Development of a nomogram for predicting malignancy in BI-RADS 4 breast lesions using contrast-enhanced ultrasound and shear wave elastography parameters

This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The fea...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 1356 - 11
Main Authors Ren, Tiantian, Gao, Zhenzhen, Yang, Lufeng, Cheng, Weibo, Luo, Xiao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients ( n  = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p  < 0.05), AUC (OR = 6.920, p  < 0.05), and SWE_Max (OR = 10.802, p  < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy.
AbstractList This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy.
Abstract This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy.
This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients ( n  = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p  < 0.05), AUC (OR = 6.920, p  < 0.05), and SWE_Max (OR = 10.802, p  < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy.
This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma'anshan People's Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young's modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805-0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy.This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma'anshan People's Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young's modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805-0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy.
ArticleNumber 1356
Author Ren, Tiantian
Gao, Zhenzhen
Cheng, Weibo
Yang, Lufeng
Luo, Xiao
Author_xml – sequence: 1
  givenname: Tiantian
  surname: Ren
  fullname: Ren, Tiantian
  organization: Department of Ultrasound, The Second Affiliated Hospital of Wannan Medical College
– sequence: 2
  givenname: Zhenzhen
  surname: Gao
  fullname: Gao, Zhenzhen
  organization: Department of Ultrasound, The Second Affiliated Hospital of Wannan Medical College
– sequence: 3
  givenname: Lufeng
  surname: Yang
  fullname: Yang, Lufeng
  organization: Department of Medical Ultrasound, Ma’anshan People’s Hospital, Affiliated with Wannan Medical College
– sequence: 4
  givenname: Weibo
  surname: Cheng
  fullname: Cheng, Weibo
  email: cwb960235@126.com
  organization: Department of Ultrasound, The Second Affiliated Hospital of Wannan Medical College
– sequence: 5
  givenname: Xiao
  surname: Luo
  fullname: Luo, Xiao
  email: imagingcenter@163.com
  organization: Department of Radiology, The Second Affiliated Hospital of Wannan Medical College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39779822$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvpC7BAltiwCfiasVeotFxGqoTEZW059kkmo8QOdjJ0HoW3xemU0rLAsmX7-Dv_sa3_aXHkg4eieE7wa4KZfJM4EUqWmIpSClnR8vpRcUIxFyVllB7dWx8XZyltcW6CKk7Uk-KYqdVKSUpPil-XsIM-jAP4CYUGGeTDENpoBtSEiMYIrrNT51s0mL5rvfF2jzqP3q3LL-eXXxFHdQSTJtRD6oJPaE4LbIOfYg6X4Dc5BRya-yUQZu-QySNtwET00-wAQZ_BpeS42aPR5NIwQUzPiseN6ROc3c6nxfcP779dfCqvPn9cX5xflZYrOpW8IjVTkktHsKuoI1UDWFTSsaUrVVtDuK1t3UCjKodrJlYSg2uI4iuwhp0W64OuC2arx9gNJu51MJ2-CYTYahOnzvagCTVW0spyUgnOpciaedMYI0STFaus9fagNc71AM7C8gv9A9GHJ77b6DbsNCErQohkWeHVrUIMP2ZIkx66ZKHvjYcwJ82IYFLS_IiMvvwH3YY5-vxXC0UlplziTL24f6W7u_yxQAboAbAxpBShuUMI1ovV9MFqOltN31hNX-ckdkhKGfYtxL-1_5P1G09f2fo
Cites_doi 10.1038/s41598-021-96137-6
10.1002/jum.16154
10.7150/thno.18650
10.1177/1533033820971583
10.1016/j.ultrasmedbio.2023.02.016
10.1016/j.clbc.2023.06.002
10.1177/0284185120983568
10.5604/01.3001.0014.5676
10.1038/s41598-023-39686-2
10.3233/ch-180398
10.3389/fonc.2022.1027784
10.3322/caac.21660
10.1097/rli.0000000000000972
10.21037/gs.2017.03.09
10.1148/radiol.11110789
10.1148/rg.2016150178
10.21037/qims-21-341
10.3389/fonc.2022.876487
10.21037/gs-23-165
10.14366/usg.17024
10.1155/2022/2017026
10.1007/s10549-020-05609-2
10.1016/j.ebiom.2021.103684
10.1186/s40644-023-00539-w
10.20892/j.issn.2095-3941.2021.0676
10.1097/md.0000000000007412
10.1016/j.ultrasmedbio.2018.01.022
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-85862-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_12ac826c41654485bfe6c4faa55fedf6
PMC11711183
39779822
10_1038_s41598_025_85862_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ma’anshan People’s Hospital Youth Scientific Research Fund
  grantid: YQ-2022-1; YQ-2022-1; YQ-2022-1; YQ-2022-1; YQ-2022-1
– fundername: Ma'anshan People's Hospital Youth Scientific Research Fund
  grantid: YQ-2022-1
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-461b39848d10d62d16fe0568d38d3899bca14cbcbfef96d0b35780edf1947eca3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:13:26 EDT 2025
Thu Aug 21 18:29:08 EDT 2025
Tue Aug 05 10:52:42 EDT 2025
Wed Aug 13 08:43:59 EDT 2025
Mon Jul 21 06:04:36 EDT 2025
Tue Jul 01 02:06:42 EDT 2025
Fri Feb 21 02:34:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords LASSO regression
Contrast-enhanced ultrasound quantitative parameters
BI-RADS classification
Shear wave elastography parameters
Nomogram
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-461b39848d10d62d16fe0568d38d3899bca14cbcbfef96d0b35780edf1947eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3152802480?pq-origsite=%requestingapplication%
PMID 39779822
PQID 3152802480
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_12ac826c41654485bfe6c4faa55fedf6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11711183
proquest_miscellaneous_3153882357
proquest_journals_3152802480
pubmed_primary_39779822
crossref_primary_10_1038_s41598_025_85862_x
springer_journals_10_1038_s41598_025_85862_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-08
PublicationDateYYYYMMDD 2025-01-08
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JH Youk (85862_CR7) 2017; 36
C Jia (85862_CR13) 2023; 12
T Ren (85862_CR14) 2023; 42
RMS Sigrist (85862_CR18) 2017; 7
Q Li (85862_CR4) 2018; 44
AA Rao (85862_CR10) 2016; 36
H Sung (85862_CR1) 2021; 71
L Yin (85862_CR26) 2022; 12
J Lu (85862_CR28) 2020; 19
SA Salati (85862_CR22) 2020; 93
W Liu (85862_CR24) 2020; 181
H Weng (85862_CR15) 2023; 49
J Chen (85862_CR6) 2022; 12
CF Wan (85862_CR11) 2012; 262
R Ding (85862_CR3) 2022; 19
C Wang (85862_CR9) 2023; 13
M Yan (85862_CR17) 2023; 23
RG Barr (85862_CR8) 2023; 58
BY Zhou (85862_CR19) 2021; 74
H Pu (85862_CR21) 2019; 71
Y Xue (85862_CR20) 2017; 96
EM Jung (85862_CR23) 2021; 11
T Cortadellas (85862_CR5) 2017; 6
Y Tang (85862_CR12) 2022; 12
N Toprak (85862_CR27) 2022; 63
Y Yuan (85862_CR16) 2022; 2022
B Wang (85862_CR25) 2023; 23
85862_CR2
References_xml – volume: 11
  start-page: 17677
  year: 2021
  ident: 85862_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96137-6
– volume: 42
  start-page: 1459
  year: 2023
  ident: 85862_CR14
  publication-title: J. Ultrasound Med.
  doi: 10.1002/jum.16154
– volume: 7
  start-page: 1303
  year: 2017
  ident: 85862_CR18
  publication-title: Theranostics
  doi: 10.7150/thno.18650
– volume: 19
  start-page: 153303382097158
  year: 2020
  ident: 85862_CR28
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/1533033820971583
– volume: 49
  start-page: 1535
  year: 2023
  ident: 85862_CR15
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2023.02.016
– volume: 23
  start-page: 693
  year: 2023
  ident: 85862_CR17
  publication-title: Clin. Breast Cancer
  doi: 10.1016/j.clbc.2023.06.002
– ident: 85862_CR2
– volume: 63
  start-page: 28
  year: 2022
  ident: 85862_CR27
  publication-title: Acta Radiol.
  doi: 10.1177/0284185120983568
– volume: 93
  start-page: 40
  year: 2020
  ident: 85862_CR22
  publication-title: Pol. Przegl Chir.
  doi: 10.5604/01.3001.0014.5676
– volume: 13
  start-page: 12340
  year: 2023
  ident: 85862_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-39686-2
– volume: 71
  start-page: 83
  year: 2019
  ident: 85862_CR21
  publication-title: Clin. Hemorheol Microcirc
  doi: 10.3233/ch-180398
– volume: 12
  start-page: 1027784
  year: 2022
  ident: 85862_CR6
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.1027784
– volume: 71
  start-page: 209
  year: 2021
  ident: 85862_CR1
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 58
  start-page: 703
  year: 2023
  ident: 85862_CR8
  publication-title: Invest. Radiol.
  doi: 10.1097/rli.0000000000000972
– volume: 6
  start-page: 330
  year: 2017
  ident: 85862_CR5
  publication-title: Gland Surg.
  doi: 10.21037/gs.2017.03.09
– volume: 262
  start-page: 450
  year: 2012
  ident: 85862_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.11110789
– volume: 36
  start-page: 623
  year: 2016
  ident: 85862_CR10
  publication-title: Radiographics
  doi: 10.1148/rg.2016150178
– volume: 12
  start-page: 1223
  year: 2022
  ident: 85862_CR12
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-21-341
– volume: 12
  start-page: 876487
  year: 2022
  ident: 85862_CR26
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.876487
– volume: 12
  start-page: 824
  year: 2023
  ident: 85862_CR13
  publication-title: Gland Surg.
  doi: 10.21037/gs-23-165
– volume: 36
  start-page: 300
  year: 2017
  ident: 85862_CR7
  publication-title: Ultrasonography
  doi: 10.14366/usg.17024
– volume: 2022
  start-page: 2017026
  year: 2022
  ident: 85862_CR16
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/2017026
– volume: 181
  start-page: 127
  year: 2020
  ident: 85862_CR24
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-020-05609-2
– volume: 74
  start-page: 103684
  year: 2021
  ident: 85862_CR19
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103684
– volume: 23
  start-page: 25
  year: 2023
  ident: 85862_CR25
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-023-00539-w
– volume: 19
  start-page: 450
  year: 2022
  ident: 85862_CR3
  publication-title: Cancer Biol. Med.
  doi: 10.20892/j.issn.2095-3941.2021.0676
– volume: 96
  start-page: e7412
  year: 2017
  ident: 85862_CR20
  publication-title: Med. (Baltim).
  doi: 10.1097/md.0000000000007412
– volume: 44
  start-page: 919
  year: 2018
  ident: 85862_CR4
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2018.01.022
SSID ssj0000529419
Score 2.4370458
Snippet This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from...
Abstract This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1356
SubjectTerms 692/308
692/4028
Adult
Aged
BI-RADS classification
Biopsy
Breast
Breast - diagnostic imaging
Breast - pathology
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Calibration
Contrast Media
Contrast-enhanced ultrasound quantitative parameters
Elasticity Imaging Techniques - methods
Female
Humanities and Social Sciences
Humans
LASSO regression
Lesions
Malignancy
Mechanical properties
Middle Aged
multidisciplinary
Nomogram
Nomograms
ROC Curve
Science
Science (multidisciplinary)
Shear wave elastography parameters
Ultrasonic imaging
Ultrasonography, Mammary - methods
Ultrasound
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQpEm8IGD8yBjokHiDaHHipPbjNpgGEjwAk_Zm2cl5m7Sm05LC9qfw33LnpKUdIF6Q2oc6qeT67nqf4---E-KV9pL-8hBpkyMxVd5TSJWTJi0JKnhjkBAJVyN__FQdHasPJ-XJSqsv5oQN8sDDwu3K3NUEgWvFZTdKlz4gfQjOlWXAJkSxbcp5K5upQdU7N0qasUomK_RuR5mKq8nyMtUlwfj0ei0TRcH-P6HM38mSt05MYyI6vC_ujQgS9oaZPxB3sH0oNoeekjdb4scKDQhmARy0s2nkYAHhU7i84pMZ5jrDlCD4Kett3MB5C_vv0897b7-AAs889R4ukB-kdcDM-FOIlHYaTrE9i6QBmF_wAHdlAkfvjltjw3f3DQEJkfejFDawtviUOTfdI3F8-O7rwVE69l9Ia2XyPlWV9IXRSjcya6q8kVVAwku6KfhljK-dVLWvySTBVE3mWTknI6NIoyZYu-Kx2GhnLT7lyvA6VFg50xB80Q19t8Lc6TJ4nYWJx0S8XtjCXg4yGzYejxfaDpazZDkbLWevE7HP5lreyRLZcYAcx46OY__lOInYWRjbjnHb2YLgjGaZtywRL5eXKeL4GMW1OJvHewral9CPTcSTwTeWM2E4zYqIidBrXrM21fUr7flZVPWWckJ5RxeJeLNwsF_z-vtabP-PtXgm7uYcGfxoSe-Ijf5qjs8JbPX-RYyrn4OUKsM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELamISReEL8JDGQk3iAQJ05qPyC0MaaBNB6ASnuz7OTcTWqT0bSw_in8t9w5SUehICUPcRLpkruLv4vvvmPsuXICP3kAGOQIiKVz6FL5qIpzhApOa0BEQtXIJ5-K47H8eJqf7rCh3VH_AtutoR31kxrPp68uv63eosO_6UrG1esWJyEqFEvzWOWI0GPElNdwZhqRo570cL_j-k61FLqvndl-68b8FGj8t2HPv1Mo_1hHDdPT0S12s8eVfL8zhNtsB-o77HrXaXJ1l_38LTmIN55bXjezkJnFEbXyizmt11AGNJ8hMJ8QC8eKn9f84EP8ef_wC5fcUfb6gk-Bfq-1nPLlJzwkuuNwDPVZSCXgyykNUK8mbnFvqWE2_2G_AwfE6YueIJsT4_iMMnHae2x89P7ru-O478oQl1Kni1gWwmVaSVWJpCrSShQeEEWpKqNNa1daIUtXOg9eF1XiiE8ngcoLLUdQ2uw-262bGh5SvXjpCyisrhDUqArvLSC1KvdOJX7kIGIvBl2Yi458w4RF80yZTnMGNWeC5sxlxA5IXesriTg7DDTzien90IjUlhhRlZKquKTKUUo88NbmuUcZi4jtDco2gzGaDEGOIvK3JGLP1qfRD2lxxdbQLMM1GUYr-LARe9DZxloSAtnEkxgxtWE1G6JunqnPzwLXt0Arxhgwi9jLwcCu5Pr3u3j0_8d4zG6kZPP0K0ntsd3FfAlPEFwt3NPgMb8AlhAk2g
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWqIiQuqHyHFjRI3CAiThyvfWwXqoIEB6BSb5ad2NtKbFLtZvvxU_pvmXGShYVyQMoe4jjSbGYmfo7fPDP2WjmOrzzvcZLDfSqcw5QqJ3VaIlRwWntEJFSN_PmLPDoWn07Kky2Wj7UwkbQfJS3ja3pkh71b4kBDxWB5maoSUXiKuPEOSbdTVE_ldP1dhVauBNdDfUxWqFtu3RiDolT_bfjyb5rkH2ulcQg63GH3B-wI-721D9iWbx6yu_1ukteP2M1vBCBoA1ho2nlkXwEiUzhf0JoMsZxhjuB7Rkob13DWwMHH9Ov--28gwBFDvQN8EhSMQJz4GUQyOzanvjmNdAFY_aAG2o8JLP6WtCk2XNoLDx6xeDeIYAOpis-JbbN8zI4PP3yfHqXDzgtpJXTepUJyV2glVM2zWuY1l8EjUlJ1QYfWrrJcVK5ywQct68yRZk7m68C1mPjKFk_YdtM2_hnVhFdBeml1jcBF1Xiv9LlVZXAqCxPnE_Zm9IU57wU2TFwYL5TpPWfQcyZ6zlwl7IDcte5J4tixoV3MzBAshue2wllTJahSS6gSrcSTYG1ZBrRRJmxvdLYZMnZpCgQyigTesoS9Wl_GXKMFFNv4dhX7FDgjwT-bsKd9bKwtISBNWogJUxtRs2Hq5pXm7DTqeXM-wRFHFQl7OwbYL7v-_Sye_1_3XXYvpxygz0dqj213i5V_gYCqcy9jBv0EUGgf1A
  priority: 102
  providerName: Springer Nature
Title Development of a nomogram for predicting malignancy in BI-RADS 4 breast lesions using contrast-enhanced ultrasound and shear wave elastography parameters
URI https://link.springer.com/article/10.1038/s41598-025-85862-x
https://www.ncbi.nlm.nih.gov/pubmed/39779822
https://www.proquest.com/docview/3152802480
https://www.proquest.com/docview/3153882357
https://pubmed.ncbi.nlm.nih.gov/PMC11711183
https://doaj.org/article/12ac826c41654485bfe6c4faa55fedf6
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgExIviDuBURmJN7AWJ05iP6G2bBqVNqGNSX2L7MTuJq1JaVLYfgr_lnOctKPcpKZVnURycnz5fM7n7xDyVhoOQ561sMjhlgljoEslWckSgApGKQuIBHcjH5-kR-diMk2mvcOt6WmV6zHRD9RlXaCPfD-GiUaiAFf4YfGVYdYojK72KTTukl2ULkNKVzbNNj4WjGIJrvq9MmEs9xuYr3BPWZQwmQCYZ9db85GX7f8b1vyTMvlb3NRPR4cPyYMeR9JhZ_hH5I6tHpN7XWbJmyfkxy9kIFo7qmlVzz0TiwJKpYslxmeQ8UznAMRnqLpxQy8rOvrETocfz6igBtnqLb2y6E5rKPLjZ9QT26GY2erCUwfo6goLMDcT1XA0mCCbftffLLWAy9teEJuiwvgcmTfNU3J-ePBlfMT6LAysECpqmUi5iZUUsuRhmUYlT50F1CTLGD9KmUJzUZjCOOtUWoYG9XNCWzquRGYLHT8jO1Vd2Re4P7xwqU21KgHEyBLuTW2kZeKMDF1mbEDerW2RLzqxjdwHyWOZd5bLwXK5t1x-HZARmmtzJQpl-4J6Ocv7fpfzSBewgioE7toSMoFawh-ndZI4qGMakL21sfO-9zb5bVsLyJvNaeh3GEzRla1X_poYVifwsAF53rWNTU0QVKMuYkDkVqvZqur2merywmt7c57B7CPjgLxfN7Dbev37Xbz8_2O8IvcjbPPoOpJ7ZKddruxrAFOtGfgeMyC7w-HkbAK_o4OTz6dQOk7HA--ggO9jIX8CU7MnJg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAosEJ7Dqx9pZHxBqaKuGthEqrdTbdtdep5UaO8QJbX4Kf4LfyMzaTgmvW6XkkLUTjTMzO9_svABeC-3jlmcMOjm-cbnWqFJRN3MjhAo6SQwiEqpG3h_EO0f803F0vAI_2loYSqts90S7UWdlSmfk6yEaGkENuLwP468uTY2i6Go7QqMWi10zv0CXrXrf30T-vgmC7a3DjztuM1XATXkSTF0e-zpMBBeZ72VxkPlxbhAFiCykV5LoVPk81anOTZ7EmaepH4xnshzd_a5JVYi_ewNWeYiuTAdWe1uDzweLUx2Km3E_aapzvFCsV2ghqYotiFwRofvgXi5ZQDso4G_o9s8kzd8itdYAbt-FOw1yZRu1qN2DFVPch5v1LMv5A_j-S_oRK3OmWFGObO4XQ1zMxhOKCFGONRsh9B9Sn485OytYr-8ebGx-YZxpyo-fsnNDB3gVo4z8IbOp9LjsmuLUJiuw2Tkt0DQopvBd0UhudqG-GWbQE5g2LbgZ9TQfUa5P9RCOroVDj6BTlIV5QhXpaR6bWCUZwiaR4XdjEygR5Vp4eVcbB962vJDjur2HtGH5UMiacxI5Jy3n5KUDPWLX4k5qzW0XyslQNpou_UCl6LOlnOrEuIiQSvyQKxVFOdIYO7DWMls2-0Ulr6TbgVeLy6jpFL5RhSln9p4Q_SF8WAce17KxoIRgPHVidEAsSc0SqctXirNT203c97to70TowLtWwK7o-vd_8fT_j_ESbu0c7u_Jvf5g9xncDkj-6eBKrEFnOpmZ5wjlpvpFoz8MTq5bZX8C6_1gQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGEIgXxH8CA4wETxA1TpzEeUBoo1QrgwkBk_rm2YndTVqT0rRs_Sh8FT4dd07SUf69TWof6qTVpXfnu_P97o6QZ0Iz2PKMgSCHGZ9rDSoVp4Ufg6ugs8yAR4LVyB_2k90D_m4UjzbIj64WBmGV3Z7oNuqiyvGMvBeBoRHYgCvo2RYW8bE_eD396uMEKcy0duM0GhHZM8tTCN_qV8M-8Pp5GA7efnmz67cTBvycZ-Hc5wnTUSa4KFhQJGHBEmvAIxBFhK8s07liPNe5tsZmSRFo7A0TmMJC6J-aXEXwu5fI5TSKGepYOkpX5zuYQeMsa-t0gkj0arCVWM8Wxr6IIZDwz9ZsoRsZ8Dc_90-45m85W2cKBzfI9daHpduN0N0kG6a8Ra40Uy2Xt8n3X4BItLJU0bKaOBQYBQ-ZTmeYG0K0NZ1AEDDGjh9LelzSnaH_abv_mXKqESk_pycGj_Jqitj8MXWgelj2TXnkYAt0cYILOBeKKnjXOJybnqpvhhqICeZtM26K3c0niPqp75CDC-HPXbJZVqW5j7XpuU1MorICHChRwHcTEyoRWy0Cm2rjkRcdL-S0afQhXYI-ErLhnATOScc5eeaRHWTX6k5s0u0WqtlYtjovWahyiN5yjhVjXMRAJXywSsWxBRoTj2x1zJbtzlHLczn3yNPVZdB5TOSo0lQLd08EkRE8rEfuNbKxogQdeuzJ6BGxJjVrpK5fKY-PXF9xxlKwfCLyyMtOwM7p-vd_8eD_j_GEXAVFle-H-3sPybUQxR9PsMQW2ZzPFuYR-HRz_dgpDyWHF62tPwEpGGMR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+nomogram+for+predicting+malignancy+in+BI-RADS+4+breast+lesions+using+contrast-enhanced+ultrasound+and+shear+wave+elastography+parameters&rft.jtitle=Scientific+reports&rft.date=2025-01-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1356&rft_id=info:doi/10.1038%2Fs41598-025-85862-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon