Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods
Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolut...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 117; pp. 191 - 201 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2015.05.048 |
Cover
Abstract | Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test–retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively.
[Display omitted]
•The reproducibility of multiphase (MP) pseudo-continuous ASL (PCASL) is characterized.•We propose an image processing pipeline for improving ASL reproducibility.•MP-PCASL is shown to have higher signal-to-noise ratio and reproducibility than PCASL.•The proposed pipeline can improve the reliability and sensitivity of ASL.•An effective image post-processing should promote ASL in clinical applications. |
---|---|
AbstractList | Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test-retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively. Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test–retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively. [Display omitted] •The reproducibility of multiphase (MP) pseudo-continuous ASL (PCASL) is characterized.•We propose an image processing pipeline for improving ASL reproducibility.•MP-PCASL is shown to have higher signal-to-noise ratio and reproducibility than PCASL.•The proposed pipeline can improve the reliability and sensitivity of ASL.•An effective image post-processing should promote ASL in clinical applications. Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test-retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively.Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test-retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively. |
Author | Fazlollahi, Amir Bourgeat, Pierrick Meriaudeau, Fabrice Salvado, Olivier Liang, Xiaoyun Connelly, Alan Calamante, Fernando |
Author_xml | – sequence: 1 givenname: Amir surname: Fazlollahi fullname: Fazlollahi, Amir email: fazlollahi@gmail.com organization: CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia – sequence: 2 givenname: Pierrick surname: Bourgeat fullname: Bourgeat, Pierrick organization: CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia – sequence: 3 givenname: Xiaoyun surname: Liang fullname: Liang, Xiaoyun organization: Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia – sequence: 4 givenname: Fabrice surname: Meriaudeau fullname: Meriaudeau, Fabrice organization: Le2I, University of Burgundy, Le Creusot, France – sequence: 5 givenname: Alan surname: Connelly fullname: Connelly, Alan organization: Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia – sequence: 6 givenname: Olivier surname: Salvado fullname: Salvado, Olivier organization: CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia – sequence: 7 givenname: Fernando surname: Calamante fullname: Calamante, Fernando organization: Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26026814$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2L1DAUhoOsuB_6FyTgjTcdkzZNkxtRF79gQRC9DmlyupMxbWqSCv33psyqMDcOBE4CTx5yzptrdDGFCRDClOwoofzVYTfBEoMb9T3sakLbHSmLiUfoihLZVrLt6ott3zaVoFReouuUDoQQSZl4gi5rTmouKLtC61eYY7CLcb3zLq84DHhcfHbzXifAc4LFhsqEKbtpCUvCOmaITnucZjdhr3vwbrrHerI47wHDMIDJm2UOKVfFbSClI6H9mlzCI-R9sOkpejxon-DZQ71B3z-8_3b7qbr78vHz7du7yjBZ50o0dcO7puMgSCelHRowsuUdM5zzAQZZ11QKqm1jB13LnnW9oEJbTYGUU9_coJdHb3nLzwVSVqNLBrzXE5SGFO0YF7JlHfk_yqVoJOVtV9AXJ-ghLLG0WCghCGFtKYV6_kAt_QhWzbFEFlf1Z_4FEEfAxJBShOEvQonaolYH9S9qtUWtSFlsc78-uWpc1tmVqKJ2_hzBu6MAyvR_OYgqGQeTAetiyVDZ4M6RvDmRmPIfnNH-B6znKX4DoYjjmg |
CitedBy_id | crossref_primary_10_1053_j_ro_2022_10_002 crossref_primary_10_3389_fnins_2016_00308 crossref_primary_10_1002_jmri_25436 crossref_primary_10_1093_cercor_bhae212 crossref_primary_10_1002_ima_23040 crossref_primary_10_1002_mrm_30184 crossref_primary_10_1016_j_neuroimage_2025_121069 crossref_primary_10_1002_mrm_28000 crossref_primary_10_1016_j_neuroimage_2017_05_054 crossref_primary_10_1007_s00521_025_11000_3 crossref_primary_10_1002_mrm_28205 crossref_primary_10_1002_jmri_27255 crossref_primary_10_3174_ajnr_A6384 crossref_primary_10_1360_TB_2024_0204 crossref_primary_10_1016_j_neuroimage_2019_03_016 crossref_primary_10_1002_jmri_26810 crossref_primary_10_1007_s00247_022_05519_z crossref_primary_10_3390_brainsci13050825 crossref_primary_10_3389_fphys_2023_1240992 crossref_primary_10_1016_j_neubiorev_2016_11_023 crossref_primary_10_1002_mrm_29869 crossref_primary_10_1371_journal_pone_0206583 crossref_primary_10_1016_j_neuroimage_2020_117031 crossref_primary_10_1177_0271678X17743240 crossref_primary_10_1002_mrm_30091 crossref_primary_10_1371_journal_pone_0314056 |
Cites_doi | 10.1002/nbm.1075 10.1002/jmri.24432 10.1038/sj.jcbfm.9591524.0382 10.1097/00004647-199907000-00001 10.1002/jmri.1880060217 10.1002/mrm.1910230106 10.1002/mrm.20674 10.1002/mrm.20976 10.1002/mrm.1910400308 10.1002/mrm.20556 10.1002/mrm.1910390506 10.1371/journal.pone.0079471 10.1002/mrm.21670 10.1016/j.mri.2009.04.002 10.1002/mrm.24279 10.1016/S1053-8119(03)00255-6 10.1002/mrm.20178 10.1259/bjr/67705974 10.1016/j.mri.2004.11.009 10.1002/jmri.24246 10.1006/nimg.2001.0978 10.1002/nbm.1462 10.1089/brain.2014.0290 10.1088/0031-9155/59/18/5559 10.1016/j.neuroimage.2007.04.042 10.1002/jmri.21721 10.1002/mrm.22768 10.1002/mrm.22319 10.1016/j.mri.2012.05.004 10.1002/mrm.24266 10.1002/mrm.21403 10.1097/01.rli.0000084890.57197.54 10.1109/42.811270 10.1002/jmri.24175 10.1002/mrm.21790 10.1016/j.mri.2007.07.003 10.1002/mrm.22245 10.1002/hbm.460030304 10.1016/j.neuroimage.2013.11.013 10.1002/mrm.1163 10.1002/nbm.2904 10.1002/mrm.22954 10.1002/mrm.21072 10.1007/s00702-006-0434-5 10.1002/jmri.22345 10.1002/mrm.25197 10.1038/jcbfm.2014.163 10.1016/j.mri.2010.03.035 10.1016/j.neuroimage.2004.09.047 10.1002/ima.22006 10.1002/mrm.20605 10.1007/978-3-642-33530-3_19 10.1002/mrm.21960 10.1002/mrm.22465 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Aug 15, 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Aug 15, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2015.05.048 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 201 |
ExternalDocumentID | 4321092453 26026814 10_1016_j_neuroimage_2015_05_048 S1053811915004309 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c492t-832367376e80799df3ec95674c666fef9221981ad3dfa29b47b818ada1e09b4b3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Sep 05 12:20:51 EDT 2025 Fri Sep 05 14:20:27 EDT 2025 Wed Aug 13 08:46:37 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Tue Jul 01 03:01:43 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:25:09 EST 2024 Tue Aug 26 16:31:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Test–retest Perfusion MRI Multiphase pseudo-continuous arterial spin labeling Cerebral blood flow Reproducibility Arterial spin labeling |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-832367376e80799df3ec95674c666fef9221981ad3dfa29b47b818ada1e09b4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26026814 |
PQID | 1880045188 |
PQPubID | 2031077 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1746895470 proquest_miscellaneous_1698391657 proquest_journals_1880045188 pubmed_primary_26026814 crossref_primary_10_1016_j_neuroimage_2015_05_048 crossref_citationtrail_10_1016_j_neuroimage_2015_05_048 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_05_048 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_05_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-15 |
PublicationDateYYYYMMDD | 2015-08-15 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Duyn, Tan, Gelderen, Yongbi (bb0080) 2001; 46 Weber, Günther, Lichy, Delorme, Bongers, Thilmann, Essig, Zuna, Schad, Debus (bb0245) 2003; 38 Liang, Connelly, Calamante (bb0130) 2014; 87 Roberts, Rizi, Lenkinski, Leigh (bb0180) 1996; 6 Çavusoğlu, Pfeuffer, Uğurbil, Uludağ (bb0040) 2009; 27 Xu, Rowley, Wu, Alsop, Shankaranarayanan, Dowling, Christian, Oakes, Johnson (bb0270) 2010; 23 Boscolo Galazzo, Storti, Formaggio, Pizzini, Fiaschi, Beltramello, Bertoldo, Manganotti (bb0025) 2014; 40 Stanisz, Odrobina, Pun, Escaravage, Graham, Bronskill, Henkelman (bb0195) 2005; 54 Fernández-Seara, Wang, Wang, Rao, Guenther, Feinberg, Detre (bb0090) 2005; 54 Watts, Whitlow, Maldjian (bb0240) 2013; 26 Buxton, Frank, Wong, Siewert, Warach, Edelman (bb0030) 1998; 40 Luh, Talagala, Li, Bandettini (bb0160) 2013; 69 Alsop, Detre, Golay, Günther, Hendrikse, Hernandez-Garcia, Lu, MacIntosh, Parkes, Smits, van Osch, Wang, Wong, Zaharchuk (bb0005) 2015; 73 Calamante, Thomas, Pell, Wiersma, Turner (bb0035) 1999; 19 Dai, Robson, Shankaranarayanan, Alsop (bb0060) 2011; 66 Kilroy, Apostolova, Liu, Yan, Ringman, Wang (bb0115) 2014; 39 Lu, Donahue, van Zijl (bb0155) 2006; 56 Robson, Madhuranthakam, Dai, Pedrosa, Rofsky, Alsop (bb0185) 2009; 61 Donahue, Lu, Jones, Pekar, van Zijl (bb0075) 2006; 19 Wang, Wang, Aguirre, Detre (bb0225) 2005; 23 Lu, Clingman, Golay, van Zijl (bb0150) 2004; 52 Van Leemput, Maes, Vandermeulen, Suetens (bb0215) 1999; 18 Asllani, Borogovac, Brown (bb0015) 2008; 60 Liang, Connelly, Calamante (bb0125) 2015 Liang, Connelly, Tournier, Calamante (bb0135) 2014; 59 Chen, Wang, Detre (bb0045) 2011; 33 Liu, Wong (bb0145) 2005; 24 Mezue, Segerdahl, Okell, Chappell, Kelly, Tracey (bb0170) 2014; 34 Sidaros, Olofsson, Miranda, Paulson (bb0190) 2005; 25 Garcia, Duhamel, Alsop (bb0095) 2005; 54 Hernandez-Garcia, Jahanian, Rowe (bb0100) 2010; 28 Wells, Thomas, King, Connelly, Lythgoe, Calamante (bb0250) 2010; 64 Detre, Leigh, Williams, Koretsky (bb0065) 1992; 23 Petersen, Zimine, Ho, Golay (bb0175) 2006; 79 Huang, Wu, Shi, Ma, Cai, Lou (bb0105) 2013; 8 Wang (bb0230) 2012; 30 Collins, Holmes, Peters, Evans (bb0050) 1995; 3 Behzadi, Restom, Liau, Liu (bb0020) 2007; 37 Tan, Hoge, Hamilton, Günther, Kraft (bb0200) 2011; 66 Aslan, Xu, Wang, Uh, Yezhuvath, Van Osch, Lu (bb0010) 2010; 63 Donahue, Lu, Jones, Edden, Pekar, van Zijl (bb0070) 2006; 56 Liang, Connelly, Calamante (bb0120) 2013; 69 Wong, Buxton, Frank (bb0255) 1998; 39 Dai, Garcia, De Bazelaire, Alsop (bb0055) 2008; 60 Jung, Wong, Liu (bb0110) 2010; 64 Maumet, Maurel, Ferré, Barillot (bb0165) 2012; 7509 Federspiel, Müller, Horn, Kiefer, Strik (bb0085) 2006; 113 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0210) 2002; 15 Wang, Aguirre, Kimberg, Detre (bb0220) 2003; 19 Liang, Tournier, Masterton, Connelly, Calamante (bb0140) 2012; 22 Tan, Maldjian, Pollock, Burdette, Yang, Deibler, Kraft (bb0205) 2009; 29 Wu, Fernández-Seara, Detre, Wehrli, Wang (bb0265) 2007; 58 Wu, Lou, Wu, Ma (bb0260) 2014; 39 Wang, Aguirre, Rao, Wang, Fernández-Seara, Childress, Detre (bb0235) 2008; 26 Chen (10.1016/j.neuroimage.2015.05.048_bb0045) 2011; 33 Kilroy (10.1016/j.neuroimage.2015.05.048_bb0115) 2014; 39 Van Leemput (10.1016/j.neuroimage.2015.05.048_bb0215) 1999; 18 Liang (10.1016/j.neuroimage.2015.05.048_bb0120) 2013; 69 Donahue (10.1016/j.neuroimage.2015.05.048_bb0075) 2006; 19 Tan (10.1016/j.neuroimage.2015.05.048_bb0200) 2011; 66 Asllani (10.1016/j.neuroimage.2015.05.048_bb0015) 2008; 60 Tan (10.1016/j.neuroimage.2015.05.048_bb0205) 2009; 29 Watts (10.1016/j.neuroimage.2015.05.048_bb0240) 2013; 26 Fernández-Seara (10.1016/j.neuroimage.2015.05.048_bb0090) 2005; 54 Liang (10.1016/j.neuroimage.2015.05.048_bb0140) 2012; 22 Petersen (10.1016/j.neuroimage.2015.05.048_bb0175) 2006; 79 Detre (10.1016/j.neuroimage.2015.05.048_bb0065) 1992; 23 Dai (10.1016/j.neuroimage.2015.05.048_bb0055) 2008; 60 Collins (10.1016/j.neuroimage.2015.05.048_bb0050) 1995; 3 Stanisz (10.1016/j.neuroimage.2015.05.048_bb0195) 2005; 54 Tzourio-Mazoyer (10.1016/j.neuroimage.2015.05.048_bb0210) 2002; 15 Wells (10.1016/j.neuroimage.2015.05.048_bb0250) 2010; 64 Wu (10.1016/j.neuroimage.2015.05.048_bb0265) 2007; 58 Liang (10.1016/j.neuroimage.2015.05.048_bb0135) 2014; 59 Wang (10.1016/j.neuroimage.2015.05.048_bb0225) 2005; 23 Hernandez-Garcia (10.1016/j.neuroimage.2015.05.048_bb0100) 2010; 28 Mezue (10.1016/j.neuroimage.2015.05.048_bb0170) 2014; 34 Garcia (10.1016/j.neuroimage.2015.05.048_bb0095) 2005; 54 Liu (10.1016/j.neuroimage.2015.05.048_bb0145) 2005; 24 Lu (10.1016/j.neuroimage.2015.05.048_bb0150) 2004; 52 Alsop (10.1016/j.neuroimage.2015.05.048_bb0005) 2015; 73 Luh (10.1016/j.neuroimage.2015.05.048_bb0160) 2013; 69 Aslan (10.1016/j.neuroimage.2015.05.048_bb0010) 2010; 63 Federspiel (10.1016/j.neuroimage.2015.05.048_bb0085) 2006; 113 Çavusoğlu (10.1016/j.neuroimage.2015.05.048_bb0040) 2009; 27 Wong (10.1016/j.neuroimage.2015.05.048_bb0255) 1998; 39 Dai (10.1016/j.neuroimage.2015.05.048_bb0060) 2011; 66 Liang (10.1016/j.neuroimage.2015.05.048_bb0125) 2015 Roberts (10.1016/j.neuroimage.2015.05.048_bb0180) 1996; 6 Huang (10.1016/j.neuroimage.2015.05.048_bb0105) 2013; 8 Lu (10.1016/j.neuroimage.2015.05.048_bb0155) 2006; 56 Robson (10.1016/j.neuroimage.2015.05.048_bb0185) 2009; 61 Calamante (10.1016/j.neuroimage.2015.05.048_bb0035) 1999; 19 Donahue (10.1016/j.neuroimage.2015.05.048_bb0070) 2006; 56 Wang (10.1016/j.neuroimage.2015.05.048_bb0220) 2003; 19 Weber (10.1016/j.neuroimage.2015.05.048_bb0245) 2003; 38 Behzadi (10.1016/j.neuroimage.2015.05.048_bb0020) 2007; 37 Wang (10.1016/j.neuroimage.2015.05.048_bb0230) 2012; 30 Wang (10.1016/j.neuroimage.2015.05.048_bb0235) 2008; 26 Xu (10.1016/j.neuroimage.2015.05.048_bb0270) 2010; 23 Liang (10.1016/j.neuroimage.2015.05.048_bb0130) 2014; 87 Buxton (10.1016/j.neuroimage.2015.05.048_bb0030) 1998; 40 Sidaros (10.1016/j.neuroimage.2015.05.048_bb0190) 2005; 25 Duyn (10.1016/j.neuroimage.2015.05.048_bb0080) 2001; 46 Boscolo Galazzo (10.1016/j.neuroimage.2015.05.048_bb0025) 2014; 40 Jung (10.1016/j.neuroimage.2015.05.048_bb0110) 2010; 64 Maumet (10.1016/j.neuroimage.2015.05.048_bb0165) 2012; 7509 Wu (10.1016/j.neuroimage.2015.05.048_bb0260) 2014; 39 |
References_xml | – volume: 54 start-page: 507 year: 2005 end-page: 512 ident: bb0195 article-title: T1, T2 relaxation and magnetization transfer in tissue at 3 publication-title: Magn. Reson. Med. – volume: 37 start-page: 90 year: 2007 end-page: 101 ident: bb0020 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bb0210 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – volume: 46 start-page: 88 year: 2001 end-page: 94 ident: bb0080 article-title: High-sensitivity single-shot perfusion-weighted fMRI publication-title: Magn. Reson. Med. – volume: 64 start-page: 715 year: 2010 end-page: 724 ident: bb0250 article-title: Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de-noising publication-title: Magn. Reson. Med. – volume: 26 start-page: 892 year: 2013 end-page: 900 ident: bb0240 article-title: Clinical applications of arterial spin labeling publication-title: NMR Biomed. – volume: 54 start-page: 366 year: 2005 end-page: 372 ident: bb0095 article-title: Efficiency of inversion pulses for background suppressed arterial spin labeling publication-title: Magn. Reson. Med. – volume: 34 start-page: 1919 year: 2014 end-page: 1927 ident: bb0170 article-title: Optimization and reliability of multiple postlabeling delay pseudo-continuous arterial spin labeling during rest and stimulus-induced functional task activation publication-title: J. Cereb. Blood Flow Metab. – volume: 73 start-page: 102 year: 2015 end-page: 116 ident: bb0005 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn. Reson. Med. – volume: 66 start-page: 1590 year: 2011 end-page: 1600 ident: bb0060 article-title: Sensitivity calibration with a uniform magnetization image to improve arterial spin labeling perfusion quantification publication-title: Magn. Reson. Med. – volume: 87 start-page: 265 year: 2014 end-page: 275 ident: bb0130 article-title: Graph analysis of resting-state ASL perfusion MRI data: nonlinear correlations among CBF and network metrics publication-title: NeuroImage – volume: 59 start-page: 5559 year: 2014 ident: bb0135 article-title: A variable flip angle-based method for reducing blurring in 3D GRASE ASL publication-title: Phys. Med. Biol. – volume: 39 start-page: 402 year: 2014 end-page: 409 ident: bb0260 article-title: Intra-and interscanner reliability and reproducibility of 3D whole-brain pseudo-continuous arterial spin-labeling MR perfusion at 3 publication-title: J. Magn. Reson. Imaging – volume: 60 start-page: 1488 year: 2008 end-page: 1497 ident: bb0055 article-title: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn. Reson. Med. – volume: 23 start-page: 286 year: 2010 end-page: 293 ident: bb0270 article-title: Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 publication-title: NMR Biomed. – volume: 19 start-page: 1449 year: 2003 end-page: 1462 ident: bb0220 article-title: Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 publication-title: NeuroImage – volume: 33 start-page: 940 year: 2011 end-page: 949 ident: bb0045 article-title: Test–retest reliability of arterial spin labeling with common labeling strategies publication-title: J. Magn. Reson. Imaging – volume: 30 start-page: 1409 year: 2012 end-page: 1415 ident: bb0230 article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations publication-title: Magn. Reson. Imaging – volume: 58 start-page: 1020 year: 2007 end-page: 1027 ident: bb0265 article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling publication-title: Magn. Reson. Med. – volume: 8 start-page: e79471 year: 2013 ident: bb0105 article-title: Reliability of three-dimensional pseudo-continuous arterial spin labeling MR Imaging for measuring visual cortex perfusion on two 3 publication-title: PLoS ONE – volume: 26 start-page: 261 year: 2008 end-page: 269 ident: bb0235 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn. Reson. Imaging – volume: 28 start-page: 919 year: 2010 end-page: 927 ident: bb0100 article-title: Quantitative analysis of arterial spin labeling FMRI data using a general linear model publication-title: Magn. Reson. Imaging – year: 2015 ident: bb0125 article-title: Voxel-wise functional connectomics using arterial spin labeling fMRI: the role of denoising publication-title: Brain Connect. – volume: 22 start-page: 37 year: 2012 end-page: 43 ident: bb0140 article-title: A k-space sharing 3D GRASE pseudocontinuous ASL method for whole-brain resting-state functional connectivity publication-title: Int. J. Imaging Syst. Technol. – volume: 54 start-page: 1241 year: 2005 end-page: 1247 ident: bb0090 article-title: Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 publication-title: Magn. Reson. Med. – volume: 40 start-page: 383 year: 1998 end-page: 396 ident: bb0030 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn. Reson. Med. – volume: 3 start-page: 190 year: 1995 end-page: 208 ident: bb0050 article-title: Automatic 3-D model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. – volume: 69 start-page: 531 year: 2013 end-page: 537 ident: bb0120 article-title: Improved partial volume correction for single inversion time arterial spin labeling data publication-title: Magn. Reson. Med. – volume: 56 start-page: 1261 year: 2006 end-page: 1273 ident: bb0070 article-title: Theoretical and experimental investigation of the vaso contrast mechanism publication-title: Magn. Reson. Med. – volume: 29 start-page: 1134 year: 2009 end-page: 1139 ident: bb0205 article-title: A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI publication-title: J. Magn. Reson. Imaging – volume: 60 start-page: 1362 year: 2008 end-page: 1371 ident: bb0015 article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI publication-title: Magn. Reson. Med. – volume: 24 start-page: 207 year: 2005 end-page: 215 ident: bb0145 article-title: A signal processing model for arterial spin labeling functional MRI publication-title: NeuroImage – volume: 19 start-page: 1043 year: 2006 end-page: 1054 ident: bb0075 article-title: An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation publication-title: NMR Biomed. – volume: 39 start-page: 702 year: 1998 end-page: 708 ident: bb0255 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn. Reson. Med. – volume: 113 start-page: 1403 year: 2006 end-page: 1415 ident: bb0085 article-title: Comparison of spatial and temporal pattern for fMRI obtained with BOLD and arterial spin labeling publication-title: J. Neural Transm. – volume: 23 start-page: 37 year: 1992 end-page: 45 ident: bb0065 article-title: Perfusion imaging publication-title: Magn. Reson. Med. – volume: 6 start-page: 363 year: 1996 end-page: 366 ident: bb0180 article-title: Magnetic resonance imaging of the brain: blood partition coefficient for water: application to spin-tagging measurement of perfusion publication-title: J. Magn. Reson. Imaging – volume: 52 start-page: 679 year: 2004 end-page: 682 ident: bb0150 article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 publication-title: Magn. Reson. Med. – volume: 27 start-page: 1039 year: 2009 end-page: 1045 ident: bb0040 article-title: Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification publication-title: Magn. Reson. Imaging – volume: 38 start-page: 712 year: 2003 end-page: 718 ident: bb0245 article-title: Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue publication-title: Investig. Radiol. – volume: 64 start-page: 799 year: 2010 end-page: 810 ident: bb0110 article-title: Multiphase pseudocontinuous arterial spin labeling (MP-PCASL) for robust quantification of cerebral blood flow publication-title: Magn. Reson. Med. – volume: 69 start-page: 402 year: 2013 end-page: 410 ident: bb0160 article-title: Pseudo-continuous arterial spin labeling at 7 publication-title: Magn. Reson. Med. – volume: 25 start-page: S382 year: 2005 ident: bb0190 article-title: Arterial spin labeling in the presence of severe motion publication-title: J. Cereb. Blood Flow Metab. – volume: 7509 start-page: 215 year: 2012 end-page: 224 ident: bb0165 article-title: Robust cerebral blood flow map estimation in arterial spin labeling publication-title: Multimodal Brain Image Anal. – volume: 18 start-page: 897 year: 1999 end-page: 908 ident: bb0215 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imaging – volume: 63 start-page: 765 year: 2010 end-page: 771 ident: bb0010 article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling publication-title: Magn. Reson. Med. – volume: 39 start-page: 931 year: 2014 end-page: 939 ident: bb0115 article-title: Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with publication-title: J. Magn. Reson. Imaging – volume: 66 start-page: 168 year: 2011 end-page: 173 ident: bb0200 article-title: 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging publication-title: Magn. Reson. Med. – volume: 79 start-page: 688 year: 2006 end-page: 701 ident: bb0175 article-title: Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques publication-title: Br. J. Radiol. – volume: 61 start-page: 1374 year: 2009 end-page: 1387 ident: bb0185 article-title: Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling publication-title: Magn. Reson. Med. – volume: 23 start-page: 75 year: 2005 end-page: 81 ident: bb0225 article-title: To smooth or not to smooth? ROC analysis of perfusion fMRI data publication-title: Magn. Reson. Imaging – volume: 40 start-page: 937 year: 2014 end-page: 948 ident: bb0025 article-title: Investigation of brain hemodynamic changes induced by active and passive movements: a combined arterial spin labeling BOLD fMRI study publication-title: J. Magn. Reson. Imaging – volume: 19 start-page: 701 year: 1999 end-page: 735 ident: bb0035 article-title: Measuring cerebral blood flow using magnetic resonance imaging techniques publication-title: J. Cereb. Blood Flow Metab. – volume: 56 start-page: 546 year: 2006 end-page: 552 ident: bb0155 article-title: Detrimental effects of bold signal in arterial spin labeling fMRI at high field strength publication-title: Magn. Reson. Med. – volume: 19 start-page: 1043 year: 2006 ident: 10.1016/j.neuroimage.2015.05.048_bb0075 article-title: An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation publication-title: NMR Biomed. doi: 10.1002/nbm.1075 – volume: 40 start-page: 937 year: 2014 ident: 10.1016/j.neuroimage.2015.05.048_bb0025 article-title: Investigation of brain hemodynamic changes induced by active and passive movements: a combined arterial spin labeling BOLD fMRI study publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24432 – volume: 25 start-page: S382 year: 2005 ident: 10.1016/j.neuroimage.2015.05.048_bb0190 article-title: Arterial spin labeling in the presence of severe motion publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9591524.0382 – volume: 19 start-page: 701 year: 1999 ident: 10.1016/j.neuroimage.2015.05.048_bb0035 article-title: Measuring cerebral blood flow using magnetic resonance imaging techniques publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199907000-00001 – volume: 6 start-page: 363 year: 1996 ident: 10.1016/j.neuroimage.2015.05.048_bb0180 article-title: Magnetic resonance imaging of the brain: blood partition coefficient for water: application to spin-tagging measurement of perfusion publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1880060217 – volume: 23 start-page: 37 year: 1992 ident: 10.1016/j.neuroimage.2015.05.048_bb0065 article-title: Perfusion imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910230106 – volume: 54 start-page: 1241 year: 2005 ident: 10.1016/j.neuroimage.2015.05.048_bb0090 article-title: Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20674 – volume: 56 start-page: 546 year: 2006 ident: 10.1016/j.neuroimage.2015.05.048_bb0155 article-title: Detrimental effects of bold signal in arterial spin labeling fMRI at high field strength publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20976 – volume: 40 start-page: 383 year: 1998 ident: 10.1016/j.neuroimage.2015.05.048_bb0030 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910400308 – volume: 54 start-page: 366 year: 2005 ident: 10.1016/j.neuroimage.2015.05.048_bb0095 article-title: Efficiency of inversion pulses for background suppressed arterial spin labeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20556 – volume: 39 start-page: 702 year: 1998 ident: 10.1016/j.neuroimage.2015.05.048_bb0255 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390506 – volume: 8 start-page: e79471 year: 2013 ident: 10.1016/j.neuroimage.2015.05.048_bb0105 article-title: Reliability of three-dimensional pseudo-continuous arterial spin labeling MR Imaging for measuring visual cortex perfusion on two 3T scanners publication-title: PLoS ONE doi: 10.1371/journal.pone.0079471 – volume: 60 start-page: 1362 year: 2008 ident: 10.1016/j.neuroimage.2015.05.048_bb0015 article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21670 – volume: 27 start-page: 1039 year: 2009 ident: 10.1016/j.neuroimage.2015.05.048_bb0040 article-title: Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.04.002 – volume: 69 start-page: 531 year: 2013 ident: 10.1016/j.neuroimage.2015.05.048_bb0120 article-title: Improved partial volume correction for single inversion time arterial spin labeling data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24279 – volume: 19 start-page: 1449 year: 2003 ident: 10.1016/j.neuroimage.2015.05.048_bb0220 article-title: Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4T publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00255-6 – volume: 52 start-page: 679 year: 2004 ident: 10.1016/j.neuroimage.2015.05.048_bb0150 article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20178 – volume: 79 start-page: 688 year: 2006 ident: 10.1016/j.neuroimage.2015.05.048_bb0175 article-title: Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques publication-title: Br. J. Radiol. doi: 10.1259/bjr/67705974 – volume: 23 start-page: 75 year: 2005 ident: 10.1016/j.neuroimage.2015.05.048_bb0225 article-title: To smooth or not to smooth? ROC analysis of perfusion fMRI data publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2004.11.009 – volume: 39 start-page: 931 year: 2014 ident: 10.1016/j.neuroimage.2015.05.048_bb0115 article-title: Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with 15O-water positron emission tomography publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24246 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2015.05.048_bb0210 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 23 start-page: 286 year: 2010 ident: 10.1016/j.neuroimage.2015.05.048_bb0270 article-title: Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease publication-title: NMR Biomed. doi: 10.1002/nbm.1462 – year: 2015 ident: 10.1016/j.neuroimage.2015.05.048_bb0125 article-title: Voxel-wise functional connectomics using arterial spin labeling fMRI: the role of denoising publication-title: Brain Connect. doi: 10.1089/brain.2014.0290 – volume: 59 start-page: 5559 year: 2014 ident: 10.1016/j.neuroimage.2015.05.048_bb0135 article-title: A variable flip angle-based method for reducing blurring in 3D GRASE ASL publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/18/5559 – volume: 37 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2015.05.048_bb0020 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 29 start-page: 1134 year: 2009 ident: 10.1016/j.neuroimage.2015.05.048_bb0205 article-title: A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21721 – volume: 66 start-page: 168 year: 2011 ident: 10.1016/j.neuroimage.2015.05.048_bb0200 article-title: 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22768 – volume: 64 start-page: 715 year: 2010 ident: 10.1016/j.neuroimage.2015.05.048_bb0250 article-title: Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de-noising publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22319 – volume: 30 start-page: 1409 year: 2012 ident: 10.1016/j.neuroimage.2015.05.048_bb0230 article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.004 – volume: 69 start-page: 402 year: 2013 ident: 10.1016/j.neuroimage.2015.05.048_bb0160 article-title: Pseudo-continuous arterial spin labeling at 7T for human brain: estimation and correction for off-resonance effects using a Prescan publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24266 – volume: 58 start-page: 1020 year: 2007 ident: 10.1016/j.neuroimage.2015.05.048_bb0265 article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21403 – volume: 38 start-page: 712 year: 2003 ident: 10.1016/j.neuroimage.2015.05.048_bb0245 article-title: Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue publication-title: Investig. Radiol. doi: 10.1097/01.rli.0000084890.57197.54 – volume: 18 start-page: 897 year: 1999 ident: 10.1016/j.neuroimage.2015.05.048_bb0215 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.811270 – volume: 39 start-page: 402 year: 2014 ident: 10.1016/j.neuroimage.2015.05.048_bb0260 article-title: Intra-and interscanner reliability and reproducibility of 3D whole-brain pseudo-continuous arterial spin-labeling MR perfusion at 3T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24175 – volume: 60 start-page: 1488 year: 2008 ident: 10.1016/j.neuroimage.2015.05.048_bb0055 article-title: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21790 – volume: 26 start-page: 261 year: 2008 ident: 10.1016/j.neuroimage.2015.05.048_bb0235 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.07.003 – volume: 63 start-page: 765 year: 2010 ident: 10.1016/j.neuroimage.2015.05.048_bb0010 article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22245 – volume: 3 start-page: 190 year: 1995 ident: 10.1016/j.neuroimage.2015.05.048_bb0050 article-title: Automatic 3-D model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030304 – volume: 87 start-page: 265 year: 2014 ident: 10.1016/j.neuroimage.2015.05.048_bb0130 article-title: Graph analysis of resting-state ASL perfusion MRI data: nonlinear correlations among CBF and network metrics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.013 – volume: 46 start-page: 88 year: 2001 ident: 10.1016/j.neuroimage.2015.05.048_bb0080 article-title: High-sensitivity single-shot perfusion-weighted fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1163 – volume: 26 start-page: 892 year: 2013 ident: 10.1016/j.neuroimage.2015.05.048_bb0240 article-title: Clinical applications of arterial spin labeling publication-title: NMR Biomed. doi: 10.1002/nbm.2904 – volume: 66 start-page: 1590 year: 2011 ident: 10.1016/j.neuroimage.2015.05.048_bb0060 article-title: Sensitivity calibration with a uniform magnetization image to improve arterial spin labeling perfusion quantification publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22954 – volume: 56 start-page: 1261 year: 2006 ident: 10.1016/j.neuroimage.2015.05.048_bb0070 article-title: Theoretical and experimental investigation of the vaso contrast mechanism publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21072 – volume: 113 start-page: 1403 year: 2006 ident: 10.1016/j.neuroimage.2015.05.048_bb0085 article-title: Comparison of spatial and temporal pattern for fMRI obtained with BOLD and arterial spin labeling publication-title: J. Neural Transm. doi: 10.1007/s00702-006-0434-5 – volume: 33 start-page: 940 year: 2011 ident: 10.1016/j.neuroimage.2015.05.048_bb0045 article-title: Test–retest reliability of arterial spin labeling with common labeling strategies publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22345 – volume: 73 start-page: 102 year: 2015 ident: 10.1016/j.neuroimage.2015.05.048_bb0005 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25197 – volume: 34 start-page: 1919 year: 2014 ident: 10.1016/j.neuroimage.2015.05.048_bb0170 article-title: Optimization and reliability of multiple postlabeling delay pseudo-continuous arterial spin labeling during rest and stimulus-induced functional task activation publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.163 – volume: 28 start-page: 919 year: 2010 ident: 10.1016/j.neuroimage.2015.05.048_bb0100 article-title: Quantitative analysis of arterial spin labeling FMRI data using a general linear model publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.03.035 – volume: 24 start-page: 207 year: 2005 ident: 10.1016/j.neuroimage.2015.05.048_bb0145 article-title: A signal processing model for arterial spin labeling functional MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.09.047 – volume: 22 start-page: 37 year: 2012 ident: 10.1016/j.neuroimage.2015.05.048_bb0140 article-title: A k-space sharing 3D GRASE pseudocontinuous ASL method for whole-brain resting-state functional connectivity publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22006 – volume: 54 start-page: 507 year: 2005 ident: 10.1016/j.neuroimage.2015.05.048_bb0195 article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20605 – volume: 7509 start-page: 215 year: 2012 ident: 10.1016/j.neuroimage.2015.05.048_bb0165 article-title: Robust cerebral blood flow map estimation in arterial spin labeling publication-title: Multimodal Brain Image Anal. doi: 10.1007/978-3-642-33530-3_19 – volume: 61 start-page: 1374 year: 2009 ident: 10.1016/j.neuroimage.2015.05.048_bb0185 article-title: Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21960 – volume: 64 start-page: 799 year: 2010 ident: 10.1016/j.neuroimage.2015.05.048_bb0110 article-title: Multiphase pseudocontinuous arterial spin labeling (MP-PCASL) for robust quantification of cerebral blood flow publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22465 |
SSID | ssj0009148 |
Score | 2.3129184 |
Snippet | Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 191 |
SubjectTerms | Acquisitions & mergers Adult Arterial spin labeling Brain - blood supply Cerebral blood flow Datasets Female Humans Image Enhancement Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Medical imaging Multiphase pseudo-continuous arterial spin labeling NMR Nuclear magnetic resonance Perfusion MRI Reproducibility Reproducibility of Results Signal-To-Noise Ratio Spin Labels Studies Test–retest Young Adult |
SummonAdditionalLinks | – databaseName: ScienceDirect Journal Collection dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFA_rLIgX8dvRVSJ4DdM0SZPgaVlcRmX3ogt7C22SYkU7xc4c9r_3vSadRVAZEHrpxysheXkf7e_9HiFvDfdSipazmpuagcf3DNJmzZrGWq2Cj9pigfPFZbW-kh-v1fUROZtrYRBWmW1_sumTtc5XVnk2V0PXrT5DZADuBvINNRFX2TvkuBS2UgtyfPrh0_rylnuXy1QRpwRDgQzoSTCviTay-wGbF3FeaqLxxGZAf_ZSf4tCJ290_oDcz2EkPU0jfUiOYv-I3L3IP8ofkxsIrCcu1wR-vaGblibs4FdwW3QY4y5sGOLUu34HyT-doJ2gi3Qcup6Cakx16rTuA4UQkSbYB75l2IxbNqTygvREYjWhqRf1-IRcnb__crZmucsC89KWWwZbWmCzmiqaQlsbWhE9JE1aeshs2tjaEoya4XUQoa1L20jdgJOvQ81jAWeNeEoW_aaPzwkVEGxBQISsZvBuHWotjBFFU3gRfOnVkuh5Vp3PFOTYCeO7m7Fm39ztejhcD1fAIc2S8L3kkGg4DpCx88K5ucwUDKMDX3GA7Lu97G_qeKD0yawnLpuE0SHxHZL5GLj9Zn8bNjP-oan7CGvteGUNVkIr_Y9ntKyMVVIXS_Is6eB-SkpsKGa4fPFfw39J7uEZfjnn6oQstj938RWEXtvmdd5avwCHgy-h priority: 102 providerName: Elsevier |
Title | Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915004309 https://dx.doi.org/10.1016/j.neuroimage.2015.05.048 https://www.ncbi.nlm.nih.gov/pubmed/26026814 https://www.proquest.com/docview/1880045188 https://www.proquest.com/docview/1698391657 https://www.proquest.com/docview/1746895470 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdrC2MvZd_L1gUN9qrNiuRIYg-jKy3ZR0MpK-RN2JJMMzbbnZOHvuxv350lJy9bCQRMsM4Y3-nuJP3ud4S81dxJKSrOCq4LBhHfMVg2K1aWxqjcu6AMFjifz6ezK_llkS_ShluXYJWDT-wdtW8c7pG_R94w5ELR-mN7w7BrFJ6uphYae-Sgpy4De1YLtSXd5TKWwuWCaRiQkDwR39XzRS5_waxFgFfe83diF6B_h6f_pZ99GDp7SA5T_kiPo8IfkXuhfkzun6cT8ifkFjLqnsQ1ol5vaVPRCBq8hnhF2y6sfcMQoL6s17Dqpz2mE4yQdu2ypmATfYE6LWpPITekEe-BT2mbbsXaWFcQR0Q6ExqbUHdPydXZ6feTGUvtFZiTZrJiMJcFdqmZBp0pY3wlgoPVkpIOljRVqMwEvJnmhRe-KiamlKqE6F74gocM_pXiGdmvmzq8IFRAlgWZENKZwbOVL5TQWmRl5oR3E5ePiBq-qnWJexxbYPy0A8jsh93qw6I-bAY_qUeEbyTbyL-xg4wZFGeH-lLwiBaCxA6yHzayKQeJucWO0keDndjkCzq7tdwRebO5DbMYj2aKOoCuLZ8ajSXQubpjjJJTDUaushF5Hm1w80km2ElMc_ny7hd4RR7g2-KeOM-PyP7q9zq8hqRqVY7J3rs_fNzPnzE5OD65_HaB189fZ3O4fjqdX1z-BeXHKKY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA_nHqgv4rerp0bQx2DTpJsEEfHjjj3vdhG5g3uLbZLiirbV7iL7T_k3OtO0uy963MtBX0o7oWQmM780M78h5LnmTkpRcpZznTOI-I7BtlmxojBGZd4FZbDAeTafTE_lx7PsbIf8GWphMK1y8Imdo_a1w3_kL5E3DLlQtH7T_GTYNQpPV4cWGtEsjsL6N2zZ2teHH0C_L9L0YP_k_ZT1XQWYkyZdMjBhgc1ZJkEnyhhfiuBgk6CkAyRfhtKksIg1z73wZZ6aQqoCglrucx4SuCsEjHuF7EqsaB2R3Xf780-ftzS_XMbiu0wwzbnpc4diRlnHULn4AX4CU8qyjjEU-w79OyD-D_B2ge_gJrnRI1b6NprYLbITqtvk6qw_k79D1oDhO9rYmGe7pnVJY5riV4iQtGnDytcMU-IX1apetbTLIgWzp22zqChYYVcST_PKU0CjNGaY4ChN3S5ZEysZ4huRQIXGttftXXJ6KVN_j4yqugoPCBWA6wB7IYEajK18roTWIikSJ7xLXTYmaphV63q2c2y68d0OaW3f7FYfFvVhE7ikHhO-kWwi48cFZMygODtUtIIPthCWLiD7aiPbo56IZi4ovTfYie29T2u3a2VMnm0eg9_Aw6C8CqBryydGY9F1ps55R8mJNplUyZjcjza4mZIUe5dpLh-e_wFPybXpyezYHh_Ojx6R6_jl-EeeZ3tktPy1Co8B0i2LJ_06ouTLZS_dvz9NYIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouFW8WWjASHC3i2FnbQlVVUVYtpRUHKu3NJLajLoIkJbtC-9f4dczEye4Fqr1UyiVKbEWe1-f4mxlC3mjupBQlZznXOYOI7xhsmxUrCmNU5l1QBhOczy_GJ5fy0zSbbpE_Qy4M0ioHn9g5al87_Ef-DuuGYS0U2LCVPS3iy_HksLlm2EEKT1qHdhpRRc7C8jds39qD02OQ9ds0nXz8-uGE9R0GmJMmnTNQZ4GNWsZBJ8oYX4rgYMOgpANUX4bSpGDQmude-DJPTSFVAQEu9zkPCdwVAua9Q-4qAagKbElN1brgL5cxDS8TTHNuehZR5JZ1tSpnP8FjILks62qHYgeif4fG_0HfLgRO7pPdHrvSo6hsD8hWqB6SnfP-dP4RWQKa7wrIRsbtktYljYTFK4iVtGnDwtcMyfGzalEvWtrxScEAaNvMKgr62CXH07zyFHApjVwTnKWp2zlrYk5DfCOWUqGxAXb7mFzeysI_IdtVXYVnhApAeIDCsJQazK18roTWIikSJ7xLXTYialhV6_q659h-44cdCG7f7VoeFuVhE7ikHhG-GtnE2h8bjDGD4OyQ2wre2EKA2mDs-9XYHv9EXLPh6L1BT2zvh1q7tpoReb16DB4Ej4XyKoCsLR8bjenXmbrhHSXH2mRSJSPyNOrgaklS7GKmuXx-8we8IjtgsPbz6cXZC3IPPxx_zfNsj2zPfy3CPmC7efGyMyJKvt221f4FerljUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+multiphase+pseudo-continuous+arterial+spin+labeling+and+the+effect+of+post-processing+analysis+methods&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Fazlollahi%2C+Amir&rft.au=Bourgeat%2C+Pierrick&rft.au=Liang%2C+Xiaoyun&rft.au=Meriaudeau%2C+Fabrice&rft.date=2015-08-15&rft.eissn=1095-9572&rft.volume=117&rft.spage=191&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.05.048&rft_id=info%3Apmid%2F26026814&rft.externalDocID=26026814 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |