the pediatric emergency department
  publication-title: Acad. Emerg. Med.
  doi: 10.1111/acem.12514
  contributor:
    fullname: Cohen
– volume: 80
  start-page: 69
  year: 2009
  end-page: 72
  ident: CR2
  article-title: Characteristics and outcome of cardiopulmonary resuscitation in hospitalised African children
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2008.09.019
  contributor:
    fullname: Olotu
– volume: 102
  start-page: 487
  year: 2017
  end-page: 495
  ident: CR9
  article-title: ‘The score matters’: Wide variations in predictive performance of 18 paediatric track and trigger systems
  publication-title: Arch. Dis. Child
  doi: 10.1136/archdischild-2016-311088
  contributor:
    fullname: Chapman
– volume: 48
  start-page: 1875
  year: 2020
  end-page: 1897
  ident: CR23
  article-title: Nonparametric regression using deep neural networks with ReLU activation function
  publication-title: Ann. Stat.
  contributor:
    fullname: Schmidt-Hieber
– volume: 17
  start-page: e0264184
  year: 2022
  ident: CR17
  article-title: Machine learning-based prediction of critical illness in children visiting the emergency department
  publication-title: Plos One
  doi: 10.1371/journal.pone.0264184
  contributor:
    fullname: Lee
– volume: 32
  start-page: 32
  year: 2019
  ident: CR25
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Paszke
– volume: 8
  start-page: e10955
  year: 2022
  ident: CR29
  article-title: Workload involved in vital signs-based monitoring & responding to deteriorating patients: A single site experience from a regional New Zealand hospital
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e10955
  contributor:
    fullname: Ullah
– volume: 30
  start-page: 1090
  year: 2015
  end-page: 1095
  ident: CR13
  article-title: Pediatric early warning score and unplanned readmission to the pediatric intensive care unit
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2015.06.019
  contributor:
    fullname: Mandell
– volume: 23
  start-page: 318
  year: 2014
  end-page: 332
  ident: CR21
  article-title: Automatic smoothing parameter selection in GAMLSS with an application to centile estimation
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280212473302
  contributor:
    fullname: Stasinopoulos
– volume: 7
  start-page: e014497
  year: 2017
  ident: CR5
  article-title: Paediatric early warning systems for detecting and responding to clinical deterioration in children: A systematic review
  publication-title: Bmj Open
  doi: 10.1136/bmjopen-2016-014497
  contributor:
    fullname: Fitzsimons
– volume: 118
  start-page: 399
  year: 2020
  end-page: 404
  ident: CR8
  article-title: Usefulness of an early warning score as an early predictor of clinical deterioration in hospitalized children
  publication-title: Arch. Argent Pediatr.
  doi: 10.5546/aap.2020.eng.399
  contributor:
    fullname: Elencwajg
– volume: 23
  start-page: 3053
  year: 2004
  end-page: 3076
  ident: CR20
  article-title: Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution
  publication-title: Stat. Med.
  doi: 10.1002/sim.1861
  contributor:
    fullname: Stasinopoulos
– volume: 21
  start-page: 271
  year: 2006
  end-page: 278
  ident: CR4
  article-title: The pediatric early warning system score: A severity of illness score to predict urgent medical need in hospitalized children
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2006.06.007
  contributor:
    fullname: Parshuram
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR24
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– volume: 9
  start-page: e022105
  year: 2019
  ident: CR10
  article-title: Validity and effectiveness of paediatric early warning systems and track and trigger tools for identifying and reducing clinical deterioration in hospitalised children: A systematic review
  publication-title: Bmj Open
  doi: 10.1136/bmjopen-2018-022105
  contributor:
    fullname: Trubey
– volume: 13
  start-page: R135
  year: 2009
  ident: 55528_CR6
  publication-title: Crit. Care
  doi: 10.1186/cc7998
  contributor:
    fullname: CS Parshuram
– volume: 96
  start-page: 174
  year: 2011
  ident: 55528_CR7
  publication-title: Arch. Dis. Child
  doi: 10.1136/adc.2010.187617
  contributor:
    fullname: ED Edwards
– volume: 39
  start-page: 1558
  year: 2010
  ident: 55528_CR22
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyq115
  contributor:
    fullname: TJ Cole
– volume: 32
  start-page: 52
  year: 2017
  ident: 55528_CR11
  publication-title: J. Pediatr. Nurs.
  doi: 10.1016/j.pedn.2016.10.005
  contributor:
    fullname: MC McLellan
– volume: 13
  start-page: 2
  year: 2021
  ident: 55528_CR28
  publication-title: Sains Humanika
  contributor:
    fullname: MKM Balwi
– volume: 21
  start-page: 271
  year: 2006
  ident: 55528_CR4
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2006.06.007
  contributor:
    fullname: H Duncan
– volume: 17
  start-page: e0264184
  year: 2022
  ident: 55528_CR17
  publication-title: Plos One
  doi: 10.1371/journal.pone.0264184
  contributor:
    fullname: S Hwang
– volume: 94
  start-page: 602
  year: 2009
  ident: 55528_CR18
  publication-title: Arch. Dis. Child
  doi: 10.1136/adc.2008.142026
  contributor:
    fullname: ED Edwards
– volume: 21
  start-page: 1249
  year: 2014
  ident: 55528_CR14
  publication-title: Acad. Emerg. Med.
  doi: 10.1111/acem.12514
  contributor:
    fullname: DL Gold
– volume: 85
  start-page: 1065
  year: 2014
  ident: 55528_CR15
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2014.04.009
  contributor:
    fullname: H Zhai
– volume: 30
  start-page: 1090
  year: 2015
  ident: 55528_CR13
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2015.06.019
  contributor:
    fullname: IM Mandell
– volume: 80
  start-page: 69
  year: 2009
  ident: 55528_CR2
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2008.09.019
  contributor:
    fullname: A Olotu
– volume: 8
  start-page: e10955
  year: 2022
  ident: 55528_CR29
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e10955
  contributor:
    fullname: E Ullah
– volume: 48
  start-page: 1875
  year: 2020
  ident: 55528_CR23
  publication-title: Ann. Stat.
  contributor:
    fullname: J Schmidt-Hieber
– volume: 32
  start-page: 32
  year: 2019
  ident: 55528_CR25
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: A Paszke
– volume: 295
  start-page: 50
  year: 2006
  ident: 55528_CR1
  publication-title: JAMA
  doi: 10.1001/jama.295.1.50
  contributor:
    fullname: VM Nadkarni
– volume: 102
  start-page: 487
  year: 2017
  ident: 55528_CR9
  publication-title: Arch. Dis. Child
  doi: 10.1136/archdischild-2016-311088
  contributor:
    fullname: SM Chapman
– volume: 118
  start-page: 399
  year: 2020
  ident: 55528_CR8
  publication-title: Arch. Argent Pediatr.
  doi: 10.5546/aap.2020.eng.399
  contributor:
    fullname: M Elencwajg
– volume: 23
  start-page: 3053
  year: 2004
  ident: 55528_CR20
  publication-title: Stat. Med.
  doi: 10.1002/sim.1861
  contributor:
    fullname: RA Rigby
– volume: 30
  start-page: 211
  year: 2017
  ident: 55528_CR27
  publication-title: Aust. Crit. Care
  doi: 10.1016/j.aucc.2016.10.003
  contributor:
    fullname: MD Le Lagadec
– volume: 12
  start-page: 2825
  year: 2011
  ident: 55528_CR24
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: F Pedregosa
– volume: 28
  start-page: e33
  year: 2013
  ident: 55528_CR12
  publication-title: J. Pediatr. Nurs.
