GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments

Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. Th...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in big data Vol. 3; p. 604083
Main Authors Wang, Michael, Yang, Tingjun, Flechas, Maria Acosta, Harris, Philip, Hawks, Benjamin, Holzman, Burt, Knoepfel, Kyle, Krupa, Jeffrey, Pedro, Kevin, Tran, Nhan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers 14.01.2021
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution.
AbstractList Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution.
Author Knoepfel, Kyle
Wang, Michael
Hawks, Benjamin
Holzman, Burt
Harris, Philip
Pedro, Kevin
Tran, Nhan
Krupa, Jeffrey
Flechas, Maria Acosta
Yang, Tingjun
AuthorAffiliation 1 Fermi National Accelerator Laboratory, Batavia , IL , United States
3 Northwestern University, Evanston , IL , United States
2 Massachusetts Institute of Technology, Cambridge , MA , United States
AuthorAffiliation_xml – name: 1 Fermi National Accelerator Laboratory, Batavia , IL , United States
– name: 2 Massachusetts Institute of Technology, Cambridge , MA , United States
– name: 3 Northwestern University, Evanston , IL , United States
Author_xml – sequence: 1
  givenname: Michael
  surname: Wang
  fullname: Wang, Michael
  organization: Fermi National Accelerator Laboratory, Batavia, IL, United States
– sequence: 2
  givenname: Tingjun
  surname: Yang
  fullname: Yang, Tingjun
  organization: Fermi National Accelerator Laboratory, Batavia, IL, United States
– sequence: 3
  givenname: Maria Acosta
  surname: Flechas
  fullname: Flechas, Maria Acosta
  organization: Fermi National Accelerator Laboratory, Batavia, IL, United States
– sequence: 4
  givenname: Philip
  surname: Harris
  fullname: Harris, Philip
  organization: Massachusetts Institute of Technology, Cambridge, MA, United States
– sequence: 5
  givenname: Benjamin
  surname: Hawks
  fullname: Hawks, Benjamin
  organization: Fermi National Accelerator Laboratory, Batavia, IL, United States
– sequence: 6
  givenname: Burt
  surname: Holzman
  fullname: Holzman, Burt
  organization: Fermi National Accelerator Laboratory, Batavia, IL, United States
– sequence: 7
  givenname: Kyle
  surname: Knoepfel
  fullname: Knoepfel, Kyle
  organization: Fermi National Accelerator Laboratory, Batavia, IL, United States
– sequence: 8
  givenname: Jeffrey
  surname: Krupa
  fullname: Krupa, Jeffrey
  organization: Massachusetts Institute of Technology, Cambridge, MA, United States
– sequence: 9
  givenname: Kevin
  surname: Pedro
  fullname: Pedro, Kevin
  organization: Fermi National Accelerator Laboratory, Batavia, IL, United States
– sequence: 10
  givenname: Nhan
  surname: Tran
  fullname: Tran, Nhan
  organization: Northwestern University, Evanston, IL, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33693426$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1685025$$D View this record in Osti.gov
BookMark eNpVUk1vEzEQXaEiWkp_ABe04sRlgz931xekKiolUgpIUIkLsma948RVYgfbqeDf43Tbqj15bL958_He6-rIB49V9ZaSGee9-mhHyDBjhJFZSwTp-YvqhLVMNIqoX0dP4uPqLKUbQgiTRFLKX1XHnLeKC9aeVL8vv18358bgBiNkHOsrMGvnsV4iRO_8ql54ixG9wRpSDfUPjLeuXGyI9Txsd_t8ADlff8V9js6H-uLvDqPbos_pTfXSwibh2f15Wl1_vvg5_9Isv10u5ufLxgjFcjNQiYpbsILZQdIRmDE9QulWomAg-lZIsAyJEmI0kio2GADSjbaT0hLBT6vFxDsGuNG7Uh3iPx3A6buHEFcaYnZmg3rktlO9QOBlP5KhIh0ZVW_arpVyaGXh-jRx7fbDFkdT5oiweUb6_Me7tV6FW90pThU5ELyfCELKTifjMpq1Cd6jyZq2vSxCFNCH-yox_NljynrrUlFhAx7DPumiFeEdlUwVKJ2gJoaUItrHXijRByvoOyvogxX0ZIWS8-7pEI8ZD8Lz_zMSsdw
CitedBy_id crossref_primary_10_1002_cpe_8116
crossref_primary_10_1007_s41781_023_00097_7
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1016_j_cageo_2024_105518
crossref_primary_10_1038_s41550_022_01651_w
crossref_primary_10_1088_2632_2153_abec21
crossref_primary_10_1007_s41781_021_00073_z
crossref_primary_10_1140_epjc_s10052_022_10791_2
crossref_primary_10_3390_mi14050897
crossref_primary_10_1007_s41781_023_00101_0
crossref_primary_10_1038_s42254_022_00455_1
crossref_primary_10_1051_epjconf_202125103029
Cites_doi 10.1051/epjconf/202024505009
10.1103/PhysRevD.102.092003
10.1007/s41781-020-00039-7
10.1088/1748-0221/11/09/P09001
10.1088/1748-0221/15/12/P12004
10.1088/1742-6596/888/1/012038
10.1007/s41781-019-0027-2
10.1088/0370-1298/63/5/311
10.1016/j.ppnp.2015.05.002
10.1063/1.3480478
10.1109/CVPR.2015.7298594
10.1103/PhysRevD.99.092001
10.1109/MICRO.2016.7783710
10.1007/978-3-030-50743-5_2
10.1088/1748-0221/12/02/P02017
10.1016/j.ppnp.2007.10.001
10.1088/1742-6596/898/4/042057
10.1146/annurev-nucl-102711-095006
10.1051/epjconf/202024510005
10.2172/935497
10.1088/1742-6596/718/6/062032
10.1109/CVPR.2016.90
10.1103/PhysRevLett.123.131803
10.1103/PhysRevD.102.012005
10.1088/1748-0221/12/03/P03011
10.1109/CVPR.2018.00745
ContentType Journal Article
Copyright Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran.
Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran. 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran
Copyright_xml – notice: Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran.
– notice: Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran. 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran
CorporateAuthor Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
CorporateAuthor_xml – name: Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
DBID NPM
AAYXX
CITATION
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.3389/fdata.2020.604083
DatabaseName PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Wang et al
EISSN 2624-909X
EndPage 604083
ExternalDocumentID oai_doaj_org_article_d3f7984ea362452e9070d98c67655b65
1685025
10_3389_fdata_2020_604083
33693426
Genre Journal Article
GroupedDBID 9T4
AAFWJ
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
M~E
NPM
OK1
PGMZT
RPM
AAYXX
CITATION
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c492t-b15e93faf42fb51da2cc8ea0515e42a48645af2e0944dc5192bcaa07df755f043
IEDL.DBID RPM
ISSN 2624-909X
IngestDate Tue Oct 22 15:16:26 EDT 2024
Tue Sep 17 21:19:02 EDT 2024
Mon Jul 10 02:35:01 EDT 2023
Sat Aug 17 02:28:49 EDT 2024
Fri Aug 23 01:39:42 EDT 2024
Sat Sep 28 08:32:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cloud computing (SaaS)
heterogeneous (CPU+GPU) computing
particle physics
machine learning
GPU (graphics processing unit)
Language English
License Copyright © 2021 Wang, Yang, Flechas, Harris, Hawks, Holzman, Knoepfel, Krupa, Pedro and Tran.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-b15e93faf42fb51da2cc8ea0515e42a48645af2e0944dc5192bcaa07df755f043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-07CH11359
USDOE Office of Science (SC), High Energy Physics (HEP)
FERMILAB-PUB-20-428-ND-SCD; arXiv:2009.04509
Edited by: Daniele D’Agostino, National Research Council (CNR), Italy
This article was submitted to Big Data and AI in High Energy Physics, a section of the journal Frontiers in Big Data
Reviewed by: Alexander Radovic, Borealis AI, Canada
Anushree Ghosh, University of Padua, Italy
ORCID 0000000231909941
0000000322609151
0000000284406854
0000000247139646
0000000157000288
0000000152356314
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931905/
PMID 33693426
PQID 2500371529
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d3f7984ea362452e9070d98c67655b65
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7931905
osti_scitechconnect_1685025
proquest_miscellaneous_2500371529
crossref_primary_10_3389_fdata_2020_604083
pubmed_primary_33693426
PublicationCentury 2000
PublicationDate 2021-01-14
PublicationDateYYYYMMDD 2021-01-14
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: United States
PublicationTitle Frontiers in big data
PublicationTitleAlternate Front Big Data
PublicationYear 2021
Publisher Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers
– name: Frontiers Media S.A
References Sfiligoi (B36) 2020; 12151
Kudryavtsev (B11) 2016; 718
Duarte (B10) 2019; 3
Acciarri (B27); 12
Coelho (B8) 2020
(B22) 2020
He (B19) 2016
Aurisano (B3) 2016; 11
Michel (B25) 1950; 63
Graham (B17) 2017
Adams (B28) 2019; 99
Abi (B2) 2020; 15
Dominé (B9) 2020; 102
Qian (B34) 2015; 83
Abi (B12)
Rohr (B40) 2019
Marshall (B24) 2013; 305
Caulfield (B7) 2016
Krupa (B23) 2020
Nunokawa (B30) 2008; 60
B31
Scholberg (B35) 2012; 62
B14
B15
Capozzi (B6) 2019; 123
B39
Ayres (B4) 2007
Halzen (B18) 2010; 81
Pedro (B32) 2019
Aaij (B1) 2020; 4
Snider (B37) 2017; 898
Nvidia (B29) 2019
Hu (B21) 2018
Acciarri (B26); 12
Pietropaolo (B33) 2017; 888
Abi (B13)
Heck (B20) 1998
Bocci (B5) 2020; 5009
Google (B16) 2020
Szegedy (B38) 2015
References_xml – year: 1998
  ident: B20
  article-title: CORSIKA: a Monte Carlo code to simulate extensive air showers
  publication-title: Tech. Rep
  contributor:
    fullname: Heck
– ident: B14
– volume: 5009
  year: 2020
  ident: B5
  article-title: Bringing heterogeneity to the CMS software framework
  doi: 10.1051/epjconf/202024505009
  contributor:
    fullname: Bocci
– ident: B12
  article-title: Neutrino interaction classification with a convolutional neural network in the DUNE far detector
  doi: 10.1103/PhysRevD.102.092003
  contributor:
    fullname: Abi
– year: 2020
  ident: B23
  article-title: GPU coprocessors as a service for deep learning inference in high energy physics
  contributor:
    fullname: Krupa
– volume-title: Triton inference server
  year: 2019
  ident: B29
  contributor:
    fullname: Nvidia
– volume: 4
  start-page: 7
  year: 2020
  ident: B1
  article-title: Allen: a high level trigger on GPUs for LHCb
  publication-title: Comput. Softw. Big Sci
  doi: 10.1007/s41781-020-00039-7
  contributor:
    fullname: Aaij
– volume: 11
  start-page: P09001
  year: 2016
  ident: B3
  article-title: A convolutional neural network neutrino event classifier
  publication-title: J. Inst. Met
  doi: 10.1088/1748-0221/11/09/P09001
  contributor:
    fullname: Aurisano
– year: 2020
  ident: B8
  article-title: Ultra low-latency, low-area inference accelerators using heterogeneous deep quantization with QKeras and hls4ml
  contributor:
    fullname: Coelho
– ident: B13
  article-title: First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
  doi: 10.1088/1748-0221/15/12/P12004
  contributor:
    fullname: Abi
– volume: 888
  start-page: 012038
  year: 2017
  ident: B33
  article-title: Review of liquid-argon detectors development at the CERN neutrino platform
  publication-title: J. Phys. Conf. Ser
  doi: 10.1088/1742-6596/888/1/012038
  contributor:
    fullname: Pietropaolo
– volume: 3
  start-page: 13
  year: 2019
  ident: B10
  article-title: FPGA-accelerated machine learning inference as a service for particle physics computing
  publication-title: Comput. Softw. Big Sci
  doi: 10.1007/s41781-019-0027-2
  contributor:
    fullname: Duarte
– volume: 63
  start-page: 514
  year: 1950
  ident: B25
  article-title: Interaction between four half-spin particles and the decay of the μ-meson
  publication-title: Proc. Phys. Soc
  doi: 10.1088/0370-1298/63/5/311
  contributor:
    fullname: Michel
– ident: B31
– volume: 83
  start-page: 1
  year: 2015
  ident: B34
  article-title: Neutrino mass hierarchy
  publication-title: Prog. Part. Nucl. Phys
  doi: 10.1016/j.ppnp.2015.05.002
  contributor:
    fullname: Qian
– volume: 81
  start-page: 081101
  year: 2010
  ident: B18
  article-title: IceCube: an instrument for neutrino astronomy
  publication-title: Rev. Sci. Instrum
  doi: 10.1063/1.3480478
  contributor:
    fullname: Halzen
– volume: 15
  start-page: T08008
  year: 2020
  ident: B2
  article-title: Deep underground neutrino experiment (DUNE), far detector technical design report, volume I: introduction to DUNE
  publication-title: J. Inst. Met
  contributor:
    fullname: Abi
– year: 2015
  ident: B38
  article-title: Going deeper with convolutions
  doi: 10.1109/CVPR.2015.7298594
  contributor:
    fullname: Szegedy
– volume: 99
  start-page: 092001
  year: 2019
  ident: B28
  article-title: Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.092001
  contributor:
    fullname: Adams
– year: 2016
  ident: B7
  article-title: A cloud-scale acceleration architecture
  doi: 10.1109/MICRO.2016.7783710
  contributor:
    fullname: Caulfield
– volume: 12151
  start-page: 18
  year: 2020
  ident: B36
  article-title: Running a pre-exascale, geographically distributed, multi-cloud scientific simulation
  publication-title: High Performance Computing
  doi: 10.1007/978-3-030-50743-5_2
  contributor:
    fullname: Sfiligoi
– volume-title: Compute Engine Documentation - machine types
  year: 2020
  ident: B16
  contributor:
    fullname: Google
– volume: 12
  start-page: P02017
  ident: B27
  article-title: Design and construction of the MicroBooNE detector
  publication-title: J. Inst. Met
  doi: 10.1088/1748-0221/12/02/P02017
  contributor:
    fullname: Acciarri
– volume: 305
  year: 2013
  ident: B24
  article-title: Pandora particle flow algorithm
  contributor:
    fullname: Marshall
– volume: 60
  start-page: 338
  year: 2008
  ident: B30
  article-title: CP violation and neutrino oscillations
  publication-title: Prog. Part. Nucl. Phys
  doi: 10.1016/j.ppnp.2007.10.001
  contributor:
    fullname: Nunokawa
– volume: 898
  start-page: 042057
  year: 2017
  ident: B37
  article-title: LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors
  publication-title: J. Phys. Conf. Ser
  doi: 10.1088/1742-6596/898/4/042057
  contributor:
    fullname: Snider
– volume-title: SonicCMS
  year: 2019
  ident: B32
  contributor:
    fullname: Pedro
– volume: 62
  start-page: 81
  year: 2012
  ident: B35
  article-title: Supernova neutrino detection
  publication-title: Ann. Rev. Nucl. Part. Sci
  doi: 10.1146/annurev-nucl-102711-095006
  contributor:
    fullname: Scholberg
– year: 2019
  ident: B40
  article-title: GPU-based reconstruction and data compression at ALICE during LHC Run 3, in 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019). EPJ Web Conf. 245, 10005
  doi: 10.1051/epjconf/202024510005
  contributor:
    fullname: Rohr
– year: 2007
  ident: B4
  article-title: The NOvA technical design report
  doi: 10.2172/935497
  contributor:
    fullname: Ayres
– volume: 718
  start-page: 062032
  year: 2016
  ident: B11
  article-title: Underground physics with DUNE
  publication-title: J. Phys. Conf. Ser
  doi: 10.1088/1742-6596/718/6/062032
  contributor:
    fullname: Kudryavtsev
– year: 2016
  ident: B19
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
  contributor:
    fullname: He
– volume: 123
  start-page: 131803
  year: 2019
  ident: B6
  article-title: DUNE as the next-generation solar neutrino experiment
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.123.131803
  contributor:
    fullname: Capozzi
– volume: 102
  start-page: 012005
  year: 2020
  ident: B9
  article-title: Scalable deep convolutional neural networks for sparse, locally dense liquid argon time projection chamber data
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.012005
  contributor:
    fullname: Dominé
– year: 2017
  ident: B17
  article-title: Submanifold sparse convolutional networks
  contributor:
    fullname: Graham
– ident: B15
– volume: 12
  start-page: P03011
  ident: B26
  article-title: Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
  publication-title: J. Inst. Met
  doi: 10.1088/1748-0221/12/03/P03011
  contributor:
    fullname: Acciarri
– volume-title: The Fermilab Hierarchical Configuration Language
  ident: B39
– year: 2018
  ident: B21
  article-title: Squeeze-and-excitation networks
  doi: 10.1109/CVPR.2018.00745
  contributor:
    fullname: Hu
– volume-title: Concepts - workloads - Pods
  year: 2020
  ident: B22
SSID ssj0002505113
Score 2.3329127
Snippet Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These...
SourceID doaj
pubmedcentral
osti
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 604083
SubjectTerms Big Data
cloud computing (SaaS)
GPU (graphics processing unit)
heterogeneous (CPU+GPU) computing
machine learning
particle physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1x4P0ILMhInpFDH8SM-tqilILXiwEq9IMse29BLtmK3_5-ZOLvaRUhcOEVKosjxN56ZTx5_w9g7a5IEOqKcNMhWmQBtzKK0MisQ1pVoFR0UvrwyFwv15Vpf77T6opqwKg9cJ-449cW6QeWAnlZpmZHMieQGMNZoHU1VLxVuh0yRD6bA3nV93cZEFuaOC1VcIh-U4oNBwx36vUA06fXjZYnr6m-55p8lkzsx6PwRezAnj_ykDvoxu5fHJ-zhpjEDn9fpU_b909dFewKAIYWUIBK_nEomM5_VVH_wz5tzfjyseOCzx-CYwfL6OXrpZuRXmdT6xyU_23YCWD1ji_Ozbx8v2rmPQgvKyXUbO51dX0JRskTdpSABhhyou0tWMqjBKB2KzMj0VAJM6WSEEIRNxWpdhOqfs4NxOeaXjGtrh5xkjMqAshac0AWiQzNwUSFzatj7zaT62yqX4ZFmEAJ-QsATAr4i0LBTmvbti6R0Pd1A_P2Mv_8X_g07JNA8JgykegtUHgRr35lBoxU07O0GS4_rhjZDwpiXdyuPFkJqhVq6hr2o2G4H0vfG9Zi6NMzuob430v0n483PSZsb3R1avn71P37tkN2XVEEjurZTR-xg_esuv8YUaB3fTNb-GzV3A-g
  priority: 102
  providerName: Directory of Open Access Journals
Title GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
URI https://www.ncbi.nlm.nih.gov/pubmed/33693426
https://search.proquest.com/docview/2500371529
https://www.osti.gov/servlets/purl/1685025
https://pubmed.ncbi.nlm.nih.gov/PMC7931905
https://doaj.org/article/d3f7984ea362452e9070d98c67655b65
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SnHrp--EmDSr0VPCuLethHdOQNC1syKELuRQhyVK6kHhDdvP_M-PHslt66slgy0bo-6SZsUbfAHzRquGBjig3MvBcKBdyH4uU8yhCoU3yWtBB4dmlupiLn9fyeg_keBamS9oPfjFpb-8m7eJPl1t5fxemY57Y9Gp2ipzCz8vpPuwjQbdCdFp-yaaXZdXvYGIAZqaJki0xFOTFRCFna6qdU1XKVIIkFbbMUafaj5clzq5_eZx_J05uWaLzl_B8cCHZSd_VV7AX29fwYizPwIbZ-gZ-f7-a5ychoGEhPYiGzbrEycgGTdUb9mM87cfcijk2rBsM_VjWf44aLVp2GUmzv12ys009gNVbmJ-f_Tq9yIdqCnkQhq9zX8poquSS4MnLsnE8hDo6qvESBXeiVkK6xCPGe6IJ6NhxH5wrdJO0lKkQ1Ts4aJdt_ABMal3HhnsvVBBaB8QiBW-QDMYLjJ8y-DoOqr3vRTMsBhsEhu3AsASG7cHI4BsN-6Yh6V13N5YPN3ZA3TZV0qYW0aG9FZJHDOmLxtRBaSWlVzKDQwLNottA2reBkoTC2paqlkiIDD6PWFqcPbQl4tq4fFxZJAtpFkpuMnjfY7vpyEiRDPQO6js93X2ChO0UugeCfvzvNw_hGafkmaLMS3EEB-uHx_gJvZ-1P-7-Ghx3nH8CbQcGig
link.rule.ids 230,315,730,783,787,867,888,2109,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALb0ooDyNxQspu4viRHEvVsoXuqoeu1AuybMcuK9Fs1d3-f2byWO0iTpwiJY5l-fvsmZHH3wB81qrmnq4o19LzVCjrUxeymPIgfKar6LSgi8LTmZrMxfcrebUHcrgL0ybte7cYNb9vRs3iV5tbeXvjx0Oe2Phieoycwu7l-AE8xPWaia0gnTZgsup5XnRnmBiCVeNI6ZYYDPJspJC1JVXPKQpVFYJEFbYMUqvbj48lrq9_-Zx_p05u2aLTZ_CkdyLZUTfY57AXmhfwdCjQwPr1-hJ-fruYp0feo2khRYiaTdvUycB6VdVrdjbc92N2xSzrdw6GnizruqNGi4bNAqn2N0t2sqkIsHoF89OTy-NJ2tdTSL2o-Dp1uQxVEW0UPDqZ15Z7XwZLVV6C4FaUSkgbecCIT9QeXTvuvLWZrqOWMmaieA37zbIJb4BJrctQc-eE8kJrj2hE7yqkQ-UERlAJfBkm1dx2shkGww0Cw7RgGALDdGAk8JWmfdOQFK_bF8u7a9Pjbuoi6qoUwaLFFZIHDOqzuiq90kpKp2QChwSaQceB1G89pQn5tclVKZEQCXwasDS4fuhQxDZheb8ySBZSLZS8SuCgw3YzkIEiCegd1HdGuvsFKdtqdPcUffvff36ER5PL6bk5P5v9OITHnFJpsjzNxTvYX9_dh_foC63dh5b5fwAw_gjr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgL5VnS8jASJ6TsJo4f8bGULi2wqz2wUi_Ish27rESTVXf7_5nJY7WLOHGKlDiW5e-zZ0Yef0PIByUr5vGKciU8S7m0PnUhiykL3GdKR6c4XhSezuTFgn-9Elc7pb7apH3vlqP6982oXv5qcytXN3485ImN59Mz4BR0L8arKo7vkwewZjO5E6jjJoyWPc-L7hwTwjA9jphyCQEhy0YSmFtiBZ2ikLrgKKywY5Ra7X54NLDG_uV3_p0-uWOPJk_I496RpKfdgJ-Se6F-Rg6HIg20X7PPyc8v80V66j2YF1SFqOi0TZ8MtFdWvaaXw50_atfU0n73oODN0q47bLSs6Sygcn_d0PNtVYD1C7KYnP84u0j7mgqp55ptUpeLoItoI2fRibyyzPsyWKz0EjizvJRc2MgCRH288uDeMeetzVQVlRAx48VLclA3dXhFqFCqDBVzjkvPlfKASPROAyW04xBFJeTjMKlm1UlnGAg5EAzTgmEQDNOBkZBPOO3bhqh63b5obq9Nj72piqh0yYMFq8sFCxDYZ5UuvVRSCCdFQk4QNAPOAyrgekwV8huTy1IAIRLyfsDSwBrCgxFbh-ZubYAsqFwomE7IUYftdiADRRKi9lDfG-n-F6Btq9Pd0_T4v_98Rx7OP0_M98vZtxPyiGE2TZanOX9NDja3d-ENuEMb97Yl_h_6xAn-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU-Accelerated+Machine+Learning+Inference+as+a+Service+for+Computing+in+Neutrino+Experiments&rft.jtitle=Frontiers+in+big+data&rft.au=Wang%2C+Michael&rft.au=Yang%2C+Tingjun&rft.au=Flechas%2C+Maria+Acosta&rft.au=Harris%2C+Philip&rft.date=2021-01-14&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-909X&rft.volume=3&rft_id=info:doi/10.3389%2Ffdata.2020.604083&rft_id=info%3Apmid%2F33693426&rft.externalDBID=PMC7931905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-909X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-909X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-909X&client=summon