Development of a nomogram for predicting malignancy in BI-RADS 4 breast lesions using contrast-enhanced ultrasound and shear wave elastography parameters
This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The fea...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 1356 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (
n
= 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788,
p
< 0.05), AUC (OR = 6.920,
p
< 0.05), and SWE_Max (OR = 10.802,
p
< 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy. |
---|---|
AbstractList | This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy. Abstract This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy. This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients ( n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma’anshan People’s Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young’s modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805–0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy. This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma'anshan People's Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young's modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805-0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy.This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma'anshan People's Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study. The histopathological results served as the gold standard. A time-intensity curve (TIC) was used to analyze the peak intensity (PI), area under the curve (AUC), and other CEUS parameters. The Young's modulus was used for the SWE analysis. Bootstrap sampling was used to validate the nomogram. The performance of the model was evaluated using calibration curves, receiver operator characteristics curve (ROC) analysis, and decision curve analysis (DCA). The histopathological analysis revealed 35 malignant and 76 benign BLs. The multivariate LR analysis identified PI (odds ratio [OR] = 5.788, p < 0.05), AUC (OR = 6.920, p < 0.05), and SWE_Max (OR = 10.802, p < 0.05) as predictive of malignancy. The nomogram based on these features demonstrated an AUC of 0.875 (95% CI 0.805-0.945), sensitivity of 88.6%, specificity of 68.4%, good calibration, and excellent clinical utility. The nomogram could be used to improve the classification of BI-RADS 4 BLs and hence reduce the need for invasive biopsies to confirm malignancy. |
ArticleNumber | 1356 |
Author | Ren, Tiantian Gao, Zhenzhen Cheng, Weibo Yang, Lufeng Luo, Xiao |
Author_xml | – sequence: 1 givenname: Tiantian surname: Ren fullname: Ren, Tiantian organization: Department of Ultrasound, The Second Affiliated Hospital of Wannan Medical College – sequence: 2 givenname: Zhenzhen surname: Gao fullname: Gao, Zhenzhen organization: Department of Ultrasound, The Second Affiliated Hospital of Wannan Medical College – sequence: 3 givenname: Lufeng surname: Yang fullname: Yang, Lufeng organization: Department of Medical Ultrasound, Ma’anshan People’s Hospital, Affiliated with Wannan Medical College – sequence: 4 givenname: Weibo surname: Cheng fullname: Cheng, Weibo email: cwb960235@126.com organization: Department of Ultrasound, The Second Affiliated Hospital of Wannan Medical College – sequence: 5 givenname: Xiao surname: Luo fullname: Luo, Xiao email: imagingcenter@163.com organization: Department of Radiology, The Second Affiliated Hospital of Wannan Medical College |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39779822$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNUREvpC7BAltiwCfiasVeotFxGqoTEZW059kkmo8QOdjJ0HoW3xemU0rLAsmX7-Dv_sa3_aXHkg4eieE7wa4KZfJM4EUqWmIpSClnR8vpRcUIxFyVllB7dWx8XZyltcW6CKk7Uk-KYqdVKSUpPil-XsIM-jAP4CYUGGeTDENpoBtSEiMYIrrNT51s0mL5rvfF2jzqP3q3LL-eXXxFHdQSTJtRD6oJPaE4LbIOfYg6X4Dc5BRya-yUQZu-QySNtwET00-wAQZ_BpeS42aPR5NIwQUzPiseN6ROc3c6nxfcP779dfCqvPn9cX5xflZYrOpW8IjVTkktHsKuoI1UDWFTSsaUrVVtDuK1t3UCjKodrJlYSg2uI4iuwhp0W64OuC2arx9gNJu51MJ2-CYTYahOnzvagCTVW0spyUgnOpciaedMYI0STFaus9fagNc71AM7C8gv9A9GHJ77b6DbsNCErQohkWeHVrUIMP2ZIkx66ZKHvjYcwJ82IYFLS_IiMvvwH3YY5-vxXC0UlplziTL24f6W7u_yxQAboAbAxpBShuUMI1ovV9MFqOltN31hNX-ckdkhKGfYtxL-1_5P1G09f2fo |
Cites_doi | 10.1038/s41598-021-96137-6 10.1002/jum.16154 10.7150/thno.18650 10.1177/1533033820971583 10.1016/j.ultrasmedbio.2023.02.016 10.1016/j.clbc.2023.06.002 10.1177/0284185120983568 10.5604/01.3001.0014.5676 10.1038/s41598-023-39686-2 10.3233/ch-180398 10.3389/fonc.2022.1027784 10.3322/caac.21660 10.1097/rli.0000000000000972 10.21037/gs.2017.03.09 10.1148/radiol.11110789 10.1148/rg.2016150178 10.21037/qims-21-341 10.3389/fonc.2022.876487 10.21037/gs-23-165 10.14366/usg.17024 10.1155/2022/2017026 10.1007/s10549-020-05609-2 10.1016/j.ebiom.2021.103684 10.1186/s40644-023-00539-w 10.20892/j.issn.2095-3941.2021.0676 10.1097/md.0000000000007412 10.1016/j.ultrasmedbio.2018.01.022 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-85862-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_12ac826c41654485bfe6c4faa55fedf6 PMC11711183 39779822 10_1038_s41598_025_85862_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ma’anshan People’s Hospital Youth Scientific Research Fund grantid: YQ-2022-1; YQ-2022-1; YQ-2022-1; YQ-2022-1; YQ-2022-1 – fundername: Ma'anshan People's Hospital Youth Scientific Research Fund grantid: YQ-2022-1 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-461b39848d10d62d16fe0568d38d3899bca14cbcbfef96d0b35780edf1947eca3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:13:26 EDT 2025 Thu Aug 21 18:29:08 EDT 2025 Tue Aug 05 10:52:42 EDT 2025 Wed Aug 13 08:43:59 EDT 2025 Mon Jul 21 06:04:36 EDT 2025 Tue Jul 01 02:06:42 EDT 2025 Fri Feb 21 02:34:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | LASSO regression Contrast-enhanced ultrasound quantitative parameters BI-RADS classification Shear wave elastography parameters Nomogram |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-461b39848d10d62d16fe0568d38d3899bca14cbcbfef96d0b35780edf1947eca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3152802480?pq-origsite=%requestingapplication% |
PMID | 39779822 |
PQID | 3152802480 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_12ac826c41654485bfe6c4faa55fedf6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11711183 proquest_miscellaneous_3153882357 proquest_journals_3152802480 pubmed_primary_39779822 crossref_primary_10_1038_s41598_025_85862_x springer_journals_10_1038_s41598_025_85862_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-08 |
PublicationDateYYYYMMDD | 2025-01-08 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JH Youk (85862_CR7) 2017; 36 C Jia (85862_CR13) 2023; 12 T Ren (85862_CR14) 2023; 42 RMS Sigrist (85862_CR18) 2017; 7 Q Li (85862_CR4) 2018; 44 AA Rao (85862_CR10) 2016; 36 H Sung (85862_CR1) 2021; 71 L Yin (85862_CR26) 2022; 12 J Lu (85862_CR28) 2020; 19 SA Salati (85862_CR22) 2020; 93 W Liu (85862_CR24) 2020; 181 H Weng (85862_CR15) 2023; 49 J Chen (85862_CR6) 2022; 12 CF Wan (85862_CR11) 2012; 262 R Ding (85862_CR3) 2022; 19 C Wang (85862_CR9) 2023; 13 M Yan (85862_CR17) 2023; 23 RG Barr (85862_CR8) 2023; 58 BY Zhou (85862_CR19) 2021; 74 H Pu (85862_CR21) 2019; 71 Y Xue (85862_CR20) 2017; 96 EM Jung (85862_CR23) 2021; 11 T Cortadellas (85862_CR5) 2017; 6 Y Tang (85862_CR12) 2022; 12 N Toprak (85862_CR27) 2022; 63 Y Yuan (85862_CR16) 2022; 2022 B Wang (85862_CR25) 2023; 23 85862_CR2 |
References_xml | – volume: 11 start-page: 17677 year: 2021 ident: 85862_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-021-96137-6 – volume: 42 start-page: 1459 year: 2023 ident: 85862_CR14 publication-title: J. Ultrasound Med. doi: 10.1002/jum.16154 – volume: 7 start-page: 1303 year: 2017 ident: 85862_CR18 publication-title: Theranostics doi: 10.7150/thno.18650 – volume: 19 start-page: 153303382097158 year: 2020 ident: 85862_CR28 publication-title: Technol. Cancer Res. Treat. doi: 10.1177/1533033820971583 – volume: 49 start-page: 1535 year: 2023 ident: 85862_CR15 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2023.02.016 – volume: 23 start-page: 693 year: 2023 ident: 85862_CR17 publication-title: Clin. Breast Cancer doi: 10.1016/j.clbc.2023.06.002 – ident: 85862_CR2 – volume: 63 start-page: 28 year: 2022 ident: 85862_CR27 publication-title: Acta Radiol. doi: 10.1177/0284185120983568 – volume: 93 start-page: 40 year: 2020 ident: 85862_CR22 publication-title: Pol. Przegl Chir. doi: 10.5604/01.3001.0014.5676 – volume: 13 start-page: 12340 year: 2023 ident: 85862_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-023-39686-2 – volume: 71 start-page: 83 year: 2019 ident: 85862_CR21 publication-title: Clin. Hemorheol Microcirc doi: 10.3233/ch-180398 – volume: 12 start-page: 1027784 year: 2022 ident: 85862_CR6 publication-title: Front. Oncol. doi: 10.3389/fonc.2022.1027784 – volume: 71 start-page: 209 year: 2021 ident: 85862_CR1 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 58 start-page: 703 year: 2023 ident: 85862_CR8 publication-title: Invest. Radiol. doi: 10.1097/rli.0000000000000972 – volume: 6 start-page: 330 year: 2017 ident: 85862_CR5 publication-title: Gland Surg. doi: 10.21037/gs.2017.03.09 – volume: 262 start-page: 450 year: 2012 ident: 85862_CR11 publication-title: Radiology doi: 10.1148/radiol.11110789 – volume: 36 start-page: 623 year: 2016 ident: 85862_CR10 publication-title: Radiographics doi: 10.1148/rg.2016150178 – volume: 12 start-page: 1223 year: 2022 ident: 85862_CR12 publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-21-341 – volume: 12 start-page: 876487 year: 2022 ident: 85862_CR26 publication-title: Front. Oncol. doi: 10.3389/fonc.2022.876487 – volume: 12 start-page: 824 year: 2023 ident: 85862_CR13 publication-title: Gland Surg. doi: 10.21037/gs-23-165 – volume: 36 start-page: 300 year: 2017 ident: 85862_CR7 publication-title: Ultrasonography doi: 10.14366/usg.17024 – volume: 2022 start-page: 2017026 year: 2022 ident: 85862_CR16 publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/2017026 – volume: 181 start-page: 127 year: 2020 ident: 85862_CR24 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-020-05609-2 – volume: 74 start-page: 103684 year: 2021 ident: 85862_CR19 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103684 – volume: 23 start-page: 25 year: 2023 ident: 85862_CR25 publication-title: Cancer Imaging doi: 10.1186/s40644-023-00539-w – volume: 19 start-page: 450 year: 2022 ident: 85862_CR3 publication-title: Cancer Biol. Med. doi: 10.20892/j.issn.2095-3941.2021.0676 – volume: 96 start-page: e7412 year: 2017 ident: 85862_CR20 publication-title: Med. (Baltim). doi: 10.1097/md.0000000000007412 – volume: 44 start-page: 919 year: 2018 ident: 85862_CR4 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.01.022 |
SSID | ssj0000529419 |
Score | 2.4370458 |
Snippet | This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from... Abstract This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1356 |
SubjectTerms | 692/308 692/4028 Adult Aged BI-RADS classification Biopsy Breast Breast - diagnostic imaging Breast - pathology Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Calibration Contrast Media Contrast-enhanced ultrasound quantitative parameters Elasticity Imaging Techniques - methods Female Humanities and Social Sciences Humans LASSO regression Lesions Malignancy Mechanical properties Middle Aged multidisciplinary Nomogram Nomograms ROC Curve Science Science (multidisciplinary) Shear wave elastography parameters Ultrasonic imaging Ultrasonography, Mammary - methods Ultrasound |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQpEm8IGD8yBjokHiDaHHipPbjNpgGEjwAk_Zm2cl5m7Sm05LC9qfw33LnpKUdIF6Q2oc6qeT67nqf4---E-KV9pL-8hBpkyMxVd5TSJWTJi0JKnhjkBAJVyN__FQdHasPJ-XJSqsv5oQN8sDDwu3K3NUEgWvFZTdKlz4gfQjOlWXAJkSxbcp5K5upQdU7N0qasUomK_RuR5mKq8nyMtUlwfj0ei0TRcH-P6HM38mSt05MYyI6vC_ujQgS9oaZPxB3sH0oNoeekjdb4scKDQhmARy0s2nkYAHhU7i84pMZ5jrDlCD4Kett3MB5C_vv0897b7-AAs889R4ukB-kdcDM-FOIlHYaTrE9i6QBmF_wAHdlAkfvjltjw3f3DQEJkfejFDawtviUOTfdI3F8-O7rwVE69l9Ia2XyPlWV9IXRSjcya6q8kVVAwku6KfhljK-dVLWvySTBVE3mWTknI6NIoyZYu-Kx2GhnLT7lyvA6VFg50xB80Q19t8Lc6TJ4nYWJx0S8XtjCXg4yGzYejxfaDpazZDkbLWevE7HP5lreyRLZcYAcx46OY__lOInYWRjbjnHb2YLgjGaZtywRL5eXKeL4GMW1OJvHewral9CPTcSTwTeWM2E4zYqIidBrXrM21fUr7flZVPWWckJ5RxeJeLNwsF_z-vtabP-PtXgm7uYcGfxoSe-Ijf5qjs8JbPX-RYyrn4OUKsM priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELamISReEL8JDGQk3iAQJ05qPyC0MaaBNB6ASnuz7OTcTWqT0bSw_in8t9w5SUehICUPcRLpkruLv4vvvmPsuXICP3kAGOQIiKVz6FL5qIpzhApOa0BEQtXIJ5-K47H8eJqf7rCh3VH_AtutoR31kxrPp68uv63eosO_6UrG1esWJyEqFEvzWOWI0GPElNdwZhqRo570cL_j-k61FLqvndl-68b8FGj8t2HPv1Mo_1hHDdPT0S12s8eVfL8zhNtsB-o77HrXaXJ1l_38LTmIN55bXjezkJnFEbXyizmt11AGNJ8hMJ8QC8eKn9f84EP8ef_wC5fcUfb6gk-Bfq-1nPLlJzwkuuNwDPVZSCXgyykNUK8mbnFvqWE2_2G_AwfE6YueIJsT4_iMMnHae2x89P7ru-O478oQl1Kni1gWwmVaSVWJpCrSShQeEEWpKqNNa1daIUtXOg9eF1XiiE8ngcoLLUdQ2uw-262bGh5SvXjpCyisrhDUqArvLSC1KvdOJX7kIGIvBl2Yi458w4RF80yZTnMGNWeC5sxlxA5IXesriTg7DDTzien90IjUlhhRlZKquKTKUUo88NbmuUcZi4jtDco2gzGaDEGOIvK3JGLP1qfRD2lxxdbQLMM1GUYr-LARe9DZxloSAtnEkxgxtWE1G6JunqnPzwLXt0Arxhgwi9jLwcCu5Pr3u3j0_8d4zG6kZPP0K0ntsd3FfAlPEFwt3NPgMb8AlhAk2g priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWqIiQuqHyHFjRI3CAiThyvfWwXqoIEB6BSb5ad2NtKbFLtZvvxU_pvmXGShYVyQMoe4jjSbGYmfo7fPDP2WjmOrzzvcZLDfSqcw5QqJ3VaIlRwWntEJFSN_PmLPDoWn07Kky2Wj7UwkbQfJS3ja3pkh71b4kBDxWB5maoSUXiKuPEOSbdTVE_ldP1dhVauBNdDfUxWqFtu3RiDolT_bfjyb5rkH2ulcQg63GH3B-wI-721D9iWbx6yu_1ukteP2M1vBCBoA1ho2nlkXwEiUzhf0JoMsZxhjuB7Rkob13DWwMHH9Ov--28gwBFDvQN8EhSMQJz4GUQyOzanvjmNdAFY_aAG2o8JLP6WtCk2XNoLDx6xeDeIYAOpis-JbbN8zI4PP3yfHqXDzgtpJXTepUJyV2glVM2zWuY1l8EjUlJ1QYfWrrJcVK5ywQct68yRZk7m68C1mPjKFk_YdtM2_hnVhFdBeml1jcBF1Xiv9LlVZXAqCxPnE_Zm9IU57wU2TFwYL5TpPWfQcyZ6zlwl7IDcte5J4tixoV3MzBAshue2wllTJahSS6gSrcSTYG1ZBrRRJmxvdLYZMnZpCgQyigTesoS9Wl_GXKMFFNv4dhX7FDgjwT-bsKd9bKwtISBNWogJUxtRs2Hq5pXm7DTqeXM-wRFHFQl7OwbYL7v-_Sye_1_3XXYvpxygz0dqj213i5V_gYCqcy9jBv0EUGgf1A priority: 102 providerName: Springer Nature |
Title | Development of a nomogram for predicting malignancy in BI-RADS 4 breast lesions using contrast-enhanced ultrasound and shear wave elastography parameters |
URI | https://link.springer.com/article/10.1038/s41598-025-85862-x https://www.ncbi.nlm.nih.gov/pubmed/39779822 https://www.proquest.com/docview/3152802480 https://www.proquest.com/docview/3153882357 https://pubmed.ncbi.nlm.nih.gov/PMC11711183 https://doaj.org/article/12ac826c41654485bfe6c4faa55fedf6 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgExIviDuBURmJN7AWJ05iP6G2bBqVNqGNSX2L7MTuJq1JaVLYfgr_lnOctKPcpKZVnURycnz5fM7n7xDyVhoOQ561sMjhlgljoEslWckSgApGKQuIBHcjH5-kR-diMk2mvcOt6WmV6zHRD9RlXaCPfD-GiUaiAFf4YfGVYdYojK72KTTukl2ULkNKVzbNNj4WjGIJrvq9MmEs9xuYr3BPWZQwmQCYZ9db85GX7f8b1vyTMvlb3NRPR4cPyYMeR9JhZ_hH5I6tHpN7XWbJmyfkxy9kIFo7qmlVzz0TiwJKpYslxmeQ8UznAMRnqLpxQy8rOvrETocfz6igBtnqLb2y6E5rKPLjZ9QT26GY2erCUwfo6goLMDcT1XA0mCCbftffLLWAy9teEJuiwvgcmTfNU3J-ePBlfMT6LAysECpqmUi5iZUUsuRhmUYlT50F1CTLGD9KmUJzUZjCOOtUWoYG9XNCWzquRGYLHT8jO1Vd2Re4P7xwqU21KgHEyBLuTW2kZeKMDF1mbEDerW2RLzqxjdwHyWOZd5bLwXK5t1x-HZARmmtzJQpl-4J6Ocv7fpfzSBewgioE7toSMoFawh-ndZI4qGMakL21sfO-9zb5bVsLyJvNaeh3GEzRla1X_poYVifwsAF53rWNTU0QVKMuYkDkVqvZqur2merywmt7c57B7CPjgLxfN7Dbev37Xbz8_2O8IvcjbPPoOpJ7ZKddruxrAFOtGfgeMyC7w-HkbAK_o4OTz6dQOk7HA--ggO9jIX8CU7MnJg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAosEJ7Dqx9pZHxBqaKuGthEqrdTbdtdep5UaO8QJbX4Kf4LfyMzaTgmvW6XkkLUTjTMzO9_svABeC-3jlmcMOjm-cbnWqFJRN3MjhAo6SQwiEqpG3h_EO0f803F0vAI_2loYSqts90S7UWdlSmfk6yEaGkENuLwP468uTY2i6Go7QqMWi10zv0CXrXrf30T-vgmC7a3DjztuM1XATXkSTF0e-zpMBBeZ72VxkPlxbhAFiCykV5LoVPk81anOTZ7EmaepH4xnshzd_a5JVYi_ewNWeYiuTAdWe1uDzweLUx2Km3E_aapzvFCsV2ghqYotiFwRofvgXi5ZQDso4G_o9s8kzd8itdYAbt-FOw1yZRu1qN2DFVPch5v1LMv5A_j-S_oRK3OmWFGObO4XQ1zMxhOKCFGONRsh9B9Sn485OytYr-8ebGx-YZxpyo-fsnNDB3gVo4z8IbOp9LjsmuLUJiuw2Tkt0DQopvBd0UhudqG-GWbQE5g2LbgZ9TQfUa5P9RCOroVDj6BTlIV5QhXpaR6bWCUZwiaR4XdjEygR5Vp4eVcbB962vJDjur2HtGH5UMiacxI5Jy3n5KUDPWLX4k5qzW0XyslQNpou_UCl6LOlnOrEuIiQSvyQKxVFOdIYO7DWMls2-0Ulr6TbgVeLy6jpFL5RhSln9p4Q_SF8WAce17KxoIRgPHVidEAsSc0SqctXirNT203c97to70TowLtWwK7o-vd_8fT_j_ESbu0c7u_Jvf5g9xncDkj-6eBKrEFnOpmZ5wjlpvpFoz8MTq5bZX8C6_1gQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGEIgXxH8CA4wETxA1TpzEeUBoo1QrgwkBk_rm2YndTVqT0rRs_Sh8FT4dd07SUf69TWof6qTVpXfnu_P97o6QZ0Iz2PKMgSCHGZ9rDSoVp4Ufg6ugs8yAR4LVyB_2k90D_m4UjzbIj64WBmGV3Z7oNuqiyvGMvBeBoRHYgCvo2RYW8bE_eD396uMEKcy0duM0GhHZM8tTCN_qV8M-8Pp5GA7efnmz67cTBvycZ-Hc5wnTUSa4KFhQJGHBEmvAIxBFhK8s07liPNe5tsZmSRFo7A0TmMJC6J-aXEXwu5fI5TSKGepYOkpX5zuYQeMsa-t0gkj0arCVWM8Wxr6IIZDwz9ZsoRsZ8Dc_90-45m85W2cKBzfI9daHpduN0N0kG6a8Ra40Uy2Xt8n3X4BItLJU0bKaOBQYBQ-ZTmeYG0K0NZ1AEDDGjh9LelzSnaH_abv_mXKqESk_pycGj_Jqitj8MXWgelj2TXnkYAt0cYILOBeKKnjXOJybnqpvhhqICeZtM26K3c0niPqp75CDC-HPXbJZVqW5j7XpuU1MorICHChRwHcTEyoRWy0Cm2rjkRcdL-S0afQhXYI-ErLhnATOScc5eeaRHWTX6k5s0u0WqtlYtjovWahyiN5yjhVjXMRAJXywSsWxBRoTj2x1zJbtzlHLczn3yNPVZdB5TOSo0lQLd08EkRE8rEfuNbKxogQdeuzJ6BGxJjVrpK5fKY-PXF9xxlKwfCLyyMtOwM7p-vd_8eD_j_GEXAVFle-H-3sPybUQxR9PsMQW2ZzPFuYR-HRz_dgpDyWHF62tPwEpGGMR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+nomogram+for+predicting+malignancy+in+BI-RADS+4+breast+lesions+using+contrast-enhanced+ultrasound+and+shear+wave+elastography+parameters&rft.jtitle=Scientific+reports&rft.date=2025-01-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1356&rft_id=info:doi/10.1038%2Fs41598-025-85862-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |