GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. Th...
Saved in:
Published in | Frontiers in big data Vol. 3; p. 604083 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers
14.01.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution. |
---|---|
AbstractList | Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution. |
Author | Knoepfel, Kyle Wang, Michael Hawks, Benjamin Holzman, Burt Harris, Philip Pedro, Kevin Tran, Nhan Krupa, Jeffrey Flechas, Maria Acosta Yang, Tingjun |
AuthorAffiliation | 1 Fermi National Accelerator Laboratory, Batavia , IL , United States 3 Northwestern University, Evanston , IL , United States 2 Massachusetts Institute of Technology, Cambridge , MA , United States |
AuthorAffiliation_xml | – name: 1 Fermi National Accelerator Laboratory, Batavia , IL , United States – name: 2 Massachusetts Institute of Technology, Cambridge , MA , United States – name: 3 Northwestern University, Evanston , IL , United States |
Author_xml | – sequence: 1 givenname: Michael surname: Wang fullname: Wang, Michael organization: Fermi National Accelerator Laboratory, Batavia, IL, United States – sequence: 2 givenname: Tingjun surname: Yang fullname: Yang, Tingjun organization: Fermi National Accelerator Laboratory, Batavia, IL, United States – sequence: 3 givenname: Maria Acosta surname: Flechas fullname: Flechas, Maria Acosta organization: Fermi National Accelerator Laboratory, Batavia, IL, United States – sequence: 4 givenname: Philip surname: Harris fullname: Harris, Philip organization: Massachusetts Institute of Technology, Cambridge, MA, United States – sequence: 5 givenname: Benjamin surname: Hawks fullname: Hawks, Benjamin organization: Fermi National Accelerator Laboratory, Batavia, IL, United States – sequence: 6 givenname: Burt surname: Holzman fullname: Holzman, Burt organization: Fermi National Accelerator Laboratory, Batavia, IL, United States – sequence: 7 givenname: Kyle surname: Knoepfel fullname: Knoepfel, Kyle organization: Fermi National Accelerator Laboratory, Batavia, IL, United States – sequence: 8 givenname: Jeffrey surname: Krupa fullname: Krupa, Jeffrey organization: Massachusetts Institute of Technology, Cambridge, MA, United States – sequence: 9 givenname: Kevin surname: Pedro fullname: Pedro, Kevin organization: Fermi National Accelerator Laboratory, Batavia, IL, United States – sequence: 10 givenname: Nhan surname: Tran fullname: Tran, Nhan organization: Northwestern University, Evanston, IL, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33693426$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1685025$$D View this record in Osti.gov |
BookMark | eNpVUk1vEzEQXaEiWkp_ABe04sRlgz931xekKiolUgpIUIkLsma948RVYgfbqeDf43Tbqj15bL958_He6-rIB49V9ZaSGee9-mhHyDBjhJFZSwTp-YvqhLVMNIqoX0dP4uPqLKUbQgiTRFLKX1XHnLeKC9aeVL8vv18358bgBiNkHOsrMGvnsV4iRO_8ql54ixG9wRpSDfUPjLeuXGyI9Txsd_t8ADlff8V9js6H-uLvDqPbos_pTfXSwibh2f15Wl1_vvg5_9Isv10u5ufLxgjFcjNQiYpbsILZQdIRmDE9QulWomAg-lZIsAyJEmI0kio2GADSjbaT0hLBT6vFxDsGuNG7Uh3iPx3A6buHEFcaYnZmg3rktlO9QOBlP5KhIh0ZVW_arpVyaGXh-jRx7fbDFkdT5oiweUb6_Me7tV6FW90pThU5ELyfCELKTifjMpq1Cd6jyZq2vSxCFNCH-yox_NljynrrUlFhAx7DPumiFeEdlUwVKJ2gJoaUItrHXijRByvoOyvogxX0ZIWS8-7pEI8ZD8Lz_zMSsdw |
CitedBy_id | crossref_primary_10_1002_cpe_8116 crossref_primary_10_1007_s41781_023_00097_7 crossref_primary_10_3389_fdata_2022_787421 crossref_primary_10_1016_j_cageo_2024_105518 crossref_primary_10_1038_s41550_022_01651_w crossref_primary_10_1088_2632_2153_abec21 crossref_primary_10_1007_s41781_021_00073_z crossref_primary_10_1140_epjc_s10052_022_10791_2 crossref_primary_10_3390_mi14050897 crossref_primary_10_1007_s41781_023_00101_0 crossref_primary_10_1038_s42254_022_00455_1 crossref_primary_10_1051_epjconf_202125103029 |
Cites_doi | 10.1051/epjconf/202024505009 10.1103/PhysRevD.102.092003 10.1007/s41781-020-00039-7 10.1088/1748-0221/11/09/P09001 10.1088/1748-0221/15/12/P12004 10.1088/1742-6596/888/1/012038 10.1007/s41781-019-0027-2 10.1088/0370-1298/63/5/311 10.1016/j.ppnp.2015.05.002 10.1063/1.3480478 10.1109/CVPR.2015.7298594 10.1103/PhysRevD.99.092001 10.1109/MICRO.2016.7783710 10.1007/978-3-030-50743-5_2 10.1088/1748-0221/12/02/P02017 10.1016/j.ppnp.2007.10.001 10.1088/1742-6596/898/4/042057 10.1146/annurev-nucl-102711-095006 10.1051/epjconf/202024510005 10.2172/935497 10.1088/1742-6596/718/6/062032 10.1109/CVPR.2016.90 10.1103/PhysRevLett.123.131803 10.1103/PhysRevD.102.012005 10.1088/1748-0221/12/03/P03011 10.1109/CVPR.2018.00745 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran. Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran. 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran |
Copyright_xml | – notice: Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran. – notice: Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran. 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran |
CorporateAuthor | Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) |
CorporateAuthor_xml | – name: Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) |
DBID | NPM AAYXX CITATION 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.3389/fdata.2020.604083 |
DatabaseName | PubMed CrossRef MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Wang et al |
EISSN | 2624-909X |
EndPage | 604083 |
ExternalDocumentID | oai_doaj_org_article_d3f7984ea362452e9070d98c67655b65 1685025 10_3389_fdata_2020_604083 33693426 |
Genre | Journal Article |
GroupedDBID | 9T4 AAFWJ ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ M~E NPM OK1 PGMZT RPM AAYXX CITATION 7X8 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c492t-b15e93faf42fb51da2cc8ea0515e42a48645af2e0944dc5192bcaa07df755f043 |
IEDL.DBID | RPM |
ISSN | 2624-909X |
IngestDate | Tue Oct 22 15:16:26 EDT 2024 Tue Sep 17 21:19:02 EDT 2024 Mon Jul 10 02:35:01 EDT 2023 Sat Aug 17 02:28:49 EDT 2024 Fri Aug 23 01:39:42 EDT 2024 Sat Sep 28 08:32:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | cloud computing (SaaS) heterogeneous (CPU+GPU) computing particle physics machine learning GPU (graphics processing unit) |
Language | English |
License | Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-b15e93faf42fb51da2cc8ea0515e42a48645af2e0944dc5192bcaa07df755f043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-07CH11359 USDOE Office of Science (SC), High Energy Physics (HEP) FERMILAB-PUB-20-428-ND-SCD; arXiv:2009.04509 Edited by: Daniele D’Agostino, National Research Council (CNR), Italy This article was submitted to Big Data and AI in High Energy Physics, a section of the journal Frontiers in Big Data Reviewed by: Alexander Radovic, Borealis AI, Canada Anushree Ghosh, University of Padua, Italy |
ORCID | 0000000231909941 0000000322609151 0000000284406854 0000000247139646 0000000157000288 0000000152356314 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931905/ |
PMID | 33693426 |
PQID | 2500371529 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3f7984ea362452e9070d98c67655b65 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7931905 osti_scitechconnect_1685025 proquest_miscellaneous_2500371529 crossref_primary_10_3389_fdata_2020_604083 pubmed_primary_33693426 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-14 |
PublicationDateYYYYMMDD | 2021-01-14 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: United States |
PublicationTitle | Frontiers in big data |
PublicationTitleAlternate | Front Big Data |
PublicationYear | 2021 |
Publisher | Frontiers Frontiers Media S.A |
Publisher_xml | – name: Frontiers – name: Frontiers Media S.A |
References | Sfiligoi (B36) 2020; 12151 Kudryavtsev (B11) 2016; 718 Duarte (B10) 2019; 3 Acciarri (B27); 12 Coelho (B8) 2020 (B22) 2020 He (B19) 2016 Aurisano (B3) 2016; 11 Michel (B25) 1950; 63 Graham (B17) 2017 Adams (B28) 2019; 99 Abi (B2) 2020; 15 Dominé (B9) 2020; 102 Qian (B34) 2015; 83 Abi (B12) Rohr (B40) 2019 Marshall (B24) 2013; 305 Caulfield (B7) 2016 Krupa (B23) 2020 Nunokawa (B30) 2008; 60 B31 Scholberg (B35) 2012; 62 B14 B15 Capozzi (B6) 2019; 123 B39 Ayres (B4) 2007 Halzen (B18) 2010; 81 Pedro (B32) 2019 Aaij (B1) 2020; 4 Snider (B37) 2017; 898 Nvidia (B29) 2019 Hu (B21) 2018 Acciarri (B26); 12 Pietropaolo (B33) 2017; 888 Abi (B13) Heck (B20) 1998 Bocci (B5) 2020; 5009 Google (B16) 2020 Szegedy (B38) 2015 |
References_xml | – year: 1998 ident: B20 article-title: CORSIKA: a Monte Carlo code to simulate extensive air showers publication-title: Tech. Rep contributor: fullname: Heck – ident: B14 – volume: 5009 year: 2020 ident: B5 article-title: Bringing heterogeneity to the CMS software framework doi: 10.1051/epjconf/202024505009 contributor: fullname: Bocci – ident: B12 article-title: Neutrino interaction classification with a convolutional neural network in the DUNE far detector doi: 10.1103/PhysRevD.102.092003 contributor: fullname: Abi – year: 2020 ident: B23 article-title: GPU coprocessors as a service for deep learning inference in high energy physics contributor: fullname: Krupa – volume-title: Triton inference server year: 2019 ident: B29 contributor: fullname: Nvidia – volume: 4 start-page: 7 year: 2020 ident: B1 article-title: Allen: a high level trigger on GPUs for LHCb publication-title: Comput. Softw. Big Sci doi: 10.1007/s41781-020-00039-7 contributor: fullname: Aaij – volume: 11 start-page: P09001 year: 2016 ident: B3 article-title: A convolutional neural network neutrino event classifier publication-title: J. Inst. Met doi: 10.1088/1748-0221/11/09/P09001 contributor: fullname: Aurisano – year: 2020 ident: B8 article-title: Ultra low-latency, low-area inference accelerators using heterogeneous deep quantization with QKeras and hls4ml contributor: fullname: Coelho – ident: B13 article-title: First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform doi: 10.1088/1748-0221/15/12/P12004 contributor: fullname: Abi – volume: 888 start-page: 012038 year: 2017 ident: B33 article-title: Review of liquid-argon detectors development at the CERN neutrino platform publication-title: J. Phys. Conf. Ser doi: 10.1088/1742-6596/888/1/012038 contributor: fullname: Pietropaolo – volume: 3 start-page: 13 year: 2019 ident: B10 article-title: FPGA-accelerated machine learning inference as a service for particle physics computing publication-title: Comput. Softw. Big Sci doi: 10.1007/s41781-019-0027-2 contributor: fullname: Duarte – volume: 63 start-page: 514 year: 1950 ident: B25 article-title: Interaction between four half-spin particles and the decay of the μ-meson publication-title: Proc. Phys. Soc doi: 10.1088/0370-1298/63/5/311 contributor: fullname: Michel – ident: B31 – volume: 83 start-page: 1 year: 2015 ident: B34 article-title: Neutrino mass hierarchy publication-title: Prog. Part. Nucl. Phys doi: 10.1016/j.ppnp.2015.05.002 contributor: fullname: Qian – volume: 81 start-page: 081101 year: 2010 ident: B18 article-title: IceCube: an instrument for neutrino astronomy publication-title: Rev. Sci. Instrum doi: 10.1063/1.3480478 contributor: fullname: Halzen – volume: 15 start-page: T08008 year: 2020 ident: B2 article-title: Deep underground neutrino experiment (DUNE), far detector technical design report, volume I: introduction to DUNE publication-title: J. Inst. Met contributor: fullname: Abi – year: 2015 ident: B38 article-title: Going deeper with convolutions doi: 10.1109/CVPR.2015.7298594 contributor: fullname: Szegedy – volume: 99 start-page: 092001 year: 2019 ident: B28 article-title: Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.092001 contributor: fullname: Adams – year: 2016 ident: B7 article-title: A cloud-scale acceleration architecture doi: 10.1109/MICRO.2016.7783710 contributor: fullname: Caulfield – volume: 12151 start-page: 18 year: 2020 ident: B36 article-title: Running a pre-exascale, geographically distributed, multi-cloud scientific simulation publication-title: High Performance Computing doi: 10.1007/978-3-030-50743-5_2 contributor: fullname: Sfiligoi – volume-title: Compute Engine Documentation - machine types year: 2020 ident: B16 contributor: fullname: Google – volume: 12 start-page: P02017 ident: B27 article-title: Design and construction of the MicroBooNE detector publication-title: J. Inst. Met doi: 10.1088/1748-0221/12/02/P02017 contributor: fullname: Acciarri – volume: 305 year: 2013 ident: B24 article-title: Pandora particle flow algorithm contributor: fullname: Marshall – volume: 60 start-page: 338 year: 2008 ident: B30 article-title: CP violation and neutrino oscillations publication-title: Prog. Part. Nucl. Phys doi: 10.1016/j.ppnp.2007.10.001 contributor: fullname: Nunokawa – volume: 898 start-page: 042057 year: 2017 ident: B37 article-title: LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors publication-title: J. Phys. Conf. Ser doi: 10.1088/1742-6596/898/4/042057 contributor: fullname: Snider – volume-title: SonicCMS year: 2019 ident: B32 contributor: fullname: Pedro – volume: 62 start-page: 81 year: 2012 ident: B35 article-title: Supernova neutrino detection publication-title: Ann. Rev. Nucl. Part. Sci doi: 10.1146/annurev-nucl-102711-095006 contributor: fullname: Scholberg – year: 2019 ident: B40 article-title: GPU-based reconstruction and data compression at ALICE during LHC Run 3, in 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019). EPJ Web Conf. 245, 10005 doi: 10.1051/epjconf/202024510005 contributor: fullname: Rohr – year: 2007 ident: B4 article-title: The NOvA technical design report doi: 10.2172/935497 contributor: fullname: Ayres – volume: 718 start-page: 062032 year: 2016 ident: B11 article-title: Underground physics with DUNE publication-title: J. Phys. Conf. Ser doi: 10.1088/1742-6596/718/6/062032 contributor: fullname: Kudryavtsev – year: 2016 ident: B19 article-title: Deep residual learning for image recognition doi: 10.1109/CVPR.2016.90 contributor: fullname: He – volume: 123 start-page: 131803 year: 2019 ident: B6 article-title: DUNE as the next-generation solar neutrino experiment publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.123.131803 contributor: fullname: Capozzi – volume: 102 start-page: 012005 year: 2020 ident: B9 article-title: Scalable deep convolutional neural networks for sparse, locally dense liquid argon time projection chamber data publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.012005 contributor: fullname: Dominé – year: 2017 ident: B17 article-title: Submanifold sparse convolutional networks contributor: fullname: Graham – ident: B15 – volume: 12 start-page: P03011 ident: B26 article-title: Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber publication-title: J. Inst. Met doi: 10.1088/1748-0221/12/03/P03011 contributor: fullname: Acciarri – volume-title: The Fermilab Hierarchical Configuration Language ident: B39 – year: 2018 ident: B21 article-title: Squeeze-and-excitation networks doi: 10.1109/CVPR.2018.00745 contributor: fullname: Hu – volume-title: Concepts - workloads - Pods year: 2020 ident: B22 |
SSID | ssj0002505113 |
Score | 2.3329127 |
Snippet | Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These... |
SourceID | doaj pubmedcentral osti proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 604083 |
SubjectTerms | Big Data cloud computing (SaaS) GPU (graphics processing unit) heterogeneous (CPU+GPU) computing machine learning particle physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1x4P0ILMhInpFDH8SM-tqilILXiwEq9IMse29BLtmK3_5-ZOLvaRUhcOEVKosjxN56ZTx5_w9g7a5IEOqKcNMhWmQBtzKK0MisQ1pVoFR0UvrwyFwv15Vpf77T6opqwKg9cJ-449cW6QeWAnlZpmZHMieQGMNZoHU1VLxVuh0yRD6bA3nV93cZEFuaOC1VcIh-U4oNBwx36vUA06fXjZYnr6m-55p8lkzsx6PwRezAnj_ykDvoxu5fHJ-zhpjEDn9fpU_b909dFewKAIYWUIBK_nEomM5_VVH_wz5tzfjyseOCzx-CYwfL6OXrpZuRXmdT6xyU_23YCWD1ji_Ozbx8v2rmPQgvKyXUbO51dX0JRskTdpSABhhyou0tWMqjBKB2KzMj0VAJM6WSEEIRNxWpdhOqfs4NxOeaXjGtrh5xkjMqAshac0AWiQzNwUSFzatj7zaT62yqX4ZFmEAJ-QsATAr4i0LBTmvbti6R0Pd1A_P2Mv_8X_g07JNA8JgykegtUHgRr35lBoxU07O0GS4_rhjZDwpiXdyuPFkJqhVq6hr2o2G4H0vfG9Zi6NMzuob430v0n483PSZsb3R1avn71P37tkN2XVEEjurZTR-xg_esuv8YUaB3fTNb-GzV3A-g priority: 102 providerName: Directory of Open Access Journals |
Title | GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33693426 https://search.proquest.com/docview/2500371529 https://www.osti.gov/servlets/purl/1685025 https://pubmed.ncbi.nlm.nih.gov/PMC7931905 https://doaj.org/article/d3f7984ea362452e9070d98c67655b65 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SnHrp--EmDSr0VPCuLethHdOQNC1syKELuRQhyVK6kHhDdvP_M-PHslt66slgy0bo-6SZsUbfAHzRquGBjig3MvBcKBdyH4uU8yhCoU3yWtBB4dmlupiLn9fyeg_keBamS9oPfjFpb-8m7eJPl1t5fxemY57Y9Gp2ipzCz8vpPuwjQbdCdFp-yaaXZdXvYGIAZqaJki0xFOTFRCFna6qdU1XKVIIkFbbMUafaj5clzq5_eZx_J05uWaLzl_B8cCHZSd_VV7AX29fwYizPwIbZ-gZ-f7-a5ychoGEhPYiGzbrEycgGTdUb9mM87cfcijk2rBsM_VjWf44aLVp2GUmzv12ys009gNVbmJ-f_Tq9yIdqCnkQhq9zX8poquSS4MnLsnE8hDo6qvESBXeiVkK6xCPGe6IJ6NhxH5wrdJO0lKkQ1Ts4aJdt_ABMal3HhnsvVBBaB8QiBW-QDMYLjJ8y-DoOqr3vRTMsBhsEhu3AsASG7cHI4BsN-6Yh6V13N5YPN3ZA3TZV0qYW0aG9FZJHDOmLxtRBaSWlVzKDQwLNottA2reBkoTC2paqlkiIDD6PWFqcPbQl4tq4fFxZJAtpFkpuMnjfY7vpyEiRDPQO6js93X2ChO0UugeCfvzvNw_hGafkmaLMS3EEB-uHx_gJvZ-1P-7-Ghx3nH8CbQcGig |
link.rule.ids | 230,315,730,783,787,867,888,2109,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALb0ooDyNxQspu4viRHEvVsoXuqoeu1AuybMcuK9Fs1d3-f2byWO0iTpwiJY5l-fvsmZHH3wB81qrmnq4o19LzVCjrUxeymPIgfKar6LSgi8LTmZrMxfcrebUHcrgL0ybte7cYNb9vRs3iV5tbeXvjx0Oe2Phieoycwu7l-AE8xPWaia0gnTZgsup5XnRnmBiCVeNI6ZYYDPJspJC1JVXPKQpVFYJEFbYMUqvbj48lrq9_-Zx_p05u2aLTZ_CkdyLZUTfY57AXmhfwdCjQwPr1-hJ-fruYp0feo2khRYiaTdvUycB6VdVrdjbc92N2xSzrdw6GnizruqNGi4bNAqn2N0t2sqkIsHoF89OTy-NJ2tdTSL2o-Dp1uQxVEW0UPDqZ15Z7XwZLVV6C4FaUSkgbecCIT9QeXTvuvLWZrqOWMmaieA37zbIJb4BJrctQc-eE8kJrj2hE7yqkQ-UERlAJfBkm1dx2shkGww0Cw7RgGALDdGAk8JWmfdOQFK_bF8u7a9Pjbuoi6qoUwaLFFZIHDOqzuiq90kpKp2QChwSaQceB1G89pQn5tclVKZEQCXwasDS4fuhQxDZheb8ySBZSLZS8SuCgw3YzkIEiCegd1HdGuvsFKdtqdPcUffvff36ER5PL6bk5P5v9OITHnFJpsjzNxTvYX9_dh_foC63dh5b5fwAw_gjr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgL5VnS8jASJ6TsJo4f8bGULi2wqz2wUi_Ish27rESTVXf7_5nJY7WLOHGKlDiW5e-zZ0Yef0PIByUr5vGKciU8S7m0PnUhiykL3GdKR6c4XhSezuTFgn-9Elc7pb7apH3vlqP6982oXv5qcytXN3485ImN59Mz4BR0L8arKo7vkwewZjO5E6jjJoyWPc-L7hwTwjA9jphyCQEhy0YSmFtiBZ2ikLrgKKywY5Ra7X54NLDG_uV3_p0-uWOPJk_I496RpKfdgJ-Se6F-Rg6HIg20X7PPyc8v80V66j2YF1SFqOi0TZ8MtFdWvaaXw50_atfU0n73oODN0q47bLSs6Sygcn_d0PNtVYD1C7KYnP84u0j7mgqp55ptUpeLoItoI2fRibyyzPsyWKz0EjizvJRc2MgCRH288uDeMeetzVQVlRAx48VLclA3dXhFqFCqDBVzjkvPlfKASPROAyW04xBFJeTjMKlm1UlnGAg5EAzTgmEQDNOBkZBPOO3bhqh63b5obq9Nj72piqh0yYMFq8sFCxDYZ5UuvVRSCCdFQk4QNAPOAyrgekwV8huTy1IAIRLyfsDSwBrCgxFbh-ZubYAsqFwomE7IUYftdiADRRKi9lDfG-n-F6Btq9Pd0_T4v_98Rx7OP0_M98vZtxPyiGE2TZanOX9NDja3d-ENuEMb97Yl_h_6xAn- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU-Accelerated+Machine+Learning+Inference+as+a+Service+for+Computing+in+Neutrino+Experiments&rft.jtitle=Frontiers+in+big+data&rft.au=Wang%2C+Michael&rft.au=Yang%2C+Tingjun&rft.au=Flechas%2C+Maria+Acosta&rft.au=Harris%2C+Philip&rft.date=2021-01-14&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-909X&rft.volume=3&rft_id=info:doi/10.3389%2Ffdata.2020.604083&rft_id=info%3Apmid%2F33693426&rft.externalDBID=PMC7931905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-909X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-909X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-909X&client=summon |