Enhanced biological control of root-knot nematode, Meloidogyne incognita, by combined inoculation of cotton or soybean seeds with a plant growth-promoting rhizobacterium and pectin-rich orange peel
LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when AP203 was grown on orange peel. J2 were incubated with AP203 spores and orange peel, spores alone, orange peel alone, or with a n...
Saved in:
Published in | Journal of nematology Vol. 53; no. 1; pp. 1 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Sciendo
01.01.2021
Exeley Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LC-MS analysis of plant growth-promoting rhizobacterium (PGPR)
AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when
AP203 was grown on orange peel.
J2 were incubated with
AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of
AP203 with orange peel resulted in 94% mortality of
juveniles (
≤ 0.05). The J2 mortality rate for
alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel,
AP203 culture broth, cell suspension or supernatant reduced the numbers of
eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (
≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with
AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of
AP203 amended with orange peel compared to the
inoculated control. These data indicate that
AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability. |
---|---|
AbstractList | LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles (p ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (p ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles (p ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (p ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability. LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles ( p ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton ( p ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability. LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when AP203 was grown on orange peel. J2 were incubated with AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of AP203 with orange peel resulted in 94% mortality of juveniles ( ≤ 0.05). The J2 mortality rate for alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, AP203 culture broth, cell suspension or supernatant reduced the numbers of eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton ( ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of AP203 amended with orange peel compared to the inoculated control. These data indicate that AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability. |
Author | Liles, Mark R. Lawrence, Kathy S. Hassan, Mohammad K. Kloepper, Joseph W. Sikora, Edward J. |
Author_xml | – sequence: 1 givenname: Mohammad K. surname: Hassan fullname: Hassan, Mohammad K. organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA – sequence: 2 givenname: Kathy S. surname: Lawrence fullname: Lawrence, Kathy S. email: lawrekk@auburn.edu organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA – sequence: 3 givenname: Edward J. surname: Sikora fullname: Sikora, Edward J. organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA – sequence: 4 givenname: Mark R. surname: Liles fullname: Liles, Mark R. organization: Department of Biological Sciences, Auburn University, AL, 36849, Auburn, USA – sequence: 5 givenname: Joseph W. surname: Kloepper fullname: Kloepper, Joseph W. organization: Department of Entomology and Plant Pathology, Auburn University, AL, 36849, Auburn, USA |
BookMark | eNp9kk1v1DAQhiNURD_gztFHDg04duwkEkJCVYFKRVxA4mY59iTx4ngWx2m1_D_-F95uhSgSnDyamfcZa945LY4CBiiK5xV9ySpOm1cbHALMJaOsKqloHxUnTNa05J38evRHfFycLsuG0hxX8klxzGsmqKD8pPh5GSYdDFjSO_Q4OqM9MRhSRE9wIBExld8CJpLn6IQWzslH8OgsjrsAxAWDY3BJn5N-l4Vz70KGuYBm9To5DHuKwZT2USQL7nrQgSwAdiG3Lk1Ek63XIZEx4m2aym3EGZMLI4mT-4G9NgmiW2eigyVbMLlURmemTNNhhJwC_7R4PGi_wLP796z48u7y88WH8vrT-6uLt9elqTuWSikMN6xnjZVSQEM1bWjX1HQQxnadruoa5EB7oBoM7yyraS-btgVu2z5vrONnxdWBa1Fv1Da6WcedQu3UXQLjqHRMznhQ1DYtk1BTKnQtur4VQ8ct7ztZV6I1LLPeHFjbtZ_BGsg71_4B9GEluEmNeKNaxqioRAa8uAdE_L7CktTsFgM-LxNwXRQTgkre8FbmVnpoNRGXJcLwe0xF1d0lqcMlqf0lqXxJWSL_kpjs8t7Q_Bnn_yd8fRDeap-dszDGdZeD3LjGkN35p1TwquK_ALTE6f4 |
CitedBy_id | crossref_primary_10_1007_s11274_023_03536_0 crossref_primary_10_1016_j_indcrop_2022_115736 |
Cites_doi | 10.1016/j.biocontrol.2015.09.008 10.1371/journal.pone.0154818 10.1186/s41938-018-0094-4 10.1016/j.biocontrol.2008.07.008 10.1007/s10658-009-9550-z 10.3390/plants8050120 10.1111/rec.12565 10.1371/journal.pone.0127418 10.1016/j.jenvman.2013.04.017 10.1016/j.jssas.2016.07.006 10.1371/journal.pone.0181201 10.1038/nmeth.4260 10.1021/jf9709562 10.3389/fpls.2015.00631 10.1073/pnas.1218984110 10.1016/j.biortech.2004.06.001 10.1094/PDIS-09-16-1369-RE 10.1016/j.biocontrol.2009.10.015 10.1007/s11274-017-2364-9 |
ContentType | Journal Article |
Copyright | 2021 Authors. 2021 Authors 2021 |
Copyright_xml | – notice: 2021 Authors. – notice: 2021 Authors 2021 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.21307/jofnem-2021-058 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
DocumentTitleAlternate | PGPR plus orange peel enhances nematode biocontrol: Hassan et al |
EISSN | 2640-396X |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_0d7826e4005a459b85f93d3b964158c2 PMC8220515 10_21307_jofnem_2021_058 10_21307_jofnem_2021_0585311 |
GroupedDBID | ..I 5GY ABCQX ABDBF ACGFO ACNCT ACUHS ADBBV AEGXH AENEX AHGSO AIAGR ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV E3Z EAP EAS EBS EJD ESX F5P FRP GROUPED_DOAJ GX1 H~9 JQ3 OK1 P2P RPM SLJYH TR2 WH7 WTC YAE ~KM AAYXX CITATION 7X8 5PM ABFKT |
ID | FETCH-LOGICAL-c492t-65c3c2b27d665e70a0709740f5cd99a144e6f0be0aec39d240b6788e3d8b42593 |
IEDL.DBID | DOA |
ISSN | 2640-396X 0022-300X |
IngestDate | Wed Aug 27 01:30:20 EDT 2025 Thu Aug 21 13:45:36 EDT 2025 Thu Jul 10 17:37:54 EDT 2025 Tue Jul 01 04:22:56 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Thu Jul 10 10:36:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 This is an Open Access article licensed under the Creative Commons CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-65c3c2b27d665e70a0709740f5cd99a144e6f0be0aec39d240b6788e3d8b42593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This paper was edited by Shaun D. Berry. |
OpenAccessLink | https://doaj.org/article/0d7826e4005a459b85f93d3b964158c2 |
PMID | 34250503 |
PQID | 2550637386 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d7826e4005a459b85f93d3b964158c2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8220515 proquest_miscellaneous_2550637386 crossref_primary_10_21307_jofnem_2021_058 crossref_citationtrail_10_21307_jofnem_2021_058 walterdegruyter_journals_10_21307_jofnem_2021_0585311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of nematology |
PublicationYear | 2021 |
Publisher | Sciendo Exeley Inc |
Publisher_xml | – name: Sciendo – name: Exeley Inc |
References | 2024043019452054069_j_jofnem-2021-058_ref_020 2024043019452054069_j_jofnem-2021-058_ref_021 2024043019452054069_j_jofnem-2021-058_ref_022 2024043019452054069_j_jofnem-2021-058_ref_001 2024043019452054069_j_jofnem-2021-058_ref_023 2024043019452054069_j_jofnem-2021-058_ref_002 2024043019452054069_j_jofnem-2021-058_ref_024 2024043019452054069_j_jofnem-2021-058_ref_003 2024043019452054069_j_jofnem-2021-058_ref_025 2024043019452054069_j_jofnem-2021-058_ref_004 2024043019452054069_j_jofnem-2021-058_ref_005 2024043019452054069_j_jofnem-2021-058_ref_006 2024043019452054069_j_jofnem-2021-058_ref_007 2024043019452054069_j_jofnem-2021-058_ref_019 2024043019452054069_j_jofnem-2021-058_ref_010 2024043019452054069_j_jofnem-2021-058_ref_011 2024043019452054069_j_jofnem-2021-058_ref_012 2024043019452054069_j_jofnem-2021-058_ref_013 2024043019452054069_j_jofnem-2021-058_ref_014 2024043019452054069_j_jofnem-2021-058_ref_015 2024043019452054069_j_jofnem-2021-058_ref_016 2024043019452054069_j_jofnem-2021-058_ref_017 2024043019452054069_j_jofnem-2021-058_ref_018 2024043019452054069_j_jofnem-2021-058_ref_008 2024043019452054069_j_jofnem-2021-058_ref_009 |
References_xml | – ident: 2024043019452054069_j_jofnem-2021-058_ref_011 doi: 10.1016/j.biocontrol.2015.09.008 – ident: 2024043019452054069_j_jofnem-2021-058_ref_021 doi: 10.1371/journal.pone.0154818 – ident: 2024043019452054069_j_jofnem-2021-058_ref_003 doi: 10.1186/s41938-018-0094-4 – ident: 2024043019452054069_j_jofnem-2021-058_ref_006 doi: 10.1016/j.biocontrol.2008.07.008 – ident: 2024043019452054069_j_jofnem-2021-058_ref_012 doi: 10.1007/s10658-009-9550-z – ident: 2024043019452054069_j_jofnem-2021-058_ref_008 doi: 10.3390/plants8050120 – ident: 2024043019452054069_j_jofnem-2021-058_ref_018 doi: 10.1111/rec.12565 – ident: 2024043019452054069_j_jofnem-2021-058_ref_020 doi: 10.1371/journal.pone.0127418 – ident: 2024043019452054069_j_jofnem-2021-058_ref_025 doi: 10.1016/j.jenvman.2013.04.017 – ident: 2024043019452054069_j_jofnem-2021-058_ref_002 – ident: 2024043019452054069_j_jofnem-2021-058_ref_015 doi: 10.1016/j.jssas.2016.07.006 – ident: 2024043019452054069_j_jofnem-2021-058_ref_022 doi: 10.1371/journal.pone.0181201 – ident: 2024043019452054069_j_jofnem-2021-058_ref_010 doi: 10.1038/nmeth.4260 – ident: 2024043019452054069_j_jofnem-2021-058_ref_017 – ident: 2024043019452054069_j_jofnem-2021-058_ref_019 – ident: 2024043019452054069_j_jofnem-2021-058_ref_005 doi: 10.1021/jf9709562 – ident: 2024043019452054069_j_jofnem-2021-058_ref_013 – ident: 2024043019452054069_j_jofnem-2021-058_ref_009 doi: 10.3389/fpls.2015.00631 – ident: 2024043019452054069_j_jofnem-2021-058_ref_004 doi: 10.1073/pnas.1218984110 – ident: 2024043019452054069_j_jofnem-2021-058_ref_016 doi: 10.1016/j.biortech.2004.06.001 – ident: 2024043019452054069_j_jofnem-2021-058_ref_023 doi: 10.1094/PDIS-09-16-1369-RE – ident: 2024043019452054069_j_jofnem-2021-058_ref_007 – ident: 2024043019452054069_j_jofnem-2021-058_ref_001 – ident: 2024043019452054069_j_jofnem-2021-058_ref_024 doi: 10.1016/j.biocontrol.2009.10.015 – ident: 2024043019452054069_j_jofnem-2021-058_ref_014 doi: 10.1007/s11274-017-2364-9 |
SSID | ssj0039616 |
Score | 2.261642 |
Snippet | LC-MS analysis of plant growth-promoting rhizobacterium (PGPR)
AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in... LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds... LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds... |
SourceID | doaj pubmedcentral proquest crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Arts & Humanities Biological control Meloidogyne incognita Orange peel Pectin Root-knot nematode |
Title | Enhanced biological control of root-knot nematode, Meloidogyne incognita, by combined inoculation of cotton or soybean seeds with a plant growth-promoting rhizobacterium and pectin-rich orange peel |
URI | https://www.degruyter.com/doi/10.21307/jofnem-2021-058 https://www.proquest.com/docview/2550637386 https://pubmed.ncbi.nlm.nih.gov/PMC8220515 https://doaj.org/article/0d7826e4005a459b85f93d3b964158c2 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodDL0id1X6jQS2FNbMuSrWNbdlkK21MXQi9CsuQkbSKFxKHkB_Z_dUZyls1C20shB-NYcpz5NA_P6BtC3tWw_rumLHMhNcsh3tC56bnITVmXFRxYw3A38tUXcXldf57y6a1WX1gTluiB0x83KSzYMOEAalzXXJqW95JZZqQA09N2UfuCzTsEU0kHMyli09NUq14U05SgrEBhN5PvofduBfCoIJDGVu-3DFLk7T9yNu-WSp7-jGls62ab3X44pE2jNbp4SE5HN5J-SD__Ebnn_GNy_1uIL8mfkF_nfh5T-zSRLKEk6FiVTkNPwV0e8h8-DNQjZ2uw7oxeuWVYWBjuHUXKBiwr0mfU7GHgCuJnmGzhQze2-8JZkNYBjzZ0G_bGaU-3YAu3FN_tUk3XS5AanUGcP8zzdSr78zO6wSo_k0iidyuqvaVxt6fPQSXPYTbc7gCn3PIpub44__rpMh8bNuRdLashF7xjXWWqxgrBXVNo0CcQrxQ976yUGmI3J_rCuEK7jkkLzoQBW9k6ZlsDukOyZ-TEB--eEyoLU1sNguZS10XrNLfgmBppqrq1VrCMTA5SU93IZo5NNZYKopooZ5XkrFDOCuSckfc3I9aJyeMv135EINxchxzc8QQgU43IVP9CZkbeHmCkYM1iIkZ7F3ZbBWEceIbYbjUjzRG-ju54_I1fzCP7d4tbo0ueEX4HiWrUPts_Phbo2_LF_3i0l-RBWj74eUVOhs3OvQbnbDBv4jr8DSw7PBY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+biological+control+of+root-knot+nematode%2C+Meloidogyne+incognita+%2C+by+combined+inoculation+of+cotton+or+soybean+seeds+with+a+plant+growth-promoting+rhizobacterium+and+pectin-rich+orange+peel&rft.jtitle=Journal+of+nematology&rft.au=Hassan%2C+Mohammad+K.&rft.au=Lawrence%2C+Kathy+S.&rft.au=Sikora%2C+Edward+J.&rft.au=Liles%2C+Mark+R.&rft.date=2021-01-01&rft.issn=2640-396X&rft.eissn=2640-396X&rft.volume=53&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.21307%2Fjofnem-2021-058&rft.externalDBID=n%2Fa&rft.externalDocID=10_21307_jofnem_2021_058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-396X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-396X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-396X&client=summon |