  doi: 10.1016/j.pedn.2012.12.002
  contributor:
    fullname: MA Robson
– volume: 45
  start-page: 155
  year: 2022
  ident: 55528_CR16
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2021.01.003
  contributor:
    fullname: SJ Park
– volume: 7
  start-page: e014497
  year: 2017
  ident: 55528_CR5
  publication-title: Bmj Open
  doi: 10.1136/bmjopen-2016-014497
  contributor:
    fullname: V Lambert
– volume: 23
  start-page: 318
  year: 2014
  ident: 55528_CR21
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280212473302
  contributor:
    fullname: RA Rigby
– volume: 13
  start-page: 100354
  year: 2023
  ident: 55528_CR3
  publication-title: Resusc. Plus
  doi: 10.1016/j.resplu.2022.100354
  contributor:
    fullname: TM Shimoda-Sakano
– volume: 9
  start-page: e022105
  year: 2019
  ident: 55528_CR10
  publication-title: Bmj Open
  doi: 10.1136/bmjopen-2018-022105
  contributor:
    fullname: R Trubey
– volume: 16
  start-page: e18
  year: 2011
  ident: 55528_CR19
  publication-title: Paediatr. Child Health
  doi: 10.1093/pch/16.3.e18
  contributor:
    fullname: CS Parshuram
– volume: 34
  start-page: 1013
  year: 2020
  ident: 55528_CR26
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-020-00314-0
  contributor:
    fullname: R Rodriguez-Perez
SSID ssj0000529419
Score 2.4542687
Snippet Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to detect or...
Abstract Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to...
Abstract Early detection of deteriorating patients is important to prevent life-threatening events and improve clinical outcomes. Efforts have been made to...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4707
SubjectTerms 692/308
692/499
Age
Cardiopulmonary resuscitation
Child
CPR
Datasets
Deep Learning
Hospitalization
Humanities and Social Sciences
Humans
Intensive Care Units
multidisciplinary
Observational studies
Patients
Patients' Rooms
Pediatrics
Prediction models
Retrospective Studies
ROC Curve
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivm1dJYI3bTadpNPJUcVlEfTkwt5C0p3s7sGeYbr34L-3KukZZ3zgxWsnDaEeyVdU1VcAr6U2ZrCG131MHAMUo-sQB18L1RuvAyJYTf3On7_os3P16aK92Bv1RTVhhR64CO6ECLi4jkqFoVNJ9J7YQoySMkWRPA_59uV2L5gqrN7CqsYuXTJcmpMJXyrqJhOqbttWYOh08BJlwv4_oczfiyV_yZjmh-j0HtxdECR7V05-H27F8QHcLjMlvz-EzV4ZEFsl5tkQ45ot0yEuWR59w-YrP7P1hrI088T6Zd4By3ROE_223o7wYAvz6sT88O16RoDK5hW7LGzVjGpup0dwfvrx64ezehmsUPfKirkOEr1SpSBTwgc-hETtr151sW9Ib0YGo4TvtBq0NSZ6E4ZWIs4RgifEBFY-hqNxNcanwGzXtNEnLTuiyUG5Np2XPA4xNR1eo6KCN1shu3Xhz3A57y2NKypxqBKXVeKaCt6THnY7ifs6f0CLcItFuH9ZRAXHWy26xSEnh6imMRqDYV7Bq90yuhLlR_wYVzd5D9EzIkSt4ElR-u4kMgfC2lZgDszh4KiHK-P1VabrbrghKaEo3m4t5-e5_i6LZ_9DFs_hjiCTpx787hiO5s1NfIEoag4vs8P8ABeJF5E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLanmmD2QkbhA1sR3bOVWAqCokOFFpb5ad2NseSNJNeuDfM-M4W5bXNU4kZx6eGc_MN4S84VLrttZF3vhQQICiZe58a3MmGm2lAw9WYr_zl6_y4lJ8XlWrdOE2prLK5UyMB3XbN3hHfgpmqdQSopnibLjJcWoUZlfTCI375EHJQHhBntVKbe9YMIslyjr1yhRcn45gr7CnjIm8qioGAdSOPYqw_X_zNf8smfwtbxrN0fk-eZz8SPp-ZvwBuee7J-ThPFnyx1Oy-aUYiPaBWtp6P9A0I2JN4wAcOl3ZiQ4bzNVMI23S1AMaQZ1G_GxYBnnQhL86Utt-v57ATaVTT9czZjXFytvxGbk8__Tt40WexivkjajZlDsOuimC4yGAmXcuYBOsFco3JXJPc6cFs0qKVtZae6tdW3HwdhgrAngGNX9O9rq-8y8JrVVZeRskVwiWA3QtleWFb30oFRymLCNvFyKbYUbRMDH7zbWZWWKAJSayxJQZ-YB82L6JCNjxQb9Zm6RQBoHZCumFcK0SgTUWUWS04Dx4FmzhMnK8cNEktRzNnRBl5PV2GRQKsyS28_1tfAdBGsFRzciLmenbnfAYDss6I3pHHHa2urvSXV9F0O6y0EglIMW7RXLu9vVvWhz-_zeOyCOGwow99uqY7E2bW38CXtLkXkVV-Ak_tA9o
  priority: 102
  providerName: ProQuest
– databaseName: Springer_OA刊
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERKXinfTFmQkbhCR2I7jHOmKqkKip1bqzbITu-2B7GqTHvrvO-N4t4SWA9fElqx5ZL7JeL4B-CyU1l2ji7z1ocAERavc-c7mXLbaKocIVlG_869TdXIuf15UF4kmh3phZvV7ob8NGGCoCYzLvKoqjhnPU3hGMZjGNCzUYvs_hSpWsmxSX8zjW2exJ1L0P4YrH16P_KtGGkPP8UvYTZiRfZ-U_Aqe-P41PJ-mSN6-gfUfF3_YMjDLOu9XLM2DuGRx2A0br-zIVmuqy4wDa9OEAxYJnAbattoM7WCJa3Vgtvt9PSIkZeOSXU781Ixu2Q5v4fz4x9niJE-jFPJWNnzMnUA_lMGJEDCkOxeo4dXK2rclaUoLpyW3tZKdarT2VruuEohsOC8CooBGvIOdftn7PWBNXVbeBiVqIsZBuZa1FYXvfChr_HDyDL5shGxWE2OGiZVuoc2kEoMqMVElpszgiPSwXUls1_EBGoFJzmOIhK1QXkrX1TLw1hJjjJZCBM-DLVwGhxstmuSCg0EcU2qF6W-Rwafta3QeqojY3i9v4hoiZERQmsH7Senbk4iY-qomAz0zh9lR52_666tI0F0WmqSEovi6sZz7c_1bFvv_t_wAXnAybuqvrw9hZ1zf-A-IkEb3MbrGHTHjCFg
  priority: 102
  providerName: Springer Nature
Title Development of a deep learning model that predicts critical events of pediatric patients admitted to general wards
URI https://link.springer.com/article/10.1038/s41598-024-55528-1
https://www.ncbi.nlm.nih.gov/pubmed/38409469
https://www.proquest.com/docview/2931865490
https://search.proquest.com/docview/2932437416
https://pubmed.ncbi.nlm.nih.gov/PMC10897152
https://doaj.org/article/085906e44bd74f2ca23618433fe2fa0b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7ajsFexn7PWxc02NvmxpZkWX5cQ0sZtJSxQt6EZEtpYLFN7D7sv99JtrNmP172GNshQt-d77vo7juAD0xIWRUyiUvrEkxQpIiNrXRMeSm1MMhghe93vrwSFzf8yzJbHoCYemFC0X5p1if1981Jvb4NtZXtppxPdWLz68tFmsgix8AzP4RDtNB7Ofqg6E0LnhZjh0zC5LzDKOU7ySiPsyyjmDbtRaEg1v83hvlnoeRvp6UhCJ0_gccjeySfh1U-hQNbP4OHwzzJH89he68EiDSOaFJZ25JxMsSKhLE3pL_VPWm3_oSm70g5zjogQcqp819rp_EdZFRd7YiuNuseySnpG7IalKqJr7ftXsDN-dm3xUU8DlWIS17QPjYMPZI7w5zD4G6M862vmue2TD1mkhnJqc4Fr0QhpdXSVBlDjkNp4pAPFOwlHNVNbV8D8RhY7QTLvUQO7muaa5bYyro0x1cojeDjtMmqHbQzVDjzZlINkCiERAVIVBrBqcdh96TXvQ4Xmu1KjegrL8eWCMu5qXLuaKm9dozkjDlLnU5MBMcTimp0xk4ho0mlwEQ4ieD97ja6kT8b0bVt7sIzXpoR6WkErwbQdythIQkWRQRyzxz2lrp_By03SHVPlhrBp8lyfq3r33vx5v9_6S08ot7Qfdd9fgxH_fbOvkPe1JsZOssyn8GD07Or66_4aSEWs_AfxCw40E_8yRtf
link.rule.ids 230,315,730,783,787,867,888,2109,12070,21402,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SZQwEjcIGpiO7ZzQoCoFmh7aqW9WXZib3sgCZv0wL9nxvFuWV7XOJGceXhmPDPfEPKaS63bWhd540MBAYqWufOtzZlotJUOPFiJ_c7HJ3JxJr4sq2W6cBtTWeXmTIwHdds3eEd-AGap1BKimeLd8D3HqVGYXU0jNK6TG4jDhdj5aqm2dyyYxRJlnXplCq4PRrBX2FPGRF5VFYMAasceRdj-v_maf5ZM_pY3jebo8C65k_xI-n5m_D1yzXf3yc15suSPB2T9SzEQ7QO1tPV-oGlGxIrGATh0OrcTHdaYq5lG2qSpBzSCOo342bAZ5EET_upIbfvtYgI3lU49Xc2Y1RQrb8eH5Ozw0-nHRZ7GK-SNqNmUOw66KYLjIYCZdy5gE6wVyjclck9zpwWzSopW1lp7q11bcfB2GCsCeAY1f0T2ur7zTwitVVl5GyRXCJYDdC2V5YVvfSgVHKYsI282RDbDjKJhYvabazOzxABLTGSJKTPyAfmwfRMRsOODfr0ySaEMArMV0gvhWiUCayyiyGiQguBZsIXLyP6Giyap5WiuhCgjr7bLoFCYJbGd7y_jOwjSCI5qRh7PTN_uhMdwWNYZ0TvisLPV3ZXu4jyCdpeFRioBKd5uJOdqX_-mxdP__8ZLcmtxenxkjj6ffH1GbjMUbOy3V_tkb1pf-ufgMU3uRVSLny0dElg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMQF8SwpBYzEDaJNbMd2TojXqrwqDlTam2Un9rYHkmWTHvrvmXG8W5bXNXYUZx6esWfmG0Kec6l1W-sib3wo4ICiZe58a3MmGm2lAw9WYr3zl2N5dCI-LqpFyn8aUlrlZk-MG3XbN3hHPgOzVGoJp5liFlJaxNd381erHzl2kMJIa2qncZVcU_BNVFK1UNv7FoxoibJOdTMF17MBbBfWlzGRV1XF4DC1Y5sihP_f_M4_0yd_i6FG0zS_TW4ln5K-noTgDrniu7vk-tRl8uIeWf-SGET7QC1tvV_R1C9iSWMzHDqe2pGu1hi3GQfapA4INAI8DfjaatPUgyYs1oHa9vvZCC4rHXu6nPCrKWbhDvfJyfz9t7dHeWq1kDeiZmPuOOipCI6HACbfuYAFsVYo35TISc2dFswqKVpZa-2tdm3FwfNhrAjgJdT8Adnr-s4_JLRWZeVtkFwhcA7QtVSWF771oVSwsbKMvNgQ2awmRA0TI-Fcm4klBlhiIktMmZE3yIftTETDjg_69dIk5TII0lZIL4RrlQissYgoowXnwbNgC5eRww0XTVLRwVwKVEaebYdBuTBiYjvfn8c5CNgITmtG9iemb1fC49FY1hnRO-Kws9Tdke7sNAJ4l4VGKgEpXm4k53Jd_6bFwf9_4ym5ARphPn84_vSI3GQo11h6rw7J3rg-94_BeRrdk6gVPwEtvRaN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep+learning+model+that+predicts+critical+events+of+pediatric+patients+admitted+to+general+wards&rft.jtitle=Scientific+reports&rft.au=Yonghyuk+Jeon&rft.au=You+Sun+Kim&rft.au=Wonjin+Jang&rft.au=June+Dong+Park&rft.date=2024-02-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41598-024-55528-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_085906e44bd74f2ca23618433fe2fa0b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon