Thermodynamic phase transition of a black hole in rainbow gravity
In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the loc...
Saved in:
Published in | Physics letters. B Vol. 772; no. C; pp. 737 - 742 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.09.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking–Page-type phase transitions in the framework of rainbow gravity theory. |
---|---|
AbstractList | In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking–Page-type phase transitions in the framework of rainbow gravity theory. |
Author | Yang, Shu-Zheng Feng, Zhong-Wen |
Author_xml | – sequence: 1 givenname: Zhong-Wen orcidid: 0000-0001-5962-8087 surname: Feng fullname: Feng, Zhong-Wen email: zwfengphy@163.com organization: College of Physics and Space Science, China West Normal University, Nanchong 637009, China – sequence: 2 givenname: Shu-Zheng surname: Yang fullname: Yang, Shu-Zheng email: szyangcwnu@126.com organization: College of Physics and Space Science, China West Normal University, Nanchong 637009, China |
BookMark | eNqFkNtKKzEUhoMoWA-vIHmB6V6Tw2QKXmwRtwqCN70PazIrNnU6Kcngpm9vasULbwo_JCT832J9F-x0jCMxdlPDvIa6-bOeb1e7PNDUzQXUZg4l2pywWd0aWQml9CmbgTRQiWYhz9lFzmsAqDU0M3a3XFHaxH434iY4vl1hJj4lHHOYQhx59Bx5N6B756s4EA8jTxjGLv7nbwk_wrS7Ymceh0zX3-clW_57WN4_VS-vj8_3dy-VUwsxVZq0Um0HSpDrjJLYK9N61L5zjelEjQtDshWqLz9CgheqdRqw8U25SJKX7PmA7SOu7TaFDaadjRjs10NMbxbTFNxAVgojXMG1TkgFrV-gM8b7nnotlOigsJoDy6WYcyL_w6vB7p3aMuHbqd07tVCiTSne_iq6MOFeVFEWhuP1v4c6FU8fgZLNLtDoqA-J3FQ2CccQn777mkY |
CitedBy_id | crossref_primary_10_1088_1361_6382_ad1b92 crossref_primary_10_1140_epjc_s10052_021_09549_z crossref_primary_10_1140_epjc_s10052_024_13437_7 crossref_primary_10_1142_S0217732321500115 crossref_primary_10_1088_1475_7516_2024_04_081 crossref_primary_10_1016_j_physletb_2018_08_045 crossref_primary_10_1016_j_cjph_2023_11_028 crossref_primary_10_1142_S021988782250102X crossref_primary_10_1142_S0217732320500108 crossref_primary_10_1140_epjc_s10052_020_8065_9 crossref_primary_10_33773_jum_1340567 crossref_primary_10_1007_s10714_019_2520_7 crossref_primary_10_1016_j_aop_2022_169170 crossref_primary_10_1139_cjp_2019_0532 crossref_primary_10_1140_epjc_s10052_019_7031_x crossref_primary_10_17776_csj_1052798 crossref_primary_10_1016_j_aop_2022_169018 crossref_primary_10_1016_j_physletb_2018_07_032 crossref_primary_10_1209_0295_5075_ac7f51 crossref_primary_10_1016_j_nuclphysb_2018_11_019 crossref_primary_10_1140_epjp_s13360_024_05785_w crossref_primary_10_3389_fphy_2022_887410 crossref_primary_10_1007_s10714_022_02904_9 crossref_primary_10_1016_j_aop_2022_168837 crossref_primary_10_1007_s10714_018_2468_z crossref_primary_10_1016_j_nuclphysb_2021_115475 crossref_primary_10_1140_epjc_s10052_019_6959_1 crossref_primary_10_1016_j_dark_2023_101310 crossref_primary_10_1007_s10773_021_04745_9 crossref_primary_10_1088_1572_9494_ac770d crossref_primary_10_1093_ptep_ptae116 crossref_primary_10_1140_epjc_s10052_020_7690_7 crossref_primary_10_1088_1361_6382_accc03 crossref_primary_10_1007_s10714_023_03076_w crossref_primary_10_3390_universe9060297 crossref_primary_10_51477_mejs_1279536 crossref_primary_10_1016_j_physletb_2023_138333 crossref_primary_10_1088_1361_6382_ad2a9a crossref_primary_10_1140_epjc_s10052_020_8387_7 crossref_primary_10_1016_j_physletb_2019_06_049 crossref_primary_10_1088_1475_7516_2022_06_022 crossref_primary_10_1007_s10714_019_2555_9 crossref_primary_10_29132_ijpas_1480871 crossref_primary_10_1016_j_aop_2020_168198 crossref_primary_10_1016_j_aop_2021_168577 crossref_primary_10_1016_j_physletb_2018_04_039 crossref_primary_10_1142_S0219887824501184 crossref_primary_10_1155_2019_8462973 crossref_primary_10_1016_j_physletb_2024_139152 crossref_primary_10_1142_S0217732320501291 crossref_primary_10_1016_j_nuclphysb_2020_115244 crossref_primary_10_1103_PhysRevD_105_043523 crossref_primary_10_1140_epjc_s10052_024_13120_x crossref_primary_10_1142_S0217751X24500234 crossref_primary_10_1016_j_physletb_2018_10_042 crossref_primary_10_1016_j_dark_2024_101741 crossref_primary_10_1142_S0217751X23501798 crossref_primary_10_1007_s12648_024_03511_x crossref_primary_10_1016_j_physletb_2017_12_048 crossref_primary_10_1016_j_aop_2023_169394 crossref_primary_10_1093_ptep_ptz085 crossref_primary_10_1016_j_astropartphys_2024_102988 crossref_primary_10_1088_1572_9494_ad30f4 crossref_primary_10_1140_epjc_s10052_018_6252_8 crossref_primary_10_1016_j_aop_2018_07_021 crossref_primary_10_1140_epjc_s10052_024_13155_0 crossref_primary_10_1016_j_physletb_2020_135830 crossref_primary_10_1142_S0218271819501098 crossref_primary_10_1016_j_newast_2023_102111 crossref_primary_10_1142_S0217751X22501263 crossref_primary_10_1142_S0217751X21500287 crossref_primary_10_1016_j_jheap_2024_11_010 crossref_primary_10_1088_1402_4896_aca0cc crossref_primary_10_1016_j_aop_2021_168436 crossref_primary_10_1142_S021988782050156X crossref_primary_10_1142_S0219887821500638 crossref_primary_10_1142_S0217751X22501457 crossref_primary_10_1016_j_physletb_2023_138111 crossref_primary_10_1093_ptep_ptaa017 crossref_primary_10_1016_j_dark_2024_101633 crossref_primary_10_1007_s10773_018_3994_x crossref_primary_10_1007_s00601_024_01896_3 crossref_primary_10_1093_ptep_ptad048 crossref_primary_10_1007_s10773_020_04544_8 crossref_primary_10_1016_j_physletb_2022_137523 crossref_primary_10_1209_0295_5075_119_30005 crossref_primary_10_1140_epjc_s10052_023_11295_3 crossref_primary_10_1016_j_physletb_2022_136999 crossref_primary_10_1142_S0219887822501626 crossref_primary_10_1140_epjc_s10052_024_12641_9 |
Cites_doi | 10.12942/lrr-2006-3 10.1088/0264-9381/13/5/018 10.1088/0264-9381/6/12/018 10.1103/PhysRevLett.97.140401 10.1016/j.physletb.2017.02.064 10.1016/j.physletb.2017.03.051 10.1016/j.physletb.2016.03.013 10.1016/S0370-2693(99)00167-7 10.1103/PhysRevD.90.104020 10.1007/BF01208266 10.1088/0264-9381/21/7/001 10.1103/PhysRevD.87.044002 10.1016/j.physletb.2016.11.017 10.1140/epjc/s10052-016-3994-z 10.1103/PhysRev.35.904 10.1016/j.physletb.2012.11.017 10.1007/BF02345020 10.1007/JHEP11(2012)110 10.1016/0370-2693(89)91366-X 10.1142/S0218271802001330 10.1103/PhysRevD.89.094021 10.1023/A:1015281430411 10.1140/epjc/s10052-016-4025-9 10.1103/PhysRevD.93.043515 10.1103/RevModPhys.83.11 10.1140/epjc/s10052-016-4057-1 10.1140/epjc/s10052-016-4119-4 10.4310/ATMP.1998.v2.n2.a2 10.1016/j.physletb.2017.02.043 10.1103/PhysRevD.43.2495 10.1016/j.nuclphysb.2004.11.026 10.1209/0295-5075/109/20001 10.1103/PhysRevD.13.191 10.1016/j.nuclphysb.2015.03.014 10.1088/0264-9381/21/19/001 10.1103/PhysRevD.90.025026 10.1016/j.physletb.2010.06.002 |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.physletb.2017.07.057 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2445 |
EndPage | 742 |
ExternalDocumentID | oai_doaj_org_article_3272c97e8c23408f9ac77ffded5242b0 10_1016_j_physletb_2017_07_057 S0370269317306135 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIBLX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 ER. FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HME IXB J1W KOM KQ8 LZ4 M41 MO0 N9A NCXOZ O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K TN5 WH7 ~G- 186 29O 6TJ 8WZ A6W AAEDT AAFWJ AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFPKN AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ IHE IPNFZ MVM R2- SEW SHN SSH WUQ XJT ZCG EFKBS |
ID | FETCH-LOGICAL-c492t-5e5448b042ecb743ad478fa5fbc67b21a97e3824d3ad230f248c50a6f648c3e3 |
IEDL.DBID | .~1 |
ISSN | 0370-2693 |
IngestDate | Wed Aug 27 01:29:15 EDT 2025 Tue Jul 01 01:23:44 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Fri Feb 23 02:33:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Thermodynamic phase transition Black hole Rainbow gravity |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-5e5448b042ecb743ad478fa5fbc67b21a97e3824d3ad230f248c50a6f648c3e3 |
ORCID | 0000-0001-5962-8087 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0370269317306135 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3272c97e8c23408f9ac77ffded5242b0 crossref_primary_10_1016_j_physletb_2017_07_057 crossref_citationtrail_10_1016_j_physletb_2017_07_057 elsevier_sciencedirect_doi_10_1016_j_physletb_2017_07_057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-10 |
PublicationDateYYYYMMDD | 2017-09-10 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Physics letters. B |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Magueijo, Smolin (br0150) 2004; 21 Magueijo, Smolin (br0420) 2003; 67 Kostelecký, Russell (br0020) 2011; 83 t Hooft (br0030) 1996; 13 Hawking, Page (br0320) 1983; 87 Zeng, Zhang, Li (br0390) 2016; 756 Kim, Kim (br0500) 2012; 718 Zeng, Li (br0400) 2017; 764 Ali, Faizal, Majumder (br0180) 2015; 109 Pavón (br0310) 1991; 43 Man, Cheng (br0490) 2013; 87 Wei, Liu (br0380) 2015; 115 Davies (br0300) 1989; 6 Gim, Kim (br0210) 2015; 05 Dehyadegari, Sheykhi, Montakhab (br0410) 2017; 768 Hendi, Faizal (br0220) 2015; 92 Kostelecký, Mewes (br0040) 2006; 97 Gunasekaran, Mann (br0350) 2012; 2012 Will (br0010) 2006; 9 Alfaro, González, Ávila (br0070) 2015; 91 Dehghani, Kamrani, Sheykhi (br0370) 2014; 90 Ali (br0140) 2014; 89 Chatrabhuti, Yingcharoenrat, Channuie (br0170) 2016; 93 Kubizňák, Mann (br0340) 2012; 1207 Awad, Ali, Majumder (br0160) 2013; 10 Feng, Yang, Li, Zu (br0430) 2017; 768 Cai (br0520) 2002; 65 Iengo, Russo, Serone (br0050) 2009; 0911 Ali, Faizal, Khalil (br0200) 2015; 894 Hendi, Faizal, Panah, Panahiyan (br0230) 2016; 76 Garattini, Saridakis (br0130) 2016; 25 Witten (br0330) 1998; 2 Scardigl (br0110) 1999; 452 Hendi, Eslam Panah, Panahiyan (br0240) 2017; 769 Amati, Ciafaloni, Veneziano (br0080) 1989; 216 Belich, Bakke (br0060) 2014; 90 Hawking (br0440) 1975; 43 Myung (br0530) 2010; 690 Feng, Zhang, Zu (br0270) 2014; 29 Cavaglia, Das (br0470) 2004; 21 Amelino-Camelia (br0120) 2002; 11 Hendi, Panahiyan, Panah, Momennia (br0250) 2016; 76 Gim, Kim (br0260) 2016; 76 Cai, Hu, Pan, Zhang (br0360) 2015; 91 Feng, Li, Zu, Yang (br0280) 2016; 76 Hawking (br0450) 1976; 13 Tolman (br0480) 1930; 35 Ali, Faizal, Khalil (br0190) 2014; 1412 Gambini, Pullin (br0090) 1999; 59 Roychowdhury (br0290) Gim, Kim (br0510) 2014; 10 Girelli, Livine, Oriti (br0100) 2005; 708 Adler, Chen, Santiago (br0460) 2001; 33 t Hooft (10.1016/j.physletb.2017.07.057_br0030) 1996; 13 Gim (10.1016/j.physletb.2017.07.057_br0210) 2015; 05 Feng (10.1016/j.physletb.2017.07.057_br0430) 2017; 768 Cai (10.1016/j.physletb.2017.07.057_br0520) 2002; 65 Roychowdhury (10.1016/j.physletb.2017.07.057_br0290) Will (10.1016/j.physletb.2017.07.057_br0010) 2006; 9 Hendi (10.1016/j.physletb.2017.07.057_br0230) 2016; 76 Kubizňák (10.1016/j.physletb.2017.07.057_br0340) 2012; 1207 Man (10.1016/j.physletb.2017.07.057_br0490) 2013; 87 Amelino-Camelia (10.1016/j.physletb.2017.07.057_br0120) 2002; 11 Garattini (10.1016/j.physletb.2017.07.057_br0130) 2016; 25 Kim (10.1016/j.physletb.2017.07.057_br0500) 2012; 718 Chatrabhuti (10.1016/j.physletb.2017.07.057_br0170) 2016; 93 Ali (10.1016/j.physletb.2017.07.057_br0180) 2015; 109 Gim (10.1016/j.physletb.2017.07.057_br0510) 2014; 10 Pavón (10.1016/j.physletb.2017.07.057_br0310) 1991; 43 Tolman (10.1016/j.physletb.2017.07.057_br0480) 1930; 35 Hendi (10.1016/j.physletb.2017.07.057_br0250) 2016; 76 Hendi (10.1016/j.physletb.2017.07.057_br0220) 2015; 92 Cai (10.1016/j.physletb.2017.07.057_br0360) 2015; 91 Awad (10.1016/j.physletb.2017.07.057_br0160) 2013; 10 Hawking (10.1016/j.physletb.2017.07.057_br0450) 1976; 13 Cavaglia (10.1016/j.physletb.2017.07.057_br0470) 2004; 21 Feng (10.1016/j.physletb.2017.07.057_br0280) 2016; 76 Girelli (10.1016/j.physletb.2017.07.057_br0100) 2005; 708 Zeng (10.1016/j.physletb.2017.07.057_br0400) 2017; 764 Adler (10.1016/j.physletb.2017.07.057_br0460) 2001; 33 Ali (10.1016/j.physletb.2017.07.057_br0140) 2014; 89 Magueijo (10.1016/j.physletb.2017.07.057_br0420) 2003; 67 Scardigl (10.1016/j.physletb.2017.07.057_br0110) 1999; 452 Kostelecký (10.1016/j.physletb.2017.07.057_br0040) 2006; 97 Myung (10.1016/j.physletb.2017.07.057_br0530) 2010; 690 Gambini (10.1016/j.physletb.2017.07.057_br0090) 1999; 59 Ali (10.1016/j.physletb.2017.07.057_br0190) 2014; 1412 Dehghani (10.1016/j.physletb.2017.07.057_br0370) 2014; 90 Kostelecký (10.1016/j.physletb.2017.07.057_br0020) 2011; 83 Magueijo (10.1016/j.physletb.2017.07.057_br0150) 2004; 21 Iengo (10.1016/j.physletb.2017.07.057_br0050) 2009; 0911 Feng (10.1016/j.physletb.2017.07.057_br0270) 2014; 29 Hawking (10.1016/j.physletb.2017.07.057_br0320) 1983; 87 Belich (10.1016/j.physletb.2017.07.057_br0060) 2014; 90 Wei (10.1016/j.physletb.2017.07.057_br0380) 2015; 115 Amati (10.1016/j.physletb.2017.07.057_br0080) 1989; 216 Gunasekaran (10.1016/j.physletb.2017.07.057_br0350) 2012; 2012 Witten (10.1016/j.physletb.2017.07.057_br0330) 1998; 2 Zeng (10.1016/j.physletb.2017.07.057_br0390) 2016; 756 Dehyadegari (10.1016/j.physletb.2017.07.057_br0410) 2017; 768 Hawking (10.1016/j.physletb.2017.07.057_br0440) 1975; 43 Ali (10.1016/j.physletb.2017.07.057_br0200) 2015; 894 Davies (10.1016/j.physletb.2017.07.057_br0300) 1989; 6 Alfaro (10.1016/j.physletb.2017.07.057_br0070) 2015; 91 Hendi (10.1016/j.physletb.2017.07.057_br0240) 2017; 769 Gim (10.1016/j.physletb.2017.07.057_br0260) 2016; 76 |
References_xml | – volume: 764 start-page: 100 year: 2017 ident: br0400 publication-title: Phys. Lett. B – volume: 05 year: 2015 ident: br0210 publication-title: J. Cosmol. Astropart. Phys. – volume: 768 start-page: 81 year: 2017 ident: br0430 publication-title: Phys. Lett. B – volume: 25 year: 2016 ident: br0130 publication-title: Int. J. Mod. Phys. D – volume: 35 start-page: 904 year: 1930 ident: br0480 publication-title: Phys. Rev. – volume: 90 year: 2014 ident: br0370 publication-title: Phys. Rev. D – volume: 9 start-page: 3 year: 2006 ident: br0010 publication-title: Living Rev. Relativ. – volume: 89 year: 2014 ident: br0140 publication-title: Phys. Rev. D – volume: 718 start-page: 687 year: 2012 ident: br0500 publication-title: Phys. Lett. B – volume: 59 year: 1999 ident: br0090 publication-title: Phys. Rev. D – volume: 769 start-page: 191 year: 2017 ident: br0240 publication-title: Phys. Lett. B – volume: 2012 year: 2012 ident: br0350 publication-title: J. High Energy Phys. – volume: 0911 year: 2009 ident: br0050 publication-title: J. High Energy Phys. – volume: 756 start-page: 170 year: 2016 ident: br0390 publication-title: Phys. Lett. B – volume: 67 year: 2003 ident: br0420 publication-title: Phys. Rev. D – volume: 216 start-page: 41 year: 1989 ident: br0080 publication-title: Phys. Lett. B – volume: 43 start-page: 2495 year: 1991 ident: br0310 publication-title: Phys. Rev. D – volume: 21 start-page: 1725 year: 2004 ident: br0150 publication-title: Class. Quantum Gravity – volume: 13 start-page: 191 year: 1976 ident: br0450 publication-title: Phys. Rev. D – volume: 76 start-page: 296 year: 2016 ident: br0230 publication-title: Eur. Phys. J. C – volume: 894 start-page: 341 year: 2015 ident: br0200 publication-title: Nucl. Phys. B – volume: 91 year: 2015 ident: br0070 publication-title: Phys. Rev. D – volume: 76 start-page: 166 year: 2016 ident: br0260 publication-title: Eur. Phys. J. C – volume: 33 start-page: 2101 year: 2001 ident: br0460 publication-title: Gen. Relativ. Gravit. – volume: 708 start-page: 411 year: 2005 ident: br0100 publication-title: Nucl. Phys. B – volume: 690 start-page: 534 year: 2010 ident: br0530 publication-title: Phys. Lett. B – volume: 1207 year: 2012 ident: br0340 publication-title: J. High Energy Phys. – volume: 91 year: 2015 ident: br0360 publication-title: Phys. Rev. D – volume: 115 year: 2015 ident: br0380 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 253 year: 1998 ident: br0330 publication-title: Adv. Theor. Math. Phys. – volume: 87 year: 2013 ident: br0490 publication-title: Phys. Rev. D – volume: 90 year: 2014 ident: br0060 publication-title: Phys. Rev. D – volume: 76 start-page: 212 year: 2016 ident: br0280 publication-title: Eur. Phys. J. C – volume: 87 start-page: 577 year: 1983 ident: br0320 publication-title: Commun. Math. Phys. – volume: 1412 year: 2014 ident: br0190 publication-title: J. High Energy Phys. – volume: 21 start-page: 4511 year: 2004 ident: br0470 publication-title: Class. Quantum Gravity – volume: 83 start-page: 11 year: 2011 ident: br0020 publication-title: Rev. Mod. Phys. – volume: 43 start-page: 199 year: 1975 ident: br0440 publication-title: Commun. Math. Phys. – volume: 768 start-page: 235 year: 2017 ident: br0410 publication-title: Phys. Lett. B – volume: 109 year: 2015 ident: br0180 publication-title: Europhys. Lett. – volume: 76 start-page: 150 year: 2016 ident: br0250 publication-title: Eur. Phys. J. C – volume: 10 year: 2013 ident: br0160 publication-title: J. Cosmol. Astropart. Phys. – volume: 452 start-page: 39 year: 1999 ident: br0110 publication-title: Phys. Lett. B – volume: 10 year: 2014 ident: br0510 publication-title: J. Cosmol. Astropart. Phys. – volume: 29 year: 2014 ident: br0270 publication-title: Mod. Phys. Lett. A – volume: 97 year: 2006 ident: br0040 publication-title: Phys. Rev. Lett. – volume: 93 year: 2016 ident: br0170 publication-title: Phys. Rev. D – volume: 92 year: 2015 ident: br0220 publication-title: Phys. Rev. D – volume: 13 start-page: 1023 year: 1996 ident: br0030 publication-title: Class. Quantum Gravity – volume: 11 start-page: 35 year: 2002 ident: br0120 publication-title: Int. J. Mod. Phys. D – volume: 6 start-page: 1909 year: 1989 ident: br0300 publication-title: Class. Quantum Gravity – volume: 65 year: 2002 ident: br0520 publication-title: Phys. Rev. D – ident: br0290 – volume: 9 start-page: 3 year: 2006 ident: 10.1016/j.physletb.2017.07.057_br0010 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2006-3 – volume: 13 start-page: 1023 year: 1996 ident: 10.1016/j.physletb.2017.07.057_br0030 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/13/5/018 – volume: 59 year: 1999 ident: 10.1016/j.physletb.2017.07.057_br0090 publication-title: Phys. Rev. D – volume: 6 start-page: 1909 year: 1989 ident: 10.1016/j.physletb.2017.07.057_br0300 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/6/12/018 – volume: 97 year: 2006 ident: 10.1016/j.physletb.2017.07.057_br0040 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.140401 – volume: 768 start-page: 235 year: 2017 ident: 10.1016/j.physletb.2017.07.057_br0410 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.02.064 – volume: 25 year: 2016 ident: 10.1016/j.physletb.2017.07.057_br0130 publication-title: Int. J. Mod. Phys. D – volume: 10 year: 2013 ident: 10.1016/j.physletb.2017.07.057_br0160 publication-title: J. Cosmol. Astropart. Phys. – volume: 769 start-page: 191 year: 2017 ident: 10.1016/j.physletb.2017.07.057_br0240 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.03.051 – volume: 756 start-page: 170 year: 2016 ident: 10.1016/j.physletb.2017.07.057_br0390 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.03.013 – volume: 65 year: 2002 ident: 10.1016/j.physletb.2017.07.057_br0520 publication-title: Phys. Rev. D – volume: 452 start-page: 39 year: 1999 ident: 10.1016/j.physletb.2017.07.057_br0110 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(99)00167-7 – volume: 90 year: 2014 ident: 10.1016/j.physletb.2017.07.057_br0370 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.104020 – ident: 10.1016/j.physletb.2017.07.057_br0290 – volume: 87 start-page: 577 year: 1983 ident: 10.1016/j.physletb.2017.07.057_br0320 publication-title: Commun. Math. Phys. doi: 10.1007/BF01208266 – volume: 10 year: 2014 ident: 10.1016/j.physletb.2017.07.057_br0510 publication-title: J. Cosmol. Astropart. Phys. – volume: 05 year: 2015 ident: 10.1016/j.physletb.2017.07.057_br0210 publication-title: J. Cosmol. Astropart. Phys. – volume: 21 start-page: 1725 year: 2004 ident: 10.1016/j.physletb.2017.07.057_br0150 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/21/7/001 – volume: 87 year: 2013 ident: 10.1016/j.physletb.2017.07.057_br0490 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.044002 – volume: 764 start-page: 100 year: 2017 ident: 10.1016/j.physletb.2017.07.057_br0400 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.11.017 – volume: 76 start-page: 150 year: 2016 ident: 10.1016/j.physletb.2017.07.057_br0250 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-3994-z – volume: 91 year: 2015 ident: 10.1016/j.physletb.2017.07.057_br0360 publication-title: Phys. Rev. D – volume: 1412 year: 2014 ident: 10.1016/j.physletb.2017.07.057_br0190 publication-title: J. High Energy Phys. – volume: 1207 year: 2012 ident: 10.1016/j.physletb.2017.07.057_br0340 publication-title: J. High Energy Phys. – volume: 115 year: 2015 ident: 10.1016/j.physletb.2017.07.057_br0380 publication-title: Phys. Rev. Lett. – volume: 35 start-page: 904 year: 1930 ident: 10.1016/j.physletb.2017.07.057_br0480 publication-title: Phys. Rev. doi: 10.1103/PhysRev.35.904 – volume: 718 start-page: 687 year: 2012 ident: 10.1016/j.physletb.2017.07.057_br0500 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.11.017 – volume: 43 start-page: 199 year: 1975 ident: 10.1016/j.physletb.2017.07.057_br0440 publication-title: Commun. Math. Phys. doi: 10.1007/BF02345020 – volume: 2012 year: 2012 ident: 10.1016/j.physletb.2017.07.057_br0350 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2012)110 – volume: 216 start-page: 41 year: 1989 ident: 10.1016/j.physletb.2017.07.057_br0080 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(89)91366-X – volume: 11 start-page: 35 year: 2002 ident: 10.1016/j.physletb.2017.07.057_br0120 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271802001330 – volume: 89 year: 2014 ident: 10.1016/j.physletb.2017.07.057_br0140 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.094021 – volume: 33 start-page: 2101 year: 2001 ident: 10.1016/j.physletb.2017.07.057_br0460 publication-title: Gen. Relativ. Gravit. doi: 10.1023/A:1015281430411 – volume: 76 start-page: 166 year: 2016 ident: 10.1016/j.physletb.2017.07.057_br0260 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4025-9 – volume: 93 year: 2016 ident: 10.1016/j.physletb.2017.07.057_br0170 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.043515 – volume: 83 start-page: 11 year: 2011 ident: 10.1016/j.physletb.2017.07.057_br0020 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.11 – volume: 0911 year: 2009 ident: 10.1016/j.physletb.2017.07.057_br0050 publication-title: J. High Energy Phys. – volume: 76 start-page: 212 year: 2016 ident: 10.1016/j.physletb.2017.07.057_br0280 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4057-1 – volume: 76 start-page: 296 year: 2016 ident: 10.1016/j.physletb.2017.07.057_br0230 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4119-4 – volume: 67 year: 2003 ident: 10.1016/j.physletb.2017.07.057_br0420 publication-title: Phys. Rev. D – volume: 2 start-page: 253 year: 1998 ident: 10.1016/j.physletb.2017.07.057_br0330 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – volume: 92 year: 2015 ident: 10.1016/j.physletb.2017.07.057_br0220 publication-title: Phys. Rev. D – volume: 768 start-page: 81 year: 2017 ident: 10.1016/j.physletb.2017.07.057_br0430 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.02.043 – volume: 43 start-page: 2495 year: 1991 ident: 10.1016/j.physletb.2017.07.057_br0310 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.43.2495 – volume: 708 start-page: 411 year: 2005 ident: 10.1016/j.physletb.2017.07.057_br0100 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.11.026 – volume: 109 year: 2015 ident: 10.1016/j.physletb.2017.07.057_br0180 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/109/20001 – volume: 13 start-page: 191 year: 1976 ident: 10.1016/j.physletb.2017.07.057_br0450 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.13.191 – volume: 894 start-page: 341 year: 2015 ident: 10.1016/j.physletb.2017.07.057_br0200 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2015.03.014 – volume: 21 start-page: 4511 year: 2004 ident: 10.1016/j.physletb.2017.07.057_br0470 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/21/19/001 – volume: 90 year: 2014 ident: 10.1016/j.physletb.2017.07.057_br0060 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.025026 – volume: 29 year: 2014 ident: 10.1016/j.physletb.2017.07.057_br0270 publication-title: Mod. Phys. Lett. A – volume: 690 start-page: 534 year: 2010 ident: 10.1016/j.physletb.2017.07.057_br0530 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.06.002 – volume: 91 year: 2015 ident: 10.1016/j.physletb.2017.07.057_br0070 publication-title: Phys. Rev. D |
SSID | ssj0001506 |
Score | 2.5415585 |
Snippet | In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 737 |
SubjectTerms | Black hole Rainbow gravity Thermodynamic phase transition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xf5OC1rkuTJj1OcQxBTxN2K8lrghvajVn_f1-SdtTTLkIPpWlCeO-lv_eS198j5B6cg0xXLhGpyxOuLS4pzUwiRw5coZTOA6nP61s-fecvczHvlfryOWGRHjgKbpgxyaCQVgHLeKpcoUFK5ypbCUQXE6J1xLwumGq_wZ43L5wfyDRheZH1_g1ePvg9AxSK8YldMlJ3yj-wFNj7e-jUQ5zJMTlqXUU6jlM8IXu2PiUHIWUTvs_IGDW8-VpVsaQ8XX8gHtHGQ0_IwqIrRzU1fn-O-hq4dFHTTTzMob7mEHrf52Q2eZ49TZO2IEICvGBNIqzAaMrgOrNgEPp1xaVyWjgDuTRspFFOmWK8whYMLRzjCkSqc5fjTWazC7Jfr2p7SahCRyqVGgC1ww1oI0EokEIoU6FO-YCIThwltGThvmbFZ9llhS3LToylF2OZ4iXkgAy3_daRLmNnj0cv7e3bnu46PEAjKFsjKHcZwYAUna7K1nOIHgEOtdgxgav_mMA1OfRD-kSSUXpD9pvNj71Fb6Uxd8EwfwFGOOii priority: 102 providerName: Directory of Open Access Journals |
Title | Thermodynamic phase transition of a black hole in rainbow gravity |
URI | https://dx.doi.org/10.1016/j.physletb.2017.07.057 https://doaj.org/article/3272c97e8c23408f9ac77ffded5242b0 |
Volume | 772 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9sgEEdRq0p7mfo1NesW8dBXN8QGgx-TaFHaaXlpK-XNgjNsqbokytLX_u27w3aWPuVhkmXZGBC-A353cNwxdgMhQGarkCgR8kRaj0PKpi7RgwChMMbm0anPj1k-fZL3czXvsHF7FobMKpu5v57T42zdpPQbavbXi0X_QWQaFYgCATAjUKKD5lJq6uW3b__MPMiDXtxJ0CKh3HunhJ9vafUAyePIxEvXTjz1O4CKfvz3cGoPeyan7GMjNPJh3a4z1vHLc3YSjTfhzwUbIq83v1dVHVyer38hMvEtgVC0x-KrwC13tFLHKRouXyz5pt7W4RR9COXwS_Y4-fY4niZNaIQEZJFuE-UV6lUOR5wHh0KAraQ2wargINcuHdhC-8ykssIvqGSEVBpQwuYhx4fMZ5_Y0XK19FeMGxSphLYAyCfpwDoNyoBWyrgKuSu7TLXkKKFxG07RK17K1j7suWzJWBIZS4GX0l3W35Vb144zDpYYEbV3ucnxdUxYbX6WDefLLNUp4M8ZSDMpTCgsaB1C5SuFwoYTXVa0vCrf9SOsanGgAZ__o-w1-0BvZEkyEF_Y0Xbz6r-iuLJ1vdgfe-x4ePd9OutFpR_vd_PRXyFB7ig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxshEB6lqar2EiV9KG7z4NAeN8YsLOyhh_QROc3jUlfKDQELiaPWthxXVS_5Uf2FmdlH6pxyiCLtYQULYoeBb4CPGYD3IaWQuypliqciky7ikHLCZ3qQQiqNcUXt1OfktBj-kN_O1NkK_OvuwhCtsp37mzm9nq3blH4rzf5sPO5_57nGBUSJAJgTKHXMyqP49w-u264-Hn7BTv4gxMHX0edh1oYWyIIsxSJTUeG6xKPGxuARRF0ltUlOJR8K7cXAlTrmRsgKc9BIT0KaoLgrUoEvecyx2ifwVOJsQVET9q7_00rIY199cqF5Rq1bupV8uUe7FdgdnihlunEaqu8AYh03YAkXl7DuYB3WWiOV7Tdy2ICVOHkJz2qyaLh6BfuoW_Nf06oJZs9mF4iEbEGgV_O_2DQxxzztDDKKvsvGEzZvjpEYRTtCu_81jB5DXm9gdTKdxE1gBk04rl0IqBfSB-d1UCZopYyvUJtkD1QnDhtaN-UULeOn7fhol7YToyUxWo6P0j3o35abNY467i3xiaR9-zU52q4TpvNz22qazYUWAX_OBJFLblLpgtYpVbFSaNx43oOy6yt7R2-xqvE9DXj7gLK78Hw4Ojm2x4enR-_gBeUQi2XAt2B1Mf8dt9FUWvidWjcZ2EceCzd1GCc6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+phase+transition+of+a+black+hole+in+rainbow+gravity&rft.jtitle=Physics+letters.+B&rft.au=Feng%2C+Zhong-Wen&rft.au=Yang%2C+Shu-Zheng&rft.date=2017-09-10&rft.pub=Elsevier+B.V&rft.issn=0370-2693&rft.eissn=1873-2445&rft.volume=772&rft.spage=737&rft.epage=742&rft_id=info:doi/10.1016%2Fj.physletb.2017.07.057&rft.externalDocID=S0370269317306135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon |