ACSL4-mediated lipid rafts prevent membrane rupture and inhibit immunogenic cell death in melanoma
Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tu...
Saved in:
Published in | Cell death & disease Vol. 15; no. 9; pp. 695 - 15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.09.2024
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8
+
T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy. |
---|---|
AbstractList | Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8
+
T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy. Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy. Abstract Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy. Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy. Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8 T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy. |
ArticleNumber | 695 |
Author | Liu, Guoquan Li, Bingru Xie, Jianlan Zhao, Zenglu Zhao, Xi Li, Zixi Huan, Shuyu |
Author_xml | – sequence: 1 givenname: Xi surname: Zhao fullname: Zhao, Xi organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University – sequence: 2 givenname: Zenglu surname: Zhao fullname: Zhao, Zenglu organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University – sequence: 3 givenname: Bingru surname: Li fullname: Li, Bingru organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University – sequence: 4 givenname: Shuyu surname: Huan fullname: Huan, Shuyu organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University – sequence: 5 givenname: Zixi surname: Li fullname: Li, Zixi organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University – sequence: 6 givenname: Jianlan surname: Xie fullname: Xie, Jianlan organization: Department of Pathology, Beijing Friendship Hospital, Capital Medical University – sequence: 7 givenname: Guoquan orcidid: 0000-0003-0680-4811 surname: Liu fullname: Liu, Guoquan email: guoquanliu@bjmu.edu.cn organization: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Department of Biomedical Engineering, Institute of Advanced Clinical Medicine, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39343834$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFAR_aB_gAOyxIVLwF-b2CdUraBUWokDcLYc-2XXq8QOdlKp_x6nKaXlgC-27Jl5743nHJ2EGAChN5R8oITLj1lQQVVFmKhIQ5Ss-At0xoiglZBSnTw5n6LLnI-kLM4J29Sv0ClXXHDJxRlqr7bfd6IawHkzgcO9H73DyXRTxmOCWwgTHmBokwmA0zxOcwJsgsM-HHzrJ-yHYQ5xD8FbbKHvsQMzHcpzofUmxMG8Ri8702e4fNgv0M8vn39sv1a7b9c326tdZYViUyWBt8xtbEN4bRpgzrDaMcO5UR2XdtM2xBrDGiqIJcwClGmssiCBElA14RfoZtV10Rz1mPxg0p2Oxuv7i5j22qTJ2x6027BSyxLbNiBqANUJcLWUpREh67opWp9WrXFuize22JBM_0z0-UvwB72Pt5pSwZUSqii8f1BI8dcMedKDz4tBxcg4Z80ppYxQKZdi7_6BHuOcQvFqQRFVCyqX8d4-bemxlz9_WQBsBdgUc07QPUIo0Utm9JoZXTKj7zOjeSHxlZQLOOwh_a39H9ZvTmLDpg |
Cites_doi | 10.7150/thno.27246 10.18632/oncotarget.5162 10.1186/s13046-022-02523-x 10.1038/s41392-020-00274-9 10.1016/j.molcel.2020.11.024 10.1158/1535-7163.MCT-15-0775 10.1038/s41568-020-00308-y 10.1038/nchembio.2238 10.1038/s41573-021-00154-z 10.1016/j.phrs.2022.106556 10.1038/s41467-019-13385-x 10.1158/1078-0432.CCR-20-4338 10.1038/nature18590 10.1016/S1470-2045(21)00097-8 10.1038/nchembio.2239 10.1016/j.pharmthera.2020.107753 10.1186/s13045-021-01164-5 10.1038/nature22393 10.1038/s41580-020-00324-8 10.1016/j.redox.2023.102678 10.1038/nature15514 10.1001/jamaoncol.2020.3370 10.1016/j.ccell.2022.02.003 10.1056/NEJMoa2111380 10.7150/thno.69424 10.1016/j.redox.2023.102826 10.1016/j.immuni.2019.12.011 10.1038/nmeth.3317 10.6004/jnccn.2022.0008 10.1016/j.semcancer.2022.03.009 10.1002/anie.202307706 10.1038/nbt.3122 10.1093/annonc/mdz411 10.1093/nar/gkaa407 10.1016/j.jare.2021.12.005 10.1001/jama.2016.4059 10.1038/s41586-021-04161-3 10.1056/NEJMoa2109970 10.1158/0008-5472.CAN-20-2199 10.1002/cac2.12487 10.15252/embj.201798321 10.1038/nature18629 10.1038/s41420-021-00554-5 10.1093/annonc/mdx360 10.1038/nrc3380 10.1038/s41467-023-41121-z 10.1186/s13046-022-02261-0 10.1038/s41467-022-35348-5 10.2337/db06-0267 10.1021/acsnano.9b00892 10.1158/1078-0432.CCR-22-1591 10.1038/s41467-022-29026-9 10.1080/2162402X.2022.2103277 10.1093/jnci/91.19.1616 10.1038/s41556-022-00920-0 10.7554/eLife.02523 10.1080/2162402X.2019.1703449 10.1007/s13402-020-00552-2 10.1038/s41418-022-01008-w 10.1016/S0140-6736(21)00797-2 10.1016/j.ejca.2017.01.009 10.1016/j.jconrel.2023.09.024 10.7150/ijbs.60292 10.1038/s41598-017-16436-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41419-024-07098-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central ProQuest Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database ProQuest Biological Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-4889 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_d52b2dc0cb7e46ee9f4ed68849248667 PMC11439949 39343834 10_1038_s41419_024_07098_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22177008; 31971173 funderid: https://doi.org/10.13039/501100001809 – fundername: the Clinical Medicine Plus X - Young Scholars Project, Peking University, the Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22177008 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31971173 |
GroupedDBID | --- 0R~ 3V. 53G 5VS 70F 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO E3Z EBLON EBS EMOBN FRP FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 LK8 M0L M2P M48 M7P M~E NAO O5R O5S O9- OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT TR2 UKHRP W2D AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c492t-8e3b2d5c7036a7e2da26d2a33a9f38c5b70caa27140c02cee330c9ce8e10e9603 |
IEDL.DBID | M48 |
ISSN | 2041-4889 |
IngestDate | Wed Aug 27 01:31:12 EDT 2025 Thu Aug 21 18:31:06 EDT 2025 Sun Aug 24 03:53:05 EDT 2025 Wed Aug 13 04:42:35 EDT 2025 Mon Jul 21 05:40:28 EDT 2025 Tue Jul 01 03:50:17 EDT 2025 Fri Feb 21 02:38:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-8e3b2d5c7036a7e2da26d2a33a9f38c5b70caa27140c02cee330c9ce8e10e9603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0680-4811 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41419-024-07098-3 |
PMID | 39343834 |
PQID | 3110964180 |
PQPubID | 2041963 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d52b2dc0cb7e46ee9f4ed68849248667 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11439949 proquest_miscellaneous_3111201887 proquest_journals_3110964180 pubmed_primary_39343834 crossref_primary_10_1038_s41419_024_07098_3 springer_journals_10_1038_s41419_024_07098_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-29 |
PublicationDateYYYYMMDD | 2024-09-29 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell death & disease |
PublicationTitleAbbrev | Cell Death Dis |
PublicationTitleAlternate | Cell Death Dis |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Dixon, Patel, Welsch, Skouta, Lee, Hayano (CR40) 2014; 3 Wang, Gao, Shi, Ding, Liu, He (CR31) 2017; 547 Zhu, Shan, Ge, Lu, Kong, Jia (CR17) 2020; 43 Luo, Onyshchenko, Wang, Gaedicke, Grosu, Firat (CR16) 2023; 29 Janjigian, Kawazoe, Yanez, Li, Lonardi, Kolesnik (CR6) 2021; 600 Ricco, Seminerio, Andrini, Malvi, Gruppioni, Altimari (CR36) 2023; 34 Zhang, Li, Lu, Nie, Zhang, Lv (CR56) 2019; 13 Krysko, Garg, Kaczmarek, Krysko, Agostinis, Vandenabeele (CR21) 2012; 12 Hegde, Chen (CR5) 2020; 52 Peng, Wang, Song, Yao, Li, Liu (CR29) 2020; 5 Bisi, Sorrentino, Roberts, Tavares, Strum (CR50) 2016; 15 Askari, Kanter, Sherrid, Golej, Bender, Liu (CR42) 2007; 56 Yan, Ai, Sun, Ma, Cao, Wang (CR60) 2021; 81 Vanmeerbeek, Sprooten, De Ruysscher, Tejpar, Vandenberghe, Fucikova (CR52) 2020; 9 Ding, Zheng, Tan, Chen, Meng, Li (CR57) 2023; 62 Zhu, Zhang, Zheng, Liu, Song, Liu (CR9) 2021; 14 Zhang, Song, Yang, Li, Wang, Wan (CR25) 2023; 14 Yan, Luo, Wu, Guan, Yu, Zhao (CR30) 2021; 17 Shi, Zhao, Wang, Shi, Wang, Huang (CR61) 2015; 526 Jiang, Stockwell, Conrad (CR34) 2021; 22 Chen, Wang, Fu, Zhu, Wang, Guan (CR19) 2017; 7 Vellanki, Mulkey, Jaigirdar, Rodriguez, Wang, Xu (CR12) 2021; 27 Huang, Zhang, Wang, Yu (CR58) 2022; 24 Sazonova, Kopeina, Imyanitov, Zhivotovsky (CR22) 2021; 7 Kwon, Park, Lee, Chung (CR39) 2015; 6 Pires da Silva, Ahmed, Reijers, Weppler, Betof Warner, Patrinely (CR3) 2021; 22 Zhao, Lian, Xie, Liu (CR33) 2023; 62 Liao, Wang, Wang, Kryczek, Li, Bian (CR62) 2022; 40 Ajani, D’Amico, Bentrem, Chao, Cooke, Corvera (CR11) 2022; 20 Janjigian, Shitara, Moehler, Garrido, Salman, Shen (CR7) 2021; 398 Deng, Wang, Liu, Zhang, Zhou, Zhao (CR28) 2023; 65 Chang, Bian, Liu, Yang, Yang, Wang (CR15) 2023; 187 Groopman, Itri (CR18) 1999; 91 Jin, He, Zhao, Hu, Tao, Chen (CR54) 2019; 9 Niu, Chen, Li, Hu, He (CR55) 2022; 86 Michielin, van Akkooi, Ascierto, Dummer, Keilholz (CR1) 2019; 30 Greenlee, Subramanian, Liu, King (CR37) 2021; 81 Zimmer, Apuri, Eroglu, Kottschade, Forschner, Gutzmer (CR4) 2017; 75 Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (CR64) 2015; 33 Arimoto, Miyauchi, Troutman, Zhang, Liu, Stoner (CR26) 2023; 14 Liu, Xia, Zhang, Wu, Lieberman (CR46) 2021; 20 Kim, Langmead, Salzberg (CR63) 2015; 12 Ding, Wang, Liu, She, Sun, Shi (CR35) 2016; 535 Xiao, Yu (CR32) 2021; 221 Wang, Zheng, Shang, Yang, Li, Liu (CR27) 2022; 29 Tawbi, Schadendorf, Lipson, Ascierto, Matamala, Castillo Gutierrez (CR8) 2022; 386 Sha, Liu, Yang, Wang, Gong, Jin (CR38) 2022; 41 Steenbrugge, Bellemans, Vander Elst, Demeyere, De Vliegher, Perera (CR47) 2022; 11 Zhang, Xu, Gao, Yao (CR20) 2022; 12 Yu, Wang, Che, Zhang, Li, Naito (CR53) 2022; 41 Ding, Tang, Li, Ding, Chen, Cao (CR24) 2023; 363 Doki, Ajani, Kato, Xu, Wyrwicz, Motoyama (CR13) 2022; 386 Kagan, Mao, Qu, Angeli, Doll, Croix (CR44) 2017; 13 Chovanec, Abu Zaid, Hanna, El-Kouri, Einhorn, Albany (CR49) 2017; 28 Li, Fu, Zeng, Cohen, Li, Chen (CR41) 2020; 48 Liu, Zhang, Ruan, Pan, Magupalli, Wu (CR65) 2016; 535 Ribas, Hamid, Daud, Hodi, Wolchok, Kefford (CR2) 2016; 315 Rottenberg, Disler, Perego (CR10) 2021; 21 Mulvihill, Sborgi, Mari, Pfreundschuh, Hiller, Muller (CR45) 2018; 37 Shitara, Van Cutsem, Bang, Fuchs, Wyrwicz, Lee (CR14) 2020; 6 Zheng, Sun, Guo, Ma (CR23) 2023; 43 Doll, Proneth, Tyurina, Panzilius, Kobayashi, Ingo (CR43) 2017; 13 Rudd-Schmidt, Hodel, Noori, Lopez, Cho, Verschoor (CR59) 2019; 10 Nikolos, Hayashi, Hoi, Alonzo, Mo, Kasabyan (CR51) 2022; 13 Glorieux, Xia, You, Wang, Han, Yang (CR48) 2022; 40 Y Xiao (7098_CR32) 2021; 221 B Askari (7098_CR42) 2007; 56 YY Janjigian (7098_CR6) 2021; 600 X Chen (7098_CR19) 2017; 7 JD Greenlee (7098_CR37) 2021; 81 H Jin (7098_CR54) 2019; 9 E Mulvihill (7098_CR45) 2018; 37 KI Arimoto (7098_CR26) 2023; 14 YY Janjigian (7098_CR7) 2021; 398 S Rottenberg (7098_CR10) 2021; 21 JA Ajani (7098_CR11) 2022; 20 F Nikolos (7098_CR51) 2022; 13 J Steenbrugge (7098_CR47) 2022; 11 I Vanmeerbeek (7098_CR52) 2020; 9 Y Wang (7098_CR27) 2022; 29 X Chang (7098_CR15) 2023; 187 C Glorieux (7098_CR48) 2022; 40 K Shitara (7098_CR14) 2020; 6 X Jiang (7098_CR34) 2021; 22 L Zhang (7098_CR25) 2023; 14 JE Groopman (7098_CR18) 1999; 91 H Yan (7098_CR30) 2021; 17 G Ricco (7098_CR36) 2023; 34 S Doll (7098_CR43) 2017; 13 Y Doki (7098_CR13) 2022; 386 J Ding (7098_CR35) 2016; 535 C Zhang (7098_CR20) 2022; 12 M Chovanec (7098_CR49) 2017; 28 X Liu (7098_CR65) 2016; 535 PJ Vellanki (7098_CR12) 2021; 27 Y Wang (7098_CR31) 2017; 547 J Shi (7098_CR61) 2015; 526 P Liao (7098_CR62) 2022; 40 HA Tawbi (7098_CR8) 2022; 386 R Luo (7098_CR16) 2023; 29 PS Hegde (7098_CR5) 2020; 52 YL Sha (7098_CR38) 2022; 41 MY Kwon (7098_CR39) 2015; 6 M Pertea (7098_CR64) 2015; 33 SJ Dixon (7098_CR40) 2014; 3 S Yu (7098_CR53) 2022; 41 F Zhang (7098_CR56) 2019; 13 B Ding (7098_CR57) 2023; 62 JE Bisi (7098_CR50) 2016; 15 L Zimmer (7098_CR4) 2017; 75 S Zhu (7098_CR9) 2021; 14 Y Zheng (7098_CR23) 2023; 43 JA Rudd-Schmidt (7098_CR59) 2019; 10 VE Kagan (7098_CR44) 2017; 13 EV Sazonova (7098_CR22) 2021; 7 Q Ding (7098_CR24) 2023; 363 T Li (7098_CR41) 2020; 48 X Zhao (7098_CR33) 2023; 62 D Kim (7098_CR63) 2015; 12 Z Peng (7098_CR29) 2020; 5 Z Deng (7098_CR28) 2023; 65 I Pires da Silva (7098_CR3) 2021; 22 B Yan (7098_CR60) 2021; 81 X Niu (7098_CR55) 2022; 86 X Liu (7098_CR46) 2021; 20 A Ribas (7098_CR2) 2016; 315 H Zhu (7098_CR17) 2020; 43 Y Huang (7098_CR58) 2022; 24 O Michielin (7098_CR1) 2019; 30 DV Krysko (7098_CR21) 2012; 12 |
References_xml | – volume: 9 start-page: 265 year: 2019 end-page: 78 ident: CR54 article-title: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin beta3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery publication-title: Theranostics doi: 10.7150/thno.27246 – volume: 6 start-page: 24393 year: 2015 end-page: 403 ident: CR39 article-title: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death publication-title: Oncotarget doi: 10.18632/oncotarget.5162 – volume: 41 start-page: 314 year: 2022 ident: CR38 article-title: B3GALT4 remodels the tumor microenvironment through GD2-mediated lipid raft formation and the c-met/AKT/mTOR/IRF-1 axis in neuroblastoma publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-022-02523-x – volume: 5 start-page: 159 year: 2020 ident: CR29 article-title: GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-00274-9 – volume: 81 start-page: 355 year: 2021 end-page: 369 e310 ident: CR60 article-title: Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1 publication-title: Mol Cell doi: 10.1016/j.molcel.2020.11.024 – volume: 15 start-page: 783 year: 2016 end-page: 93 ident: CR50 article-title: Preclinical characterization of G1T28: a novel CDK4/6 inhibitor for reduction of chemotherapy-induced myelosuppression publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-15-0775 – volume: 21 start-page: 37 year: 2021 end-page: 50 ident: CR10 article-title: The rediscovery of platinum-based cancer therapy publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-00308-y – volume: 13 start-page: 81 year: 2017 end-page: 90 ident: CR44 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat Chem Biol doi: 10.1038/nchembio.2238 – volume: 20 start-page: 384 year: 2021 end-page: 405 ident: CR46 article-title: Channelling inflammation: gasdermins in physiology and disease publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-021-00154-z – volume: 187 year: 2023 ident: CR15 article-title: Induction of immunogenic cell death by novel platinum-based anticancer agents publication-title: Pharm Res doi: 10.1016/j.phrs.2022.106556 – volume: 10 year: 2019 ident: CR59 article-title: Lipid order and charge protect killer T cells from accidental death publication-title: Nat Commun doi: 10.1038/s41467-019-13385-x – volume: 27 start-page: 3522 year: 2021 end-page: 7 ident: CR12 article-title: FDA approval summary: nivolumab with ipilimumab and chemotherapy for metastatic non-small cell lung cancer, a collaborative project orbis review publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-4338 – volume: 535 start-page: 111 year: 2016 end-page: 6 ident: CR35 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature doi: 10.1038/nature18590 – volume: 22 start-page: 836 year: 2021 end-page: 47 ident: CR3 article-title: Ipilimumab alone or ipilimumab plus anti-PD-1 therapy in patients with metastatic melanoma resistant to anti-PD-(L)1 monotherapy: a multicentre, retrospective, cohort study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(21)00097-8 – volume: 13 start-page: 91 year: 2017 end-page: 98 ident: CR43 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat Chem Biol doi: 10.1038/nchembio.2239 – volume: 221 year: 2021 ident: CR32 article-title: Tumor microenvironment as a therapeutic target in cancer publication-title: Pharm Ther doi: 10.1016/j.pharmthera.2020.107753 – volume: 14 start-page: 156 year: 2021 ident: CR9 article-title: Combination strategies to maximize the benefits of cancer immunotherapy publication-title: J Hematol Oncol doi: 10.1186/s13045-021-01164-5 – volume: 547 start-page: 99 year: 2017 end-page: 103 ident: CR31 article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin publication-title: Nature doi: 10.1038/nature22393 – volume: 22 start-page: 266 year: 2021 end-page: 82 ident: CR34 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-00324-8 – volume: 62 year: 2023 ident: CR33 article-title: Accumulated cholesterol protects tumours from elevated lipid peroxidation in the microenvironment publication-title: Redox Biol doi: 10.1016/j.redox.2023.102678 – volume: 526 start-page: 660 year: 2015 end-page: 5 ident: CR61 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 – volume: 6 start-page: 1571 year: 2020 end-page: 80 ident: CR14 article-title: Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2020.3370 – volume: 40 start-page: 365 year: 2022 end-page: 78 e366 ident: CR62 article-title: CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.02.003 – volume: 386 start-page: 449 year: 2022 end-page: 62 ident: CR13 article-title: Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma publication-title: N. Engl J Med doi: 10.1056/NEJMoa2111380 – volume: 12 start-page: 2115 year: 2022 end-page: 32 ident: CR20 article-title: Platinum-based drugs for cancer therapy and anti-tumor strategies publication-title: Theranostics doi: 10.7150/thno.69424 – volume: 65 year: 2023 ident: CR28 article-title: WBP2 restrains the lysosomal degradation of GPX4 to inhibit ferroptosis in cisplatin-induced acute kidney injury publication-title: Redox Biol doi: 10.1016/j.redox.2023.102826 – volume: 52 start-page: 17 year: 2020 end-page: 35 ident: CR5 article-title: Top 10 challenges in cancer immunotherapy publication-title: Immunity doi: 10.1016/j.immuni.2019.12.011 – volume: 12 start-page: 357 year: 2015 end-page: 60 ident: CR63 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat Methods doi: 10.1038/nmeth.3317 – volume: 20 start-page: 167 year: 2022 end-page: 92 ident: CR11 article-title: Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology publication-title: J Natl Compr Cancer Netw doi: 10.6004/jnccn.2022.0008 – volume: 86 start-page: 273 year: 2022 end-page: 85 ident: CR55 article-title: Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2022.03.009 – volume: 62 year: 2023 ident: CR57 article-title: Sodium bicarbonate nanoparticles for amplified cancer immunotherapy by inducing pyroptosis and regulating lactic acid metabolism publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202307706 – volume: 33 start-page: 290 year: 2015 end-page: 5 ident: CR64 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat Biotechnol doi: 10.1038/nbt.3122 – volume: 30 start-page: 1884 year: 2019 end-page: 901 ident: CR1 article-title: Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up† publication-title: Ann Oncol doi: 10.1093/annonc/mdz411 – volume: 48 start-page: W509 year: 2020 end-page: W514 ident: CR41 article-title: TIMER2.0 for analysis of tumor-infiltrating immune cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa407 – volume: 40 start-page: 109 year: 2022 end-page: 24 ident: CR48 article-title: Cisplatin and gemcitabine exert opposite effects on immunotherapy with PD-1 antibody in K-ras-driven cancer publication-title: J Adv Res doi: 10.1016/j.jare.2021.12.005 – volume: 315 start-page: 1600 year: 2016 end-page: 9 ident: CR2 article-title: Association of pembrolizumab with tumor response and survival among patients with advanced melanoma publication-title: JAMA doi: 10.1001/jama.2016.4059 – volume: 600 start-page: 727 year: 2021 end-page: 30 ident: CR6 article-title: The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer publication-title: Nature doi: 10.1038/s41586-021-04161-3 – volume: 386 start-page: 24 year: 2022 end-page: 34 ident: CR8 article-title: Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa2109970 – volume: 81 start-page: 5 year: 2021 end-page: 17 ident: CR37 article-title: Rafting down the metastatic cascade: the role of lipid rafts in cancer metastasis, cell death, and clinical outcomes publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-20-2199 – volume: 43 start-page: 1071 year: 2023 end-page: 96 ident: CR23 article-title: The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy publication-title: Cancer Commun doi: 10.1002/cac2.12487 – volume: 37 start-page: e98321 year: 2018 ident: CR45 article-title: Mechanism of membrane pore formation by human gasdermin-D publication-title: EMBO J doi: 10.15252/embj.201798321 – volume: 535 start-page: 153 year: 2016 end-page: 8 ident: CR65 article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature doi: 10.1038/nature18629 – volume: 7 start-page: 155 year: 2021 ident: CR22 article-title: Platinum drugs and taxanes: can we overcome resistance? publication-title: Cell Death Discov doi: 10.1038/s41420-021-00554-5 – volume: 28 start-page: 2670 year: 2017 end-page: 9 ident: CR49 article-title: Long-term toxicity of cisplatin in germ-cell tumor survivors publication-title: Ann Oncol doi: 10.1093/annonc/mdx360 – volume: 12 start-page: 860 year: 2012 end-page: 75 ident: CR21 article-title: Immunogenic cell death and DAMPs in cancer therapy publication-title: Nat Rev Cancer doi: 10.1038/nrc3380 – volume: 14 year: 2023 ident: CR25 article-title: Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy publication-title: Nat Commun doi: 10.1038/s41467-023-41121-z – volume: 41 start-page: 88 year: 2022 ident: CR53 article-title: Targeting CRABP-II overcomes pancreatic cancer drug resistance by reversing lipid raft cholesterol accumulation and AKT survival signaling publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-022-02261-0 – volume: 34 start-page: 1076 year: 2023 end-page: 84 ident: CR36 article-title: BRAF V600E-mutated large cell neuroendocrine carcinoma responding to targeted therapy: a case report and review of the literature publication-title: Anticancer Drugs – volume: 14 year: 2023 ident: CR26 article-title: Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis publication-title: Nat Commun doi: 10.1038/s41467-022-35348-5 – volume: 56 start-page: 1143 year: 2007 end-page: 52 ident: CR42 article-title: Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid partitioning to diacylglycerol and triacylglycerol via a peroxisome proliferator-activated receptor-gamma-independent mechanism in human arterial smooth muscle cells and macrophages publication-title: Diabetes doi: 10.2337/db06-0267 – volume: 13 start-page: 5662 year: 2019 end-page: 73 ident: CR56 article-title: Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer publication-title: ACS Nano doi: 10.1021/acsnano.9b00892 – volume: 29 start-page: 667 year: 2023 end-page: 83 ident: CR16 article-title: Necroptosis-dependent Immunogenicity of Cisplatin: implications for enhancing the radiation-induced abscopal effect publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-22-1591 – volume: 13 year: 2022 ident: CR51 article-title: Cell death-induced immunogenicity enhances chemoimmunotherapeutic response by converting immune-excluded into T-cell inflamed bladder tumors publication-title: Nat Commun doi: 10.1038/s41467-022-29026-9 – volume: 11 year: 2022 ident: CR47 article-title: One cisplatin dose provides durable stimulation of anti-tumor immunity and alleviates anti-PD-1 resistance in an intraductal model for triple-negative breast cancer publication-title: Oncoimmunology doi: 10.1080/2162402X.2022.2103277 – volume: 91 start-page: 1616 year: 1999 end-page: 34 ident: CR18 article-title: Chemotherapy-induced anemia in adults: incidence and treatment publication-title: J Natl Cancer Inst doi: 10.1093/jnci/91.19.1616 – volume: 24 start-page: 825 year: 2022 end-page: 32 ident: CR58 article-title: Assembly of Tetraspanin-enriched macrodomains contains membrane damage to facilitate repair publication-title: Nat Cell Biol doi: 10.1038/s41556-022-00920-0 – volume: 3 start-page: e02523 year: 2014 ident: CR40 article-title: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis publication-title: Elife doi: 10.7554/eLife.02523 – volume: 9 year: 2020 ident: CR52 article-title: Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology publication-title: Oncoimmunology doi: 10.1080/2162402X.2019.1703449 – volume: 43 start-page: 1203 year: 2020 end-page: 14 ident: CR17 article-title: Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy publication-title: Cell Oncol doi: 10.1007/s13402-020-00552-2 – volume: 29 start-page: 2190 year: 2022 end-page: 202 ident: CR27 article-title: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer publication-title: Cell Death Differ doi: 10.1038/s41418-022-01008-w – volume: 398 start-page: 27 year: 2021 end-page: 40 ident: CR7 article-title: First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(21)00797-2 – volume: 75 start-page: 47 year: 2017 end-page: 55 ident: CR4 article-title: Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma publication-title: Eur J Cancer doi: 10.1016/j.ejca.2017.01.009 – volume: 363 start-page: 221 year: 2023 end-page: 34 ident: CR24 article-title: Mitochondrial-targeted brequinar liposome boosted mitochondrial-related ferroptosis for promoting checkpoint blockade immunotherapy in bladder cancer publication-title: J Control Release doi: 10.1016/j.jconrel.2023.09.024 – volume: 17 start-page: 2606 year: 2021 end-page: 21 ident: CR30 article-title: Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer publication-title: Int J Biol Sci doi: 10.7150/ijbs.60292 – volume: 7 year: 2017 ident: CR19 article-title: Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression publication-title: Sci Rep doi: 10.1038/s41598-017-16436-9 – volume: 13 start-page: 81 year: 2017 ident: 7098_CR44 publication-title: Nat Chem Biol doi: 10.1038/nchembio.2238 – volume: 386 start-page: 24 year: 2022 ident: 7098_CR8 publication-title: N Engl J Med doi: 10.1056/NEJMoa2109970 – volume: 62 year: 2023 ident: 7098_CR57 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202307706 – volume: 40 start-page: 365 year: 2022 ident: 7098_CR62 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.02.003 – volume: 526 start-page: 660 year: 2015 ident: 7098_CR61 publication-title: Nature doi: 10.1038/nature15514 – volume: 13 start-page: 91 year: 2017 ident: 7098_CR43 publication-title: Nat Chem Biol doi: 10.1038/nchembio.2239 – volume: 22 start-page: 836 year: 2021 ident: 7098_CR3 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(21)00097-8 – volume: 81 start-page: 355 year: 2021 ident: 7098_CR60 publication-title: Mol Cell doi: 10.1016/j.molcel.2020.11.024 – volume: 535 start-page: 111 year: 2016 ident: 7098_CR35 publication-title: Nature doi: 10.1038/nature18590 – volume: 3 start-page: e02523 year: 2014 ident: 7098_CR40 publication-title: Elife doi: 10.7554/eLife.02523 – volume: 43 start-page: 1071 year: 2023 ident: 7098_CR23 publication-title: Cancer Commun doi: 10.1002/cac2.12487 – volume: 12 start-page: 860 year: 2012 ident: 7098_CR21 publication-title: Nat Rev Cancer doi: 10.1038/nrc3380 – volume: 41 start-page: 88 year: 2022 ident: 7098_CR53 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-022-02261-0 – volume: 29 start-page: 667 year: 2023 ident: 7098_CR16 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-22-1591 – volume: 5 start-page: 159 year: 2020 ident: 7098_CR29 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-00274-9 – volume: 315 start-page: 1600 year: 2016 ident: 7098_CR2 publication-title: JAMA doi: 10.1001/jama.2016.4059 – volume: 17 start-page: 2606 year: 2021 ident: 7098_CR30 publication-title: Int J Biol Sci doi: 10.7150/ijbs.60292 – volume: 33 start-page: 290 year: 2015 ident: 7098_CR64 publication-title: Nat Biotechnol doi: 10.1038/nbt.3122 – volume: 13 start-page: 5662 year: 2019 ident: 7098_CR56 publication-title: ACS Nano doi: 10.1021/acsnano.9b00892 – volume: 9 year: 2020 ident: 7098_CR52 publication-title: Oncoimmunology doi: 10.1080/2162402X.2019.1703449 – volume: 43 start-page: 1203 year: 2020 ident: 7098_CR17 publication-title: Cell Oncol doi: 10.1007/s13402-020-00552-2 – volume: 41 start-page: 314 year: 2022 ident: 7098_CR38 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-022-02523-x – volume: 6 start-page: 24393 year: 2015 ident: 7098_CR39 publication-title: Oncotarget doi: 10.18632/oncotarget.5162 – volume: 21 start-page: 37 year: 2021 ident: 7098_CR10 publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-00308-y – volume: 62 year: 2023 ident: 7098_CR33 publication-title: Redox Biol doi: 10.1016/j.redox.2023.102678 – volume: 221 year: 2021 ident: 7098_CR32 publication-title: Pharm Ther doi: 10.1016/j.pharmthera.2020.107753 – volume: 48 start-page: W509 year: 2020 ident: 7098_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa407 – volume: 75 start-page: 47 year: 2017 ident: 7098_CR4 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2017.01.009 – volume: 363 start-page: 221 year: 2023 ident: 7098_CR24 publication-title: J Control Release doi: 10.1016/j.jconrel.2023.09.024 – volume: 13 year: 2022 ident: 7098_CR51 publication-title: Nat Commun doi: 10.1038/s41467-022-29026-9 – volume: 11 year: 2022 ident: 7098_CR47 publication-title: Oncoimmunology doi: 10.1080/2162402X.2022.2103277 – volume: 30 start-page: 1884 year: 2019 ident: 7098_CR1 publication-title: Ann Oncol doi: 10.1093/annonc/mdz411 – volume: 6 start-page: 1571 year: 2020 ident: 7098_CR14 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2020.3370 – volume: 398 start-page: 27 year: 2021 ident: 7098_CR7 publication-title: Lancet doi: 10.1016/S0140-6736(21)00797-2 – volume: 600 start-page: 727 year: 2021 ident: 7098_CR6 publication-title: Nature doi: 10.1038/s41586-021-04161-3 – volume: 52 start-page: 17 year: 2020 ident: 7098_CR5 publication-title: Immunity doi: 10.1016/j.immuni.2019.12.011 – volume: 81 start-page: 5 year: 2021 ident: 7098_CR37 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-20-2199 – volume: 547 start-page: 99 year: 2017 ident: 7098_CR31 publication-title: Nature doi: 10.1038/nature22393 – volume: 10 year: 2019 ident: 7098_CR59 publication-title: Nat Commun doi: 10.1038/s41467-019-13385-x – volume: 14 year: 2023 ident: 7098_CR26 publication-title: Nat Commun doi: 10.1038/s41467-022-35348-5 – volume: 27 start-page: 3522 year: 2021 ident: 7098_CR12 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-4338 – volume: 20 start-page: 167 year: 2022 ident: 7098_CR11 publication-title: J Natl Compr Cancer Netw doi: 10.6004/jnccn.2022.0008 – volume: 386 start-page: 449 year: 2022 ident: 7098_CR13 publication-title: N. Engl J Med doi: 10.1056/NEJMoa2111380 – volume: 187 year: 2023 ident: 7098_CR15 publication-title: Pharm Res doi: 10.1016/j.phrs.2022.106556 – volume: 9 start-page: 265 year: 2019 ident: 7098_CR54 publication-title: Theranostics doi: 10.7150/thno.27246 – volume: 7 year: 2017 ident: 7098_CR19 publication-title: Sci Rep doi: 10.1038/s41598-017-16436-9 – volume: 12 start-page: 2115 year: 2022 ident: 7098_CR20 publication-title: Theranostics doi: 10.7150/thno.69424 – volume: 22 start-page: 266 year: 2021 ident: 7098_CR34 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-00324-8 – volume: 40 start-page: 109 year: 2022 ident: 7098_CR48 publication-title: J Adv Res doi: 10.1016/j.jare.2021.12.005 – volume: 12 start-page: 357 year: 2015 ident: 7098_CR63 publication-title: Nat Methods doi: 10.1038/nmeth.3317 – volume: 24 start-page: 825 year: 2022 ident: 7098_CR58 publication-title: Nat Cell Biol doi: 10.1038/s41556-022-00920-0 – volume: 86 start-page: 273 year: 2022 ident: 7098_CR55 publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2022.03.009 – volume: 65 year: 2023 ident: 7098_CR28 publication-title: Redox Biol doi: 10.1016/j.redox.2023.102826 – volume: 91 start-page: 1616 year: 1999 ident: 7098_CR18 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/91.19.1616 – volume: 535 start-page: 153 year: 2016 ident: 7098_CR65 publication-title: Nature doi: 10.1038/nature18629 – volume: 29 start-page: 2190 year: 2022 ident: 7098_CR27 publication-title: Cell Death Differ doi: 10.1038/s41418-022-01008-w – volume: 14 year: 2023 ident: 7098_CR25 publication-title: Nat Commun doi: 10.1038/s41467-023-41121-z – volume: 28 start-page: 2670 year: 2017 ident: 7098_CR49 publication-title: Ann Oncol doi: 10.1093/annonc/mdx360 – volume: 7 start-page: 155 year: 2021 ident: 7098_CR22 publication-title: Cell Death Discov doi: 10.1038/s41420-021-00554-5 – volume: 15 start-page: 783 year: 2016 ident: 7098_CR50 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-15-0775 – volume: 20 start-page: 384 year: 2021 ident: 7098_CR46 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-021-00154-z – volume: 56 start-page: 1143 year: 2007 ident: 7098_CR42 publication-title: Diabetes doi: 10.2337/db06-0267 – volume: 14 start-page: 156 year: 2021 ident: 7098_CR9 publication-title: J Hematol Oncol doi: 10.1186/s13045-021-01164-5 – volume: 37 start-page: e98321 year: 2018 ident: 7098_CR45 publication-title: EMBO J doi: 10.15252/embj.201798321 – volume: 34 start-page: 1076 year: 2023 ident: 7098_CR36 publication-title: Anticancer Drugs |
SSID | ssj0000330256 |
Score | 2.3957508 |
Snippet | Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune... Abstract Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 695 |
SubjectTerms | 101/58 13/31 13/89 14/19 38/91 692/699/67/1059/99 692/699/67/2327 692/699/67/327 82/51 82/80 Animals Antibodies Antitumor activity Biochemistry Biomedical and Life Sciences CD8 antigen Cell Biology Cell Culture Cell death Cell Line, Tumor Cell membranes Chemotherapy Cholesterol Coenzyme A Ligases - metabolism Drugs Ferroptosis Ferroptosis - drug effects Humans Immune checkpoint inhibitors Immunity Immunogenic Cell Death - drug effects Immunogenicity Immunology Immunosuppressive agents Life Sciences Lipid peroxidation Lipid Peroxidation - drug effects Lipid rafts Lipids Lymphocytes T Melanoma Melanoma - drug therapy Melanoma - immunology Melanoma - pathology Membrane Microdomains - drug effects Membrane Microdomains - metabolism Mice Mice, Inbred C57BL Platinum Pyroptosis Pyroptosis - drug effects Tumor microenvironment Tumor Microenvironment - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KINBLadMvp2lRoLdWRJZkWTqmoSGEpJc2kJuQJZkYst5l13vov-9I9m6z_aCXXi0ZxJuR5o2keQJ4z9q6KpUz1NU-UNkih3OGB9rWDptKDJgsFQpff1EXN_Lytrp98NRXuhM2ygOPwJ2Eijc8eOabOkoVo2llDEpriYmDVirXkWPMe5BM5TUY03QM5lOVDBP6ZCVLmep1uKTo5UZTsROJsmD_n1jm75clfzkxzYHo_Ck8mRgkOR1H_gwexf4A9sc3Jb8_h-b07OuVpLkiBNkkue8WXSBL1w4rshj1msgszjBJ7iNZrhfpBIG4PpCuv-uabiBdqhiZo191nqRtfRISS8Rm_O3e9fOZewE355-_nV3Q6SEF6hGmgeooEMPKJ7EtV0ceHFeBOyGcaYX2VVMz7xxP2n2ecQybiJ43PupYsogpjngJe_28j6-BoBkqUyHJxcgvpecu7WMxbeqWK2NkXcCHDah2Mepl2HzOLbQdTWDRBDabwIoCPiXctz2T1nX-gB5gJw-w__KAAo42VrPTBFxZkZRUlSw1K-B424xTJwGHAM_XuU-J_AeX2QJejUbejkQYkURcZQF6x_w7Q91t6bu7LM-NGSayPmkK-LjxlJ_j-jsWh_8DizfwmGcXN5SbI9gbluv4FlnT0LzLE-QHYu4SYg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlYd2_HjhEpFVSHgApX2Zjm2QyN1k7CbPfDvO3ayWy2va-zI9szY83ns-YzQG9qoqpTOEKd8IKIBDOcMC6RRDopKcJg0JQp_-SrPL8SnRbWYA27r-Vrldk3MC3XofYqRH_NEjSlFqen74SdJr0al09X5CY3b6E6iLktWrRZqF2OhsFkHlz7nylCuj9eiFClrhwkCtm404Xv-KNP2_w1r_nll8rdz0-yOzh6g-zOOxCeT4h-iW7F7hO5OL0v-eozqk9NvnwXJeSGAKfFVO7QBr1wzrvEwsTbhZVzCVrmLeLUZ0jkCdl3AbXfZ1u2I25Q30oN1tR6n4D4OCStCMfx25bp-6Z6gi7OP30_PyfycAvHCsJHoyGsWKp8ot5yKLDgmA3OcO9Nw7ataUe8cSwx-njJwniA9b3zUsaQRNjr8KTro-i4-R9jXqjIVQF3w_0J45lI0i2qjGiaNEapAb7dCtcPEmmHzaTfXdlKBBRXYrALLC_QhyX1XMzFe5w_96oedJ5ANFYPeewpNRyFjNI2IQWoNQxNaSmjyaKs1O0_Dtb0xmgK93hXDBEqCAwH3m1ynBBQEi22Bnk1K3vWEG56oXEWB9J7697q6X9K1l5mkG_aZgP2EKdC7raXc9Ovfsjj8_zBeoHssG68hzByhg3G1iS8BFY31q2z61-aECYo priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEO-mFGQkbmDh2E5iH5eKqloBl1KpN8uxHRqpm6x2swf-fcdOdtFCOXCNbXkyM_Z8fsxngPesqYq8tJraynkqG8RwVnNPm8piUY4Bk8VE4W_fy4srOb8urg-Ab3Nh0qX9RGmZpunt7bBPa5nLmG7DJUUn1YqKB3AUqdrRt49ms_nlfLezwnCJjoF8ypBhQt3TeC8KJbL--xDm3xcl_zgtTUHo_Ak8ntAjmY3yPoWD0D2Dh-N7kr-eQz07u_wqacoGQSRJbttl68nKNsOaLEeuJrIIC1wgd4GsNsuoAGI7T9rupq3bgbQxW6RHn2odiVv6xEeEiMXY7NZ2_cK-gKvzLz_OLuj0iAJ1UvOBqiBq7gsXibZsFbi3vPTcCmF1I5Qr6oo5a3nk7XOMY8hE7Tntggo5C7i8ES_hsOu7cAzE1VWhCwS4GPWldNzGPSymdNXwUmtZZfBhq1SzHLkyTDrjFsqMJjBoApNMYEQGn6PedzUjz3X60K9-msnuxhccpXcMuw6yDEE3MvhSKfw1qcoSuzzdWs1Mg29tRGRRLWWuWAbvdsU4bKLiUMH9JtXJEfvgFJvBq9HIO0mEFpHAVWag9sy_J-p-SdfeJGpuXF0i4pM6g49bT_kt1791cfJ_1V_DI56cWVOuT-FwWG3CG8RGQ_12Ggx30HEIvw priority: 102 providerName: Springer Nature |
Title | ACSL4-mediated lipid rafts prevent membrane rupture and inhibit immunogenic cell death in melanoma |
URI | https://link.springer.com/article/10.1038/s41419-024-07098-3 https://www.ncbi.nlm.nih.gov/pubmed/39343834 https://www.proquest.com/docview/3110964180 https://www.proquest.com/docview/3111201887 https://pubmed.ncbi.nlm.nih.gov/PMC11439949 https://doaj.org/article/d52b2dc0cb7e46ee9f4ed68849248667 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG-yLJWRuEEgsZ3YPiDUrbpaVewKsVTqLXIch43UpiVtpd0Lv52xkxYVyoFLIsWO4syMM9_YmW8A3kSlSOJUq1ALU4S8RAynFS3CUmhsitFhRi5R-PIqvRjz0SSZHMCm3FEnwOXe0M7Vkxo30_e3P-4-4YT_2KaMyw9LHnOXikN5iAasZMgO4Rg9k3AVDS47uO-_zBi8o4vvcmf237rjnzyN_z7s-fcvlH_so3r3dP4QHnS4kvRbQ3gEB7Z-DPfaSpN3TyDvD64_89DniSDGJNNqURWk0eVqSRYtixOZ2RmGzrUlzXrh9hWIrgtS1TdVXq1I5fJI5mhtlSFusZ8UDjtiM9421fV8pp_C-Hz4bXARduUVQsMVXYXSspwWiXEUXFpYWmiaFlQzplXJpElyERmtqWP0MxFFZ4rSM8pYaePIYuDDnsFRPa_tCyAmF4lKEPqi1Dk3VLvVrUgqUdJUKS4CeLsRarZoWTQyv_vNZNaqIEMVZF4FGQvgzMl929MxYPsL8-Z71k2orEgojt5E-GjLU2tVyW2RSomvxmWa4iNPN1rLNlaVMcevmvJYRgG83jbjhHKCQwHP175PjKgIP74BPG-VvB0JU8xRu_IA5I76d4a621JXN560G-NOxIJcBfBuYym_x_VvWZz8X_eXcJ96Y1YhVadwtGrW9hWiplXeg0MxET047vdH1yM8nw2vvnzFq4N00PMrET0_Wdzx5_AXkQAYEg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KASPBCaw6tpPYB4RKodrSbS-00t6MYzs0UjfZ7kOof4rfyNjZbLW8br3GTuLMw_ONJzOD0GtaFVmaG0VMYR0RFWA4o5gjVWFgKAWDSUOi8NFxPjgVX0bZaAP97HNhwm-V_Z4YN2rX2nBGvsNDacxcpJJ-mFyQ0DUqRFf7FhqdWBz6yx_gss3eH3wC_r5hbP_zyd6ALLsKECsUmxPpeclcZkPlKVN45gzLHTOcG1VxabOyoNYYFgrZWcrAhoDHb5X10qfUA97n8Nwb6CYYXhqcvWJUrM50KEwFCLHMzaFc7sxEKkKWEBMEdEtJwtfsX2wT8Dds--cvmr_FaaP527-H7i5xK97tBO0-2vDNA3Sr62R5-RCVu3tfh4LEPBTAsPi8ntQOT001n-FJVyUKj_0YXPPG4-liEuIW2DQO181ZXdZzXIc8lRakubY4BBOwC9gUhuG2c9O0Y_MInV4LoR-jzaZt_FOEbVlkKgNoDXhDCMtMOD2jUhUVy5USRYLe9kTVk65Kh47RdS51xwINLNCRBZon6GOg-2pmqLAdL7TT73qpsNplDFZvKbzai9x7VQnvcinh04TMc3jlds81vVT7mb4S0gS9Wg2DwgbCAYHbRZyTAuqCzT1BTzomr1bCFQ-lY0WC5Br715a6PtLUZ7EoOPi1gDWFStC7XlKu1vVvWmz9_zNeotuDk6OhHh4cHz5Dd1gUZEWY2kab8-nCPwdENi9fRDXA6Nt1690vz9FGsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8IG4CBYwETxA1sZ3EfkCo16qlZVUBlfrmOrZDI3WTZQ-h_jV-HeMcWy3XW19jJ7HnsL_xeGYAXkdFlsSplqHOjA15gRhOS2rDItPYFOOGGflA4U-jdP-EfzxNTtfgZx8L469V9mtis1Db2vgz8k3mU2Om3EcmF921iOPd4YfJ99BXkPKe1r6cRisih-7yB5pvs_cHu8jrN5QO977u7IddhYHQcEnnoXAspzYxPguVzhy1mqaWasa0LJgwSZ5FRmvqk9qZiOJ-gta_kcYJF0cOsT_D796A9cxbRQNY394bHX9envBE2BkBRRepEzGxOeMx9zFDlIeoaVKEbGU3bIoG_A3p_nlh8zevbbMZDu_CnQ7Fkq1W7O7Bmqvuw822ruXlA8i3dr4c8bCJSkFESy7KSWnJVBfzGZm0OaPI2I3RUK8cmS4m3otBdGVJWZ2XeTknpY9aqVG2S0O8a4FYj1SxGV-70FU91g_h5FpI_QgGVV25J0BMniUyQaCN6INzQ7U_S4uEzAqaSsmzAN72RFWTNmeHanztTKiWBQpZoBoWKBbAtqf7sqfPt908qKffVKe-yiYUR28i_LXjqXOy4M6mQuDUuEhT_OVGzzXVLQIzdSWyAbxaNqP6esIhgetF0ydGDIZLfQCPWyYvR8Ik84lkeQBihf0rQ11tqcrzJkU4WrmIPLkM4F0vKVfj-jctnv5_Gi_hFuqcOjoYHT6D27SRYxlSuQGD-XThniM8m-cvOj0gcHbdqvcLr61MTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACSL4-mediated+lipid+rafts+prevent+membrane+rupture+and+inhibit+immunogenic+cell+death+in+melanoma&rft.jtitle=Cell+death+%26+disease&rft.au=Zhao%2C+Xi&rft.au=Zhao%2C+Zenglu&rft.au=Li%2C+Bingru&rft.au=Huan%2C+Shuyu&rft.date=2024-09-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-4889&rft.volume=15&rft.issue=9&rft_id=info:doi/10.1038%2Fs41419-024-07098-3&rft.externalDocID=10_1038_s41419_024_07098_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4889&client=summon |