Utilizing machine learning to predict hospital admissions for pediatric COVID-19 patients (PrepCOVID-Machine)

The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking. This study aimed to develop and valid...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 3131 - 13
Main Authors Liew, Chuin-Hen, Ong, Song-Quan, Ng, David Chun-Ern
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking. This study aimed to develop and validate ML models to predict pediatric COVID-19 hospitalization. We collected secondary data with 2200 patients and 65 variables from Malaysian aged 0 to 12 with COVID-19 between 1st February 2020 and 31st March 2022. The sample was partitioned into training, internal, and external validation groups. Recursive Feature Elimination (RFE) was employed for feature selection, and we trained seven supervised classifiers. Grid Search was used to optimize the hyperparameters of each algorithm. The study analyzed 1988 children and 30 study variables after data were processed. The RFE algorithm selected 12 highly predicted variables for COVID-19 hospitalization, including age, male sex, fever, cough, rhinorrhea, shortness of breath, vomiting, diarrhea, seizures, body temperature, chest indrawing, and abnormal breath sounds. With external validation, Adaptive Boosting was the highest-performing classifier (AUROC = 0.95) to predict COVID-19 hospital admission in children. We validated AdaBoost as the best to predict COVID-19 hospitalization among children. This model may assist front-line clinicians in making medical disposition decisions.
AbstractList The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking. This study aimed to develop and validate ML models to predict pediatric COVID-19 hospitalization. We collected secondary data with 2200 patients and 65 variables from Malaysian aged 0 to 12 with COVID-19 between 1st February 2020 and 31st March 2022. The sample was partitioned into training, internal, and external validation groups. Recursive Feature Elimination (RFE) was employed for feature selection, and we trained seven supervised classifiers. Grid Search was used to optimize the hyperparameters of each algorithm. The study analyzed 1988 children and 30 study variables after data were processed. The RFE algorithm selected 12 highly predicted variables for COVID-19 hospitalization, including age, male sex, fever, cough, rhinorrhea, shortness of breath, vomiting, diarrhea, seizures, body temperature, chest indrawing, and abnormal breath sounds. With external validation, Adaptive Boosting was the highest-performing classifier (AUROC = 0.95) to predict COVID-19 hospital admission in children. We validated AdaBoost as the best to predict COVID-19 hospitalization among children. This model may assist front-line clinicians in making medical disposition decisions.
The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking. This study aimed to develop and validate ML models to predict pediatric COVID-19 hospitalization. We collected secondary data with 2200 patients and 65 variables from Malaysian aged 0 to 12 with COVID-19 between 1st February 2020 and 31st March 2022. The sample was partitioned into training, internal, and external validation groups. Recursive Feature Elimination (RFE) was employed for feature selection, and we trained seven supervised classifiers. Grid Search was used to optimize the hyperparameters of each algorithm. The study analyzed 1988 children and 30 study variables after data were processed. The RFE algorithm selected 12 highly predicted variables for COVID-19 hospitalization, including age, male sex, fever, cough, rhinorrhea, shortness of breath, vomiting, diarrhea, seizures, body temperature, chest indrawing, and abnormal breath sounds. With external validation, Adaptive Boosting was the highest-performing classifier (AUROC = 0.95) to predict COVID-19 hospital admission in children. We validated AdaBoost as the best to predict COVID-19 hospitalization among children. This model may assist front-line clinicians in making medical disposition decisions.The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking. This study aimed to develop and validate ML models to predict pediatric COVID-19 hospitalization. We collected secondary data with 2200 patients and 65 variables from Malaysian aged 0 to 12 with COVID-19 between 1st February 2020 and 31st March 2022. The sample was partitioned into training, internal, and external validation groups. Recursive Feature Elimination (RFE) was employed for feature selection, and we trained seven supervised classifiers. Grid Search was used to optimize the hyperparameters of each algorithm. The study analyzed 1988 children and 30 study variables after data were processed. The RFE algorithm selected 12 highly predicted variables for COVID-19 hospitalization, including age, male sex, fever, cough, rhinorrhea, shortness of breath, vomiting, diarrhea, seizures, body temperature, chest indrawing, and abnormal breath sounds. With external validation, Adaptive Boosting was the highest-performing classifier (AUROC = 0.95) to predict COVID-19 hospital admission in children. We validated AdaBoost as the best to predict COVID-19 hospitalization among children. This model may assist front-line clinicians in making medical disposition decisions.
Abstract The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking. This study aimed to develop and validate ML models to predict pediatric COVID-19 hospitalization. We collected secondary data with 2200 patients and 65 variables from Malaysian aged 0 to 12 with COVID-19 between 1st February 2020 and 31st March 2022. The sample was partitioned into training, internal, and external validation groups. Recursive Feature Elimination (RFE) was employed for feature selection, and we trained seven supervised classifiers. Grid Search was used to optimize the hyperparameters of each algorithm. The study analyzed 1988 children and 30 study variables after data were processed. The RFE algorithm selected 12 highly predicted variables for COVID-19 hospitalization, including age, male sex, fever, cough, rhinorrhea, shortness of breath, vomiting, diarrhea, seizures, body temperature, chest indrawing, and abnormal breath sounds. With external validation, Adaptive Boosting was the highest-performing classifier (AUROC = 0.95) to predict COVID-19 hospital admission in children. We validated AdaBoost as the best to predict COVID-19 hospitalization among children. This model may assist front-line clinicians in making medical disposition decisions.
ArticleNumber 3131
Author Liew, Chuin-Hen
Ong, Song-Quan
Ng, David Chun-Ern
Author_xml – sequence: 1
  givenname: Chuin-Hen
  surname: Liew
  fullname: Liew, Chuin-Hen
  organization: Hospital Tuanku Ampuan Najihah
– sequence: 2
  givenname: Song-Quan
  surname: Ong
  fullname: Ong, Song-Quan
  email: songquan.ong@ums.edu.my
  organization: Institute for Tropical Biology and Conservation, University Malaysia Sabah
– sequence: 3
  givenname: David Chun-Ern
  surname: Ng
  fullname: Ng, David Chun-Ern
  organization: Hospital Tuanku Ja’afar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39856094$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEQxy1UREvpF-CAVuJSDgt-P06oSnlEKioHytXyer2Jo4292A4S_fQ42VJaDvhia-Y3_xnPzHNwFGJwALxE8C2CRL7LFDElW4hpKyEjsqVPwAmGlLWYYHz04H0MznLewHoYVhSpZ-CYKMk4VPQEbG-KH_2tD6tma-zaB9eMzqSwN5TYTMn13pZmHfPkixkb0299zj6G3AwxNVN1m5K8bRbX35eXLVLNZIp3oeTm_Gty02z-Mku_eQGeDmbM7uzuPgU3Hz98W3xur64_LRcXV62lCpfWEEyldLVE5NAglIFUDBw6IyhliEvZM4EF64ZO4UGJzhDZYygQ7BkWQjhyCpazbh_NRk_Jb036paPx-mCIaaVNKt6OTvdOdc5Q1aFOUGm5sYxzwdRQ0yve8ar1ftaadt3W9bb-LZnxkehjT_BrvYo_NUKCQ0JxVTi_U0jxx87lomsPrRtHE1zcZU3qJIUSkNOKvv4H3cRdCrVXB4pxDLGs1KuHJd3X8mesFcAzYFPMObnhHkFQ79dHz-uj6_row_rofRCZg3KFw8qlv7n_E_UbthfFxg
Cites_doi 10.1097/INF.0000000000003204
10.1016/j.cellimm.2011.10.009
10.1038/s42256-020-0180-7
10.1186/s12913-021-07101-z
10.1007/s42452-019-0645-7
10.1093/clinchem/hvaa089
10.1038/s41746-021-00433-4
10.1007/s12325-021-01887-4
10.1038/s41467-020-19741-6
10.1016/j.opresp.2022.100162
10.1038/s41746-021-00446-z
10.1016/S1473-3099(20)30483-7
10.1136/jim-2021-001858
10.2196/21801
10.2196/26075
10.1038/s41746-022-00649-y
10.3389/fimmu.2017.01455
10.1186/s12879-023-08357-y
10.1001/jamanetworkopen.2021.24946
10.1177/0361198120986171
10.1016/S2215-0366(20)30287-X
10.2196/26211
10.1038/gene.2009.12
10.4049/jimmunol.1601896
10.1038/s41746-020-00369-1
10.1007/s11517-022-02543-x
10.1049/iet-csr.2020.0037
10.7326/M21-1102
10.1016/j.clineuro.2020.105921
10.1371/journal.pone.0241827
10.1038/s41746-021-00456-x
10.1016/j.hlpt.2021.100554
10.3390/v14010063
10.1007/s10916-020-01597-4
10.1038/s41598-023-49962-w
10.1093/tropej/fmaa070
10.1186/s12880-022-00833-2
10.1016/j.artmed.2021.102018
10.1016/j.imu.2022.100983
10.1038/s41746-021-00399-3
10.1371/journal.pcbi.1009121
10.1038/s41746-021-00461-0
10.1016/S2589-7500(20)30274-0
10.1038/s41467-020-18684-2
10.1016/j.ijmedinf.2020.104258
10.1038/s41746-021-00383-x
10.1038/s41746-021-00482-9
10.1002/emp2.12406
10.1038/s41746-021-00546-w
10.1038/s41746-020-00372-6
10.1016/j.ijmedinf.2021.104679
10.1038/s41746-022-00646-1
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-80538-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_de9bea49b1b748c6ac566759fe5696b6
PMC11760342
39856094
10_1038_s41598_024_80538_4
Genre Journal Article
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-a32488e5601e1f79a047f60ea74451688d57275bfb92f97ba38d20710d52777e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:32:22 EDT 2025
Thu Aug 21 18:40:54 EDT 2025
Fri Jul 11 00:00:59 EDT 2025
Wed Aug 13 04:11:02 EDT 2025
Thu Jun 19 02:15:30 EDT 2025
Tue Jul 01 02:06:52 EDT 2025
Fri Feb 21 02:37:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hospital admissions
SARS-CoV-2
Pediatric COVID-19
Artificial intelligence
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-a32488e5601e1f79a047f60ea74451688d57275bfb92f97ba38d20710d52777e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/de9bea49b1b748c6ac566759fe5696b6
PMID 39856094
PQID 3159562028
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_de9bea49b1b748c6ac566759fe5696b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11760342
proquest_miscellaneous_3159797064
proquest_journals_3159562028
pubmed_primary_39856094
crossref_primary_10_1038_s41598_024_80538_4
springer_journals_10_1038_s41598_024_80538_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-24
PublicationDateYYYYMMDD 2025-01-24
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Lam (80538_CR30) 2021; 10
Y Tsai (80538_CR1) 2021; 174
S Domínguez-Rodríguez (80538_CR28) 2021; 40
T Javaheri (80538_CR9) 2021; 4
PK Panda (80538_CR45) 2021; 67
Q Xu (80538_CR17) 2021; 4
M Cavallaro (80538_CR23) 2021; 17
H Yu (80538_CR29) 2020; 2
H Estiri (80538_CR18) 2021; 4
JL Izquierdo (80538_CR24) 2020; 22
I Nieto-Codesido (80538_CR15) 2022; 4
80538_CR42
CK Kim (80538_CR11) 2022; 5
H Ismaila (80538_CR3) 2021; 21
JL Domínguez-Olmedo (80538_CR16) 2021; 23
A Varatharaj (80538_CR46) 2020; 7
R Channappanavar (80538_CR41) 2017; 198
L Yan (80538_CR21) 2020; 2
EM Nwanosike (80538_CR4) 2022; 159
A Patrício (80538_CR31) 2021; 23
JC Marshall (80538_CR51) 2020; 20
S Trouillet-Assant (80538_CR43) 2020; 66
JS Hinson (80538_CR34) 2022; 5
A Hewagama (80538_CR39) 2009; 10
S Wollenstein-Betech (80538_CR20) 2020; 142
A Tariq (80538_CR33) 2021; 4
Y Yan (80538_CR44) 2021; 4
80538_CR54
Y Gao (80538_CR22) 2020; 11
S Subudhi (80538_CR19) 2021; 4
Z King (80538_CR35) 2022; 5
80538_CR14
H Peckham (80538_CR37) 2020; 11
V Montalvan (80538_CR47) 2020; 194
Z Noroozi (80538_CR52) 2023; 13
AA Soltan (80538_CR5) 2021; 3
RL Ohsfeldt (80538_CR2) 2021; 38
D Brinati (80538_CR6) 2020; 44
PEY Chua (80538_CR48) 2021; 69
EH Lee (80538_CR8) 2021; 4
MD Rinderknecht (80538_CR13) 2021; 4
M Gülbay (80538_CR26) 2022; 22
I Lakbar (80538_CR36) 2020; 15
80538_CR25
Z Chen (80538_CR32) 2021; 2
M Abdullah (80538_CR40) 2012; 272
JM Antoñanzas (80538_CR27) 2021; 14
Z Spolarics (80538_CR38) 2017; 8
MZ Bashar (80538_CR50) 2021; 2675
MA Alzubaidi (80538_CR7) 2021; 112
Y Zoabi (80538_CR10) 2021; 4
J Zhou (80538_CR12) 2021; 4
B Nithya (80538_CR53) 2019; 1
DC-E Ng (80538_CR49) 2023; 23
References_xml – volume: 40
  start-page: e287
  year: 2021
  ident: 80538_CR28
  publication-title: Pediatric Infect. Dis. J.
  doi: 10.1097/INF.0000000000003204
– volume: 272
  start-page: 214
  year: 2012
  ident: 80538_CR40
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2011.10.009
– volume: 2
  start-page: 283
  year: 2020
  ident: 80538_CR21
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0180-7
– volume: 21
  start-page: 1
  year: 2021
  ident: 80538_CR3
  publication-title: BMC Health Serv. Res.
  doi: 10.1186/s12913-021-07101-z
– volume: 1
  start-page: 1
  year: 2019
  ident: 80538_CR53
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-0645-7
– ident: 80538_CR54
– volume: 66
  start-page: 802
  year: 2020
  ident: 80538_CR43
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvaa089
– volume: 4
  start-page: 66
  year: 2021
  ident: 80538_CR12
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00433-4
– volume: 38
  start-page: 5557
  year: 2021
  ident: 80538_CR2
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-021-01887-4
– volume: 11
  start-page: 6317
  year: 2020
  ident: 80538_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19741-6
– volume: 4
  year: 2022
  ident: 80538_CR15
  publication-title: Open Respiratory Arch.
  doi: 10.1016/j.opresp.2022.100162
– volume: 4
  start-page: 75
  year: 2021
  ident: 80538_CR17
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00446-z
– volume: 20
  start-page: e192
  year: 2020
  ident: 80538_CR51
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30483-7
– volume: 69
  start-page: 1287
  year: 2021
  ident: 80538_CR48
  publication-title: J. Investig. Med.
  doi: 10.1136/jim-2021-001858
– volume: 22
  year: 2020
  ident: 80538_CR24
  publication-title: J. Med. Internet Res.
  doi: 10.2196/21801
– volume: 23
  year: 2021
  ident: 80538_CR31
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26075
– volume: 5
  start-page: 104
  year: 2022
  ident: 80538_CR35
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-022-00649-y
– volume: 8
  start-page: 1455
  year: 2017
  ident: 80538_CR38
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01455
– volume: 23
  start-page: 1
  year: 2023
  ident: 80538_CR49
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-023-08357-y
– volume: 4
  start-page: e2124946
  year: 2021
  ident: 80538_CR44
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2021.24946
– volume: 2675
  start-page: 226
  year: 2021
  ident: 80538_CR50
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198120986171
– volume: 7
  start-page: 875
  year: 2020
  ident: 80538_CR46
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(20)30287-X
– volume: 23
  year: 2021
  ident: 80538_CR16
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26211
– volume: 10
  start-page: 509
  year: 2009
  ident: 80538_CR39
  publication-title: Genes Immunity
  doi: 10.1038/gene.2009.12
– volume: 198
  start-page: 4046
  year: 2017
  ident: 80538_CR41
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601896
– volume: 4
  start-page: 11
  year: 2021
  ident: 80538_CR8
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-020-00369-1
– ident: 80538_CR25
  doi: 10.1007/s11517-022-02543-x
– ident: 80538_CR42
– volume: 2
  start-page: 205
  year: 2020
  ident: 80538_CR29
  publication-title: IET Cyber-Syst. Robot.
  doi: 10.1049/iet-csr.2020.0037
– volume: 174
  start-page: 1101
  year: 2021
  ident: 80538_CR1
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M21-1102
– volume: 194
  year: 2020
  ident: 80538_CR47
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2020.105921
– volume: 15
  year: 2020
  ident: 80538_CR36
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0241827
– volume: 4
  start-page: 87
  year: 2021
  ident: 80538_CR19
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00456-x
– volume: 10
  year: 2021
  ident: 80538_CR30
  publication-title: Health Policy Technol.
  doi: 10.1016/j.hlpt.2021.100554
– volume: 14
  start-page: 63
  year: 2021
  ident: 80538_CR27
  publication-title: Viruses
  doi: 10.3390/v14010063
– volume: 44
  start-page: 1
  year: 2020
  ident: 80538_CR6
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01597-4
– volume: 13
  start-page: 22588
  year: 2023
  ident: 80538_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-49962-w
– volume: 67
  start-page: 1070
  year: 2021
  ident: 80538_CR45
  publication-title: J. Trop. Pediatr.
  doi: 10.1093/tropej/fmaa070
– volume: 22
  start-page: 1
  year: 2022
  ident: 80538_CR26
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-022-00833-2
– volume: 112
  year: 2021
  ident: 80538_CR7
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102018
– ident: 80538_CR14
  doi: 10.1016/j.imu.2022.100983
– volume: 4
  start-page: 29
  year: 2021
  ident: 80538_CR9
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00399-3
– volume: 17
  year: 2021
  ident: 80538_CR23
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009121
– volume: 4
  start-page: 1
  year: 2021
  ident: 80538_CR33
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00461-0
– volume: 3
  start-page: e78
  year: 2021
  ident: 80538_CR5
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30274-0
– volume: 11
  start-page: 5033
  year: 2020
  ident: 80538_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18684-2
– volume: 142
  year: 2020
  ident: 80538_CR20
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2020.104258
– volume: 4
  start-page: 15
  year: 2021
  ident: 80538_CR18
  publication-title: NPJ digital medicine
  doi: 10.1038/s41746-021-00383-x
– volume: 4
  start-page: 113
  year: 2021
  ident: 80538_CR13
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00482-9
– volume: 2
  year: 2021
  ident: 80538_CR32
  publication-title: J. Am. Coll. Emerg. Physicians Open
  doi: 10.1002/emp2.12406
– volume: 5
  start-page: 5
  year: 2022
  ident: 80538_CR11
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00546-w
– volume: 4
  start-page: 3
  year: 2021
  ident: 80538_CR10
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-020-00372-6
– volume: 159
  year: 2022
  ident: 80538_CR4
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2021.104679
– volume: 5
  start-page: 1
  year: 2022
  ident: 80538_CR34
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-022-00646-1
SSID ssj0000529419
Score 2.4444737
Snippet The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted....
Abstract The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3131
SubjectTerms 692/308/3187
692/699/255/2514
692/700/1720/3187
Algorithms
Artificial intelligence
Body temperature
Child
Child, Preschool
Children
Cough
COVID-19
COVID-19 - diagnosis
COVID-19 - epidemiology
Diarrhea
Dyspnea
Female
Hospital admissions
Hospitalization
Hospitalization - statistics & numerical data
Humanities and Social Sciences
Humans
Infant
Infant, Newborn
Learning algorithms
Machine Learning
Malaysia - epidemiology
Male
multidisciplinary
Pandemics
Patients
Pediatric COVID-19
Pediatrics
SARS-CoV-2
SARS-CoV-2 - isolation & purification
Science
Science (multidisciplinary)
Seizures
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSpW4ICivQEFG4gCCqPEjfhzbQlWQChxY1JtlJ067Es2udtND--sZ29mly0NcuNpOMpoZez5n7G8AXuqG8njDuvStN6VQLa6DXslSOGYqLXjDEn3xySd5PBEfT-vTG6W-4pmwTA-cFbfXBuODE8ZTr4RupGsQgKjadKGWRvpEto0x78ZmKrN6MyOoGW_JVFzvLTFSxdtkTOCiHGe52IhEibD_Tyjz98OSv2RMUyA6ugt3RgRJ9rPk9-BW6HdgO9eUvLoPF5Nh-n16jY-Si3RQMpCxMsQZGWZkvoiZmYGcj_VCiGvR0vGX2ZIgfiXzVekOcvj524d3JTVkpF5dkldfFmGem0_yq18_gMnR-6-Hx-VYU6FshGFD6RBAaR3iPizQThlXCdXJKjgVmcqk1m2NiKb2nTesM8o7rlsWYUhbM6VU4A9hq5_14TEQJoKXrlMdZbjNoI0XThnl6porXaFlCniz0q-dZ-oMm1LeXNtsDYvWsMkaVhRwEE2wHhlpr1MDOoMdncH-yxkK2F0Z0I5zcWk5fgpRHgKpAl6su1G3MTXi-jC7zGNQeMRnBTzK9l5Lwo1GdRns0RuesCHqZk8_PU9M3ZQqGTkWC3i7cpqfcv1dF0_-hy6ewm0WaxVXtGRiF7aGxWV4hgBq8M_TXPkBRRoU6g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k3agozEAQRRY8eJ7ROCQlWQChxYtDfLTpx2JZqETXqAX8-M42y1vK6xk9gzHs9nj_0NIU9VxXK8YZ262ulUyBrmQSfLVFiuMyXyigf64pOP5fFCfFgWy7jhNsRjlfOcGCbquqtwj_wgB78Lvhrc4av-e4pZozC6GlNoXCXXkLoMj3TJpdzssWAUSzAd78pkuToYwF_hnTIuYGpGWxdb_ijQ9v8Na_55ZPK3uGlwR0e3yM2II-nrSfG3yRXf3iHXp8ySP-6S88W4-rb6Ca_S83Bc0tOYH-KUjh3t1xifGelZzBpCbQ36xo2zgQKKpf2cwIMefvr6_m3KNI0ErAN99nnt--nxyfTp5_fI4ujdl8PjNGZWSCuh-ZhagFFKeVyNedZIbTMhmzLzViJfWalUXQCuKVzjNG-0dDZXNUcwUhdcSunz-2Sn7Vr_kFAuvCttIxvGYbHBKies1NIWRS5VVroyIS9m-Zp-ItAwIfCdKzNpw4A2TNCGEQl5gyrY1ETy6_CgW5-aaEum9tp5K7RjTgpVlbYCTCoL3UCHdPjl_qxAEy1yMJfjJyFPNsUgWwyQ2NZ3F1MdaDygtIQ8mPS9aUmuFYhLQ4naGglbTd0uaVdnga-bMVki02JCXs6D5rJd_5bF7v-7sUducMxFnLGUi32yM64v_CMASKN7HKzgFwjdC7k
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEJRXoCAjcSiCiPgRP46wULVIfRxY1JtlJ067Es2udtMD_HrGTrJooRx69SOeePz47Bl_A_BGV5THF9a5r73JhapxHfRK5sIxU2jBK5boi49P5OFUfD0vz7eAjW9hktN-orRMy_ToHfZhhRtNfAzGBK6pcZKKO7ATqdvjqJ7IyfpeJVquBDXD-5iC6xuqbuxBiar_Jnz5r5vkX7bStAUdPID7A3YkH3tpH8JWaHfhbh9N8ucjuJp2sx-zX1iVXCUXyUCGmBAXpJuTxTLaZDpyOUQKIa5GHcfLshVB5EoWY9AOMjn9fvQ5p4YMpKsrsn-2DIs--bj_9NvHMD348m1ymA_RFPJKGNblDqGT1iGewAJtlHGFUI0sglORo0xqXZeIZUrfeMMao7zjumYRgNQlU0oF_gS223kbngFhInjpGtVQhgcMWnnhlFGuLLnShfQyg3dj_9pFT5phk7Gba9trw6I2bNKGFRl8iipYl4yE1ylhvrywwwCwdTA-OGE89UroSroKcagqTYM_ZFKTe6MC7TALV5ZjU4jvEEJl8HqdjX0bjSKuDfPrvgwKj8gsg6e9vteScKOxuwzm6I2RsCHqZk47u0wc3ZQqGdkVM3g_Dpo_cv2_L57frvgLuMdiPOKC5kzswXa3vA4vESR1_lWaFb8BgVoJlQ
  priority: 102
  providerName: Springer Nature
Title Utilizing machine learning to predict hospital admissions for pediatric COVID-19 patients (PrepCOVID-Machine)
URI https://link.springer.com/article/10.1038/s41598-024-80538-4
https://www.ncbi.nlm.nih.gov/pubmed/39856094
https://www.proquest.com/docview/3159562028
https://www.proquest.com/docview/3159797064
https://pubmed.ncbi.nlm.nih.gov/PMC11760342
https://doaj.org/article/de9bea49b1b748c6ac566759fe5696b6
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwGLV2ERIviDthozISDyAIJI7jywNCXdk0KnVMQFHfLDtxtkpb2rWZxPj1fLaTokKReIpk5_Llu8QncXwOQi9EkWZuhXVsSiNjykt4DhrOYqqJTATNCuLpi0cn7HhMh5N8soU6uaPWgcuNr3ZOT2q8uHj74-rmAxT8-7BkXLxbwiDkFooRCs9bV8B0G-3CyMRdoY5auB-4vomkXuvDkbDHACZIu45m82nWxipP6b8Jh_79O-Ufc6p-qDq6i-60GBP3Q1LcQ1u2vo9uBdXJmwfoctxML6Y_4VB86X-ltLjVjjjDzQzPF27upsHnraII1iXkgvuotsSAcPG8E_fAg8_fP32MU4lbctYlfnm6sPPQPAqnfvUQjY8Ovw2O41Z1IS6oJE2sAWIJYd2bmk0rLnVCecUSq7njMmNClDlgntxURpJKcqMzURIHVMqccM5t9gjt1LPaPkGYUGuYrniVgr9lWhiqueQ6zzMuEmZYhF53_lXzQK6h_KR4JlSIhoJoKB8NRSN04EKw2tMRY_uG2eJMtXWmSiuN1VSa1HAqCqYLwKs8lxXckPSX3O8CqLpkUxlcCnAgQK0IPV91g2_d5Imu7ew67APGA4KL0OMQ75UlmRTgLgk9Yi0T1kxd76mn557LO005cyyMEXrTJc1vu_7ti6f_Yeceuk2cWHGSxoTuo51mcW2fAYJqTA9t8wnvod1-f_h1CNuDw5PTL9A6YIOe_yrR84XzC1TAGLE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN9kDDASSCCIljhObD8gxL7UsrVMaEV7M3bibJW2tDSZ0Pij-Bs556NT-Xrba5y6zt35fmeffT-AFyINI3fD2jeZkT7jGfpBwxOfaSoDwaKU1uWLh6OkP2Yfj-KjFfjZ3YVxxyo7n1g76myauj3yjQhxF7Ea4fD97JvvWKNcdrWj0GjMYs9efMclW_lusI36fUnp7s7hVt9vWQX8lEla-RpDCCGsW4nYMOdSB4znSWA1d7W6EiGyGDE9NrmRNJfc6Ehk1AFxFlPOuY2w32uwyiLsoAermzujg8-LXR2XN2OhbG_nBJHYKBEh3S02yhAMnHdhSwhYEwX8Lbr985Dmb5naGgB3b8OtNnIlHxpTuwMrtrgL1xsuy4t7cDauJqeTH_hTclYf0LSkZaQ4JtWUzOYuI1SRk5anhOgMLcxt1ZUE42Yy6yhDyNanL4NtP5SkLflaklcHcztrHg-brl_fh_GVSP0B9IppYR8BocyaROc8Dykub8LUMM0l13EccREkJvHgTSdfNWtKdqg61R4J1WhDoTZUrQ3FPNh0Kli86cpt1w-m82PVzl6VWWmsZtKEhjORJjrFKJjHMscPkvVfrncKVK0PKNWlxXrwfNGMsnUpGV3Y6XnzDg4e40IPHjb6XowkkgLFJbFFLFnC0lCXW4rJSV0hPAx54mo7evC2M5rLcf1bFmv__4xncKN_ONxX-4PR3mO4SR0TchD6lK1Dr5qf2ycYnlXmaTsnCHy96mn4C5JfR64
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJFAAkG0sePE9gEh6LLqUlp6YNHejJ047Uo0CZtUqPw0fh1jJ9lqed16tZ3Embc99nwIPREZid0N69DkRoaM52AHDU9DpqmMBIsz6ssX7-2nOzP2fp7MN9DP4S6MO1Y52ERvqPMqc3vkoxj8LvhqcIejoj8WcTCevK6_hQ5BymVaBziNTkR27el3WL41r6Zj4PVTSifvPm3vhD3CQJgxSdtQQzghhHWrEksKLnXEeJFGVnNXtysVIk_AvyemMJIWkhsdi5w6p5wnlHNuY3jvBXSRxwlxOsbnfLW_4zJojMj-nk4Ui1EDvtLdZ6MM3IKzM2zNF3rIgL_FuX8e1_wtZ-td4eQautrHsPhNJ3TX0YYtb6BLHarl6U10PGsXXxc_4FF87I9qWtxjUxzitsL10uWGWnzUI5ZgnYOsuU27BkMEjesBPARvf_w8HYdE4r74a4OfHSxt3TXvda9-fgvNzoXmt9FmWZX2LsKUWZPqgheEwkKHZIZpLrlOkpiLKDVpgF4M9FV1V7xD-aR7LFTHDQXcUJ4bigXorWPBaqQrvO0bquWh6vVY5VYaq5k0xHAmslRnEA_zRBbwQ9J_cmtgoOqtQaPOZDdAj1fdQFuXnNGlrU66MTB5iBADdKfj92omsRRALgk9Yk0S1qa63lMujnytcEJ46qo8BujlIDRn8_o3Le79_zceocugfOrDdH_3PrpCHSRyRELKttBmuzyxDyBOa81DrxAYfTlvDfwFaUJKfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+machine+learning+to+predict+hospital+admissions+for+pediatric+COVID-19+patients+%28PrepCOVID-Machine%29&rft.jtitle=Scientific+reports&rft.au=Liew%2C+Chuin-Hen&rft.au=Ong%2C+Song-Quan&rft.au=Ng%2C+David+Chun-Ern&rft.date=2025-01-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=3131&rft_id=info:doi/10.1038%2Fs41598-024-80538-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon