Generating electricity by moving a droplet of ionic liquid along graphene
Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, bu...
Saved in:
Published in | Nature nanotechnology Vol. 9; no. 5; pp. 378 - 383 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device.
A voltage of a few millivolts can be generated by moving a droplet of ionic solution along a strip of monolayer graphene. |
---|---|
AbstractList | Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device. Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device.Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device. Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes under a pressure gradient. More recently, it has been reported that carbon nanotubes can generate a voltage when immersed in flowing liquids, but the exact origin of these observations is unclear, and generating electricity without a pressure gradient remains a challenge. Here, we show that a voltage of a few millivolts can be produced by moving a droplet of sea water or ionic solution over a strip of monolayer graphene under ambient conditions. Through experiments and density functional theory calculations, we find that a pseudocapacitor is formed at the droplet/graphene interface, which is driven forward by the moving droplet, charging and discharging at the front and rear of the droplet. This gives rise to an electric potential that is proportional to the velocity and number of droplets. The potential is also found to be dependent on the concentration and ionic species of the droplet, and decreases sharply with an increasing number of graphene layers. We illustrate the potential of this electrokinetic phenomenon by using it to create a handwriting sensor and an energy-harvesting device. A voltage of a few millivolts can be generated by moving a droplet of ionic solution along a strip of monolayer graphene. |
Author | Yu, Jin Zhou, Jianxin Yin, Jun Li, Xuemei Zhang, Zhuhua Guo, Wanlin |
Author_xml | – sequence: 1 givenname: Jun surname: Yin fullname: Yin, Jun organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street – sequence: 2 givenname: Xuemei surname: Li fullname: Li, Xuemei organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street – sequence: 3 givenname: Jin surname: Yu fullname: Yu, Jin organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street – sequence: 4 givenname: Zhuhua surname: Zhang fullname: Zhang, Zhuhua organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street – sequence: 5 givenname: Jianxin surname: Zhou fullname: Zhou, Jianxin organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street – sequence: 6 givenname: Wanlin surname: Guo fullname: Guo, Wanlin email: wlguo@nuaa.edu.cn organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24705513$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9vFCEUB3BiauwPPXo1k3jxMuvjAQMcTaO1SRMveiYMw6w0s7CFGZP978u4rTGNpicIfHjhve85OYkpekLeUthQYOpjjDamDQLlG9G9IGdUctUypsXJn72Sp-S8lFsAgRr5K3KKXIIQlJ2R6ysffbZziNvGT97NObgwH5r-0OzSr_XUNkNO-8nPTRqbkGJwzRTuljA0dkr1fpvt_mct8pq8HO1U_JuH9YL8-PL5--XX9ubb1fXlp5vWcY1zq6XSYDsJSutu5Kio6LGTlDLBOaLr-lGD49RZDtaOljqwo6YKvdBD7wZ2QT4c6-5zult8mc0uFOenyUaflmKolIAKUXXP0w4BNAOGz1OB2ClQKCt9_4TepiXH2vOquOJCI6vq3YNa-p0fzD6Hnc0H8zj6CtgRuJxKyX40dfA1iBTnbMNkKJg1YPM7YLMGbMTaUvvk1WPh__nN0Zfq4tbnvz77zwf3cHa1DA |
CitedBy_id | crossref_primary_10_1016_j_rineng_2024_101777 crossref_primary_10_1002_sstr_202100124 crossref_primary_10_1007_s42114_019_00123_6 crossref_primary_10_1021_acsnano_1c06950 crossref_primary_10_1039_D1NR00544H crossref_primary_10_1021_am504777g crossref_primary_10_1360_SST_2022_0062 crossref_primary_10_1016_j_trac_2016_05_019 crossref_primary_10_1038_s41467_022_28998_y crossref_primary_10_1002_admi_202101213 crossref_primary_10_1039_C9EE00252A crossref_primary_10_1039_D1CS00778E crossref_primary_10_1016_j_energy_2018_05_138 crossref_primary_10_1016_j_mtelec_2022_100010 crossref_primary_10_1002_smll_201704473 crossref_primary_10_1016_j_nwnano_2024_100062 crossref_primary_10_1038_s41598_023_40986_w crossref_primary_10_1002_adfm_202425757 crossref_primary_10_1002_cnma_202200279 crossref_primary_10_1038_srep26708 crossref_primary_10_1002_smtd_202300261 crossref_primary_10_1002_adma_201705925 crossref_primary_10_1039_C7CC00929A crossref_primary_10_1063_1_4914915 crossref_primary_10_1002_smtd_201800108 crossref_primary_10_1039_D4TA01819B crossref_primary_10_1016_j_nanoen_2019_05_026 crossref_primary_10_1021_acs_biomac_1c01194 crossref_primary_10_1002_adfm_202208933 crossref_primary_10_1002_adsu_202200296 crossref_primary_10_1007_s10934_022_01382_3 crossref_primary_10_1039_D3EE01131C crossref_primary_10_1088_1361_6528_ac80c8 crossref_primary_10_1002_eem2_12760 crossref_primary_10_1002_aenm_202202634 crossref_primary_10_1039_D0EE01572E crossref_primary_10_1016_j_mattod_2024_08_017 crossref_primary_10_1140_epje_i2020_11974_7 crossref_primary_10_1021_acsaelm_9b00842 crossref_primary_10_1016_j_jpowsour_2024_234874 crossref_primary_10_1038_srep46317 crossref_primary_10_1039_D1NR05386H crossref_primary_10_1021_acs_jpclett_4c01274 crossref_primary_10_1002_adfm_201908252 crossref_primary_10_1039_C7TA05050J crossref_primary_10_1002_ange_201711505 crossref_primary_10_1039_D1SE00717C crossref_primary_10_1007_s40544_014_0064_0 crossref_primary_10_1038_nmat4449 crossref_primary_10_1016_j_synthmet_2024_117597 crossref_primary_10_2139_ssrn_3982918 crossref_primary_10_1021_acs_langmuir_7b03165 crossref_primary_10_1002_dro2_97 crossref_primary_10_1021_acsami_8b16529 crossref_primary_10_1038_s41467_024_50518_3 crossref_primary_10_1002_adma_202301080 crossref_primary_10_1016_j_gee_2022_02_002 crossref_primary_10_1021_acsomega_1c04751 crossref_primary_10_1002_eom2_12408 crossref_primary_10_1039_C8TA07125J crossref_primary_10_1039_D0CS00268B crossref_primary_10_26599_NRE_2023_9120042 crossref_primary_10_1021_acsami_3c14264 crossref_primary_10_1002_anie_201711505 crossref_primary_10_1016_j_xinn_2022_100301 crossref_primary_10_1002_admi_202000670 crossref_primary_10_1021_acsmaterialslett_0c00474 crossref_primary_10_3762_bjnano_13_99 crossref_primary_10_1016_j_xcrp_2020_100175 crossref_primary_10_1002_dro2_110 crossref_primary_10_1002_eom2_12116 crossref_primary_10_1016_j_jechem_2017_10_017 crossref_primary_10_1016_j_molliq_2024_124523 crossref_primary_10_1016_j_apsusc_2020_145976 crossref_primary_10_1002_dro2_91 crossref_primary_10_1021_acs_jpcc_8b06974 crossref_primary_10_1002_aenm_201802212 crossref_primary_10_1038_s41467_023_37366_3 crossref_primary_10_1002_adma_202303035 crossref_primary_10_1021_acsaem_2c02546 crossref_primary_10_1002_advs_202305530 crossref_primary_10_1016_j_ceja_2023_100498 crossref_primary_10_1016_j_jpowsour_2017_09_074 crossref_primary_10_1016_j_nanoen_2024_109673 crossref_primary_10_1088_1361_6528_ac4d55 crossref_primary_10_1360_SST_2022_0133 crossref_primary_10_1557_opl_2015_677 crossref_primary_10_1016_j_nanoen_2019_04_020 crossref_primary_10_1002_dro2_77 crossref_primary_10_1002_adma_201607054 crossref_primary_10_1021_acsami_4c09044 crossref_primary_10_1002_aenm_202201383 crossref_primary_10_1021_acsanm_2c01557 crossref_primary_10_1007_s42765_022_00186_z crossref_primary_10_1021_acsomega_1c02398 crossref_primary_10_1039_C9FD00109C crossref_primary_10_1002_aesr_202100196 crossref_primary_10_1016_j_nanoen_2017_09_007 crossref_primary_10_1088_1361_6528_ac04d4 crossref_primary_10_1093_nsr_nwab169 crossref_primary_10_1002_adma_202211165 crossref_primary_10_1007_s10853_021_06345_8 crossref_primary_10_1002_advs_202103038 crossref_primary_10_1088_1361_6528_ad22a9 crossref_primary_10_1007_s10311_025_01836_5 crossref_primary_10_1063_1_4945783 crossref_primary_10_1016_j_cej_2020_127014 crossref_primary_10_1002_adsu_202400805 crossref_primary_10_3390_polym12071596 crossref_primary_10_1002_anie_201608584 crossref_primary_10_1016_j_cej_2025_161806 crossref_primary_10_1021_cr500411q crossref_primary_10_1039_D0TA02868A crossref_primary_10_1016_j_cej_2021_131923 crossref_primary_10_1021_acsaenm_3c00112 crossref_primary_10_1016_j_jallcom_2018_09_098 crossref_primary_10_1016_j_nanoen_2022_108081 crossref_primary_10_1021_acsami_1c04290 crossref_primary_10_1016_j_egyr_2022_04_053 crossref_primary_10_1021_jacs_8b07778 crossref_primary_10_1126_sciadv_adi2993 crossref_primary_10_1039_C4RA12594K crossref_primary_10_1038_s41598_017_17522_8 crossref_primary_10_1002_ange_201602114 crossref_primary_10_1002_er_7245 crossref_primary_10_1021_acsami_7b12542 crossref_primary_10_1039_C7TA11070G crossref_primary_10_1039_C9TA01768B crossref_primary_10_1016_j_nanoen_2020_104481 crossref_primary_10_1016_j_jpowsour_2019_227388 crossref_primary_10_1016_j_nanoen_2023_108388 crossref_primary_10_1039_C7CP03351F crossref_primary_10_1007_s10854_023_10389_8 crossref_primary_10_1016_j_nanoen_2018_09_054 crossref_primary_10_1039_C9TA08264F crossref_primary_10_1016_j_foodchem_2019_125375 crossref_primary_10_1016_j_triboint_2023_109035 crossref_primary_10_1039_D3LC00582H crossref_primary_10_1016_j_physleta_2019_125904 crossref_primary_10_35848_1347_4065_accde7 crossref_primary_10_1002_admt_202300178 crossref_primary_10_1103_PhysRevX_13_011019 crossref_primary_10_1021_acs_langmuir_3c00983 crossref_primary_10_1002_adem_202101283 crossref_primary_10_1039_D3CS00763D crossref_primary_10_1021_acsaem_1c01840 crossref_primary_10_1134_S2635167622060027 crossref_primary_10_1016_j_nanoen_2021_106494 crossref_primary_10_1016_j_apsusc_2021_150843 crossref_primary_10_1016_j_mseb_2024_117859 crossref_primary_10_1016_j_nanoen_2019_03_026 crossref_primary_10_1016_j_cej_2025_159281 crossref_primary_10_1038_nnano_2016_300 crossref_primary_10_1016_j_polymer_2019_03_028 crossref_primary_10_1002_adma_201905756 crossref_primary_10_1002_advs_202404893 crossref_primary_10_1021_acsapm_4c00849 crossref_primary_10_1038_s41565_018_0228_6 crossref_primary_10_1002_ente_202301458 crossref_primary_10_1360_SST_2024_0122 crossref_primary_10_1002_adfm_202315912 crossref_primary_10_1002_ente_201700865 crossref_primary_10_1016_j_nanoen_2018_02_061 crossref_primary_10_1039_D2LC00946C crossref_primary_10_1039_C9NR06113D crossref_primary_10_1002_adma_202407856 crossref_primary_10_1021_acsami_4c03665 crossref_primary_10_1016_j_sna_2020_112459 crossref_primary_10_1016_j_nanoen_2025_110731 crossref_primary_10_1039_D0NH00685H crossref_primary_10_1063_5_0084648 crossref_primary_10_1039_D3TA06080B crossref_primary_10_1002_dro2_22 crossref_primary_10_1002_EXP_20220061 crossref_primary_10_1016_j_surfin_2023_102853 crossref_primary_10_1038_s41565_024_01842_8 crossref_primary_10_1016_j_chempr_2021_12_015 crossref_primary_10_1016_j_nanoen_2019_03_041 crossref_primary_10_1002_adfm_202206705 crossref_primary_10_1016_j_apenergy_2019_114435 crossref_primary_10_1016_j_nanoen_2021_106112 crossref_primary_10_1021_acsami_3c15400 crossref_primary_10_1016_j_nanoen_2024_109345 crossref_primary_10_1021_acsami_6b10965 crossref_primary_10_1002_admi_202001592 crossref_primary_10_1021_acsami_0c21935 crossref_primary_10_3389_fnins_2021_662457 crossref_primary_10_1007_s11433_018_9204_6 crossref_primary_10_1002_dro2_12 crossref_primary_10_3103_S0025654422060164 crossref_primary_10_1021_acs_langmuir_3c02924 crossref_primary_10_1016_j_molliq_2023_123005 crossref_primary_10_1002_aesr_202000087 crossref_primary_10_3390_molecules29235716 crossref_primary_10_1103_PhysRevX_13_011020 crossref_primary_10_1021_acs_langmuir_3c00750 crossref_primary_10_1038_s41467_023_41371_x crossref_primary_10_1016_j_nanoen_2016_10_028 crossref_primary_10_1016_j_nanoen_2020_105096 crossref_primary_10_34133_2021_7505638 crossref_primary_10_1002_adma_202007581 crossref_primary_10_1021_acsnano_1c00891 crossref_primary_10_1039_D3RA03526C crossref_primary_10_1039_C4TA06168C crossref_primary_10_1002_smll_202205265 crossref_primary_10_1080_23746149_2022_2134051 crossref_primary_10_1002_smll_202304988 crossref_primary_10_1016_j_jpowsour_2023_233007 crossref_primary_10_1016_j_nanoen_2017_08_046 crossref_primary_10_1063_1_5016309 crossref_primary_10_1021_acsnano_9b00252 crossref_primary_10_1016_j_cej_2023_142582 crossref_primary_10_1021_acsmaterialslett_1c00392 crossref_primary_10_1088_1361_6528_ab0cd7 crossref_primary_10_1088_2053_1583_1_3_034004 crossref_primary_10_1007_s10570_019_02854_7 crossref_primary_10_1002_inf2_12427 crossref_primary_10_1007_s10853_021_06791_4 crossref_primary_10_1002_ange_202002762 crossref_primary_10_1088_1674_4926_24080021 crossref_primary_10_1557_s43578_022_00811_y crossref_primary_10_1021_acsami_4c01168 crossref_primary_10_1021_acs_jpcb_3c06786 crossref_primary_10_1126_sciadv_abo7698 crossref_primary_10_1039_C8NR08772E crossref_primary_10_1002_adfm_202404744 crossref_primary_10_1002_bte2_20220001 crossref_primary_10_1021_acsnano_3c06080 crossref_primary_10_1063_5_0190934 crossref_primary_10_1021_acs_jpcc_5b10269 crossref_primary_10_1021_acs_nanolett_4c06651 crossref_primary_10_1039_D1SE01996A crossref_primary_10_1021_acsnano_6b06867 crossref_primary_10_1002_elps_202300102 crossref_primary_10_3390_en15197424 crossref_primary_10_3390_s24144600 crossref_primary_10_1002_adma_201707635 crossref_primary_10_1063_5_0153423 crossref_primary_10_1021_acsami_7b01948 crossref_primary_10_1021_jz502613s crossref_primary_10_1098_rsos_180605 crossref_primary_10_1088_2053_1583_abe777 crossref_primary_10_1021_acsomega_3c07085 crossref_primary_10_1016_j_nanoen_2022_107709 crossref_primary_10_1002_ange_202218393 crossref_primary_10_1016_j_electacta_2017_10_086 crossref_primary_10_1016_j_jclepro_2024_143960 crossref_primary_10_1002_aelm_202100222 crossref_primary_10_1007_s10853_018_2216_5 crossref_primary_10_1021_acsami_9b12918 crossref_primary_10_1039_D3EE00981E crossref_primary_10_1016_j_mattod_2018_06_004 crossref_primary_10_1039_D1NA00658D crossref_primary_10_1039_C6RA20948C crossref_primary_10_1021_acsnano_3c08132 crossref_primary_10_1016_j_jallcom_2021_161058 crossref_primary_10_1016_j_jclepro_2024_141657 crossref_primary_10_1002_adfm_202208393 crossref_primary_10_1002_adfm_202316504 crossref_primary_10_1088_0957_4484_27_31_315702 crossref_primary_10_1016_j_carbon_2015_09_009 crossref_primary_10_1016_j_nanoen_2020_104628 crossref_primary_10_1093_nsr_nwae096 crossref_primary_10_1002_EXP_70007 crossref_primary_10_1016_j_nanoen_2015_08_002 crossref_primary_10_1039_C8SE00604K crossref_primary_10_4028_www_scientific_net_KEM_814_53 crossref_primary_10_1016_j_jmst_2024_07_013 crossref_primary_10_26599_NRE_2024_9120110 crossref_primary_10_1039_C7CP08035B crossref_primary_10_1038_s41427_020_0203_1 crossref_primary_10_1002_admi_202201864 crossref_primary_10_1002_wcms_1661 crossref_primary_10_1016_j_carbon_2016_04_030 crossref_primary_10_1002_adma_202003722 crossref_primary_10_1149_2_1131913jes crossref_primary_10_1039_D3CP05039D crossref_primary_10_1002_elps_201600429 crossref_primary_10_1039_D2EE03621E crossref_primary_10_1002_chem_201700098 crossref_primary_10_3390_app14209589 crossref_primary_10_1002_anie_201706620 crossref_primary_10_1021_acs_langmuir_9b00606 crossref_primary_10_1002_sus2_206 crossref_primary_10_1021_acsaelm_9b00157 crossref_primary_10_1039_D3EE01765F crossref_primary_10_1016_j_nanoen_2022_107241 crossref_primary_10_1016_j_nantod_2025_102661 crossref_primary_10_1016_j_flatc_2017_07_006 crossref_primary_10_1038_s41928_018_0189_7 crossref_primary_10_1039_C8CP02307G crossref_primary_10_1002_idm2_12033 crossref_primary_10_1007_s12274_015_0754_6 crossref_primary_10_1063_5_0018862 crossref_primary_10_1038_srep15695 crossref_primary_10_1016_j_nanoen_2016_11_050 crossref_primary_10_1016_j_nxmate_2024_100309 crossref_primary_10_2139_ssrn_3987807 crossref_primary_10_1002_adfm_201901069 crossref_primary_10_1039_D0TA12073A crossref_primary_10_1016_j_nanoen_2022_107364 crossref_primary_10_1021_acs_nanolett_2c00168 crossref_primary_10_1016_j_nanoen_2022_107591 crossref_primary_10_1021_acsnano_4c09494 crossref_primary_10_1093_nsr_nwv007 crossref_primary_10_1021_acs_langmuir_0c02450 crossref_primary_10_1016_j_renene_2019_05_078 crossref_primary_10_1021_acsami_1c13487 crossref_primary_10_1088_2053_1583_ab39cb crossref_primary_10_3390_en14185796 crossref_primary_10_1021_acs_nanolett_3c00821 crossref_primary_10_1002_admt_202300370 crossref_primary_10_1021_acsami_8b12967 crossref_primary_10_3390_en12112184 crossref_primary_10_1016_j_chphi_2025_100813 crossref_primary_10_1038_s41467_022_31067_z crossref_primary_10_1016_j_nanoen_2023_108988 crossref_primary_10_1002_adma_202008276 crossref_primary_10_1021_acsnano_6b03032 crossref_primary_10_1002_smll_201502013 crossref_primary_10_1016_j_fochx_2019_100048 crossref_primary_10_1016_j_nanoen_2023_108982 crossref_primary_10_1016_j_mtchem_2024_101943 crossref_primary_10_1016_j_cej_2023_147403 crossref_primary_10_1016_j_carbon_2022_03_047 crossref_primary_10_1021_acsami_3c04726 crossref_primary_10_1039_D3TA03760F crossref_primary_10_1039_D2NA00388K crossref_primary_10_1016_j_matt_2023_04_008 crossref_primary_10_1016_j_nanoen_2019_104370 crossref_primary_10_1021_acs_jpclett_0c00591 crossref_primary_10_1002_chem_201805008 crossref_primary_10_1016_j_ijbiomac_2022_02_144 crossref_primary_10_1016_j_nanoen_2020_104827 crossref_primary_10_1016_j_mtphys_2024_101337 crossref_primary_10_1039_D0TA10329B crossref_primary_10_1016_j_nanoen_2023_108918 crossref_primary_10_1177_1045389X18783092 crossref_primary_10_1002_advs_202302941 crossref_primary_10_1016_j_nanoen_2019_104017 crossref_primary_10_1021_acs_jpcc_1c02078 crossref_primary_10_1021_acs_jpcc_6b06828 crossref_primary_10_1002_adma_201501867 crossref_primary_10_1002_aesr_202200051 crossref_primary_10_1021_acsami_3c00498 crossref_primary_10_1021_acs_jpcc_8b11142 crossref_primary_10_1002_adfm_202405520 crossref_primary_10_1515_nanoph_2021_0582 crossref_primary_10_1021_acsami_3c15852 crossref_primary_10_1002_adfm_202418834 crossref_primary_10_1007_s11426_021_1089_6 crossref_primary_10_1016_j_sna_2025_116276 crossref_primary_10_1126_science_aam8771 crossref_primary_10_2139_ssrn_3942845 crossref_primary_10_1002_aenm_202400590 crossref_primary_10_1002_smll_201501011 crossref_primary_10_1016_j_matt_2022_02_013 crossref_primary_10_1016_j_carbon_2019_03_041 crossref_primary_10_1016_j_joule_2020_07_015 crossref_primary_10_1016_j_nanoen_2023_108819 crossref_primary_10_1016_j_nanoen_2023_108934 crossref_primary_10_1039_C8TA12328D crossref_primary_10_1002_aenm_201702149 crossref_primary_10_1002_anie_201602114 crossref_primary_10_1109_TNANO_2021_3072312 crossref_primary_10_1016_j_matchemphys_2023_128670 crossref_primary_10_1038_s41467_021_23038_7 crossref_primary_10_2139_ssrn_4014213 crossref_primary_10_1002_aisy_202300083 crossref_primary_10_1021_acs_chemrev_1c00176 crossref_primary_10_1002_advs_201901846 crossref_primary_10_1039_C6TA05276B crossref_primary_10_1063_1_4929745 crossref_primary_10_1073_pnas_2411613121 crossref_primary_10_1002_ange_201608584 crossref_primary_10_1016_j_cej_2024_151054 crossref_primary_10_1039_C9SM01348B crossref_primary_10_1016_j_jmps_2018_09_019 crossref_primary_10_1039_C5EE03701H crossref_primary_10_3390_ma16124336 crossref_primary_10_1039_C7CS00256D crossref_primary_10_1016_j_cej_2024_155763 crossref_primary_10_1021_acs_chemrev_9b00693 crossref_primary_10_1039_D4EE03356F crossref_primary_10_1007_s40843_020_1615_x crossref_primary_10_1021_acs_chemmater_6b03964 crossref_primary_10_1039_D4YA00479E crossref_primary_10_1002_chem_201704638 crossref_primary_10_1016_j_cej_2019_123366 crossref_primary_10_1021_acsnano_4c14996 crossref_primary_10_1039_C6TA03107B crossref_primary_10_1016_j_seppur_2022_122321 crossref_primary_10_1039_D2CP03576F crossref_primary_10_1021_acs_jpcc_6b04696 crossref_primary_10_1063_1_4922800 crossref_primary_10_1038_s41598_023_33737_4 crossref_primary_10_1103_PhysRevB_97_241411 crossref_primary_10_1002_adma_202420263 crossref_primary_10_1016_j_carbon_2018_09_005 crossref_primary_10_1016_j_enconman_2020_112791 crossref_primary_10_1021_jacs_2c03344 crossref_primary_10_1038_s44287_024_00029_6 crossref_primary_10_1007_s12274_024_6499_3 crossref_primary_10_1541_ieejsmas_138_401 crossref_primary_10_1016_j_device_2023_100007 crossref_primary_10_1049_tje2_12338 crossref_primary_10_1021_acs_jpcc_4c01734 crossref_primary_10_1016_j_matlet_2019_126530 crossref_primary_10_1021_acsami_4c06131 crossref_primary_10_1016_j_nanoen_2021_105979 crossref_primary_10_1016_j_nanoen_2021_106705 crossref_primary_10_1016_j_nanoen_2020_105558 crossref_primary_10_1038_s41467_021_21974_y crossref_primary_10_1016_j_indcrop_2022_115240 crossref_primary_10_1039_C8DT03784A crossref_primary_10_1016_j_cej_2023_148125 crossref_primary_10_1063_5_0078645 crossref_primary_10_3389_fenrg_2021_738142 crossref_primary_10_1016_j_nanoen_2021_105970 crossref_primary_10_1021_acsnano_4c16998 crossref_primary_10_1007_s11277_019_06454_3 crossref_primary_10_1021_acsanm_9b02049 crossref_primary_10_1002_admt_202300638 crossref_primary_10_1016_j_xcrp_2022_101163 crossref_primary_10_1002_smll_201804146 crossref_primary_10_1016_j_joule_2023_06_008 crossref_primary_10_1002_adfm_201604226 crossref_primary_10_1016_j_apsusc_2021_150075 crossref_primary_10_1016_j_nanoen_2021_105939 crossref_primary_10_1063_5_0230115 crossref_primary_10_1016_j_nanoen_2018_11_089 crossref_primary_10_1039_D4TA05041J crossref_primary_10_1021_acsnano_4c07900 crossref_primary_10_1007_s40820_024_01537_8 crossref_primary_10_1039_C8TA12037D crossref_primary_10_1016_j_apenergy_2023_121874 crossref_primary_10_1021_acs_langmuir_9b02716 crossref_primary_10_1002_anie_202002762 crossref_primary_10_1021_jacs_7b05030 crossref_primary_10_1039_D0EE02730H crossref_primary_10_1016_j_desal_2024_117545 crossref_primary_10_1038_s41467_022_31221_7 crossref_primary_10_1016_j_nanoen_2023_108220 crossref_primary_10_1016_j_mtener_2020_100517 crossref_primary_10_1021_acs_jpcc_5b08713 crossref_primary_10_1039_D2EE00030J crossref_primary_10_1021_acsnano_0c09985 crossref_primary_10_1038_srep19407 crossref_primary_10_1016_j_nanoen_2023_108348 crossref_primary_10_1063_1_4955404 crossref_primary_10_1021_acsami_6b06916 crossref_primary_10_1039_D2TA05281D crossref_primary_10_1021_jacs_2c04663 crossref_primary_10_1021_acsami_2c12777 crossref_primary_10_1038_s41467_022_32820_0 crossref_primary_10_1002_anie_202218393 crossref_primary_10_1021_acsomega_4c07849 crossref_primary_10_2139_ssrn_4017347 crossref_primary_10_1002_adsu_201900012 crossref_primary_10_1360_SST_2023_0038 crossref_primary_10_1039_C5SC00473J crossref_primary_10_1016_j_nanoen_2020_104795 crossref_primary_10_1002_ange_201706620 crossref_primary_10_1016_j_nanoen_2020_105647 crossref_primary_10_1016_j_nanoen_2016_09_014 crossref_primary_10_1073_pnas_1906601116 crossref_primary_10_1016_j_nanoen_2022_107024 crossref_primary_10_1016_j_energy_2021_120715 crossref_primary_10_1021_acsaem_9b01703 crossref_primary_10_1039_C7CP05620F crossref_primary_10_1021_acsami_3c01864 crossref_primary_10_1007_s00289_018_2465_0 crossref_primary_10_1002_masy_202100292 crossref_primary_10_1016_j_nanoen_2020_104663 crossref_primary_10_1039_C6LC00820H crossref_primary_10_1007_s12274_024_6959_9 crossref_primary_10_1021_acsomega_0c04140 crossref_primary_10_1021_acs_langmuir_9b00646 crossref_primary_10_1016_j_nanoen_2022_107495 crossref_primary_10_1021_acsanm_2c03690 crossref_primary_10_1021_acs_jpcc_1c06826 crossref_primary_10_1039_C8TA08325H crossref_primary_10_1016_j_nanoen_2020_105630 crossref_primary_10_1002_adfm_201700551 crossref_primary_10_1063_1_4944611 crossref_primary_10_1007_s10853_018_3183_6 crossref_primary_10_1038_srep30731 crossref_primary_10_1016_j_carbon_2017_06_018 crossref_primary_10_34133_2019_7367828 crossref_primary_10_1016_j_flatc_2019_100090 crossref_primary_10_1021_acsami_9b00365 crossref_primary_10_1002_advs_202203767 crossref_primary_10_1016_j_cej_2024_154164 crossref_primary_10_1038_s41565_021_00903_6 crossref_primary_10_1002_adfm_202302472 crossref_primary_10_1021_acsnano_3c02043 crossref_primary_10_1063_5_0103534 crossref_primary_10_1021_acsaem_0c02071 crossref_primary_10_1038_s41467_018_06633_z crossref_primary_10_3390_en14030585 crossref_primary_10_1039_C6NR03253B crossref_primary_10_1039_C7CS00849J crossref_primary_10_1016_j_molliq_2019_112037 crossref_primary_10_1039_C8TA02629G crossref_primary_10_1021_acs_energyfuels_2c02576 crossref_primary_10_1038_s41598_021_90374_5 crossref_primary_10_1016_j_joule_2020_09_007 crossref_primary_10_1016_j_pmatsci_2023_101172 crossref_primary_10_1016_j_applthermaleng_2019_114322 crossref_primary_10_1039_C6CP01936F crossref_primary_10_1134_S1995078019060144 crossref_primary_10_1021_acsanm_1c04414 crossref_primary_10_1016_j_cej_2024_158878 crossref_primary_10_1016_j_tibtech_2023_03_012 crossref_primary_10_1016_j_joule_2017_11_011 crossref_primary_10_1088_1361_6439_ab8606 crossref_primary_10_1021_acs_iecr_9b04480 crossref_primary_10_1002_adfm_202208117 crossref_primary_10_1007_s12274_022_4787_3 crossref_primary_10_1021_acsanm_1c01020 crossref_primary_10_1016_j_nanoen_2019_104324 crossref_primary_10_1088_0957_4484_27_9_095701 |
Cites_doi | 10.1038/nature11302 10.1103/PhysRevB.69.235410 10.1126/science.1171245 10.1002/adma.200702956 10.1021/nl300636g 10.1126/science.1139227 10.1021/nn303352k 10.1103/PhysRevLett.77.3865 10.1021/nl2011559 10.1021/ja8093372 10.1021/nl072364w 10.1021/nl300603v 10.1038/nmat1967 10.1021/nn800593m 10.1021/ed014p412 10.1126/science.1079080 10.1103/PhysRevLett.86.131 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.59.1758 10.1126/science.300.5623.1235 10.1021/nl902623y 10.1016/0927-0256(96)00008-0 10.1063/1.2710776 10.1103/PhysRevB.51.4014 10.1016/j.jcis.2006.12.075 10.1038/nphys2441 10.1038/nature04206 10.1021/nl8013007 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 Copyright Nature Publishing Group May 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: Copyright Nature Publishing Group May 2014 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 KR7 |
DOI | 10.1038/nnano.2014.56 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection Proquest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Civil Engineering Abstracts |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic Civil Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts ProQuest Central Student Civil Engineering Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 383 |
ExternalDocumentID | 3305098031 24705513 10_1038_nnano_2014_56 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 KR7 |
ID | FETCH-LOGICAL-c492t-97890a6708996f42815b26711354422c6bf90c41ca40aafa1c0af9182e59dbcd3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 04:04:07 EDT 2025 Tue Aug 05 10:39:28 EDT 2025 Thu Jul 10 19:23:13 EDT 2025 Fri Jul 25 09:03:02 EDT 2025 Mon Jul 21 06:01:36 EDT 2025 Tue Jul 01 01:56:24 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-97890a6708996f42815b26711354422c6bf90c41ca40aafa1c0af9182e59dbcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24705513 |
PQID | 1524845923 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1770282286 proquest_miscellaneous_1620093032 proquest_miscellaneous_1522680827 proquest_journals_1524845923 pubmed_primary_24705513 crossref_citationtrail_10_1038_nnano_2014_56 crossref_primary_10_1038_nnano_2014_56 springer_journals_10_1038_nnano_2014_56 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Delgadoa (CR1) 2007; 309 Lyklema, de Keizer, Bijsterbosch, Fleer, Cohen Stuart (CR23) 1995 Král, Shapiro (CR5) 2001; 86 Kresse, Furthmuller (CR24) 1996; 54 Dhiman (CR14) 2011; 11 Kresse, Joubert (CR27) 1999; 59 Weber (CR18) 2005; 437 Price, Savchenko, Narozhny, Allison, Ritchie (CR19) 2007; 316 Kielland (CR28) 1937; 14 Nandi, Finck, Eisenstein, Pfeiffer, West (CR16) 2012; 488 Newaz, Markov, Prasai, Bolotin (CR15) 2012; 12 Fowler (CR12) 2009; 3 Liu, Dai, Baur (CR4) 2007; 101 Li (CR21) 2009; 324 Gorbachev (CR17) 2012; 8 Schedin (CR9) 2007; 6 Perdew, Burke, Ernzerhof (CR26) 1996; 77 Persson, Tartaglino, Tosatti, Ueba (CR7) 2004; 69 Li (CR22) 2009; 9 Robinson, Perkins, Snow, Wei, Sheehan (CR10) 2008; 8 Wehling (CR11) 2008; 8 Makov, Payne (CR29) 1995; 51 Zhao (CR3) 2008; 20 Yin, Zhang, Li, Zhou, Guo (CR13) 2012; 12 Ghosh, Sood, Kumar (CR2) 2003; 299 Yuan, Zhao (CR6) 2009; 131 Kresse, Furthmuller (CR25) 1996; 6 Cohen (CR8) 2003; 300 Yan (CR20) 2012; 6 JJ Lyklema (BFnnano201456_CR23) 1995 JD Fowler (BFnnano201456_CR12) 2009; 3 Q Yuan (BFnnano201456_CR6) 2009; 131 D Nandi (BFnnano201456_CR16) 2012; 488 BN Persson (BFnnano201456_CR7) 2004; 69 X Li (BFnnano201456_CR21) 2009; 324 G Kresse (BFnnano201456_CR25) 1996; 6 P Dhiman (BFnnano201456_CR14) 2011; 11 Z Yan (BFnnano201456_CR20) 2012; 6 S Ghosh (BFnnano201456_CR2) 2003; 299 P Král (BFnnano201456_CR5) 2001; 86 G Makov (BFnnano201456_CR29) 1995; 51 AKM Newaz (BFnnano201456_CR15) 2012; 12 J Kielland (BFnnano201456_CR28) 1937; 14 G Kresse (BFnnano201456_CR27) 1999; 59 TO Wehling (BFnnano201456_CR11) 2008; 8 F Schedin (BFnnano201456_CR9) 2007; 6 JT Robinson (BFnnano201456_CR10) 2008; 8 X Li (BFnnano201456_CR22) 2009; 9 J Liu (BFnnano201456_CR4) 2007; 101 J Yin (BFnnano201456_CR13) 2012; 12 AS Price (BFnnano201456_CR19) 2007; 316 AE Cohen (BFnnano201456_CR8) 2003; 300 RV Gorbachev (BFnnano201456_CR17) 2012; 8 G Kresse (BFnnano201456_CR24) 1996; 54 CP Weber (BFnnano201456_CR18) 2005; 437 AV Delgadoa (BFnnano201456_CR1) 2007; 309 Y Zhao (BFnnano201456_CR3) 2008; 20 JP Perdew (BFnnano201456_CR26) 1996; 77 22966902 - ACS Nano. 2012 Oct 23;6(10):9110-7 21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7 22914164 - Nature. 2012 Aug 23;488(7412):481-4 19236064 - ACS Nano. 2009 Feb 24;3(2):301-6 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 19845330 - Nano Lett. 2009 Dec;9(12):4359-63 18085811 - Nano Lett. 2008 Jan;8(1):173-7 17368660 - J Colloid Interface Sci. 2007 May 15;309(2):194-224 12764175 - Science. 2003 May 23;300(5623):1235-6; author reply 1235-6 17660825 - Nat Mater. 2007 Sep;6(9):652-5 19423775 - Science. 2009 Jun 5;324(5932):1312-4 19382807 - J Am Chem Soc. 2009 May 13;131(18):6374-6 17412956 - Science. 2007 Apr 6;316(5821):99-102 16251958 - Nature. 2005 Oct 27;437(7063):1330-3 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 18763832 - Nano Lett. 2008 Oct;8(10):3137-40 11136111 - Phys Rev Lett. 2001 Jan 1;86(1):131-134 12532025 - Science. 2003 Feb 14;299(5609):1042-4 9979237 - Phys Rev B Condens Matter. 1995 Feb 15;51(7):4014-4022 22381077 - Nano Lett. 2012 Mar 14;12(3):1736-41 22568874 - Nano Lett. 2012 Jun 13;12(6):2931-5 |
References_xml | – volume: 488 start-page: 481 year: 2012 end-page: 484 ident: CR16 article-title: Exciton condensation and perfect Coulomb drag publication-title: Nature doi: 10.1038/nature11302 – volume: 69 start-page: 235410 year: 2004 ident: CR7 article-title: Electronic friction and liquid-flow-induced voltage in nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.235410 – volume: 324 start-page: 1312 year: 2009 end-page: 1314 ident: CR21 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science doi: 10.1126/science.1171245 – volume: 20 start-page: 1772 year: 2008 end-page: 1776 ident: CR3 article-title: Individual water-filled single-walled carbon nanotubes as hydroelectric power converters publication-title: Adv. Mater. doi: 10.1002/adma.200702956 – volume: 12 start-page: 1736 year: 2012 end-page: 1741 ident: CR13 article-title: Harvesting energy from water flow over graphene? publication-title: Nano Lett. doi: 10.1021/nl300636g – volume: 316 start-page: 99 year: 2007 end-page: 102 ident: CR19 article-title: Giant fluctuations of coulomb drag in a bilayer system publication-title: Science doi: 10.1126/science.1139227 – volume: 6 start-page: 9110 year: 2012 end-page: 9118 ident: CR20 article-title: Toward the synthesis of wafer-scale single-crystal graphene on copper foils publication-title: ACS Nano doi: 10.1021/nn303352k – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR26 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 11 start-page: 3123 year: 2011 end-page: 3127 ident: CR14 article-title: Harvesting energy from water flow over graphene publication-title: Nano Lett. doi: 10.1021/nl2011559 – volume: 131 start-page: 6374 year: 2009 end-page: 6376 ident: CR6 article-title: Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8093372 – volume: 8 start-page: 173 year: 2008 end-page: 177 ident: CR11 article-title: Molecular doping of graphene publication-title: Nano Lett. doi: 10.1021/nl072364w – volume: 12 start-page: 2931 year: 2012 end-page: 2935 ident: CR15 article-title: Graphene transistor as a probe for streaming potential publication-title: Nano Lett. doi: 10.1021/nl300603v – volume: 6 start-page: 652 year: 2007 end-page: 655 ident: CR9 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nature Mater. doi: 10.1038/nmat1967 – volume: 3 start-page: 301 year: 2009 end-page: 306 ident: CR12 article-title: Practical chemical sensors from chemically derived graphene publication-title: ACS Nano doi: 10.1021/nn800593m – volume: 14 start-page: 412 year: 1937 end-page: 413 ident: CR28 article-title: Chemical hydration numbers publication-title: J. Chem. Educ. doi: 10.1021/ed014p412 – volume: 299 start-page: 1042 year: 2003 end-page: 1044 ident: CR2 article-title: Carbon nanotube flow sensors publication-title: Science doi: 10.1126/science.1079080 – year: 1995 ident: CR23 publication-title: Fundamentals of Interface and Colloid Science – volume: 86 start-page: 131 year: 2001 end-page: 134 ident: CR5 article-title: Nanotube electron drag in flowing liquids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.131 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR24 article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR27 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 300 start-page: 1235 year: 2003 end-page: 1236 ident: CR8 article-title: Carbon nanotubes provide a charge publication-title: Science doi: 10.1126/science.300.5623.1235 – volume: 9 start-page: 4359 year: 2009 end-page: 4363 ident: CR22 article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR25 article-title: Efficiency of total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 101 start-page: 064312 year: 2007 ident: CR4 article-title: Multiwalled carbon nanotubes for flow-induced voltage generation publication-title: J. Appl. Phys. doi: 10.1063/1.2710776 – volume: 51 start-page: 4014 year: 1995 end-page: 4022 ident: CR29 article-title: Periodic boundary conditions in calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.4014 – volume: 309 start-page: 194 year: 2007 end-page: 224 ident: CR1 article-title: Measurement and interpretation of electrokinetic phenomena publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.12.075 – volume: 8 start-page: 896 year: 2012 end-page: 901 ident: CR17 article-title: Strong Coulomb drag and broken symmetry in double-layer graphene publication-title: Nature Phys. doi: 10.1038/nphys2441 – volume: 437 start-page: 1330 year: 2005 end-page: 1333 ident: CR18 article-title: Observation of spin Coulomb drag in a two-dimensional electron gas publication-title: Nature doi: 10.1038/nature04206 – volume: 8 start-page: 3137 year: 2008 end-page: 3140 ident: CR10 article-title: Reduced graphene oxide molecular sensors publication-title: Nano Lett. doi: 10.1021/nl8013007 – volume: 101 start-page: 064312 year: 2007 ident: BFnnano201456_CR4 publication-title: J. Appl. Phys. doi: 10.1063/1.2710776 – volume: 12 start-page: 2931 year: 2012 ident: BFnnano201456_CR15 publication-title: Nano Lett. doi: 10.1021/nl300603v – volume: 14 start-page: 412 year: 1937 ident: BFnnano201456_CR28 publication-title: J. Chem. Educ. doi: 10.1021/ed014p412 – volume: 300 start-page: 1235 year: 2003 ident: BFnnano201456_CR8 publication-title: Science doi: 10.1126/science.300.5623.1235 – volume: 86 start-page: 131 year: 2001 ident: BFnnano201456_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.131 – volume: 324 start-page: 1312 year: 2009 ident: BFnnano201456_CR21 publication-title: Science doi: 10.1126/science.1171245 – volume: 11 start-page: 3123 year: 2011 ident: BFnnano201456_CR14 publication-title: Nano Lett. doi: 10.1021/nl2011559 – volume: 437 start-page: 1330 year: 2005 ident: BFnnano201456_CR18 publication-title: Nature doi: 10.1038/nature04206 – volume-title: Fundamentals of Interface and Colloid Science year: 1995 ident: BFnnano201456_CR23 – volume: 6 start-page: 9110 year: 2012 ident: BFnnano201456_CR20 publication-title: ACS Nano doi: 10.1021/nn303352k – volume: 131 start-page: 6374 year: 2009 ident: BFnnano201456_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8093372 – volume: 77 start-page: 3865 year: 1996 ident: BFnnano201456_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 8 start-page: 173 year: 2008 ident: BFnnano201456_CR11 publication-title: Nano Lett. doi: 10.1021/nl072364w – volume: 309 start-page: 194 year: 2007 ident: BFnnano201456_CR1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.12.075 – volume: 8 start-page: 896 year: 2012 ident: BFnnano201456_CR17 publication-title: Nature Phys. doi: 10.1038/nphys2441 – volume: 316 start-page: 99 year: 2007 ident: BFnnano201456_CR19 publication-title: Science doi: 10.1126/science.1139227 – volume: 51 start-page: 4014 year: 1995 ident: BFnnano201456_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.4014 – volume: 488 start-page: 481 year: 2012 ident: BFnnano201456_CR16 publication-title: Nature doi: 10.1038/nature11302 – volume: 54 start-page: 11169 year: 1996 ident: BFnnano201456_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 6 start-page: 652 year: 2007 ident: BFnnano201456_CR9 publication-title: Nature Mater. doi: 10.1038/nmat1967 – volume: 3 start-page: 301 year: 2009 ident: BFnnano201456_CR12 publication-title: ACS Nano doi: 10.1021/nn800593m – volume: 6 start-page: 15 year: 1996 ident: BFnnano201456_CR25 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 59 start-page: 1758 year: 1999 ident: BFnnano201456_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 299 start-page: 1042 year: 2003 ident: BFnnano201456_CR2 publication-title: Science doi: 10.1126/science.1079080 – volume: 9 start-page: 4359 year: 2009 ident: BFnnano201456_CR22 publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 8 start-page: 3137 year: 2008 ident: BFnnano201456_CR10 publication-title: Nano Lett. doi: 10.1021/nl8013007 – volume: 20 start-page: 1772 year: 2008 ident: BFnnano201456_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.200702956 – volume: 69 start-page: 235410 year: 2004 ident: BFnnano201456_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.235410 – volume: 12 start-page: 1736 year: 2012 ident: BFnnano201456_CR13 publication-title: Nano Lett. doi: 10.1021/nl300636g – reference: 9979237 - Phys Rev B Condens Matter. 1995 Feb 15;51(7):4014-4022 – reference: 19423775 - Science. 2009 Jun 5;324(5932):1312-4 – reference: 11136111 - Phys Rev Lett. 2001 Jan 1;86(1):131-134 – reference: 17412956 - Science. 2007 Apr 6;316(5821):99-102 – reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 – reference: 22568874 - Nano Lett. 2012 Jun 13;12(6):2931-5 – reference: 19845330 - Nano Lett. 2009 Dec;9(12):4359-63 – reference: 22914164 - Nature. 2012 Aug 23;488(7412):481-4 – reference: 16251958 - Nature. 2005 Oct 27;437(7063):1330-3 – reference: 18085811 - Nano Lett. 2008 Jan;8(1):173-7 – reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 – reference: 12532025 - Science. 2003 Feb 14;299(5609):1042-4 – reference: 19236064 - ACS Nano. 2009 Feb 24;3(2):301-6 – reference: 12764175 - Science. 2003 May 23;300(5623):1235-6; author reply 1235-6 – reference: 17368660 - J Colloid Interface Sci. 2007 May 15;309(2):194-224 – reference: 22381077 - Nano Lett. 2012 Mar 14;12(3):1736-41 – reference: 19382807 - J Am Chem Soc. 2009 May 13;131(18):6374-6 – reference: 18763832 - Nano Lett. 2008 Oct;8(10):3137-40 – reference: 17660825 - Nat Mater. 2007 Sep;6(9):652-5 – reference: 21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7 – reference: 22966902 - ACS Nano. 2012 Oct 23;6(10):9110-7 |
SSID | ssj0052924 |
Score | 2.6145594 |
Snippet | Since the early nineteenth century, it has been known that an electric potential can be generated by driving an ionic liquid through fine channels or holes... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 378 |
SubjectTerms | 639/925/918 Channels Contact angle Droplets Electric potential Electric power generation Electricity Electricity distribution Electricity generation Electrolytes Graphene Ionic liquids Materials Science Nanotechnology Nanotechnology and Microengineering Pressure gradients Seawater Velocity Voltage |
Title | Generating electricity by moving a droplet of ionic liquid along graphene |
URI | https://link.springer.com/article/10.1038/nnano.2014.56 https://www.ncbi.nlm.nih.gov/pubmed/24705513 https://www.proquest.com/docview/1524845923 https://www.proquest.com/docview/1522680827 https://www.proquest.com/docview/1620093032 https://www.proquest.com/docview/1770282286 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgu8ABbXytsE1GQnAhLHae7eQ0bVNLQWJCiEm9Rf5IpEolWbv2wH_Pe05aKo31koufomf72e_Tv8fY-9xLW6Vg8XxbmRCkG5456ZIUgrJV5p3R9FD4-7Ue38C3iZr0Abe7vqxyfSfGizq0nmLkZ6hnIAeF9sj57TyhrlGUXe1baDxm-wRdRlJtJhuHS8mia2prIE_QFTM9xmaa5WdNYxt6-yfgM_Wu3tZJ9wzNe0nSqHtGB-xZbzTyi26XD9mjqnnOnm5BCb5gXzv8aCpi5l1rm6lHA5u7P_x3DBpwy8OCqsWXvK05RWE9n03nq2ngdtbieISuxp-8ZDej4a-rcdK3SUg8FHKZFPSW1WpDCTxdozshlJPaCJEpACm9dnWRehDeQmptbYVPbV2gX1GpIjgfsldsr2mb6ojxYDNvgqhD5RU4SJ0XGdSgc7RTapHaAfu0XqjS9xji1MpiVsZcdpaXcV1LWtdS6QH7sCG_7cAzHiI8Xq962Z-hu_Lfjg_Yu80wSj-lNGxTtatII6l5iDQ7aDRlgFBVyx00xsSC2hxZed3t-oZjCYQ4JJCLj2sx2GLyf9N5s3s6b9kTIuzKJo_Z3nKxqk7QtFm60yi_-M1HX07Z_uXw-sfPvz0a-VU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHqry3tGAkHhdCY8eP5FBVCFh26ePUSr0FvyKttCR97Ar1T_EbmXGSZaXC3nrOxBqPZ-zPnhchb3LHTUiFAfs2PMGSbmBz3Cap8NKEzFmtMFH46FiNTsX3M3m2Rn73uTAYVtnviXGj9o3DN_JdOGdELiTgkf3ziwS7RqF3tW-h0arFQbj-BVe2q73xF1jft5wPv558HiVdV4HEiYLPkgJTP43S6O9SFaBvJi1XmrFMCsG5U7YqUieYMyI1pjLMpaYqAIYHWXjrfAbj3iF3RQYnOWamD7_1O7_kRdtEV4s8gauf7mp6plm-W9emxlxDJj5ir-zlM_AGsL3hlI1n3XCTbHQglX5qteohWQv1I_JgqXThYzJu61Vj0DRtW-lMHAB6aq_pz_hIQQ31lxidPqNNRfHV19Hp5GI-8dRMG_geS2XDIE_I6a0I8ClZr5s6PCfUm8xpzyofnBRWpNaxTFRC5YCLKpaaAfnQC6p0Xc1ybJ0xLaPvPMvLKNcS5VpKNSDvFuTnbbGO_xFu91IvO5u9Kv9q2IC8XnwGa0MXiqlDM480HJuVcL2CRqHHCaABX0GjdQzgzYGVZ-2qLzjmAiscMeDifa8GS0z-azpbq6fzitwbnRwdlofj44MX5D7-1IZsbpP12eU87ACsmtmXUZcp-XHbxvMH9SYybA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiWLS0YiceFdGPHjpNDhYB21aWwqhCVekttx5FW2iZ97Ar1r_HrmMljWamwt54zscbjGfuz5wXwJnHC-FAatG8jAirphjYnbBDKXBkfOatjShT-Po4PjuXXE3WyBr-7XBgKq-z2xHqjzitHb-QDPGdkIhXikUHRhkUc7Q0_nl8E1EGKPK1dO41GRQ799S-8vl3tjvZwrd8KMdz_-eUgaDsMBE6mYhaklAZqYk2-r7hAJM6VFbHmPFJSCuFiW6Shk9wZGRpTGO5CU6QIyb1Kc-vyCMe9A-uabkU9WP-8Pz760Z0DSqRNS10tkwAvgrqt8BlGyaAsTUmZh1zuUOfs5RPxBsy94aKtT77hQ3jQQlb2qdGxR7Dmy8dwf6mQ4RMYNdWrKYSaNY11Jg7hPbPX7Kx-smCG5ZcUqz5jVcHoDdix6eRiPsmZmVb4vS6cjYM8heNbEeEz6JVV6Z8Dy03kdM6L3DslrQyt45EsZJwgSip4aPrwoRNU5toK5tRIY5rVnvQoyWq5ZiTXTMV9eLcgP29Kd_yPcKuTetZa8FX2V9_68HrxGW2PHCqm9NW8phHUukToFTQx-Z8QKIgVNFrX4bwJsrLRrPqCYyGp3hFHLt53arDE5L-ms7l6Oq_gLhpO9m00PnwB9-ifJn5zC3qzy7nfRow1sy9bZWZwetv28wdpXTf- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+electricity+by+moving+a+droplet+of+ionic+liquid+along+graphene&rft.jtitle=Nature+nanotechnology&rft.au=Yin%2C+Jun&rft.au=Li%2C+Xuemei&rft.au=Yu%2C+Jin&rft.au=Zhang%2C+Zhuhua&rft.date=2014-05-01&rft.issn=1748-3387&rft.volume=9&rft.issue=5&rft.spage=378&rft.epage=383&rft_id=info:doi/10.1038%2Fnnano.2014.56&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |