ACSL4-mediated lipid rafts prevent membrane rupture and inhibit immunogenic cell death in melanoma

Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tu...

Full description

Saved in:
Bibliographic Details
Published inCell death & disease Vol. 15; no. 9; pp. 695 - 15
Main Authors Zhao, Xi, Zhao, Zenglu, Li, Bingru, Huan, Shuyu, Li, Zixi, Xie, Jianlan, Liu, Guoquan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.09.2024
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8 + T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.
AbstractList Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8 + T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.
Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.
Abstract Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.
Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.
Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8 T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.
ArticleNumber 695
Author Liu, Guoquan
Li, Bingru
Xie, Jianlan
Zhao, Zenglu
Zhao, Xi
Li, Zixi
Huan, Shuyu
Author_xml – sequence: 1
  givenname: Xi
  surname: Zhao
  fullname: Zhao, Xi
  organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University
– sequence: 2
  givenname: Zenglu
  surname: Zhao
  fullname: Zhao, Zenglu
  organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University
– sequence: 3
  givenname: Bingru
  surname: Li
  fullname: Li, Bingru
  organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University
– sequence: 4
  givenname: Shuyu
  surname: Huan
  fullname: Huan, Shuyu
  organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University
– sequence: 5
  givenname: Zixi
  surname: Li
  fullname: Li, Zixi
  organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University
– sequence: 6
  givenname: Jianlan
  surname: Xie
  fullname: Xie, Jianlan
  organization: Department of Pathology, Beijing Friendship Hospital, Capital Medical University
– sequence: 7
  givenname: Guoquan
  orcidid: 0000-0003-0680-4811
  surname: Liu
  fullname: Liu, Guoquan
  email: guoquanliu@bjmu.edu.cn
  organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Department of Biomedical Engineering, Institute of Advanced Clinical Medicine, Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39343834$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFAR_aB_gAOyxIVLwF-b2CdUraBUWokDcLYc-2XXq8QOdlKp_x6nKaXlgC-27Jl5743nHJ2EGAChN5R8oITLj1lQQVVFmKhIQ5Ss-At0xoiglZBSnTw5n6LLnI-kLM4J29Sv0ClXXHDJxRlqr7bfd6IawHkzgcO9H73DyXRTxmOCWwgTHmBokwmA0zxOcwJsgsM-HHzrJ-yHYQ5xD8FbbKHvsQMzHcpzofUmxMG8Ri8702e4fNgv0M8vn39sv1a7b9c326tdZYViUyWBt8xtbEN4bRpgzrDaMcO5UR2XdtM2xBrDGiqIJcwClGmssiCBElA14RfoZtV10Rz1mPxg0p2Oxuv7i5j22qTJ2x6027BSyxLbNiBqANUJcLWUpREh67opWp9WrXFuize22JBM_0z0-UvwB72Pt5pSwZUSqii8f1BI8dcMedKDz4tBxcg4Z80ppYxQKZdi7_6BHuOcQvFqQRFVCyqX8d4-bemxlz9_WQBsBdgUc07QPUIo0Utm9JoZXTKj7zOjeSHxlZQLOOwh_a39H9ZvTmLDpg
Cites_doi 10.7150/thno.27246
10.18632/oncotarget.5162
10.1186/s13046-022-02523-x
10.1038/s41392-020-00274-9
10.1016/j.molcel.2020.11.024
10.1158/1535-7163.MCT-15-0775
10.1038/s41568-020-00308-y
10.1038/nchembio.2238
10.1038/s41573-021-00154-z
10.1016/j.phrs.2022.106556
10.1038/s41467-019-13385-x
10.1158/1078-0432.CCR-20-4338
10.1038/nature18590
10.1016/S1470-2045(21)00097-8
10.1038/nchembio.2239
10.1016/j.pharmthera.2020.107753
10.1186/s13045-021-01164-5
10.1038/nature22393
10.1038/s41580-020-00324-8
10.1016/j.redox.2023.102678
10.1038/nature15514
10.1001/jamaoncol.2020.3370
10.1016/j.ccell.2022.02.003
10.1056/NEJMoa2111380
10.7150/thno.69424
10.1016/j.redox.2023.102826
10.1016/j.immuni.2019.12.011
10.1038/nmeth.3317
10.6004/jnccn.2022.0008
10.1016/j.semcancer.2022.03.009
10.1002/anie.202307706
10.1038/nbt.3122
10.1093/annonc/mdz411
10.1093/nar/gkaa407
10.1016/j.jare.2021.12.005
10.1001/jama.2016.4059
10.1038/s41586-021-04161-3
10.1056/NEJMoa2109970
10.1158/0008-5472.CAN-20-2199
10.1002/cac2.12487
10.15252/embj.201798321
10.1038/nature18629
10.1038/s41420-021-00554-5
10.1093/annonc/mdx360
10.1038/nrc3380
10.1038/s41467-023-41121-z
10.1186/s13046-022-02261-0
10.1038/s41467-022-35348-5
10.2337/db06-0267
10.1021/acsnano.9b00892
10.1158/1078-0432.CCR-22-1591
10.1038/s41467-022-29026-9
10.1080/2162402X.2022.2103277
10.1093/jnci/91.19.1616
10.1038/s41556-022-00920-0
10.7554/eLife.02523
10.1080/2162402X.2019.1703449
10.1007/s13402-020-00552-2
10.1038/s41418-022-01008-w
10.1016/S0140-6736(21)00797-2
10.1016/j.ejca.2017.01.009
10.1016/j.jconrel.2023.09.024
10.7150/ijbs.60292
10.1038/s41598-017-16436-9
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41419-024-07098-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
ProQuest Biological Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-4889
EndPage 15
ExternalDocumentID oai_doaj_org_article_d52b2dc0cb7e46ee9f4ed68849248667
PMC11439949
39343834
10_1038_s41419_024_07098_3
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22177008; 31971173
  funderid: https://doi.org/10.13039/501100001809
– fundername: the Clinical Medicine Plus X - Young Scholars Project, Peking University, the Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22177008
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31971173
GroupedDBID ---
0R~
3V.
53G
5VS
70F
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
E3Z
EBLON
EBS
EMOBN
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
LK8
M0L
M2P
M48
M7P
M~E
NAO
O5R
O5S
O9-
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
TR2
UKHRP
W2D
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c492t-8e3b2d5c7036a7e2da26d2a33a9f38c5b70caa27140c02cee330c9ce8e10e9603
IEDL.DBID M48
ISSN 2041-4889
IngestDate Wed Aug 27 01:31:12 EDT 2025
Thu Aug 21 18:31:06 EDT 2025
Sun Aug 24 03:53:05 EDT 2025
Wed Aug 13 04:42:35 EDT 2025
Mon Jul 21 05:40:28 EDT 2025
Tue Jul 01 03:50:17 EDT 2025
Fri Feb 21 02:38:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-8e3b2d5c7036a7e2da26d2a33a9f38c5b70caa27140c02cee330c9ce8e10e9603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0680-4811
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41419-024-07098-3
PMID 39343834
PQID 3110964180
PQPubID 2041963
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_d52b2dc0cb7e46ee9f4ed68849248667
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11439949
proquest_miscellaneous_3111201887
proquest_journals_3110964180
pubmed_primary_39343834
crossref_primary_10_1038_s41419_024_07098_3
springer_journals_10_1038_s41419_024_07098_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-29
PublicationDateYYYYMMDD 2024-09-29
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell death & disease
PublicationTitleAbbrev Cell Death Dis
PublicationTitleAlternate Cell Death Dis
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Dixon, Patel, Welsch, Skouta, Lee, Hayano (CR40) 2014; 3
Wang, Gao, Shi, Ding, Liu, He (CR31) 2017; 547
Zhu, Shan, Ge, Lu, Kong, Jia (CR17) 2020; 43
Luo, Onyshchenko, Wang, Gaedicke, Grosu, Firat (CR16) 2023; 29
Janjigian, Kawazoe, Yanez, Li, Lonardi, Kolesnik (CR6) 2021; 600
Ricco, Seminerio, Andrini, Malvi, Gruppioni, Altimari (CR36) 2023; 34
Zhang, Li, Lu, Nie, Zhang, Lv (CR56) 2019; 13
Krysko, Garg, Kaczmarek, Krysko, Agostinis, Vandenabeele (CR21) 2012; 12
Hegde, Chen (CR5) 2020; 52
Peng, Wang, Song, Yao, Li, Liu (CR29) 2020; 5
Bisi, Sorrentino, Roberts, Tavares, Strum (CR50) 2016; 15
Askari, Kanter, Sherrid, Golej, Bender, Liu (CR42) 2007; 56
Yan, Ai, Sun, Ma, Cao, Wang (CR60) 2021; 81
Vanmeerbeek, Sprooten, De Ruysscher, Tejpar, Vandenberghe, Fucikova (CR52) 2020; 9
Ding, Zheng, Tan, Chen, Meng, Li (CR57) 2023; 62
Zhu, Zhang, Zheng, Liu, Song, Liu (CR9) 2021; 14
Zhang, Song, Yang, Li, Wang, Wan (CR25) 2023; 14
Yan, Luo, Wu, Guan, Yu, Zhao (CR30) 2021; 17
Shi, Zhao, Wang, Shi, Wang, Huang (CR61) 2015; 526
Jiang, Stockwell, Conrad (CR34) 2021; 22
Chen, Wang, Fu, Zhu, Wang, Guan (CR19) 2017; 7
Vellanki, Mulkey, Jaigirdar, Rodriguez, Wang, Xu (CR12) 2021; 27
Huang, Zhang, Wang, Yu (CR58) 2022; 24
Sazonova, Kopeina, Imyanitov, Zhivotovsky (CR22) 2021; 7
Kwon, Park, Lee, Chung (CR39) 2015; 6
Pires da Silva, Ahmed, Reijers, Weppler, Betof Warner, Patrinely (CR3) 2021; 22
Zhao, Lian, Xie, Liu (CR33) 2023; 62
Liao, Wang, Wang, Kryczek, Li, Bian (CR62) 2022; 40
Ajani, D’Amico, Bentrem, Chao, Cooke, Corvera (CR11) 2022; 20
Janjigian, Shitara, Moehler, Garrido, Salman, Shen (CR7) 2021; 398
Deng, Wang, Liu, Zhang, Zhou, Zhao (CR28) 2023; 65
Chang, Bian, Liu, Yang, Yang, Wang (CR15) 2023; 187
Groopman, Itri (CR18) 1999; 91
Jin, He, Zhao, Hu, Tao, Chen (CR54) 2019; 9
Niu, Chen, Li, Hu, He (CR55) 2022; 86
Michielin, van Akkooi, Ascierto, Dummer, Keilholz (CR1) 2019; 30
Greenlee, Subramanian, Liu, King (CR37) 2021; 81
Zimmer, Apuri, Eroglu, Kottschade, Forschner, Gutzmer (CR4) 2017; 75
Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (CR64) 2015; 33
Arimoto, Miyauchi, Troutman, Zhang, Liu, Stoner (CR26) 2023; 14
Liu, Xia, Zhang, Wu, Lieberman (CR46) 2021; 20
Kim, Langmead, Salzberg (CR63) 2015; 12
Ding, Wang, Liu, She, Sun, Shi (CR35) 2016; 535
Xiao, Yu (CR32) 2021; 221
Wang, Zheng, Shang, Yang, Li, Liu (CR27) 2022; 29
Tawbi, Schadendorf, Lipson, Ascierto, Matamala, Castillo Gutierrez (CR8) 2022; 386
Sha, Liu, Yang, Wang, Gong, Jin (CR38) 2022; 41
Steenbrugge, Bellemans, Vander Elst, Demeyere, De Vliegher, Perera (CR47) 2022; 11
Zhang, Xu, Gao, Yao (CR20) 2022; 12
Yu, Wang, Che, Zhang, Li, Naito (CR53) 2022; 41
Ding, Tang, Li, Ding, Chen, Cao (CR24) 2023; 363
Doki, Ajani, Kato, Xu, Wyrwicz, Motoyama (CR13) 2022; 386
Kagan, Mao, Qu, Angeli, Doll, Croix (CR44) 2017; 13
Chovanec, Abu Zaid, Hanna, El-Kouri, Einhorn, Albany (CR49) 2017; 28
Li, Fu, Zeng, Cohen, Li, Chen (CR41) 2020; 48
Liu, Zhang, Ruan, Pan, Magupalli, Wu (CR65) 2016; 535
Ribas, Hamid, Daud, Hodi, Wolchok, Kefford (CR2) 2016; 315
Rottenberg, Disler, Perego (CR10) 2021; 21
Mulvihill, Sborgi, Mari, Pfreundschuh, Hiller, Muller (CR45) 2018; 37
Shitara, Van Cutsem, Bang, Fuchs, Wyrwicz, Lee (CR14) 2020; 6
Zheng, Sun, Guo, Ma (CR23) 2023; 43
Doll, Proneth, Tyurina, Panzilius, Kobayashi, Ingo (CR43) 2017; 13
Rudd-Schmidt, Hodel, Noori, Lopez, Cho, Verschoor (CR59) 2019; 10
Nikolos, Hayashi, Hoi, Alonzo, Mo, Kasabyan (CR51) 2022; 13
Glorieux, Xia, You, Wang, Han, Yang (CR48) 2022; 40
Y Xiao (7098_CR32) 2021; 221
B Askari (7098_CR42) 2007; 56
YY Janjigian (7098_CR6) 2021; 600
X Chen (7098_CR19) 2017; 7
JD Greenlee (7098_CR37) 2021; 81
H Jin (7098_CR54) 2019; 9
E Mulvihill (7098_CR45) 2018; 37
KI Arimoto (7098_CR26) 2023; 14
YY Janjigian (7098_CR7) 2021; 398
S Rottenberg (7098_CR10) 2021; 21
JA Ajani (7098_CR11) 2022; 20
F Nikolos (7098_CR51) 2022; 13
J Steenbrugge (7098_CR47) 2022; 11
I Vanmeerbeek (7098_CR52) 2020; 9
Y Wang (7098_CR27) 2022; 29
X Chang (7098_CR15) 2023; 187
C Glorieux (7098_CR48) 2022; 40
K Shitara (7098_CR14) 2020; 6
X Jiang (7098_CR34) 2021; 22
L Zhang (7098_CR25) 2023; 14
JE Groopman (7098_CR18) 1999; 91
H Yan (7098_CR30) 2021; 17
G Ricco (7098_CR36) 2023; 34
S Doll (7098_CR43) 2017; 13
Y Doki (7098_CR13) 2022; 386
J Ding (7098_CR35) 2016; 535
C Zhang (7098_CR20) 2022; 12
M Chovanec (7098_CR49) 2017; 28
X Liu (7098_CR65) 2016; 535
PJ Vellanki (7098_CR12) 2021; 27
Y Wang (7098_CR31) 2017; 547
J Shi (7098_CR61) 2015; 526
P Liao (7098_CR62) 2022; 40
HA Tawbi (7098_CR8) 2022; 386
R Luo (7098_CR16) 2023; 29
PS Hegde (7098_CR5) 2020; 52
YL Sha (7098_CR38) 2022; 41
MY Kwon (7098_CR39) 2015; 6
M Pertea (7098_CR64) 2015; 33
SJ Dixon (7098_CR40) 2014; 3
S Yu (7098_CR53) 2022; 41
F Zhang (7098_CR56) 2019; 13
B Ding (7098_CR57) 2023; 62
JE Bisi (7098_CR50) 2016; 15
L Zimmer (7098_CR4) 2017; 75
S Zhu (7098_CR9) 2021; 14
Y Zheng (7098_CR23) 2023; 43
JA Rudd-Schmidt (7098_CR59) 2019; 10
VE Kagan (7098_CR44) 2017; 13
EV Sazonova (7098_CR22) 2021; 7
Q Ding (7098_CR24) 2023; 363
T Li (7098_CR41) 2020; 48
X Zhao (7098_CR33) 2023; 62
D Kim (7098_CR63) 2015; 12
Z Peng (7098_CR29) 2020; 5
Z Deng (7098_CR28) 2023; 65
I Pires da Silva (7098_CR3) 2021; 22
B Yan (7098_CR60) 2021; 81
X Niu (7098_CR55) 2022; 86
X Liu (7098_CR46) 2021; 20
A Ribas (7098_CR2) 2016; 315
H Zhu (7098_CR17) 2020; 43
Y Huang (7098_CR58) 2022; 24
O Michielin (7098_CR1) 2019; 30
DV Krysko (7098_CR21) 2012; 12
References_xml – volume: 9
  start-page: 265
  year: 2019
  end-page: 78
  ident: CR54
  article-title: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin beta3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery
  publication-title: Theranostics
  doi: 10.7150/thno.27246
– volume: 6
  start-page: 24393
  year: 2015
  end-page: 403
  ident: CR39
  article-title: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5162
– volume: 41
  start-page: 314
  year: 2022
  ident: CR38
  article-title: B3GALT4 remodels the tumor microenvironment through GD2-mediated lipid raft formation and the c-met/AKT/mTOR/IRF-1 axis in neuroblastoma
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-022-02523-x
– volume: 5
  start-page: 159
  year: 2020
  ident: CR29
  article-title: GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-020-00274-9
– volume: 81
  start-page: 355
  year: 2021
  end-page: 369 e310
  ident: CR60
  article-title: Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.11.024
– volume: 15
  start-page: 783
  year: 2016
  end-page: 93
  ident: CR50
  article-title: Preclinical characterization of G1T28: a novel CDK4/6 inhibitor for reduction of chemotherapy-induced myelosuppression
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0775
– volume: 21
  start-page: 37
  year: 2021
  end-page: 50
  ident: CR10
  article-title: The rediscovery of platinum-based cancer therapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-020-00308-y
– volume: 13
  start-page: 81
  year: 2017
  end-page: 90
  ident: CR44
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2238
– volume: 20
  start-page: 384
  year: 2021
  end-page: 405
  ident: CR46
  article-title: Channelling inflammation: gasdermins in physiology and disease
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-021-00154-z
– volume: 187
  year: 2023
  ident: CR15
  article-title: Induction of immunogenic cell death by novel platinum-based anticancer agents
  publication-title: Pharm Res
  doi: 10.1016/j.phrs.2022.106556
– volume: 10
  year: 2019
  ident: CR59
  article-title: Lipid order and charge protect killer T cells from accidental death
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13385-x
– volume: 27
  start-page: 3522
  year: 2021
  end-page: 7
  ident: CR12
  article-title: FDA approval summary: nivolumab with ipilimumab and chemotherapy for metastatic non-small cell lung cancer, a collaborative project orbis review
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-20-4338
– volume: 535
  start-page: 111
  year: 2016
  end-page: 6
  ident: CR35
  article-title: Pore-forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
  doi: 10.1038/nature18590
– volume: 22
  start-page: 836
  year: 2021
  end-page: 47
  ident: CR3
  article-title: Ipilimumab alone or ipilimumab plus anti-PD-1 therapy in patients with metastatic melanoma resistant to anti-PD-(L)1 monotherapy: a multicentre, retrospective, cohort study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(21)00097-8
– volume: 13
  start-page: 91
  year: 2017
  end-page: 98
  ident: CR43
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2239
– volume: 221
  year: 2021
  ident: CR32
  article-title: Tumor microenvironment as a therapeutic target in cancer
  publication-title: Pharm Ther
  doi: 10.1016/j.pharmthera.2020.107753
– volume: 14
  start-page: 156
  year: 2021
  ident: CR9
  article-title: Combination strategies to maximize the benefits of cancer immunotherapy
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-021-01164-5
– volume: 547
  start-page: 99
  year: 2017
  end-page: 103
  ident: CR31
  article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin
  publication-title: Nature
  doi: 10.1038/nature22393
– volume: 22
  start-page: 266
  year: 2021
  end-page: 82
  ident: CR34
  article-title: Ferroptosis: mechanisms, biology and role in disease
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-00324-8
– volume: 62
  year: 2023
  ident: CR33
  article-title: Accumulated cholesterol protects tumours from elevated lipid peroxidation in the microenvironment
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2023.102678
– volume: 526
  start-page: 660
  year: 2015
  end-page: 5
  ident: CR61
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 6
  start-page: 1571
  year: 2020
  end-page: 80
  ident: CR14
  article-title: Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2020.3370
– volume: 40
  start-page: 365
  year: 2022
  end-page: 78 e366
  ident: CR62
  article-title: CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.02.003
– volume: 386
  start-page: 449
  year: 2022
  end-page: 62
  ident: CR13
  article-title: Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma
  publication-title: N. Engl J Med
  doi: 10.1056/NEJMoa2111380
– volume: 12
  start-page: 2115
  year: 2022
  end-page: 32
  ident: CR20
  article-title: Platinum-based drugs for cancer therapy and anti-tumor strategies
  publication-title: Theranostics
  doi: 10.7150/thno.69424
– volume: 65
  year: 2023
  ident: CR28
  article-title: WBP2 restrains the lysosomal degradation of GPX4 to inhibit ferroptosis in cisplatin-induced acute kidney injury
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2023.102826
– volume: 52
  start-page: 17
  year: 2020
  end-page: 35
  ident: CR5
  article-title: Top 10 challenges in cancer immunotherapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.12.011
– volume: 12
  start-page: 357
  year: 2015
  end-page: 60
  ident: CR63
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3317
– volume: 20
  start-page: 167
  year: 2022
  end-page: 92
  ident: CR11
  article-title: Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology
  publication-title: J Natl Compr Cancer Netw
  doi: 10.6004/jnccn.2022.0008
– volume: 86
  start-page: 273
  year: 2022
  end-page: 85
  ident: CR55
  article-title: Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2022.03.009
– volume: 62
  year: 2023
  ident: CR57
  article-title: Sodium bicarbonate nanoparticles for amplified cancer immunotherapy by inducing pyroptosis and regulating lactic acid metabolism
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202307706
– volume: 33
  start-page: 290
  year: 2015
  end-page: 5
  ident: CR64
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3122
– volume: 30
  start-page: 1884
  year: 2019
  end-page: 901
  ident: CR1
  article-title: Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdz411
– volume: 48
  start-page: W509
  year: 2020
  end-page: W514
  ident: CR41
  article-title: TIMER2.0 for analysis of tumor-infiltrating immune cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa407
– volume: 40
  start-page: 109
  year: 2022
  end-page: 24
  ident: CR48
  article-title: Cisplatin and gemcitabine exert opposite effects on immunotherapy with PD-1 antibody in K-ras-driven cancer
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2021.12.005
– volume: 315
  start-page: 1600
  year: 2016
  end-page: 9
  ident: CR2
  article-title: Association of pembrolizumab with tumor response and survival among patients with advanced melanoma
  publication-title: JAMA
  doi: 10.1001/jama.2016.4059
– volume: 600
  start-page: 727
  year: 2021
  end-page: 30
  ident: CR6
  article-title: The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer
  publication-title: Nature
  doi: 10.1038/s41586-021-04161-3
– volume: 386
  start-page: 24
  year: 2022
  end-page: 34
  ident: CR8
  article-title: Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2109970
– volume: 81
  start-page: 5
  year: 2021
  end-page: 17
  ident: CR37
  article-title: Rafting down the metastatic cascade: the role of lipid rafts in cancer metastasis, cell death, and clinical outcomes
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-20-2199
– volume: 43
  start-page: 1071
  year: 2023
  end-page: 96
  ident: CR23
  article-title: The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy
  publication-title: Cancer Commun
  doi: 10.1002/cac2.12487
– volume: 37
  start-page: e98321
  year: 2018
  ident: CR45
  article-title: Mechanism of membrane pore formation by human gasdermin-D
  publication-title: EMBO J
  doi: 10.15252/embj.201798321
– volume: 535
  start-page: 153
  year: 2016
  end-page: 8
  ident: CR65
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 7
  start-page: 155
  year: 2021
  ident: CR22
  article-title: Platinum drugs and taxanes: can we overcome resistance?
  publication-title: Cell Death Discov
  doi: 10.1038/s41420-021-00554-5
– volume: 28
  start-page: 2670
  year: 2017
  end-page: 9
  ident: CR49
  article-title: Long-term toxicity of cisplatin in germ-cell tumor survivors
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx360
– volume: 12
  start-page: 860
  year: 2012
  end-page: 75
  ident: CR21
  article-title: Immunogenic cell death and DAMPs in cancer therapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3380
– volume: 14
  year: 2023
  ident: CR25
  article-title: Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-41121-z
– volume: 41
  start-page: 88
  year: 2022
  ident: CR53
  article-title: Targeting CRABP-II overcomes pancreatic cancer drug resistance by reversing lipid raft cholesterol accumulation and AKT survival signaling
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-022-02261-0
– volume: 34
  start-page: 1076
  year: 2023
  end-page: 84
  ident: CR36
  article-title: BRAF V600E-mutated large cell neuroendocrine carcinoma responding to targeted therapy: a case report and review of the literature
  publication-title: Anticancer Drugs
– volume: 14
  year: 2023
  ident: CR26
  article-title: Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35348-5
– volume: 56
  start-page: 1143
  year: 2007
  end-page: 52
  ident: CR42
  article-title: Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid partitioning to diacylglycerol and triacylglycerol via a peroxisome proliferator-activated receptor-gamma-independent mechanism in human arterial smooth muscle cells and macrophages
  publication-title: Diabetes
  doi: 10.2337/db06-0267
– volume: 13
  start-page: 5662
  year: 2019
  end-page: 73
  ident: CR56
  article-title: Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00892
– volume: 29
  start-page: 667
  year: 2023
  end-page: 83
  ident: CR16
  article-title: Necroptosis-dependent Immunogenicity of Cisplatin: implications for enhancing the radiation-induced abscopal effect
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-22-1591
– volume: 13
  year: 2022
  ident: CR51
  article-title: Cell death-induced immunogenicity enhances chemoimmunotherapeutic response by converting immune-excluded into T-cell inflamed bladder tumors
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29026-9
– volume: 11
  year: 2022
  ident: CR47
  article-title: One cisplatin dose provides durable stimulation of anti-tumor immunity and alleviates anti-PD-1 resistance in an intraductal model for triple-negative breast cancer
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2022.2103277
– volume: 91
  start-page: 1616
  year: 1999
  end-page: 34
  ident: CR18
  article-title: Chemotherapy-induced anemia in adults: incidence and treatment
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/91.19.1616
– volume: 24
  start-page: 825
  year: 2022
  end-page: 32
  ident: CR58
  article-title: Assembly of Tetraspanin-enriched macrodomains contains membrane damage to facilitate repair
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-022-00920-0
– volume: 3
  start-page: e02523
  year: 2014
  ident: CR40
  article-title: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis
  publication-title: Elife
  doi: 10.7554/eLife.02523
– volume: 9
  year: 2020
  ident: CR52
  article-title: Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2019.1703449
– volume: 43
  start-page: 1203
  year: 2020
  end-page: 14
  ident: CR17
  article-title: Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy
  publication-title: Cell Oncol
  doi: 10.1007/s13402-020-00552-2
– volume: 29
  start-page: 2190
  year: 2022
  end-page: 202
  ident: CR27
  article-title: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-022-01008-w
– volume: 398
  start-page: 27
  year: 2021
  end-page: 40
  ident: CR7
  article-title: First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00797-2
– volume: 75
  start-page: 47
  year: 2017
  end-page: 55
  ident: CR4
  article-title: Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2017.01.009
– volume: 363
  start-page: 221
  year: 2023
  end-page: 34
  ident: CR24
  article-title: Mitochondrial-targeted brequinar liposome boosted mitochondrial-related ferroptosis for promoting checkpoint blockade immunotherapy in bladder cancer
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2023.09.024
– volume: 17
  start-page: 2606
  year: 2021
  end-page: 21
  ident: CR30
  article-title: Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.60292
– volume: 7
  year: 2017
  ident: CR19
  article-title: Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16436-9
– volume: 13
  start-page: 81
  year: 2017
  ident: 7098_CR44
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2238
– volume: 386
  start-page: 24
  year: 2022
  ident: 7098_CR8
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2109970
– volume: 62
  year: 2023
  ident: 7098_CR57
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202307706
– volume: 40
  start-page: 365
  year: 2022
  ident: 7098_CR62
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.02.003
– volume: 526
  start-page: 660
  year: 2015
  ident: 7098_CR61
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 13
  start-page: 91
  year: 2017
  ident: 7098_CR43
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2239
– volume: 22
  start-page: 836
  year: 2021
  ident: 7098_CR3
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(21)00097-8
– volume: 81
  start-page: 355
  year: 2021
  ident: 7098_CR60
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.11.024
– volume: 535
  start-page: 111
  year: 2016
  ident: 7098_CR35
  publication-title: Nature
  doi: 10.1038/nature18590
– volume: 3
  start-page: e02523
  year: 2014
  ident: 7098_CR40
  publication-title: Elife
  doi: 10.7554/eLife.02523
– volume: 43
  start-page: 1071
  year: 2023
  ident: 7098_CR23
  publication-title: Cancer Commun
  doi: 10.1002/cac2.12487
– volume: 12
  start-page: 860
  year: 2012
  ident: 7098_CR21
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3380
– volume: 41
  start-page: 88
  year: 2022
  ident: 7098_CR53
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-022-02261-0
– volume: 29
  start-page: 667
  year: 2023
  ident: 7098_CR16
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-22-1591
– volume: 5
  start-page: 159
  year: 2020
  ident: 7098_CR29
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-020-00274-9
– volume: 315
  start-page: 1600
  year: 2016
  ident: 7098_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2016.4059
– volume: 17
  start-page: 2606
  year: 2021
  ident: 7098_CR30
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.60292
– volume: 33
  start-page: 290
  year: 2015
  ident: 7098_CR64
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3122
– volume: 13
  start-page: 5662
  year: 2019
  ident: 7098_CR56
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00892
– volume: 9
  year: 2020
  ident: 7098_CR52
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2019.1703449
– volume: 43
  start-page: 1203
  year: 2020
  ident: 7098_CR17
  publication-title: Cell Oncol
  doi: 10.1007/s13402-020-00552-2
– volume: 41
  start-page: 314
  year: 2022
  ident: 7098_CR38
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-022-02523-x
– volume: 6
  start-page: 24393
  year: 2015
  ident: 7098_CR39
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5162
– volume: 21
  start-page: 37
  year: 2021
  ident: 7098_CR10
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-020-00308-y
– volume: 62
  year: 2023
  ident: 7098_CR33
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2023.102678
– volume: 221
  year: 2021
  ident: 7098_CR32
  publication-title: Pharm Ther
  doi: 10.1016/j.pharmthera.2020.107753
– volume: 48
  start-page: W509
  year: 2020
  ident: 7098_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa407
– volume: 75
  start-page: 47
  year: 2017
  ident: 7098_CR4
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2017.01.009
– volume: 363
  start-page: 221
  year: 2023
  ident: 7098_CR24
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2023.09.024
– volume: 13
  year: 2022
  ident: 7098_CR51
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29026-9
– volume: 11
  year: 2022
  ident: 7098_CR47
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2022.2103277
– volume: 30
  start-page: 1884
  year: 2019
  ident: 7098_CR1
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdz411
– volume: 6
  start-page: 1571
  year: 2020
  ident: 7098_CR14
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2020.3370
– volume: 398
  start-page: 27
  year: 2021
  ident: 7098_CR7
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00797-2
– volume: 600
  start-page: 727
  year: 2021
  ident: 7098_CR6
  publication-title: Nature
  doi: 10.1038/s41586-021-04161-3
– volume: 52
  start-page: 17
  year: 2020
  ident: 7098_CR5
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.12.011
– volume: 81
  start-page: 5
  year: 2021
  ident: 7098_CR37
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-20-2199
– volume: 547
  start-page: 99
  year: 2017
  ident: 7098_CR31
  publication-title: Nature
  doi: 10.1038/nature22393
– volume: 10
  year: 2019
  ident: 7098_CR59
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13385-x
– volume: 14
  year: 2023
  ident: 7098_CR26
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35348-5
– volume: 27
  start-page: 3522
  year: 2021
  ident: 7098_CR12
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-20-4338
– volume: 20
  start-page: 167
  year: 2022
  ident: 7098_CR11
  publication-title: J Natl Compr Cancer Netw
  doi: 10.6004/jnccn.2022.0008
– volume: 386
  start-page: 449
  year: 2022
  ident: 7098_CR13
  publication-title: N. Engl J Med
  doi: 10.1056/NEJMoa2111380
– volume: 187
  year: 2023
  ident: 7098_CR15
  publication-title: Pharm Res
  doi: 10.1016/j.phrs.2022.106556
– volume: 9
  start-page: 265
  year: 2019
  ident: 7098_CR54
  publication-title: Theranostics
  doi: 10.7150/thno.27246
– volume: 7
  year: 2017
  ident: 7098_CR19
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16436-9
– volume: 12
  start-page: 2115
  year: 2022
  ident: 7098_CR20
  publication-title: Theranostics
  doi: 10.7150/thno.69424
– volume: 22
  start-page: 266
  year: 2021
  ident: 7098_CR34
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-00324-8
– volume: 40
  start-page: 109
  year: 2022
  ident: 7098_CR48
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2021.12.005
– volume: 12
  start-page: 357
  year: 2015
  ident: 7098_CR63
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3317
– volume: 24
  start-page: 825
  year: 2022
  ident: 7098_CR58
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-022-00920-0
– volume: 86
  start-page: 273
  year: 2022
  ident: 7098_CR55
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2022.03.009
– volume: 65
  year: 2023
  ident: 7098_CR28
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2023.102826
– volume: 91
  start-page: 1616
  year: 1999
  ident: 7098_CR18
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/91.19.1616
– volume: 535
  start-page: 153
  year: 2016
  ident: 7098_CR65
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 29
  start-page: 2190
  year: 2022
  ident: 7098_CR27
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-022-01008-w
– volume: 14
  year: 2023
  ident: 7098_CR25
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-41121-z
– volume: 28
  start-page: 2670
  year: 2017
  ident: 7098_CR49
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx360
– volume: 7
  start-page: 155
  year: 2021
  ident: 7098_CR22
  publication-title: Cell Death Discov
  doi: 10.1038/s41420-021-00554-5
– volume: 15
  start-page: 783
  year: 2016
  ident: 7098_CR50
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0775
– volume: 20
  start-page: 384
  year: 2021
  ident: 7098_CR46
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-021-00154-z
– volume: 56
  start-page: 1143
  year: 2007
  ident: 7098_CR42
  publication-title: Diabetes
  doi: 10.2337/db06-0267
– volume: 14
  start-page: 156
  year: 2021
  ident: 7098_CR9
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-021-01164-5
– volume: 37
  start-page: e98321
  year: 2018
  ident: 7098_CR45
  publication-title: EMBO J
  doi: 10.15252/embj.201798321
– volume: 34
  start-page: 1076
  year: 2023
  ident: 7098_CR36
  publication-title: Anticancer Drugs
SSID ssj0000330256
Score 2.3957508
Snippet Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune...
Abstract Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 695
SubjectTerms 101/58
13/31
13/89
14/19
38/91
692/699/67/1059/99
692/699/67/2327
692/699/67/327
82/51
82/80
Animals
Antibodies
Antitumor activity
Biochemistry
Biomedical and Life Sciences
CD8 antigen
Cell Biology
Cell Culture
Cell death
Cell Line, Tumor
Cell membranes
Chemotherapy
Cholesterol
Coenzyme A Ligases - metabolism
Drugs
Ferroptosis
Ferroptosis - drug effects
Humans
Immune checkpoint inhibitors
Immunity
Immunogenic Cell Death - drug effects
Immunogenicity
Immunology
Immunosuppressive agents
Life Sciences
Lipid peroxidation
Lipid Peroxidation - drug effects
Lipid rafts
Lipids
Lymphocytes T
Melanoma
Melanoma - drug therapy
Melanoma - immunology
Melanoma - pathology
Membrane Microdomains - drug effects
Membrane Microdomains - metabolism
Mice
Mice, Inbred C57BL
Platinum
Pyroptosis
Pyroptosis - drug effects
Tumor microenvironment
Tumor Microenvironment - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KINBLadMvp2lRoLdWRJZkWTqmoSGEpJc2kJuQJZkYst5l13vov-9I9m6z_aCXXi0ZxJuR5o2keQJ4z9q6KpUz1NU-UNkih3OGB9rWDptKDJgsFQpff1EXN_Lytrp98NRXuhM2ygOPwJ2Eijc8eOabOkoVo2llDEpriYmDVirXkWPMe5BM5TUY03QM5lOVDBP6ZCVLmep1uKTo5UZTsROJsmD_n1jm75clfzkxzYHo_Ck8mRgkOR1H_gwexf4A9sc3Jb8_h-b07OuVpLkiBNkkue8WXSBL1w4rshj1msgszjBJ7iNZrhfpBIG4PpCuv-uabiBdqhiZo191nqRtfRISS8Rm_O3e9fOZewE355-_nV3Q6SEF6hGmgeooEMPKJ7EtV0ceHFeBOyGcaYX2VVMz7xxP2n2ecQybiJ43PupYsogpjngJe_28j6-BoBkqUyHJxcgvpecu7WMxbeqWK2NkXcCHDah2Mepl2HzOLbQdTWDRBDabwIoCPiXctz2T1nX-gB5gJw-w__KAAo42VrPTBFxZkZRUlSw1K-B424xTJwGHAM_XuU-J_AeX2QJejUbejkQYkURcZQF6x_w7Q91t6bu7LM-NGSayPmkK-LjxlJ_j-jsWh_8DizfwmGcXN5SbI9gbluv4FlnT0LzLE-QHYu4SYg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlYd2_HjhEpFVSHgApX2Zjm2QyN1k7CbPfDvO3ayWy2va-zI9szY83ns-YzQG9qoqpTOEKd8IKIBDOcMC6RRDopKcJg0JQp_-SrPL8SnRbWYA27r-Vrldk3MC3XofYqRH_NEjSlFqen74SdJr0al09X5CY3b6E6iLktWrRZqF2OhsFkHlz7nylCuj9eiFClrhwkCtm404Xv-KNP2_w1r_nll8rdz0-yOzh6g-zOOxCeT4h-iW7F7hO5OL0v-eozqk9NvnwXJeSGAKfFVO7QBr1wzrvEwsTbhZVzCVrmLeLUZ0jkCdl3AbXfZ1u2I25Q30oN1tR6n4D4OCStCMfx25bp-6Z6gi7OP30_PyfycAvHCsJHoyGsWKp8ot5yKLDgmA3OcO9Nw7ataUe8cSwx-njJwniA9b3zUsaQRNjr8KTro-i4-R9jXqjIVQF3w_0J45lI0i2qjGiaNEapAb7dCtcPEmmHzaTfXdlKBBRXYrALLC_QhyX1XMzFe5w_96oedJ5ANFYPeewpNRyFjNI2IQWoNQxNaSmjyaKs1O0_Dtb0xmgK93hXDBEqCAwH3m1ynBBQEi22Bnk1K3vWEG56oXEWB9J7697q6X9K1l5mkG_aZgP2EKdC7raXc9Ovfsjj8_zBeoHssG68hzByhg3G1iS8BFY31q2z61-aECYo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEO-mFGQkbmDh2E5iH5eKqloBl1KpN8uxHRqpm6x2swf-fcdOdtFCOXCNbXkyM_Z8fsxngPesqYq8tJraynkqG8RwVnNPm8piUY4Bk8VE4W_fy4srOb8urg-Ab3Nh0qX9RGmZpunt7bBPa5nLmG7DJUUn1YqKB3AUqdrRt49ms_nlfLezwnCJjoF8ypBhQt3TeC8KJbL--xDm3xcl_zgtTUHo_Ak8ntAjmY3yPoWD0D2Dh-N7kr-eQz07u_wqacoGQSRJbttl68nKNsOaLEeuJrIIC1wgd4GsNsuoAGI7T9rupq3bgbQxW6RHn2odiVv6xEeEiMXY7NZ2_cK-gKvzLz_OLuj0iAJ1UvOBqiBq7gsXibZsFbi3vPTcCmF1I5Qr6oo5a3nk7XOMY8hE7Tntggo5C7i8ES_hsOu7cAzE1VWhCwS4GPWldNzGPSymdNXwUmtZZfBhq1SzHLkyTDrjFsqMJjBoApNMYEQGn6PedzUjz3X60K9-msnuxhccpXcMuw6yDEE3MvhSKfw1qcoSuzzdWs1Mg29tRGRRLWWuWAbvdsU4bKLiUMH9JtXJEfvgFJvBq9HIO0mEFpHAVWag9sy_J-p-SdfeJGpuXF0i4pM6g49bT_kt1791cfJ_1V_DI56cWVOuT-FwWG3CG8RGQ_12Ggx30HEIvw
  priority: 102
  providerName: Springer Nature
Title ACSL4-mediated lipid rafts prevent membrane rupture and inhibit immunogenic cell death in melanoma
URI https://link.springer.com/article/10.1038/s41419-024-07098-3
https://www.ncbi.nlm.nih.gov/pubmed/39343834
https://www.proquest.com/docview/3110964180
https://www.proquest.com/docview/3111201887
https://pubmed.ncbi.nlm.nih.gov/PMC11439949
https://doaj.org/article/d52b2dc0cb7e46ee9f4ed68849248667
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG-yLJWRuEEgsZ3YPiDUrbpaVewKsVTqLXIch43UpiVtpd0Lv52xkxYVyoFLIsWO4syMM9_YmW8A3kSlSOJUq1ALU4S8RAynFS3CUmhsitFhRi5R-PIqvRjz0SSZHMCm3FEnwOXe0M7Vkxo30_e3P-4-4YT_2KaMyw9LHnOXikN5iAasZMgO4Rg9k3AVDS47uO-_zBi8o4vvcmf237rjnzyN_z7s-fcvlH_so3r3dP4QHnS4kvRbQ3gEB7Z-DPfaSpN3TyDvD64_89DniSDGJNNqURWk0eVqSRYtixOZ2RmGzrUlzXrh9hWIrgtS1TdVXq1I5fJI5mhtlSFusZ8UDjtiM9421fV8pp_C-Hz4bXARduUVQsMVXYXSspwWiXEUXFpYWmiaFlQzplXJpElyERmtqWP0MxFFZ4rSM8pYaePIYuDDnsFRPa_tCyAmF4lKEPqi1Dk3VLvVrUgqUdJUKS4CeLsRarZoWTQyv_vNZNaqIEMVZF4FGQvgzMl929MxYPsL8-Z71k2orEgojt5E-GjLU2tVyW2RSomvxmWa4iNPN1rLNlaVMcevmvJYRgG83jbjhHKCQwHP175PjKgIP74BPG-VvB0JU8xRu_IA5I76d4a621JXN560G-NOxIJcBfBuYym_x_VvWZz8X_eXcJ96Y1YhVadwtGrW9hWiplXeg0MxET047vdH1yM8nw2vvnzFq4N00PMrET0_Wdzx5_AXkQAYEg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KASPBCaw6tpPYB4RKodrSbS-00t6MYzs0UjfZ7kOof4rfyNjZbLW8br3GTuLMw_ONJzOD0GtaFVmaG0VMYR0RFWA4o5gjVWFgKAWDSUOi8NFxPjgVX0bZaAP97HNhwm-V_Z4YN2rX2nBGvsNDacxcpJJ-mFyQ0DUqRFf7FhqdWBz6yx_gss3eH3wC_r5hbP_zyd6ALLsKECsUmxPpeclcZkPlKVN45gzLHTOcG1VxabOyoNYYFgrZWcrAhoDHb5X10qfUA97n8Nwb6CYYXhqcvWJUrM50KEwFCLHMzaFc7sxEKkKWEBMEdEtJwtfsX2wT8Dds--cvmr_FaaP527-H7i5xK97tBO0-2vDNA3Sr62R5-RCVu3tfh4LEPBTAsPi8ntQOT001n-FJVyUKj_0YXPPG4-liEuIW2DQO181ZXdZzXIc8lRakubY4BBOwC9gUhuG2c9O0Y_MInV4LoR-jzaZt_FOEbVlkKgNoDXhDCMtMOD2jUhUVy5USRYLe9kTVk65Kh47RdS51xwINLNCRBZon6GOg-2pmqLAdL7TT73qpsNplDFZvKbzai9x7VQnvcinh04TMc3jlds81vVT7mb4S0gS9Wg2DwgbCAYHbRZyTAuqCzT1BTzomr1bCFQ-lY0WC5Br715a6PtLUZ7EoOPi1gDWFStC7XlKu1vVvWmz9_zNeotuDk6OhHh4cHz5Dd1gUZEWY2kab8-nCPwdENi9fRDXA6Nt1690vz9FGsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8IG4CBYwETxA1sZ3EfkCo16qlZVUBlfrmOrZDI3WTZQ-h_jV-HeMcWy3XW19jJ7HnsL_xeGYAXkdFlsSplqHOjA15gRhOS2rDItPYFOOGGflA4U-jdP-EfzxNTtfgZx8L469V9mtis1Db2vgz8k3mU2Om3EcmF921iOPd4YfJ99BXkPKe1r6cRisih-7yB5pvs_cHu8jrN5QO977u7IddhYHQcEnnoXAspzYxPguVzhy1mqaWasa0LJgwSZ5FRmvqk9qZiOJ-gta_kcYJF0cOsT_D796A9cxbRQNY394bHX9envBE2BkBRRepEzGxOeMx9zFDlIeoaVKEbGU3bIoG_A3p_nlh8zevbbMZDu_CnQ7Fkq1W7O7Bmqvuw822ruXlA8i3dr4c8bCJSkFESy7KSWnJVBfzGZm0OaPI2I3RUK8cmS4m3otBdGVJWZ2XeTknpY9aqVG2S0O8a4FYj1SxGV-70FU91g_h5FpI_QgGVV25J0BMniUyQaCN6INzQ7U_S4uEzAqaSsmzAN72RFWTNmeHanztTKiWBQpZoBoWKBbAtqf7sqfPt908qKffVKe-yiYUR28i_LXjqXOy4M6mQuDUuEhT_OVGzzXVLQIzdSWyAbxaNqP6esIhgetF0ydGDIZLfQCPWyYvR8Ik84lkeQBihf0rQ11tqcrzJkU4WrmIPLkM4F0vKVfj-jctnv5_Gi_hFuqcOjoYHT6D27SRYxlSuQGD-XThniM8m-cvOj0gcHbdqvcLr61MTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACSL4-mediated+lipid+rafts+prevent+membrane+rupture+and+inhibit+immunogenic+cell+death+in+melanoma&rft.jtitle=Cell+death+%26+disease&rft.au=Zhao%2C+Xi&rft.au=Zhao%2C+Zenglu&rft.au=Li%2C+Bingru&rft.au=Huan%2C+Shuyu&rft.date=2024-09-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-4889&rft.volume=15&rft.issue=9&rft_id=info:doi/10.1038%2Fs41419-024-07098-3&rft.externalDocID=10_1038_s41419_024_07098_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4889&client=summon