Enhanced biological control of root-knot nematode, Meloidogyne incognita, by combined inoculation of cotton or soybean seeds with a plant growth-promoting rhizobacterium and pectin-rich orange peel

LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when AP203 was grown on orange peel. J2 were incubated with AP203 spores and orange peel, spores alone, orange peel alone, or with a n...

Full description

Saved in:
Bibliographic Details
Published inJournal of nematology Vol. 53; no. 1; pp. 1 - 17
Main Authors Hassan, Mohammad K., Lawrence, Kathy S., Sikora, Edward J., Liles, Mark R., Kloepper, Joseph W.
Format Journal Article
LanguageEnglish
Published Sciendo 01.01.2021
Exeley Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when AP203 was grown on orange peel. J2 were incubated with AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of AP203 with orange peel resulted in 94% mortality of juveniles (  ≤ 0.05). The J2 mortality rate for alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, AP203 culture broth, cell suspension or supernatant reduced the numbers of eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (  ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of AP203 amended with orange peel compared to the inoculated control. These data indicate that AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.
AbstractList LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles (p ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (p ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles (p ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (p ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.
LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles ( p  ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton ( p  ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.
LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when AP203 was grown on orange peel. J2 were incubated with AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of AP203 with orange peel resulted in 94% mortality of juveniles (  ≤ 0.05). The J2 mortality rate for alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, AP203 culture broth, cell suspension or supernatant reduced the numbers of eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (  ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of AP203 amended with orange peel compared to the inoculated control. These data indicate that AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.
Author Liles, Mark R.
Lawrence, Kathy S.
Hassan, Mohammad K.
Kloepper, Joseph W.
Sikora, Edward J.
Author_xml – sequence: 1
  givenname: Mohammad K.
  surname: Hassan
  fullname: Hassan, Mohammad K.
  organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA
– sequence: 2
  givenname: Kathy S.
  surname: Lawrence
  fullname: Lawrence, Kathy S.
  email: lawrekk@auburn.edu
  organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA
– sequence: 3
  givenname: Edward J.
  surname: Sikora
  fullname: Sikora, Edward J.
  organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA
– sequence: 4
  givenname: Mark R.
  surname: Liles
  fullname: Liles, Mark R.
  organization: Department of Biological Sciences, Auburn University, AL, 36849, Auburn, USA
– sequence: 5
  givenname: Joseph W.
  surname: Kloepper
  fullname: Kloepper, Joseph W.
  organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA
BookMark eNp9kk1v1DAQhiNURD_gztFHDg04duwkEkJCVYFKRVxA4mY59iTx4ngWx2m1_D_-F95uhSgSnDyamfcZa945LY4CBiiK5xV9ySpOm1cbHALMJaOsKqloHxUnTNa05J38evRHfFycLsuG0hxX8klxzGsmqKD8pPh5GSYdDFjSO_Q4OqM9MRhSRE9wIBExld8CJpLn6IQWzslH8OgsjrsAxAWDY3BJn5N-l4Vz70KGuYBm9To5DHuKwZT2USQL7nrQgSwAdiG3Lk1Ek63XIZEx4m2aym3EGZMLI4mT-4G9NgmiW2eigyVbMLlURmemTNNhhJwC_7R4PGi_wLP796z48u7y88WH8vrT-6uLt9elqTuWSikMN6xnjZVSQEM1bWjX1HQQxnadruoa5EB7oBoM7yyraS-btgVu2z5vrONnxdWBa1Fv1Da6WcedQu3UXQLjqHRMznhQ1DYtk1BTKnQtur4VQ8ct7ztZV6I1LLPeHFjbtZ_BGsg71_4B9GEluEmNeKNaxqioRAa8uAdE_L7CktTsFgM-LxNwXRQTgkre8FbmVnpoNRGXJcLwe0xF1d0lqcMlqf0lqXxJWSL_kpjs8t7Q_Bnn_yd8fRDeap-dszDGdZeD3LjGkN35p1TwquK_ALTE6f4
CitedBy_id crossref_primary_10_1007_s11274_023_03536_0
crossref_primary_10_1016_j_indcrop_2022_115736
Cites_doi 10.1016/j.biocontrol.2015.09.008
10.1371/journal.pone.0154818
10.1186/s41938-018-0094-4
10.1016/j.biocontrol.2008.07.008
10.1007/s10658-009-9550-z
10.3390/plants8050120
10.1111/rec.12565
10.1371/journal.pone.0127418
10.1016/j.jenvman.2013.04.017
10.1016/j.jssas.2016.07.006
10.1371/journal.pone.0181201
10.1038/nmeth.4260
10.1021/jf9709562
10.3389/fpls.2015.00631
10.1073/pnas.1218984110
10.1016/j.biortech.2004.06.001
10.1094/PDIS-09-16-1369-RE
10.1016/j.biocontrol.2009.10.015
10.1007/s11274-017-2364-9
ContentType Journal Article
Copyright 2021 Authors.
2021 Authors 2021
Copyright_xml – notice: 2021 Authors.
– notice: 2021 Authors 2021
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.21307/jofnem-2021-058
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
DocumentTitleAlternate PGPR plus orange peel enhances nematode biocontrol: Hassan et al
EISSN 2640-396X
EndPage 17
ExternalDocumentID oai_doaj_org_article_0d7826e4005a459b85f93d3b964158c2
PMC8220515
10_21307_jofnem_2021_058
10_21307_jofnem_2021_0585311
GroupedDBID ..I
5GY
ABCQX
ABDBF
ACGFO
ACNCT
ACUHS
ADBBV
AEGXH
AENEX
AHGSO
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
E3Z
EAP
EAS
EBS
EJD
ESX
F5P
FRP
GROUPED_DOAJ
GX1
H~9
JQ3
OK1
P2P
RPM
SLJYH
TR2
WH7
WTC
YAE
~KM
AAYXX
CITATION
7X8
5PM
ABFKT
ID FETCH-LOGICAL-c492t-65c3c2b27d665e70a0709740f5cd99a144e6f0be0aec39d240b6788e3d8b42593
IEDL.DBID DOA
ISSN 2640-396X
0022-300X
IngestDate Wed Aug 27 01:30:20 EDT 2025
Thu Aug 21 13:45:36 EDT 2025
Thu Jul 10 17:37:54 EDT 2025
Tue Jul 01 04:22:56 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Thu Jul 10 10:36:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
This is an Open Access article licensed under the Creative Commons CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-65c3c2b27d665e70a0709740f5cd99a144e6f0be0aec39d240b6788e3d8b42593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This paper was edited by Shaun D. Berry.
OpenAccessLink https://doaj.org/article/0d7826e4005a459b85f93d3b964158c2
PMID 34250503
PQID 2550637386
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_0d7826e4005a459b85f93d3b964158c2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8220515
proquest_miscellaneous_2550637386
crossref_primary_10_21307_jofnem_2021_058
crossref_citationtrail_10_21307_jofnem_2021_058
walterdegruyter_journals_10_21307_jofnem_2021_0585311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of nematology
PublicationYear 2021
Publisher Sciendo
Exeley Inc
Publisher_xml – name: Sciendo
– name: Exeley Inc
References 2024043019452054069_j_jofnem-2021-058_ref_020
2024043019452054069_j_jofnem-2021-058_ref_021
2024043019452054069_j_jofnem-2021-058_ref_022
2024043019452054069_j_jofnem-2021-058_ref_001
2024043019452054069_j_jofnem-2021-058_ref_023
2024043019452054069_j_jofnem-2021-058_ref_002
2024043019452054069_j_jofnem-2021-058_ref_024
2024043019452054069_j_jofnem-2021-058_ref_003
2024043019452054069_j_jofnem-2021-058_ref_025
2024043019452054069_j_jofnem-2021-058_ref_004
2024043019452054069_j_jofnem-2021-058_ref_005
2024043019452054069_j_jofnem-2021-058_ref_006
2024043019452054069_j_jofnem-2021-058_ref_007
2024043019452054069_j_jofnem-2021-058_ref_019
2024043019452054069_j_jofnem-2021-058_ref_010
2024043019452054069_j_jofnem-2021-058_ref_011
2024043019452054069_j_jofnem-2021-058_ref_012
2024043019452054069_j_jofnem-2021-058_ref_013
2024043019452054069_j_jofnem-2021-058_ref_014
2024043019452054069_j_jofnem-2021-058_ref_015
2024043019452054069_j_jofnem-2021-058_ref_016
2024043019452054069_j_jofnem-2021-058_ref_017
2024043019452054069_j_jofnem-2021-058_ref_018
2024043019452054069_j_jofnem-2021-058_ref_008
2024043019452054069_j_jofnem-2021-058_ref_009
References_xml – ident: 2024043019452054069_j_jofnem-2021-058_ref_011
  doi: 10.1016/j.biocontrol.2015.09.008
– ident: 2024043019452054069_j_jofnem-2021-058_ref_021
  doi: 10.1371/journal.pone.0154818
– ident: 2024043019452054069_j_jofnem-2021-058_ref_003
  doi: 10.1186/s41938-018-0094-4
– ident: 2024043019452054069_j_jofnem-2021-058_ref_006
  doi: 10.1016/j.biocontrol.2008.07.008
– ident: 2024043019452054069_j_jofnem-2021-058_ref_012
  doi: 10.1007/s10658-009-9550-z
– ident: 2024043019452054069_j_jofnem-2021-058_ref_008
  doi: 10.3390/plants8050120
– ident: 2024043019452054069_j_jofnem-2021-058_ref_018
  doi: 10.1111/rec.12565
– ident: 2024043019452054069_j_jofnem-2021-058_ref_020
  doi: 10.1371/journal.pone.0127418
– ident: 2024043019452054069_j_jofnem-2021-058_ref_025
  doi: 10.1016/j.jenvman.2013.04.017
– ident: 2024043019452054069_j_jofnem-2021-058_ref_002
– ident: 2024043019452054069_j_jofnem-2021-058_ref_015
  doi: 10.1016/j.jssas.2016.07.006
– ident: 2024043019452054069_j_jofnem-2021-058_ref_022
  doi: 10.1371/journal.pone.0181201
– ident: 2024043019452054069_j_jofnem-2021-058_ref_010
  doi: 10.1038/nmeth.4260
– ident: 2024043019452054069_j_jofnem-2021-058_ref_017
– ident: 2024043019452054069_j_jofnem-2021-058_ref_019
– ident: 2024043019452054069_j_jofnem-2021-058_ref_005
  doi: 10.1021/jf9709562
– ident: 2024043019452054069_j_jofnem-2021-058_ref_013
– ident: 2024043019452054069_j_jofnem-2021-058_ref_009
  doi: 10.3389/fpls.2015.00631
– ident: 2024043019452054069_j_jofnem-2021-058_ref_004
  doi: 10.1073/pnas.1218984110
– ident: 2024043019452054069_j_jofnem-2021-058_ref_016
  doi: 10.1016/j.biortech.2004.06.001
– ident: 2024043019452054069_j_jofnem-2021-058_ref_023
  doi: 10.1094/PDIS-09-16-1369-RE
– ident: 2024043019452054069_j_jofnem-2021-058_ref_007
– ident: 2024043019452054069_j_jofnem-2021-058_ref_001
– ident: 2024043019452054069_j_jofnem-2021-058_ref_024
  doi: 10.1016/j.biocontrol.2009.10.015
– ident: 2024043019452054069_j_jofnem-2021-058_ref_014
  doi: 10.1007/s11274-017-2364-9
SSID ssj0039616
Score 2.261642
Snippet LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in...
LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds...
LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds...
SourceID doaj
pubmedcentral
proquest
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Arts & Humanities
Biological control
Meloidogyne incognita
Orange peel
Pectin
Root-knot nematode
Title Enhanced biological control of root-knot nematode, Meloidogyne incognita, by combined inoculation of cotton or soybean seeds with a plant growth-promoting rhizobacterium and pectin-rich orange peel
URI https://www.degruyter.com/doi/10.21307/jofnem-2021-058
https://www.proquest.com/docview/2550637386
https://pubmed.ncbi.nlm.nih.gov/PMC8220515
https://doaj.org/article/0d7826e4005a459b85f93d3b964158c2
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodDL0id1X6jQS2FNbMuSrWNbdlkK21MXQi9CsuQkbSKFxKHkB_Z_dUZyls1C20shB-NYcpz5NA_P6BtC3tWw_rumLHMhNcsh3tC56bnITVmXFRxYw3A38tUXcXldf57y6a1WX1gTluiB0x83KSzYMOEAalzXXJqW95JZZqQA09N2UfuCzTsEU0kHMyli09NUq14U05SgrEBhN5PvofduBfCoIJDGVu-3DFLk7T9yNu-WSp7-jGls62ab3X44pE2jNbp4SE5HN5J-SD__Ebnn_GNy_1uIL8mfkF_nfh5T-zSRLKEk6FiVTkNPwV0e8h8-DNQjZ2uw7oxeuWVYWBjuHUXKBiwr0mfU7GHgCuJnmGzhQze2-8JZkNYBjzZ0G_bGaU-3YAu3FN_tUk3XS5AanUGcP8zzdSr78zO6wSo_k0iidyuqvaVxt6fPQSXPYTbc7gCn3PIpub44__rpMh8bNuRdLashF7xjXWWqxgrBXVNo0CcQrxQ976yUGmI3J_rCuEK7jkkLzoQBW9k6ZlsDukOyZ-TEB--eEyoLU1sNguZS10XrNLfgmBppqrq1VrCMTA5SU93IZo5NNZYKopooZ5XkrFDOCuSckfc3I9aJyeMv135EINxchxzc8QQgU43IVP9CZkbeHmCkYM1iIkZ7F3ZbBWEceIbYbjUjzRG-ju54_I1fzCP7d4tbo0ueEX4HiWrUPts_Phbo2_LF_3i0l-RBWj74eUVOhs3OvQbnbDBv4jr8DSw7PBY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+biological+control+of+root-knot+nematode%2C+Meloidogyne+incognita+%2C+by+combined+inoculation+of+cotton+or+soybean+seeds+with+a+plant+growth-promoting+rhizobacterium+and+pectin-rich+orange+peel&rft.jtitle=Journal+of+nematology&rft.au=Hassan%2C+Mohammad+K.&rft.au=Lawrence%2C+Kathy+S.&rft.au=Sikora%2C+Edward+J.&rft.au=Liles%2C+Mark+R.&rft.date=2021-01-01&rft.issn=2640-396X&rft.eissn=2640-396X&rft.volume=53&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.21307%2Fjofnem-2021-058&rft.externalDBID=n%2Fa&rft.externalDocID=10_21307_jofnem_2021_058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-396X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-396X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-396X&client=summon