Generating electricity by moving a droplet of ionic liquid along graphene

Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, bu...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 9; no. 5; pp. 378 - 383
Main Authors Yin, Jun, Li, Xuemei, Yu, Jin, Zhang, Zhuhua, Zhou, Jianxin, Guo, Wanlin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device. A voltage of a few millivolts can be generated by moving a droplet of ionic solution along a strip of monolayer graphene.
AbstractList Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device.
Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device.Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device.
Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device. A voltage of a few millivolts can be generated by moving a droplet of ionic solution along a strip of monolayer graphene.
Author Yu, Jin
Zhou, Jianxin
Yin, Jun
Li, Xuemei
Zhang, Zhuhua
Guo, Wanlin
Author_xml – sequence: 1
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street
– sequence: 2
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street
– sequence: 3
  givenname: Jin
  surname: Yu
  fullname: Yu, Jin
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street
– sequence: 4
  givenname: Zhuhua
  surname: Zhang
  fullname: Zhang, Zhuhua
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street
– sequence: 5
  givenname: Jianxin
  surname: Zhou
  fullname: Zhou, Jianxin
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street
– sequence: 6
  givenname: Wanlin
  surname: Guo
  fullname: Guo, Wanlin
  email: wlguo@nuaa.edu.cn
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24705513$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9vFCEUB3BiauwPPXo1k3jxMuvjAQMcTaO1SRMveiYMw6w0s7CFGZP978u4rTGNpicIfHjhve85OYkpekLeUthQYOpjjDamDQLlG9G9IGdUctUypsXJn72Sp-S8lFsAgRr5K3KKXIIQlJ2R6ysffbZziNvGT97NObgwH5r-0OzSr_XUNkNO-8nPTRqbkGJwzRTuljA0dkr1fpvt_mct8pq8HO1U_JuH9YL8-PL5--XX9ubb1fXlp5vWcY1zq6XSYDsJSutu5Kio6LGTlDLBOaLr-lGD49RZDtaOljqwo6YKvdBD7wZ2QT4c6-5zult8mc0uFOenyUaflmKolIAKUXXP0w4BNAOGz1OB2ClQKCt9_4TepiXH2vOquOJCI6vq3YNa-p0fzD6Hnc0H8zj6CtgRuJxKyX40dfA1iBTnbMNkKJg1YPM7YLMGbMTaUvvk1WPh__nN0Zfq4tbnvz77zwf3cHa1DA
CitedBy_id crossref_primary_10_1016_j_rineng_2024_101777
crossref_primary_10_1002_sstr_202100124
crossref_primary_10_1007_s42114_019_00123_6
crossref_primary_10_1021_acsnano_1c06950
crossref_primary_10_1039_D1NR00544H
crossref_primary_10_1021_am504777g
crossref_primary_10_1360_SST_2022_0062
crossref_primary_10_1016_j_trac_2016_05_019
crossref_primary_10_1038_s41467_022_28998_y
crossref_primary_10_1002_admi_202101213
crossref_primary_10_1039_C9EE00252A
crossref_primary_10_1039_D1CS00778E
crossref_primary_10_1016_j_energy_2018_05_138
crossref_primary_10_1016_j_mtelec_2022_100010
crossref_primary_10_1002_smll_201704473
crossref_primary_10_1016_j_nwnano_2024_100062
crossref_primary_10_1038_s41598_023_40986_w
crossref_primary_10_1002_adfm_202425757
crossref_primary_10_1002_cnma_202200279
crossref_primary_10_1038_srep26708
crossref_primary_10_1002_smtd_202300261
crossref_primary_10_1002_adma_201705925
crossref_primary_10_1039_C7CC00929A
crossref_primary_10_1063_1_4914915
crossref_primary_10_1002_smtd_201800108
crossref_primary_10_1039_D4TA01819B
crossref_primary_10_1016_j_nanoen_2019_05_026
crossref_primary_10_1021_acs_biomac_1c01194
crossref_primary_10_1002_adfm_202208933
crossref_primary_10_1002_adsu_202200296
crossref_primary_10_1007_s10934_022_01382_3
crossref_primary_10_1039_D3EE01131C
crossref_primary_10_1088_1361_6528_ac80c8
crossref_primary_10_1002_eem2_12760
crossref_primary_10_1002_aenm_202202634
crossref_primary_10_1039_D0EE01572E
crossref_primary_10_1016_j_mattod_2024_08_017
crossref_primary_10_1140_epje_i2020_11974_7
crossref_primary_10_1021_acsaelm_9b00842
crossref_primary_10_1016_j_jpowsour_2024_234874
crossref_primary_10_1038_srep46317
crossref_primary_10_1039_D1NR05386H
crossref_primary_10_1021_acs_jpclett_4c01274
crossref_primary_10_1002_adfm_201908252
crossref_primary_10_1039_C7TA05050J
crossref_primary_10_1002_ange_201711505
crossref_primary_10_1039_D1SE00717C
crossref_primary_10_1007_s40544_014_0064_0
crossref_primary_10_1038_nmat4449
crossref_primary_10_1016_j_synthmet_2024_117597
crossref_primary_10_2139_ssrn_3982918
crossref_primary_10_1021_acs_langmuir_7b03165
crossref_primary_10_1002_dro2_97
crossref_primary_10_1021_acsami_8b16529
crossref_primary_10_1038_s41467_024_50518_3
crossref_primary_10_1002_adma_202301080
crossref_primary_10_1016_j_gee_2022_02_002
crossref_primary_10_1021_acsomega_1c04751
crossref_primary_10_1002_eom2_12408
crossref_primary_10_1039_C8TA07125J
crossref_primary_10_1039_D0CS00268B
crossref_primary_10_26599_NRE_2023_9120042
crossref_primary_10_1021_acsami_3c14264
crossref_primary_10_1002_anie_201711505
crossref_primary_10_1016_j_xinn_2022_100301
crossref_primary_10_1002_admi_202000670
crossref_primary_10_1021_acsmaterialslett_0c00474
crossref_primary_10_3762_bjnano_13_99
crossref_primary_10_1016_j_xcrp_2020_100175
crossref_primary_10_1002_dro2_110
crossref_primary_10_1002_eom2_12116
crossref_primary_10_1016_j_jechem_2017_10_017
crossref_primary_10_1016_j_molliq_2024_124523
crossref_primary_10_1016_j_apsusc_2020_145976
crossref_primary_10_1002_dro2_91
crossref_primary_10_1021_acs_jpcc_8b06974
crossref_primary_10_1002_aenm_201802212
crossref_primary_10_1038_s41467_023_37366_3
crossref_primary_10_1002_adma_202303035
crossref_primary_10_1021_acsaem_2c02546
crossref_primary_10_1002_advs_202305530
crossref_primary_10_1016_j_ceja_2023_100498
crossref_primary_10_1016_j_jpowsour_2017_09_074
crossref_primary_10_1016_j_nanoen_2024_109673
crossref_primary_10_1088_1361_6528_ac4d55
crossref_primary_10_1360_SST_2022_0133
crossref_primary_10_1557_opl_2015_677
crossref_primary_10_1016_j_nanoen_2019_04_020
crossref_primary_10_1002_dro2_77
crossref_primary_10_1002_adma_201607054
crossref_primary_10_1021_acsami_4c09044
crossref_primary_10_1002_aenm_202201383
crossref_primary_10_1021_acsanm_2c01557
crossref_primary_10_1007_s42765_022_00186_z
crossref_primary_10_1021_acsomega_1c02398
crossref_primary_10_1039_C9FD00109C
crossref_primary_10_1002_aesr_202100196
crossref_primary_10_1016_j_nanoen_2017_09_007
crossref_primary_10_1088_1361_6528_ac04d4
crossref_primary_10_1093_nsr_nwab169
crossref_primary_10_1002_adma_202211165
crossref_primary_10_1007_s10853_021_06345_8
crossref_primary_10_1002_advs_202103038
crossref_primary_10_1088_1361_6528_ad22a9
crossref_primary_10_1007_s10311_025_01836_5
crossref_primary_10_1063_1_4945783
crossref_primary_10_1016_j_cej_2020_127014
crossref_primary_10_1002_adsu_202400805
crossref_primary_10_3390_polym12071596
crossref_primary_10_1002_anie_201608584
crossref_primary_10_1016_j_cej_2025_161806
crossref_primary_10_1021_cr500411q
crossref_primary_10_1039_D0TA02868A
crossref_primary_10_1016_j_cej_2021_131923
crossref_primary_10_1021_acsaenm_3c00112
crossref_primary_10_1016_j_jallcom_2018_09_098
crossref_primary_10_1016_j_nanoen_2022_108081
crossref_primary_10_1021_acsami_1c04290
crossref_primary_10_1016_j_egyr_2022_04_053
crossref_primary_10_1021_jacs_8b07778
crossref_primary_10_1126_sciadv_adi2993
crossref_primary_10_1039_C4RA12594K
crossref_primary_10_1038_s41598_017_17522_8
crossref_primary_10_1002_ange_201602114
crossref_primary_10_1002_er_7245
crossref_primary_10_1021_acsami_7b12542
crossref_primary_10_1039_C7TA11070G
crossref_primary_10_1039_C9TA01768B
crossref_primary_10_1016_j_nanoen_2020_104481
crossref_primary_10_1016_j_jpowsour_2019_227388
crossref_primary_10_1016_j_nanoen_2023_108388
crossref_primary_10_1039_C7CP03351F
crossref_primary_10_1007_s10854_023_10389_8
crossref_primary_10_1016_j_nanoen_2018_09_054
crossref_primary_10_1039_C9TA08264F
crossref_primary_10_1016_j_foodchem_2019_125375
crossref_primary_10_1016_j_triboint_2023_109035
crossref_primary_10_1039_D3LC00582H
crossref_primary_10_1016_j_physleta_2019_125904
crossref_primary_10_35848_1347_4065_accde7
crossref_primary_10_1002_admt_202300178
crossref_primary_10_1103_PhysRevX_13_011019
crossref_primary_10_1021_acs_langmuir_3c00983
crossref_primary_10_1002_adem_202101283
crossref_primary_10_1039_D3CS00763D
crossref_primary_10_1021_acsaem_1c01840
crossref_primary_10_1134_S2635167622060027
crossref_primary_10_1016_j_nanoen_2021_106494
crossref_primary_10_1016_j_apsusc_2021_150843
crossref_primary_10_1016_j_mseb_2024_117859
crossref_primary_10_1016_j_nanoen_2019_03_026
crossref_primary_10_1016_j_cej_2025_159281
crossref_primary_10_1038_nnano_2016_300
crossref_primary_10_1016_j_polymer_2019_03_028
crossref_primary_10_1002_adma_201905756
crossref_primary_10_1002_advs_202404893
crossref_primary_10_1021_acsapm_4c00849
crossref_primary_10_1038_s41565_018_0228_6
crossref_primary_10_1002_ente_202301458
crossref_primary_10_1360_SST_2024_0122
crossref_primary_10_1002_adfm_202315912
crossref_primary_10_1002_ente_201700865
crossref_primary_10_1016_j_nanoen_2018_02_061
crossref_primary_10_1039_D2LC00946C
crossref_primary_10_1039_C9NR06113D
crossref_primary_10_1002_adma_202407856
crossref_primary_10_1021_acsami_4c03665
crossref_primary_10_1016_j_sna_2020_112459
crossref_primary_10_1016_j_nanoen_2025_110731
crossref_primary_10_1039_D0NH00685H
crossref_primary_10_1063_5_0084648
crossref_primary_10_1039_D3TA06080B
crossref_primary_10_1002_dro2_22
crossref_primary_10_1002_EXP_20220061
crossref_primary_10_1016_j_surfin_2023_102853
crossref_primary_10_1038_s41565_024_01842_8
crossref_primary_10_1016_j_chempr_2021_12_015
crossref_primary_10_1016_j_nanoen_2019_03_041
crossref_primary_10_1002_adfm_202206705
crossref_primary_10_1016_j_apenergy_2019_114435
crossref_primary_10_1016_j_nanoen_2021_106112
crossref_primary_10_1021_acsami_3c15400
crossref_primary_10_1016_j_nanoen_2024_109345
crossref_primary_10_1021_acsami_6b10965
crossref_primary_10_1002_admi_202001592
crossref_primary_10_1021_acsami_0c21935
crossref_primary_10_3389_fnins_2021_662457
crossref_primary_10_1007_s11433_018_9204_6
crossref_primary_10_1002_dro2_12
crossref_primary_10_3103_S0025654422060164
crossref_primary_10_1021_acs_langmuir_3c02924
crossref_primary_10_1016_j_molliq_2023_123005
crossref_primary_10_1002_aesr_202000087
crossref_primary_10_3390_molecules29235716
crossref_primary_10_1103_PhysRevX_13_011020
crossref_primary_10_1021_acs_langmuir_3c00750
crossref_primary_10_1038_s41467_023_41371_x
crossref_primary_10_1016_j_nanoen_2016_10_028
crossref_primary_10_1016_j_nanoen_2020_105096
crossref_primary_10_34133_2021_7505638
crossref_primary_10_1002_adma_202007581
crossref_primary_10_1021_acsnano_1c00891
crossref_primary_10_1039_D3RA03526C
crossref_primary_10_1039_C4TA06168C
crossref_primary_10_1002_smll_202205265
crossref_primary_10_1080_23746149_2022_2134051
crossref_primary_10_1002_smll_202304988
crossref_primary_10_1016_j_jpowsour_2023_233007
crossref_primary_10_1016_j_nanoen_2017_08_046
crossref_primary_10_1063_1_5016309
crossref_primary_10_1021_acsnano_9b00252
crossref_primary_10_1016_j_cej_2023_142582
crossref_primary_10_1021_acsmaterialslett_1c00392
crossref_primary_10_1088_1361_6528_ab0cd7
crossref_primary_10_1088_2053_1583_1_3_034004
crossref_primary_10_1007_s10570_019_02854_7
crossref_primary_10_1002_inf2_12427
crossref_primary_10_1007_s10853_021_06791_4
crossref_primary_10_1002_ange_202002762
crossref_primary_10_1088_1674_4926_24080021
crossref_primary_10_1557_s43578_022_00811_y
crossref_primary_10_1021_acsami_4c01168
crossref_primary_10_1021_acs_jpcb_3c06786
crossref_primary_10_1126_sciadv_abo7698
crossref_primary_10_1039_C8NR08772E
crossref_primary_10_1002_adfm_202404744
crossref_primary_10_1002_bte2_20220001
crossref_primary_10_1021_acsnano_3c06080
crossref_primary_10_1063_5_0190934
crossref_primary_10_1021_acs_jpcc_5b10269
crossref_primary_10_1021_acs_nanolett_4c06651
crossref_primary_10_1039_D1SE01996A
crossref_primary_10_1021_acsnano_6b06867
crossref_primary_10_1002_elps_202300102
crossref_primary_10_3390_en15197424
crossref_primary_10_3390_s24144600
crossref_primary_10_1002_adma_201707635
crossref_primary_10_1063_5_0153423
crossref_primary_10_1021_acsami_7b01948
crossref_primary_10_1021_jz502613s
crossref_primary_10_1098_rsos_180605
crossref_primary_10_1088_2053_1583_abe777
crossref_primary_10_1021_acsomega_3c07085
crossref_primary_10_1016_j_nanoen_2022_107709
crossref_primary_10_1002_ange_202218393
crossref_primary_10_1016_j_electacta_2017_10_086
crossref_primary_10_1016_j_jclepro_2024_143960
crossref_primary_10_1002_aelm_202100222
crossref_primary_10_1007_s10853_018_2216_5
crossref_primary_10_1021_acsami_9b12918
crossref_primary_10_1039_D3EE00981E
crossref_primary_10_1016_j_mattod_2018_06_004
crossref_primary_10_1039_D1NA00658D
crossref_primary_10_1039_C6RA20948C
crossref_primary_10_1021_acsnano_3c08132
crossref_primary_10_1016_j_jallcom_2021_161058
crossref_primary_10_1016_j_jclepro_2024_141657
crossref_primary_10_1002_adfm_202208393
crossref_primary_10_1002_adfm_202316504
crossref_primary_10_1088_0957_4484_27_31_315702
crossref_primary_10_1016_j_carbon_2015_09_009
crossref_primary_10_1016_j_nanoen_2020_104628
crossref_primary_10_1093_nsr_nwae096
crossref_primary_10_1002_EXP_70007
crossref_primary_10_1016_j_nanoen_2015_08_002
crossref_primary_10_1039_C8SE00604K
crossref_primary_10_4028_www_scientific_net_KEM_814_53
crossref_primary_10_1016_j_jmst_2024_07_013
crossref_primary_10_26599_NRE_2024_9120110
crossref_primary_10_1039_C7CP08035B
crossref_primary_10_1038_s41427_020_0203_1
crossref_primary_10_1002_admi_202201864
crossref_primary_10_1002_wcms_1661
crossref_primary_10_1016_j_carbon_2016_04_030
crossref_primary_10_1002_adma_202003722
crossref_primary_10_1149_2_1131913jes
crossref_primary_10_1039_D3CP05039D
crossref_primary_10_1002_elps_201600429
crossref_primary_10_1039_D2EE03621E
crossref_primary_10_1002_chem_201700098
crossref_primary_10_3390_app14209589
crossref_primary_10_1002_anie_201706620
crossref_primary_10_1021_acs_langmuir_9b00606
crossref_primary_10_1002_sus2_206
crossref_primary_10_1021_acsaelm_9b00157
crossref_primary_10_1039_D3EE01765F
crossref_primary_10_1016_j_nanoen_2022_107241
crossref_primary_10_1016_j_nantod_2025_102661
crossref_primary_10_1016_j_flatc_2017_07_006
crossref_primary_10_1038_s41928_018_0189_7
crossref_primary_10_1039_C8CP02307G
crossref_primary_10_1002_idm2_12033
crossref_primary_10_1007_s12274_015_0754_6
crossref_primary_10_1063_5_0018862
crossref_primary_10_1038_srep15695
crossref_primary_10_1016_j_nanoen_2016_11_050
crossref_primary_10_1016_j_nxmate_2024_100309
crossref_primary_10_2139_ssrn_3987807
crossref_primary_10_1002_adfm_201901069
crossref_primary_10_1039_D0TA12073A
crossref_primary_10_1016_j_nanoen_2022_107364
crossref_primary_10_1021_acs_nanolett_2c00168
crossref_primary_10_1016_j_nanoen_2022_107591
crossref_primary_10_1021_acsnano_4c09494
crossref_primary_10_1093_nsr_nwv007
crossref_primary_10_1021_acs_langmuir_0c02450
crossref_primary_10_1016_j_renene_2019_05_078
crossref_primary_10_1021_acsami_1c13487
crossref_primary_10_1088_2053_1583_ab39cb
crossref_primary_10_3390_en14185796
crossref_primary_10_1021_acs_nanolett_3c00821
crossref_primary_10_1002_admt_202300370
crossref_primary_10_1021_acsami_8b12967
crossref_primary_10_3390_en12112184
crossref_primary_10_1016_j_chphi_2025_100813
crossref_primary_10_1038_s41467_022_31067_z
crossref_primary_10_1016_j_nanoen_2023_108988
crossref_primary_10_1002_adma_202008276
crossref_primary_10_1021_acsnano_6b03032
crossref_primary_10_1002_smll_201502013
crossref_primary_10_1016_j_fochx_2019_100048
crossref_primary_10_1016_j_nanoen_2023_108982
crossref_primary_10_1016_j_mtchem_2024_101943
crossref_primary_10_1016_j_cej_2023_147403
crossref_primary_10_1016_j_carbon_2022_03_047
crossref_primary_10_1021_acsami_3c04726
crossref_primary_10_1039_D3TA03760F
crossref_primary_10_1039_D2NA00388K
crossref_primary_10_1016_j_matt_2023_04_008
crossref_primary_10_1016_j_nanoen_2019_104370
crossref_primary_10_1021_acs_jpclett_0c00591
crossref_primary_10_1002_chem_201805008
crossref_primary_10_1016_j_ijbiomac_2022_02_144
crossref_primary_10_1016_j_nanoen_2020_104827
crossref_primary_10_1016_j_mtphys_2024_101337
crossref_primary_10_1039_D0TA10329B
crossref_primary_10_1016_j_nanoen_2023_108918
crossref_primary_10_1177_1045389X18783092
crossref_primary_10_1002_advs_202302941
crossref_primary_10_1016_j_nanoen_2019_104017
crossref_primary_10_1021_acs_jpcc_1c02078
crossref_primary_10_1021_acs_jpcc_6b06828
crossref_primary_10_1002_adma_201501867
crossref_primary_10_1002_aesr_202200051
crossref_primary_10_1021_acsami_3c00498
crossref_primary_10_1021_acs_jpcc_8b11142
crossref_primary_10_1002_adfm_202405520
crossref_primary_10_1515_nanoph_2021_0582
crossref_primary_10_1021_acsami_3c15852
crossref_primary_10_1002_adfm_202418834
crossref_primary_10_1007_s11426_021_1089_6
crossref_primary_10_1016_j_sna_2025_116276
crossref_primary_10_1126_science_aam8771
crossref_primary_10_2139_ssrn_3942845
crossref_primary_10_1002_aenm_202400590
crossref_primary_10_1002_smll_201501011
crossref_primary_10_1016_j_matt_2022_02_013
crossref_primary_10_1016_j_carbon_2019_03_041
crossref_primary_10_1016_j_joule_2020_07_015
crossref_primary_10_1016_j_nanoen_2023_108819
crossref_primary_10_1016_j_nanoen_2023_108934
crossref_primary_10_1039_C8TA12328D
crossref_primary_10_1002_aenm_201702149
crossref_primary_10_1002_anie_201602114
crossref_primary_10_1109_TNANO_2021_3072312
crossref_primary_10_1016_j_matchemphys_2023_128670
crossref_primary_10_1038_s41467_021_23038_7
crossref_primary_10_2139_ssrn_4014213
crossref_primary_10_1002_aisy_202300083
crossref_primary_10_1021_acs_chemrev_1c00176
crossref_primary_10_1002_advs_201901846
crossref_primary_10_1039_C6TA05276B
crossref_primary_10_1063_1_4929745
crossref_primary_10_1073_pnas_2411613121
crossref_primary_10_1002_ange_201608584
crossref_primary_10_1016_j_cej_2024_151054
crossref_primary_10_1039_C9SM01348B
crossref_primary_10_1016_j_jmps_2018_09_019
crossref_primary_10_1039_C5EE03701H
crossref_primary_10_3390_ma16124336
crossref_primary_10_1039_C7CS00256D
crossref_primary_10_1016_j_cej_2024_155763
crossref_primary_10_1021_acs_chemrev_9b00693
crossref_primary_10_1039_D4EE03356F
crossref_primary_10_1007_s40843_020_1615_x
crossref_primary_10_1021_acs_chemmater_6b03964
crossref_primary_10_1039_D4YA00479E
crossref_primary_10_1002_chem_201704638
crossref_primary_10_1016_j_cej_2019_123366
crossref_primary_10_1021_acsnano_4c14996
crossref_primary_10_1039_C6TA03107B
crossref_primary_10_1016_j_seppur_2022_122321
crossref_primary_10_1039_D2CP03576F
crossref_primary_10_1021_acs_jpcc_6b04696
crossref_primary_10_1063_1_4922800
crossref_primary_10_1038_s41598_023_33737_4
crossref_primary_10_1103_PhysRevB_97_241411
crossref_primary_10_1002_adma_202420263
crossref_primary_10_1016_j_carbon_2018_09_005
crossref_primary_10_1016_j_enconman_2020_112791
crossref_primary_10_1021_jacs_2c03344
crossref_primary_10_1038_s44287_024_00029_6
crossref_primary_10_1007_s12274_024_6499_3
crossref_primary_10_1541_ieejsmas_138_401
crossref_primary_10_1016_j_device_2023_100007
crossref_primary_10_1049_tje2_12338
crossref_primary_10_1021_acs_jpcc_4c01734
crossref_primary_10_1016_j_matlet_2019_126530
crossref_primary_10_1021_acsami_4c06131
crossref_primary_10_1016_j_nanoen_2021_105979
crossref_primary_10_1016_j_nanoen_2021_106705
crossref_primary_10_1016_j_nanoen_2020_105558
crossref_primary_10_1038_s41467_021_21974_y
crossref_primary_10_1016_j_indcrop_2022_115240
crossref_primary_10_1039_C8DT03784A
crossref_primary_10_1016_j_cej_2023_148125
crossref_primary_10_1063_5_0078645
crossref_primary_10_3389_fenrg_2021_738142
crossref_primary_10_1016_j_nanoen_2021_105970
crossref_primary_10_1021_acsnano_4c16998
crossref_primary_10_1007_s11277_019_06454_3
crossref_primary_10_1021_acsanm_9b02049
crossref_primary_10_1002_admt_202300638
crossref_primary_10_1016_j_xcrp_2022_101163
crossref_primary_10_1002_smll_201804146
crossref_primary_10_1016_j_joule_2023_06_008
crossref_primary_10_1002_adfm_201604226
crossref_primary_10_1016_j_apsusc_2021_150075
crossref_primary_10_1016_j_nanoen_2021_105939
crossref_primary_10_1063_5_0230115
crossref_primary_10_1016_j_nanoen_2018_11_089
crossref_primary_10_1039_D4TA05041J
crossref_primary_10_1021_acsnano_4c07900
crossref_primary_10_1007_s40820_024_01537_8
crossref_primary_10_1039_C8TA12037D
crossref_primary_10_1016_j_apenergy_2023_121874
crossref_primary_10_1021_acs_langmuir_9b02716
crossref_primary_10_1002_anie_202002762
crossref_primary_10_1021_jacs_7b05030
crossref_primary_10_1039_D0EE02730H
crossref_primary_10_1016_j_desal_2024_117545
crossref_primary_10_1038_s41467_022_31221_7
crossref_primary_10_1016_j_nanoen_2023_108220
crossref_primary_10_1016_j_mtener_2020_100517
crossref_primary_10_1021_acs_jpcc_5b08713
crossref_primary_10_1039_D2EE00030J
crossref_primary_10_1021_acsnano_0c09985
crossref_primary_10_1038_srep19407
crossref_primary_10_1016_j_nanoen_2023_108348
crossref_primary_10_1063_1_4955404
crossref_primary_10_1021_acsami_6b06916
crossref_primary_10_1039_D2TA05281D
crossref_primary_10_1021_jacs_2c04663
crossref_primary_10_1021_acsami_2c12777
crossref_primary_10_1038_s41467_022_32820_0
crossref_primary_10_1002_anie_202218393
crossref_primary_10_1021_acsomega_4c07849
crossref_primary_10_2139_ssrn_4017347
crossref_primary_10_1002_adsu_201900012
crossref_primary_10_1360_SST_2023_0038
crossref_primary_10_1039_C5SC00473J
crossref_primary_10_1016_j_nanoen_2020_104795
crossref_primary_10_1002_ange_201706620
crossref_primary_10_1016_j_nanoen_2020_105647
crossref_primary_10_1016_j_nanoen_2016_09_014
crossref_primary_10_1073_pnas_1906601116
crossref_primary_10_1016_j_nanoen_2022_107024
crossref_primary_10_1016_j_energy_2021_120715
crossref_primary_10_1021_acsaem_9b01703
crossref_primary_10_1039_C7CP05620F
crossref_primary_10_1021_acsami_3c01864
crossref_primary_10_1007_s00289_018_2465_0
crossref_primary_10_1002_masy_202100292
crossref_primary_10_1016_j_nanoen_2020_104663
crossref_primary_10_1039_C6LC00820H
crossref_primary_10_1007_s12274_024_6959_9
crossref_primary_10_1021_acsomega_0c04140
crossref_primary_10_1021_acs_langmuir_9b00646
crossref_primary_10_1016_j_nanoen_2022_107495
crossref_primary_10_1021_acsanm_2c03690
crossref_primary_10_1021_acs_jpcc_1c06826
crossref_primary_10_1039_C8TA08325H
crossref_primary_10_1016_j_nanoen_2020_105630
crossref_primary_10_1002_adfm_201700551
crossref_primary_10_1063_1_4944611
crossref_primary_10_1007_s10853_018_3183_6
crossref_primary_10_1038_srep30731
crossref_primary_10_1016_j_carbon_2017_06_018
crossref_primary_10_34133_2019_7367828
crossref_primary_10_1016_j_flatc_2019_100090
crossref_primary_10_1021_acsami_9b00365
crossref_primary_10_1002_advs_202203767
crossref_primary_10_1016_j_cej_2024_154164
crossref_primary_10_1038_s41565_021_00903_6
crossref_primary_10_1002_adfm_202302472
crossref_primary_10_1021_acsnano_3c02043
crossref_primary_10_1063_5_0103534
crossref_primary_10_1021_acsaem_0c02071
crossref_primary_10_1038_s41467_018_06633_z
crossref_primary_10_3390_en14030585
crossref_primary_10_1039_C6NR03253B
crossref_primary_10_1039_C7CS00849J
crossref_primary_10_1016_j_molliq_2019_112037
crossref_primary_10_1039_C8TA02629G
crossref_primary_10_1021_acs_energyfuels_2c02576
crossref_primary_10_1038_s41598_021_90374_5
crossref_primary_10_1016_j_joule_2020_09_007
crossref_primary_10_1016_j_pmatsci_2023_101172
crossref_primary_10_1016_j_applthermaleng_2019_114322
crossref_primary_10_1039_C6CP01936F
crossref_primary_10_1134_S1995078019060144
crossref_primary_10_1021_acsanm_1c04414
crossref_primary_10_1016_j_cej_2024_158878
crossref_primary_10_1016_j_tibtech_2023_03_012
crossref_primary_10_1016_j_joule_2017_11_011
crossref_primary_10_1088_1361_6439_ab8606
crossref_primary_10_1021_acs_iecr_9b04480
crossref_primary_10_1002_adfm_202208117
crossref_primary_10_1007_s12274_022_4787_3
crossref_primary_10_1021_acsanm_1c01020
crossref_primary_10_1016_j_nanoen_2019_104324
crossref_primary_10_1088_0957_4484_27_9_095701
Cites_doi 10.1038/nature11302
10.1103/PhysRevB.69.235410
10.1126/science.1171245
10.1002/adma.200702956
10.1021/nl300636g
10.1126/science.1139227
10.1021/nn303352k
10.1103/PhysRevLett.77.3865
10.1021/nl2011559
10.1021/ja8093372
10.1021/nl072364w
10.1021/nl300603v
10.1038/nmat1967
10.1021/nn800593m
10.1021/ed014p412
10.1126/science.1079080
10.1103/PhysRevLett.86.131
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.59.1758
10.1126/science.300.5623.1235
10.1021/nl902623y
10.1016/0927-0256(96)00008-0
10.1063/1.2710776
10.1103/PhysRevB.51.4014
10.1016/j.jcis.2006.12.075
10.1038/nphys2441
10.1038/nature04206
10.1021/nl8013007
ContentType Journal Article
Copyright Springer Nature Limited 2014
Copyright Nature Publishing Group May 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: Copyright Nature Publishing Group May 2014
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
KR7
DOI 10.1038/nnano.2014.56
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
Proquest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Civil Engineering Abstracts
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
Civil Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
ProQuest Central Student
Civil Engineering Abstracts
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 383
ExternalDocumentID 3305098031
24705513
10_1038_nnano_2014_56
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
KR7
ID FETCH-LOGICAL-c492t-97890a6708996f42815b26711354422c6bf90c41ca40aafa1c0af9182e59dbcd3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 04:04:07 EDT 2025
Tue Aug 05 10:39:28 EDT 2025
Thu Jul 10 19:23:13 EDT 2025
Fri Jul 25 09:03:02 EDT 2025
Mon Jul 21 06:01:36 EDT 2025
Tue Jul 01 01:56:24 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-97890a6708996f42815b26711354422c6bf90c41ca40aafa1c0af9182e59dbcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24705513
PQID 1524845923
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1770282286
proquest_miscellaneous_1620093032
proquest_miscellaneous_1522680827
proquest_journals_1524845923
pubmed_primary_24705513
crossref_citationtrail_10_1038_nnano_2014_56
crossref_primary_10_1038_nnano_2014_56
springer_journals_10_1038_nnano_2014_56
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Delgadoa (CR1) 2007; 309
Lyklema, de Keizer, Bijsterbosch, Fleer, Cohen Stuart (CR23) 1995
Král, Shapiro (CR5) 2001; 86
Kresse, Furthmuller (CR24) 1996; 54
Dhiman (CR14) 2011; 11
Kresse, Joubert (CR27) 1999; 59
Weber (CR18) 2005; 437
Price, Savchenko, Narozhny, Allison, Ritchie (CR19) 2007; 316
Kielland (CR28) 1937; 14
Nandi, Finck, Eisenstein, Pfeiffer, West (CR16) 2012; 488
Newaz, Markov, Prasai, Bolotin (CR15) 2012; 12
Fowler (CR12) 2009; 3
Liu, Dai, Baur (CR4) 2007; 101
Li (CR21) 2009; 324
Gorbachev (CR17) 2012; 8
Schedin (CR9) 2007; 6
Perdew, Burke, Ernzerhof (CR26) 1996; 77
Persson, Tartaglino, Tosatti, Ueba (CR7) 2004; 69
Li (CR22) 2009; 9
Robinson, Perkins, Snow, Wei, Sheehan (CR10) 2008; 8
Wehling (CR11) 2008; 8
Makov, Payne (CR29) 1995; 51
Zhao (CR3) 2008; 20
Yin, Zhang, Li, Zhou, Guo (CR13) 2012; 12
Ghosh, Sood, Kumar (CR2) 2003; 299
Yuan, Zhao (CR6) 2009; 131
Kresse, Furthmuller (CR25) 1996; 6
Cohen (CR8) 2003; 300
Yan (CR20) 2012; 6
JJ Lyklema (BFnnano201456_CR23) 1995
JD Fowler (BFnnano201456_CR12) 2009; 3
Q Yuan (BFnnano201456_CR6) 2009; 131
D Nandi (BFnnano201456_CR16) 2012; 488
BN Persson (BFnnano201456_CR7) 2004; 69
X Li (BFnnano201456_CR21) 2009; 324
G Kresse (BFnnano201456_CR25) 1996; 6
P Dhiman (BFnnano201456_CR14) 2011; 11
Z Yan (BFnnano201456_CR20) 2012; 6
S Ghosh (BFnnano201456_CR2) 2003; 299
P Král (BFnnano201456_CR5) 2001; 86
G Makov (BFnnano201456_CR29) 1995; 51
AKM Newaz (BFnnano201456_CR15) 2012; 12
J Kielland (BFnnano201456_CR28) 1937; 14
G Kresse (BFnnano201456_CR27) 1999; 59
TO Wehling (BFnnano201456_CR11) 2008; 8
F Schedin (BFnnano201456_CR9) 2007; 6
JT Robinson (BFnnano201456_CR10) 2008; 8
X Li (BFnnano201456_CR22) 2009; 9
J Liu (BFnnano201456_CR4) 2007; 101
J Yin (BFnnano201456_CR13) 2012; 12
AS Price (BFnnano201456_CR19) 2007; 316
AE Cohen (BFnnano201456_CR8) 2003; 300
RV Gorbachev (BFnnano201456_CR17) 2012; 8
G Kresse (BFnnano201456_CR24) 1996; 54
CP Weber (BFnnano201456_CR18) 2005; 437
AV Delgadoa (BFnnano201456_CR1) 2007; 309
Y Zhao (BFnnano201456_CR3) 2008; 20
JP Perdew (BFnnano201456_CR26) 1996; 77
22966902 - ACS Nano. 2012 Oct 23;6(10):9110-7
21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7
22914164 - Nature. 2012 Aug 23;488(7412):481-4
19236064 - ACS Nano. 2009 Feb 24;3(2):301-6
9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
19845330 - Nano Lett. 2009 Dec;9(12):4359-63
18085811 - Nano Lett. 2008 Jan;8(1):173-7
17368660 - J Colloid Interface Sci. 2007 May 15;309(2):194-224
12764175 - Science. 2003 May 23;300(5623):1235-6; author reply 1235-6
17660825 - Nat Mater. 2007 Sep;6(9):652-5
19423775 - Science. 2009 Jun 5;324(5932):1312-4
19382807 - J Am Chem Soc. 2009 May 13;131(18):6374-6
17412956 - Science. 2007 Apr 6;316(5821):99-102
16251958 - Nature. 2005 Oct 27;437(7063):1330-3
10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
18763832 - Nano Lett. 2008 Oct;8(10):3137-40
11136111 - Phys Rev Lett. 2001 Jan 1;86(1):131-134
12532025 - Science. 2003 Feb 14;299(5609):1042-4
9979237 - Phys Rev B Condens Matter. 1995 Feb 15;51(7):4014-4022
22381077 - Nano Lett. 2012 Mar 14;12(3):1736-41
22568874 - Nano Lett. 2012 Jun 13;12(6):2931-5
References_xml – volume: 488
  start-page: 481
  year: 2012
  end-page: 484
  ident: CR16
  article-title: Exciton condensation and perfect Coulomb drag
  publication-title: Nature
  doi: 10.1038/nature11302
– volume: 69
  start-page: 235410
  year: 2004
  ident: CR7
  article-title: Electronic friction and liquid-flow-induced voltage in nanotubes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.235410
– volume: 324
  start-page: 1312
  year: 2009
  end-page: 1314
  ident: CR21
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 20
  start-page: 1772
  year: 2008
  end-page: 1776
  ident: CR3
  article-title: Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702956
– volume: 12
  start-page: 1736
  year: 2012
  end-page: 1741
  ident: CR13
  article-title: Harvesting energy from water flow over graphene?
  publication-title: Nano Lett.
  doi: 10.1021/nl300636g
– volume: 316
  start-page: 99
  year: 2007
  end-page: 102
  ident: CR19
  article-title: Giant fluctuations of coulomb drag in a bilayer system
  publication-title: Science
  doi: 10.1126/science.1139227
– volume: 6
  start-page: 9110
  year: 2012
  end-page: 9118
  ident: CR20
  article-title: Toward the synthesis of wafer-scale single-crystal graphene on copper foils
  publication-title: ACS Nano
  doi: 10.1021/nn303352k
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR26
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 11
  start-page: 3123
  year: 2011
  end-page: 3127
  ident: CR14
  article-title: Harvesting energy from water flow over graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl2011559
– volume: 131
  start-page: 6374
  year: 2009
  end-page: 6376
  ident: CR6
  article-title: Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8093372
– volume: 8
  start-page: 173
  year: 2008
  end-page: 177
  ident: CR11
  article-title: Molecular doping of graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl072364w
– volume: 12
  start-page: 2931
  year: 2012
  end-page: 2935
  ident: CR15
  article-title: Graphene transistor as a probe for streaming potential
  publication-title: Nano Lett.
  doi: 10.1021/nl300603v
– volume: 6
  start-page: 652
  year: 2007
  end-page: 655
  ident: CR9
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nature Mater.
  doi: 10.1038/nmat1967
– volume: 3
  start-page: 301
  year: 2009
  end-page: 306
  ident: CR12
  article-title: Practical chemical sensors from chemically derived graphene
  publication-title: ACS Nano
  doi: 10.1021/nn800593m
– volume: 14
  start-page: 412
  year: 1937
  end-page: 413
  ident: CR28
  article-title: Chemical hydration numbers
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed014p412
– volume: 299
  start-page: 1042
  year: 2003
  end-page: 1044
  ident: CR2
  article-title: Carbon nanotube flow sensors
  publication-title: Science
  doi: 10.1126/science.1079080
– year: 1995
  ident: CR23
  publication-title: Fundamentals of Interface and Colloid Science
– volume: 86
  start-page: 131
  year: 2001
  end-page: 134
  ident: CR5
  article-title: Nanotube electron drag in flowing liquids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.131
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR24
  article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR27
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 300
  start-page: 1235
  year: 2003
  end-page: 1236
  ident: CR8
  article-title: Carbon nanotubes provide a charge
  publication-title: Science
  doi: 10.1126/science.300.5623.1235
– volume: 9
  start-page: 4359
  year: 2009
  end-page: 4363
  ident: CR22
  article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR25
  article-title: Efficiency of total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 101
  start-page: 064312
  year: 2007
  ident: CR4
  article-title: Multiwalled carbon nanotubes for flow-induced voltage generation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2710776
– volume: 51
  start-page: 4014
  year: 1995
  end-page: 4022
  ident: CR29
  article-title: Periodic boundary conditions in calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.4014
– volume: 309
  start-page: 194
  year: 2007
  end-page: 224
  ident: CR1
  article-title: Measurement and interpretation of electrokinetic phenomena
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.12.075
– volume: 8
  start-page: 896
  year: 2012
  end-page: 901
  ident: CR17
  article-title: Strong Coulomb drag and broken symmetry in double-layer graphene
  publication-title: Nature Phys.
  doi: 10.1038/nphys2441
– volume: 437
  start-page: 1330
  year: 2005
  end-page: 1333
  ident: CR18
  article-title: Observation of spin Coulomb drag in a two-dimensional electron gas
  publication-title: Nature
  doi: 10.1038/nature04206
– volume: 8
  start-page: 3137
  year: 2008
  end-page: 3140
  ident: CR10
  article-title: Reduced graphene oxide molecular sensors
  publication-title: Nano Lett.
  doi: 10.1021/nl8013007
– volume: 101
  start-page: 064312
  year: 2007
  ident: BFnnano201456_CR4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2710776
– volume: 12
  start-page: 2931
  year: 2012
  ident: BFnnano201456_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl300603v
– volume: 14
  start-page: 412
  year: 1937
  ident: BFnnano201456_CR28
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed014p412
– volume: 300
  start-page: 1235
  year: 2003
  ident: BFnnano201456_CR8
  publication-title: Science
  doi: 10.1126/science.300.5623.1235
– volume: 86
  start-page: 131
  year: 2001
  ident: BFnnano201456_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.131
– volume: 324
  start-page: 1312
  year: 2009
  ident: BFnnano201456_CR21
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 11
  start-page: 3123
  year: 2011
  ident: BFnnano201456_CR14
  publication-title: Nano Lett.
  doi: 10.1021/nl2011559
– volume: 437
  start-page: 1330
  year: 2005
  ident: BFnnano201456_CR18
  publication-title: Nature
  doi: 10.1038/nature04206
– volume-title: Fundamentals of Interface and Colloid Science
  year: 1995
  ident: BFnnano201456_CR23
– volume: 6
  start-page: 9110
  year: 2012
  ident: BFnnano201456_CR20
  publication-title: ACS Nano
  doi: 10.1021/nn303352k
– volume: 131
  start-page: 6374
  year: 2009
  ident: BFnnano201456_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8093372
– volume: 77
  start-page: 3865
  year: 1996
  ident: BFnnano201456_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 8
  start-page: 173
  year: 2008
  ident: BFnnano201456_CR11
  publication-title: Nano Lett.
  doi: 10.1021/nl072364w
– volume: 309
  start-page: 194
  year: 2007
  ident: BFnnano201456_CR1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.12.075
– volume: 8
  start-page: 896
  year: 2012
  ident: BFnnano201456_CR17
  publication-title: Nature Phys.
  doi: 10.1038/nphys2441
– volume: 316
  start-page: 99
  year: 2007
  ident: BFnnano201456_CR19
  publication-title: Science
  doi: 10.1126/science.1139227
– volume: 51
  start-page: 4014
  year: 1995
  ident: BFnnano201456_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.4014
– volume: 488
  start-page: 481
  year: 2012
  ident: BFnnano201456_CR16
  publication-title: Nature
  doi: 10.1038/nature11302
– volume: 54
  start-page: 11169
  year: 1996
  ident: BFnnano201456_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 6
  start-page: 652
  year: 2007
  ident: BFnnano201456_CR9
  publication-title: Nature Mater.
  doi: 10.1038/nmat1967
– volume: 3
  start-page: 301
  year: 2009
  ident: BFnnano201456_CR12
  publication-title: ACS Nano
  doi: 10.1021/nn800593m
– volume: 6
  start-page: 15
  year: 1996
  ident: BFnnano201456_CR25
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 59
  start-page: 1758
  year: 1999
  ident: BFnnano201456_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 299
  start-page: 1042
  year: 2003
  ident: BFnnano201456_CR2
  publication-title: Science
  doi: 10.1126/science.1079080
– volume: 9
  start-page: 4359
  year: 2009
  ident: BFnnano201456_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 8
  start-page: 3137
  year: 2008
  ident: BFnnano201456_CR10
  publication-title: Nano Lett.
  doi: 10.1021/nl8013007
– volume: 20
  start-page: 1772
  year: 2008
  ident: BFnnano201456_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702956
– volume: 69
  start-page: 235410
  year: 2004
  ident: BFnnano201456_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.235410
– volume: 12
  start-page: 1736
  year: 2012
  ident: BFnnano201456_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl300636g
– reference: 9979237 - Phys Rev B Condens Matter. 1995 Feb 15;51(7):4014-4022
– reference: 19423775 - Science. 2009 Jun 5;324(5932):1312-4
– reference: 11136111 - Phys Rev Lett. 2001 Jan 1;86(1):131-134
– reference: 17412956 - Science. 2007 Apr 6;316(5821):99-102
– reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
– reference: 22568874 - Nano Lett. 2012 Jun 13;12(6):2931-5
– reference: 19845330 - Nano Lett. 2009 Dec;9(12):4359-63
– reference: 22914164 - Nature. 2012 Aug 23;488(7412):481-4
– reference: 16251958 - Nature. 2005 Oct 27;437(7063):1330-3
– reference: 18085811 - Nano Lett. 2008 Jan;8(1):173-7
– reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
– reference: 12532025 - Science. 2003 Feb 14;299(5609):1042-4
– reference: 19236064 - ACS Nano. 2009 Feb 24;3(2):301-6
– reference: 12764175 - Science. 2003 May 23;300(5623):1235-6; author reply 1235-6
– reference: 17368660 - J Colloid Interface Sci. 2007 May 15;309(2):194-224
– reference: 22381077 - Nano Lett. 2012 Mar 14;12(3):1736-41
– reference: 19382807 - J Am Chem Soc. 2009 May 13;131(18):6374-6
– reference: 18763832 - Nano Lett. 2008 Oct;8(10):3137-40
– reference: 17660825 - Nat Mater. 2007 Sep;6(9):652-5
– reference: 21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7
– reference: 22966902 - ACS Nano. 2012 Oct 23;6(10):9110-7
SSID ssj0052924
Score 2.6145594
Snippet Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 378
SubjectTerms 639/925/918
Channels
Contact angle
Droplets
Electric potential
Electric power generation
Electricity
Electricity distribution
Electricity generation
Electrolytes
Graphene
Ionic liquids
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Pressure gradients
Seawater
Velocity
Voltage
Title Generating electricity by moving a droplet of ionic liquid along graphene
URI https://link.springer.com/article/10.1038/nnano.2014.56
https://www.ncbi.nlm.nih.gov/pubmed/24705513
https://www.proquest.com/docview/1524845923
https://www.proquest.com/docview/1522680827
https://www.proquest.com/docview/1620093032
https://www.proquest.com/docview/1770282286
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgu8ABbXytsE1GQnAhLHae7eQ0bVNLQWJCiEm9Rf5IpEolWbv2wH_Pe05aKo31koufomf72e_Tv8fY-9xLW6Vg8XxbmRCkG5456ZIUgrJV5p3R9FD4-7Ue38C3iZr0Abe7vqxyfSfGizq0nmLkZ6hnIAeF9sj57TyhrlGUXe1baDxm-wRdRlJtJhuHS8mia2prIE_QFTM9xmaa5WdNYxt6-yfgM_Wu3tZJ9wzNe0nSqHtGB-xZbzTyi26XD9mjqnnOnm5BCb5gXzv8aCpi5l1rm6lHA5u7P_x3DBpwy8OCqsWXvK05RWE9n03nq2ngdtbieISuxp-8ZDej4a-rcdK3SUg8FHKZFPSW1WpDCTxdozshlJPaCJEpACm9dnWRehDeQmptbYVPbV2gX1GpIjgfsldsr2mb6ojxYDNvgqhD5RU4SJ0XGdSgc7RTapHaAfu0XqjS9xji1MpiVsZcdpaXcV1LWtdS6QH7sCG_7cAzHiI8Xq962Z-hu_Lfjg_Yu80wSj-lNGxTtatII6l5iDQ7aDRlgFBVyx00xsSC2hxZed3t-oZjCYQ4JJCLj2sx2GLyf9N5s3s6b9kTIuzKJo_Z3nKxqk7QtFm60yi_-M1HX07Z_uXw-sfPvz0a-VU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHqry3tGAkHhdCY8eP5FBVCFh26ePUSr0FvyKttCR97Ar1T_EbmXGSZaXC3nrOxBqPZ-zPnhchb3LHTUiFAfs2PMGSbmBz3Cap8NKEzFmtMFH46FiNTsX3M3m2Rn73uTAYVtnviXGj9o3DN_JdOGdELiTgkf3ziwS7RqF3tW-h0arFQbj-BVe2q73xF1jft5wPv558HiVdV4HEiYLPkgJTP43S6O9SFaBvJi1XmrFMCsG5U7YqUieYMyI1pjLMpaYqAIYHWXjrfAbj3iF3RQYnOWamD7_1O7_kRdtEV4s8gauf7mp6plm-W9emxlxDJj5ir-zlM_AGsL3hlI1n3XCTbHQglX5qteohWQv1I_JgqXThYzJu61Vj0DRtW-lMHAB6aq_pz_hIQQ31lxidPqNNRfHV19Hp5GI-8dRMG_geS2XDIE_I6a0I8ClZr5s6PCfUm8xpzyofnBRWpNaxTFRC5YCLKpaaAfnQC6p0Xc1ybJ0xLaPvPMvLKNcS5VpKNSDvFuTnbbGO_xFu91IvO5u9Kv9q2IC8XnwGa0MXiqlDM480HJuVcL2CRqHHCaABX0GjdQzgzYGVZ-2qLzjmAiscMeDifa8GS0z-azpbq6fzitwbnRwdlofj44MX5D7-1IZsbpP12eU87ACsmtmXUZcp-XHbxvMH9SYybA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiWLS0YiceFdGPHjpNDhYB21aWwqhCVekttx5FW2iZ97Ar1r_HrmMljWamwt54zscbjGfuz5wXwJnHC-FAatG8jAirphjYnbBDKXBkfOatjShT-Po4PjuXXE3WyBr-7XBgKq-z2xHqjzitHb-QDPGdkIhXikUHRhkUc7Q0_nl8E1EGKPK1dO41GRQ799S-8vl3tjvZwrd8KMdz_-eUgaDsMBE6mYhaklAZqYk2-r7hAJM6VFbHmPFJSCuFiW6Shk9wZGRpTGO5CU6QIyb1Kc-vyCMe9A-uabkU9WP-8Pz760Z0DSqRNS10tkwAvgrqt8BlGyaAsTUmZh1zuUOfs5RPxBsy94aKtT77hQ3jQQlb2qdGxR7Dmy8dwf6mQ4RMYNdWrKYSaNY11Jg7hPbPX7Kx-smCG5ZcUqz5jVcHoDdix6eRiPsmZmVb4vS6cjYM8heNbEeEz6JVV6Z8Dy03kdM6L3DslrQyt45EsZJwgSip4aPrwoRNU5toK5tRIY5rVnvQoyWq5ZiTXTMV9eLcgP29Kd_yPcKuTetZa8FX2V9_68HrxGW2PHCqm9NW8phHUukToFTQx-Z8QKIgVNFrX4bwJsrLRrPqCYyGp3hFHLt53arDE5L-ms7l6Oq_gLhpO9m00PnwB9-ifJn5zC3qzy7nfRow1sy9bZWZwetv28wdpXTf-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+electricity+by+moving+a+droplet+of+ionic+liquid+along+graphene&rft.jtitle=Nature+nanotechnology&rft.au=Yin%2C+Jun&rft.au=Li%2C+Xuemei&rft.au=Yu%2C+Jin&rft.au=Zhang%2C+Zhuhua&rft.date=2014-05-01&rft.issn=1748-3387&rft.volume=9&rft.issue=5&rft.spage=378&rft.epage=383&rft_id=info:doi/10.1038%2Fnnano.2014.56&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon