Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects

Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 101; pp. 390 - 403
Main Authors Jovicich, Jorge, Marizzoni, Moira, Bosch, Beatriz, Bartrés-Faz, David, Arnold, Jennifer, Benninghoff, Jens, Wiltfang, Jens, Roccatagliata, Luca, Picco, Agnese, Nobili, Flavio, Blin, Oliver, Bombois, Stephanie, Lopes, Renaud, Bordet, Régis, Chanoine, Valérie, Ranjeva, Jean-Philippe, Didic, Mira, Gros-Dagnac, Hélène, Payoux, Pierre, Zoccatelli, Giada, Alessandrini, Franco, Beltramello, Alberto, Bargalló, Núria, Ferretti, Antonio, Caulo, Massimo, Aiello, Marco, Ragucci, Monica, Soricelli, Andrea, Salvadori, Nicola, Tarducci, Roberto, Floridi, Piero, Tsolaki, Magda, Constantinidis, Manos, Drevelegas, Antonios, Rossini, Paolo Maria, Marra, Camillo, Otto, Josephin, Reiss-Zimmermann, Martin, Hoffmann, Karl-Titus, Galluzzi, Samantha, Frisoni, Giovanni B.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2×2×2mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test–retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test–retest reproducibility. White matter b0 SNR reproducibility was on average 7±1% with no significant MRI site effects. Whole brain analysis resulted in no significant test–retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2–4% range for FA and AD and 2–6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. •We implement a multi-site 3T MRI protocol for brain DTI on 10 EU sites.•We acquire across-session test–retest data on 50 healthy elderly subjects.•We use full brain TBSS and ROI analysis to calculate FA, MD, RD and AD.•Reproducibility errors are in the 2–6% range.•Reproducibility errors tended to be lower in sites with shorter acquisitions.
AbstractList Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2×2×2mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test–retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test–retest reproducibility. White matter b0 SNR reproducibility was on average 7±1% with no significant MRI site effects. Whole brain analysis resulted in no significant test–retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2–4% range for FA and AD and 2–6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. •We implement a multi-site 3T MRI protocol for brain DTI on 10 EU sites.•We acquire across-session test–retest data on 50 healthy elderly subjects.•We use full brain TBSS and ROI analysis to calculate FA, MD, RD and AD.•Reproducibility errors are in the 2–6% range.•Reproducibility errors tended to be lower in sites with shorter acquisitions.
Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (222mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 plus or minus 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.
Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.
Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2x2x2mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7±1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.
Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.
Author Marizzoni, Moira
Benninghoff, Jens
Picco, Agnese
Alessandrini, Franco
Bosch, Beatriz
Arnold, Jennifer
Drevelegas, Antonios
Floridi, Piero
Nobili, Flavio
Marra, Camillo
Payoux, Pierre
Chanoine, Valérie
Ranjeva, Jean-Philippe
Otto, Josephin
Jovicich, Jorge
Reiss-Zimmermann, Martin
Tsolaki, Magda
Bordet, Régis
Didic, Mira
Gros-Dagnac, Hélène
Tarducci, Roberto
Frisoni, Giovanni B.
Constantinidis, Manos
Galluzzi, Samantha
Blin, Oliver
Ferretti, Antonio
Caulo, Massimo
Ragucci, Monica
Zoccatelli, Giada
Roccatagliata, Luca
Hoffmann, Karl-Titus
Soricelli, Andrea
Salvadori, Nicola
Aiello, Marco
Rossini, Paolo Maria
Bartrés-Faz, David
Bombois, Stephanie
Lopes, Renaud
Bargalló, Núria
Wiltfang, Jens
Beltramello, Alberto
Author_xml – sequence: 1
  givenname: Jorge
  orcidid: 0000-0001-9504-7503
  surname: Jovicich
  fullname: Jovicich, Jorge
  email: jorge.jovicich@unitn.it
  organization: Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
– sequence: 2
  givenname: Moira
  surname: Marizzoni
  fullname: Marizzoni, Moira
  organization: LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine — IRCCS San Giovanni di Dio-FBF, Brescia, Italy
– sequence: 3
  givenname: Beatriz
  surname: Bosch
  fullname: Bosch, Beatriz
  organization: Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, and IDIBAPS, Barcelona, Spain
– sequence: 4
  givenname: David
  surname: Bartrés-Faz
  fullname: Bartrés-Faz, David
  organization: Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona and IDIBAPS, Barcelona, Spain
– sequence: 5
  givenname: Jennifer
  surname: Arnold
  fullname: Arnold, Jennifer
  organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
– sequence: 6
  givenname: Jens
  surname: Benninghoff
  fullname: Benninghoff, Jens
  organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
– sequence: 7
  givenname: Jens
  surname: Wiltfang
  fullname: Wiltfang, Jens
  organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
– sequence: 8
  givenname: Luca
  surname: Roccatagliata
  fullname: Roccatagliata, Luca
  organization: Department of Neuroradiology, IRCSS San Martino University Hospital and IST, Genoa, Italy
– sequence: 9
  givenname: Agnese
  surname: Picco
  fullname: Picco, Agnese
  organization: Department of Neuroscience, Ophthalmology, Genetics and Mother–Child Health (DINOGMI), University of Genoa, Genoa, Italy
– sequence: 10
  givenname: Flavio
  surname: Nobili
  fullname: Nobili, Flavio
  organization: Department of Neuroscience, Ophthalmology, Genetics and Mother–Child Health (DINOGMI), University of Genoa, Genoa, Italy
– sequence: 11
  givenname: Oliver
  surname: Blin
  fullname: Blin, Oliver
  organization: Pharmacology, Assistance Publique — Hôpitaux de Marseille, Aix-Marseille University — CNRS, UMR 7289, Marseille, France
– sequence: 12
  givenname: Stephanie
  surname: Bombois
  fullname: Bombois, Stephanie
  organization: Department of Neurology, EA1046, Lille University, Lille, France
– sequence: 13
  givenname: Renaud
  surname: Lopes
  fullname: Lopes, Renaud
  organization: Department of Neuroradiology, EA1046, Lille University, Lille, France
– sequence: 14
  givenname: Régis
  surname: Bordet
  fullname: Bordet, Régis
  organization: Department of Pharmacology, EA1046, Lille University, Lille, France
– sequence: 15
  givenname: Valérie
  surname: Chanoine
  fullname: Chanoine, Valérie
  organization: CRMBM–CEMEREM, UMR 7339, Aix Marseille Université — CNRS, Marseille, France
– sequence: 16
  givenname: Jean-Philippe
  surname: Ranjeva
  fullname: Ranjeva, Jean-Philippe
  organization: CRMBM–CEMEREM, UMR 7339, Aix Marseille Université — CNRS, Marseille, France
– sequence: 17
  givenname: Mira
  surname: Didic
  fullname: Didic, Mira
  organization: APHM, CHU Timone, Service de Neurologie et Neuropsychologie, Marseille, France
– sequence: 18
  givenname: Hélène
  surname: Gros-Dagnac
  fullname: Gros-Dagnac, Hélène
  organization: INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825, Toulouse, France
– sequence: 19
  givenname: Pierre
  surname: Payoux
  fullname: Payoux, Pierre
  organization: INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825, Toulouse, France
– sequence: 20
  givenname: Giada
  surname: Zoccatelli
  fullname: Zoccatelli, Giada
  organization: Department of Neuroradiology, General Hospital, Verona, Italy
– sequence: 21
  givenname: Franco
  surname: Alessandrini
  fullname: Alessandrini, Franco
  organization: Department of Neuroradiology, General Hospital, Verona, Italy
– sequence: 22
  givenname: Alberto
  surname: Beltramello
  fullname: Beltramello, Alberto
  organization: Department of Neuroradiology, General Hospital, Verona, Italy
– sequence: 23
  givenname: Núria
  surname: Bargalló
  fullname: Bargalló, Núria
  organization: Department of Neuroradiology and Magnetic Resonace Image core Facility, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
– sequence: 24
  givenname: Antonio
  surname: Ferretti
  fullname: Ferretti, Antonio
  organization: Department of Neuroscience Imaging and Clinical Sciences, University “G. d'Annunzio” of Chieti, Italy
– sequence: 25
  givenname: Massimo
  surname: Caulo
  fullname: Caulo, Massimo
  organization: Department of Neuroscience Imaging and Clinical Sciences, University “G. d'Annunzio” of Chieti, Italy
– sequence: 26
  givenname: Marco
  surname: Aiello
  fullname: Aiello, Marco
  organization: IRCCS SDN, Naples, Italy
– sequence: 27
  givenname: Monica
  surname: Ragucci
  fullname: Ragucci, Monica
  organization: IRCCS SDN, Naples, Italy
– sequence: 28
  givenname: Andrea
  surname: Soricelli
  fullname: Soricelli, Andrea
  organization: IRCCS SDN, Naples, Italy
– sequence: 29
  givenname: Nicola
  surname: Salvadori
  fullname: Salvadori, Nicola
  organization: Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy
– sequence: 30
  givenname: Roberto
  surname: Tarducci
  fullname: Tarducci, Roberto
  organization: Medical Physics Unit, Perugia General Hospital, Perugia, Italy
– sequence: 31
  givenname: Piero
  surname: Floridi
  fullname: Floridi, Piero
  organization: Neuroradiology Unit, Perugia General Hospital, Perugia, Italy
– sequence: 32
  givenname: Magda
  surname: Tsolaki
  fullname: Tsolaki, Magda
  organization: 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 33
  givenname: Manos
  surname: Constantinidis
  fullname: Constantinidis, Manos
  organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece
– sequence: 34
  givenname: Antonios
  surname: Drevelegas
  fullname: Drevelegas, Antonios
  organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece
– sequence: 35
  givenname: Paolo Maria
  surname: Rossini
  fullname: Rossini, Paolo Maria
  organization: Dept. Geriatrics, Neuroscience & Orthopaedics, Catholic University, Policlinic Gemelli, Rome, Italy
– sequence: 36
  givenname: Camillo
  surname: Marra
  fullname: Marra, Camillo
  organization: Center for Neuropsychological Research, Catholic University, Rome, Italy
– sequence: 37
  givenname: Josephin
  surname: Otto
  fullname: Otto, Josephin
  organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
– sequence: 38
  givenname: Martin
  surname: Reiss-Zimmermann
  fullname: Reiss-Zimmermann, Martin
  organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
– sequence: 39
  givenname: Karl-Titus
  surname: Hoffmann
  fullname: Hoffmann, Karl-Titus
  organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
– sequence: 40
  givenname: Samantha
  surname: Galluzzi
  fullname: Galluzzi, Samantha
  organization: LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine — IRCCS San Giovanni di Dio-FBF, Brescia, Italy
– sequence: 41
  givenname: Giovanni B.
  surname: Frisoni
  fullname: Frisoni, Giovanni B.
  organization: LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine — IRCCS San Giovanni di Dio-FBF, Brescia, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25026156$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LFDEQhhtZcT_0L0jAi5cek3Qn3bmI7uIXrHjRc8gk1bM1ZpIxSQsD_njTzC7CXNxT1eGpJ-F9L5uzEAM0DWF0xSiTb7arAHOKuDMbWHHK-hWVKzqIJ80Fo0q0Sgz8bNlF146MqfPmMuctpVSxfnzWnHNBuWRCXjR_vs6-YMYCxMewwTI7DMaTBB7NGj2WA4kTKcnY0q5NBkfy3hSsSC515oI2EwzE4TTNGWMgBUKOiSyfw7BZru_A-HJ3IOAdJH8geV5vwZb8vHk6GZ_hxf28an58_PD95nN7--3Tl5v3t63tFS9tL4yx1g1DJ4UVogMJpmODGkYqeQedEpIOfHTGOTVJKxi1YIY1N0ypYRp4d9W8Pnr3Kf6aIRe9w2zBexMgzlkzybmkoh_V_1Ehed9TqbqKvjpBt3FONbxFyHrGZDf2lXp5T83rHTi9TzWYdNAPFVTg7RGwKeacYNIWl2RjqKGj14zqpXO91f8610vnmkpdO6-C8UTw8MYjTq-Pp1DT_42QdLYIwYLDVAvSLuJjJO9OJNZjQGv8Tzg8TvEXnSHkiA
CitedBy_id crossref_primary_10_1007_s00415_017_8443_x
crossref_primary_10_1186_s12880_016_0145_9
crossref_primary_10_1097_j_pain_0000000000000703
crossref_primary_10_1007_s00330_016_4490_4
crossref_primary_10_1038_s41597_022_01329_y
crossref_primary_10_1002_jmri_25056
crossref_primary_10_1017_S1355617715001356
crossref_primary_10_1016_j_pscychresns_2018_06_004
crossref_primary_10_1002_jmri_28887
crossref_primary_10_1007_s11065_015_9291_z
crossref_primary_10_1016_j_nicl_2015_12_009
crossref_primary_10_1016_j_neuroimage_2015_07_087
crossref_primary_10_1016_j_dcn_2017_12_002
crossref_primary_10_1016_j_neuroimage_2019_04_067
crossref_primary_10_1016_j_neuroimage_2020_116932
crossref_primary_10_1523_ENEURO_0382_17_2018
crossref_primary_10_3389_fnins_2020_00396
crossref_primary_10_1002_hbm_24579
crossref_primary_10_1016_j_neuroimage_2021_118234
crossref_primary_10_1007_s00330_024_11084_w
crossref_primary_10_1002_brb3_615
crossref_primary_10_1016_j_mri_2019_08_024
crossref_primary_10_1162_imag_a_00045
crossref_primary_10_1093_braincomms_fcad210
crossref_primary_10_1002_pmh_1441
crossref_primary_10_1007_s00234_018_2017_1
crossref_primary_10_1152_japplphysiol_00769_2016
crossref_primary_10_1016_j_neurobiolaging_2016_03_016
crossref_primary_10_1016_j_neurobiolaging_2015_01_007
crossref_primary_10_1016_j_neuroimage_2015_07_010
crossref_primary_10_1016_j_neuroimage_2016_01_061
crossref_primary_10_1016_j_mri_2022_06_004
crossref_primary_10_3389_fneur_2019_00265
crossref_primary_10_3348_kjr_2018_19_4_777
crossref_primary_10_1016_j_jalz_2015_05_008
crossref_primary_10_1016_j_neurobiolaging_2015_02_001
crossref_primary_10_1017_S0033291716001410
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1002_hbm_23559
crossref_primary_10_1093_schbul_sbw061
crossref_primary_10_1002_hbm_23350
crossref_primary_10_1016_j_mri_2020_11_008
crossref_primary_10_1111_psyp_12769
crossref_primary_10_1002_hbm_23470
crossref_primary_10_1002_hbm_23157
crossref_primary_10_1177_1545968320918841
crossref_primary_10_1016_j_mri_2018_07_011
crossref_primary_10_1016_j_neuroimage_2020_116831
crossref_primary_10_3233_JAD_180152
crossref_primary_10_1016_j_clinph_2025_01_012
crossref_primary_10_1111_joim_12482
crossref_primary_10_1002_hbm_22859
crossref_primary_10_1016_j_neuroimage_2015_07_027
crossref_primary_10_3390_jcm10214987
crossref_primary_10_1016_j_inffus_2022_01_001
crossref_primary_10_3233_JAD_180158
crossref_primary_10_1016_j_nicl_2018_04_037
crossref_primary_10_1002_brb3_759
crossref_primary_10_1016_j_neuroscience_2017_05_048
crossref_primary_10_1186_s13244_023_01374_0
crossref_primary_10_1016_j_neuroimage_2016_04_041
crossref_primary_10_1016_j_neuroimage_2015_08_076
crossref_primary_10_1002_brb3_1363
crossref_primary_10_1111_nyas_13325
crossref_primary_10_3390_brainsci10120966
crossref_primary_10_1007_s11910_018_0894_7
crossref_primary_10_1016_j_biopsych_2024_06_014
crossref_primary_10_1017_S003329171800212X
crossref_primary_10_1016_j_arr_2016_01_002
crossref_primary_10_1136_jnnp_2015_311952
crossref_primary_10_3389_fnins_2019_00729
crossref_primary_10_1016_j_ejmp_2023_102610
crossref_primary_10_1038_s41598_017_17738_8
crossref_primary_10_1002_hbm_25838
crossref_primary_10_1016_j_neurobiolaging_2019_06_005
Cites_doi 10.1016/j.neuroimage.2013.05.007
10.1007/s10334-008-0104-8
10.1093/cercor/bhp280
10.3109/02841851.2010.495351
10.3174/ajnr.A1044
10.1016/j.neuroimage.2005.01.028
10.1002/mrm.10609
10.1006/jmrb.1996.0086
10.1097/WCO.0b013e32832d92de
10.1523/JNEUROSCI.5302-10.2011
10.1093/brain/awm294
10.1002/hbm.20794
10.1002/hbm.21192
10.1002/jmri.21053
10.1002/hbm.21225
10.1016/j.neuroimage.2013.03.015
10.1002/nbm.1543
10.1016/j.neuroimage.2009.01.054
10.1259/bjr/22893432
10.3233/JAD-2011-0043
10.1002/jmri.10377
10.1007/s11682-008-9051-2
10.1016/j.neuroimage.2006.09.020
10.3174/ajnr.A3553
10.1002/mrm.21890
10.1016/j.neurobiolaging.2013.12.001
10.1002/mrm.21965
10.1371/journal.pone.0047684
10.1097/01.rli.0000262757.10271.e5
10.1136/jnnp.2007.142786
10.1016/j.neurobiolaging.2005.10.008
10.1016/j.neuroimage.2006.02.024
10.1016/j.pscychresns.2006.01.008
10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
10.1148/radiol.11110195
10.1016/j.mri.2008.06.011
10.3174/ajnr.A2844
10.1016/j.neuroimage.2011.02.010
10.1016/j.neuroimage.2007.02.049
10.1002/mrm.20642
10.1002/jmri.22186
10.1016/j.neuroimage.2006.07.037
10.3174/ajnr.A0488
10.1007/s00406-011-0234-2
10.1016/S1474-4422(08)70163-7
10.1002/jmri.10350
10.1136/jnnp.2009.189639
10.1007/s00415-008-0678-0
10.1016/j.expneurol.2008.12.026
10.1016/j.neuroimage.2008.03.036
10.1212/WNL.0b013e3181e0f7cf
10.3233/JAD-2010-100234
10.1212/WNL.0b013e318206ca61
10.1016/j.neuroimage.2007.02.056
10.1016/j.mri.2013.03.004
10.1016/j.neuroimage.2010.03.011
10.1080/87565641003689556
10.1016/S1053-8119(02)00042-3
10.1523/JNEUROSCI.2904-12.2012
10.1002/jmri.20969
10.1006/nimg.2002.1132
10.1016/j.neuron.2006.08.012
10.1089/brain.2012.0112
10.1002/mrm.23314
10.1002/mrm.22055
10.1016/j.neuroimage.2010.03.046
10.1002/hbm.21370
10.1161/01.STR.32.6.1318
10.1007/BF03324915
10.1093/schbul/sbp088
10.1109/42.796284
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Nov 1, 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Nov 1, 2014
CorporateAuthor The PharmaCog Consortium
PharmaCog Consortium
CorporateAuthor_xml – name: The PharmaCog Consortium
– name: PharmaCog Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2014.06.075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
Engineering Research Database

MEDLINE - Academic
ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1095-9572
EndPage 403
ExternalDocumentID 3465764681
25026156
10_1016_j_neuroimage_2014_06_075
S1053811914005527
Genre Multicenter Study
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c492t-45aaccd77365c553e6ea3179780623e39560728dadd9f6c510cea7b2a1997f723
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Jul 10 22:13:41 EDT 2025
Mon Jul 21 09:48:22 EDT 2025
Wed Aug 13 08:13:46 EDT 2025
Wed Feb 19 02:15:40 EST 2025
Tue Jul 01 02:14:54 EDT 2025
Thu Apr 24 22:52:50 EDT 2025
Fri Feb 23 02:24:27 EST 2024
Tue Aug 26 16:31:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-center
Multi-site MRI
Brain diffusion tensor imaging
Reliability
Reproducibility
Tract-based spatial statistics
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-45aaccd77365c553e6ea3179780623e39560728dadd9f6c510cea7b2a1997f723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9504-7503
PMID 25026156
PQID 1614116384
PQPubID 2031077
PageCount 14
ParticipantIDs proquest_miscellaneous_1622605489
proquest_miscellaneous_1562440693
proquest_journals_1614116384
pubmed_primary_25026156
crossref_citationtrail_10_1016_j_neuroimage_2014_06_075
crossref_primary_10_1016_j_neuroimage_2014_06_075
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_06_075
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_06_075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
2014-11-00
2014-Nov-01
20141101
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Sritharan, Egan, Johnston, Horne, Bradshaw, Bohanna, Asadi, Cunnington, Churchyard, Chua, Farrow, Georgiou-Karistianis (bb0275) 2010; 81
Harrison, Caffo, Shiee, Farrell, Bazin, Farrell, Ratchford, Calabresi, Reich (bb0110) 2011; 76
Oouchi, Yamada, Sakai, Kizu, Kubota, Ito, Nishimura (bb0205) 2007; 28
Laganà, Rovaris, Ceccarelli, Venturelli, Marini, Baselli (bb0145) 2010
Pasternak, Westin, Bouix, Seidman, Goldstein, Woo, Petryshen, Mesholam-Gately, McCarley, Kikinis, Shenton, Kubicki (bb0230) 2012; 32
Engvig, Fjell, Westlye, Moberget, Sundseth, Larsen, Walhovd (bb0085) 2012; 33
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bb0245) 1999; 18
Wedeen, Hagmann, Tseng, Reese, Weisskoff (bb0340) 2005; 54
Bonekamp, Nagae, Degaonkar, Matson, Abdalla, Barker, Mori, Horská (bb0035) 2007; 34
Jenkinson, Bannister, Brady, Smith (bb0130) 2002; 17
Kantarci, Avula, Senjem, Samikoglu, Zhang, Weigand, Przybelski, Edmonson, Vemuri, Knopman, Ferman, Boeve, Petersen, Jack (bb0140) 2010; 74
Galluzzi, Testa, Boccardi, Bresciani, Benussi, Ghidoni, Beltramello, Bonetti, Bono, Falini, Magnani, Minonzio, Piovan, Binetti, Frisoni (bb0105) 2009; 21
Correia, Carpenter, Williams (bb0060) 2009; 27
Brander, Kataja, Saastamoinen, Ryymin, Huhtala, Ohman, Soimakallio, Dastidar (bb0040) 2010; 51
Fieremans, Benitez, Jensen, Falangola, Tabesh, Deardorff, Spampinato, Babb, Novikov, Ferris, Helpern (bb0095) 2013 Nov-Dec; 34
Alhamud, Tisdall, Hess, Hasan, Meintjes, van der Kouwe (bb0005) 2012; 68
Marenco, Rawlings, Rohde, Barnett, Honea, Pierpaoli, Weinberger (bb0190) 2006; 147
Likitjaroen, Meindl, Friese, Wagner, Buerger, Hampel, Teipel (bb0165) 2012; 262
Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (bb0265) 2006; 31
Wang, Stebbins, Nyenhuis, deToledo-Morrell, Freels, Gencheva, Pedelty, Sripathirathan, Moseley, Turner, Gabrieli, Gorelick (bb0325) 2006; 27
Vaessen, Hofman, Tijssen, Aldenkamp, Jansen, Backes (bb0300) 2010; 51
Pagani, Hirsch, Pouwels, Horsfield, Perego, Gass, Roosendaal, Barkhof, Agosta, Rovaris, Caputo, Giorgio, Palace, Marino, De Stefano, Ropele, Fazekas, Filippi (bb0210) 2010; 31
Scola, Bozzali, Agosta, Magnani, Franceschi, Sormani, Cercignani, Pagani, Falautano, Filippi, Falini (bb0255) 2010; 81
Vollmar, O'Muircheartaigh, Barker, Symms, Thompson, Kumari, Duncan, Richardson, Koepp (bb0310) 2010; 51
Parker, Haroon, Wheeler-Kingshott (bb0220) 2003; 18
Andersson, Jenkinson, Smith (bb0015) 2007
Dietrich, Raya, Reeder, Reiser, Schoenberg (bb0075) 2007; 26
Jansen, Kooi, Kessels, Nicolay, Backes (bb0125) 2007; 42
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (bb0320) 2007; 36
Sage, Van Hecke, Peeters, Sijbers, Robberecht, Parizel, Marchal, Leemans, Sunaert (bb0250) 2009; 30
Landman, Farrell, Jones, Smith, Prince, Mori (bb0150) 2007; 36
Sullivan, Pfefferbaum (bb0280) 2007; 80
Ciccarelli, Catani, Johansen-Berg, Clark, Thompson (bb0050) 2008; 7
Van Horn, Toga (bb0305) 2009; 22
Mielke, Kozauer, Chan, George, Toroney, Zerrate, Bandeen-Roche, Wang, Vanzijl, Pekar, Mori, Lyketsos, Albert (bb0195) 2009; 46
Calabrese, Rinaldi, Seppi, Favaretto, Squarcina, Mattisi, Perini, Bertoldo, Gallo (bb0045) 2011; 261
Pfefferbaum, Adalsteinsson, Sullivan (bb0235) 2003; 18
Heiervang, Behrens, Mackay, Robson, Johansen-Berg (bb0115) 2006; 33
Sullivan, Rohlfing, Pfefferbaum (bb0285) 2010; 35
Magnotta, Kim, Koscik, Beglinger, Espinso, Langbehn, Nopoulos, Paulsen (bb0180) 2009; 3
Wedeen, Wang, Schmahmann, Benner, Tseng, Dai, Pandya, Hagmann, D'Arceuil, de Crespigny (bb0345) 2008; 41
Drago, Babiloni, Bartrés-Faz, Caroli, Bosch, Hensch, Didic, Klafki, Pievani, Jovicich, Venturi, Spitzer, Vecchio, Schoenknecht, Wiltfang, Redolfi, Forloni, Blin, Irving, Davis, Hårdemark, Frisoni (bb0080) 2011; 26
Teipel, Meindl, Wagner, Stieltjes, Reuter, Hauenstein, Filippi, Ernemann, Reiser, Hampel (bb0295) 2010; 22
Fox, Sakaie, Lee, Debbins, Liu, Arnold, Melhem, Smith, Philips, Lowe, Fisher (bb0100) 2012; 33
Huang, Wang, Baliki, Wang, Apkarian, Parrish (bb0120) 2012; 7
Lebel, Beaulieu (bb0155) 2011; 31
Song, Yoshino, Le, Lin, Sun, Cross, Armstrong (bb0270) 2005; 26
Rashid, Hadjiprocopis, Davies, Griffin, Chard, Tiberio, Altmann, Wheeler-Kingshott, Tozer, Thompson, Miller (bb0240) 2008; 255
Papinutto, Maule, Jovicich (bb0215) 2013; 31
Coutu, Chen, Rosas, Salat (bb0065) 2014 Jun; 35
Mori, Zhang (bb0200) 2006; 51
Ciccarelli, Parker, Toosy, Wheeler-Kingshott, Barker, Boulby, Miller, Thompson (bb0055) 2003; 18
Wright, Mougin, Totman, Peters, Brookes, Coxon, Morris, Clemence, Francis, Bowtell, Gowland (bb0365) 2008; 21
Farrell, Landman, Jones, Smith, Prince, van Zijl, Mori (bb0090) 2007; 26
Yendiki, Koldewyn, Kakunoori, Kanwisher, Fischl (bb0370) 2013 Nov 21; 88c
Bisdas, Bohning, Besenski, Nicholas, Rumboldt (bb0030) 2008; 29
Ling, Merideth, Caprihan, Pena, Teshiba, Mayer (bb0170) 2012; 33
Takao, Hayashi, Kabasawa, Ohtomo (bb0290) 2012; 33
Weaver, Richards, Liang, Laurino, Samii, Aylward (bb0335) 2009; 216
Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Nobili, Hensch, Tränkner, Schönknecht, Leroy, Lopes, Bordet, Chanoine, Ranjeva, Didic, Gros-Dagnac, Payoux, Zoccatelli, Alessandrini, Beltramello, Bargalló, Blin, Frisoni (bb8888) 2013 Dec; 83
Andersson, Jenkinson, Smith (bb0010) 2007
de Groot, Vernooij, Klein, Ikram, Vos, Smith, Niessen, Andersson (bb0070) 2013; 76
Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0025) 2003; 50
Westlye, Walhovd, Dale, Bjørnerud, Due-Tønnessen, Engvig, Grydeland, Tamnes, Ostby, Fjell (bb0350) 2010; 20
Basser, Pierpaoli (bb0020) 1996; 111
Sidaros, Engberg, Sidaros, Liptrot, Herning, Petersen, Paulson, Jernigan, Rostrup (bb0260) 2008; 131
Wheeler-Kingshott, Cercignani (bb0355) 2009; 61
White, Magnotta, Bockholt, Williams, Wallace, Ehrlich, Mueller, Ho, Jung, Clark, Lauriello, Bustillo, Schulz, Gollub, Andreasen, Calhoun, Lim (bb0360) 2011; 37
Liu, Wang, Gerig, Gouttard, Tao, Fletcher, Styner (bb0175) 2010
Wahlund, Barkhof, Fazekas, Bronge, Augustin, Sjögren, Wallin, Ader, Leys, Pantoni, Pasquier, Erkinjuntti, Scheltens, Changes (bb0315) 2001; 32
Magnotta, Matsui, Liu, Johnson, Long, Bolster, Mueller, Lim, Mori, Helmer, Turner, Reading, Lowe, Aylward, Flashman, Bonett, Paulsen (bb0185) 2012; 2
Leemans, Jones (bb0160) 2009; 61
Pasternak, Sochen, Gur, Intrator, Assaf (bb0225) 2009; 62
Zhu, Hu, Qiu, Taylor, Tso, Yiannoutsos, Navia, Mori, Ekholm, Schifitto, Zhong (bb0375) 2011; 56
Jones, Cercignani (bb0135) 2010; 23
Wansapura, Holland, Dunn, Ball (bb0330) 1999; 9
Wahlund (10.1016/j.neuroimage.2014.06.075_bb0315) 2001; 32
Galluzzi (10.1016/j.neuroimage.2014.06.075_bb0105) 2009; 21
Westlye (10.1016/j.neuroimage.2014.06.075_bb0350) 2010; 20
Pasternak (10.1016/j.neuroimage.2014.06.075_bb0225) 2009; 62
Zhu (10.1016/j.neuroimage.2014.06.075_bb0375) 2011; 56
Vollmar (10.1016/j.neuroimage.2014.06.075_bb0310) 2010; 51
Ciccarelli (10.1016/j.neuroimage.2014.06.075_bb0055) 2003; 18
Parker (10.1016/j.neuroimage.2014.06.075_bb0220) 2003; 18
Bonekamp (10.1016/j.neuroimage.2014.06.075_bb0035) 2007; 34
Oouchi (10.1016/j.neuroimage.2014.06.075_bb0205) 2007; 28
Wakana (10.1016/j.neuroimage.2014.06.075_bb0320) 2007; 36
Farrell (10.1016/j.neuroimage.2014.06.075_bb0090) 2007; 26
Smith (10.1016/j.neuroimage.2014.06.075_bb0265) 2006; 31
Sullivan (10.1016/j.neuroimage.2014.06.075_bb0285) 2010; 35
Sage (10.1016/j.neuroimage.2014.06.075_bb0250) 2009; 30
Song (10.1016/j.neuroimage.2014.06.075_bb0270) 2005; 26
Liu (10.1016/j.neuroimage.2014.06.075_bb0175) 2010
Wright (10.1016/j.neuroimage.2014.06.075_bb0365) 2008; 21
Basser (10.1016/j.neuroimage.2014.06.075_bb0020) 1996; 111
Van Horn (10.1016/j.neuroimage.2014.06.075_bb0305) 2009; 22
Laganà (10.1016/j.neuroimage.2014.06.075_bb0145) 2010
Marenco (10.1016/j.neuroimage.2014.06.075_bb0190) 2006; 147
Papinutto (10.1016/j.neuroimage.2014.06.075_bb0215) 2013; 31
Brander (10.1016/j.neuroimage.2014.06.075_bb0040) 2010; 51
Sullivan (10.1016/j.neuroimage.2014.06.075_bb0280) 2007; 80
Correia (10.1016/j.neuroimage.2014.06.075_bb0060) 2009; 27
White (10.1016/j.neuroimage.2014.06.075_bb0360) 2011; 37
Wansapura (10.1016/j.neuroimage.2014.06.075_bb0330) 1999; 9
Landman (10.1016/j.neuroimage.2014.06.075_bb0150) 2007; 36
Coutu (10.1016/j.neuroimage.2014.06.075_bb0065) 2014; 35
Huang (10.1016/j.neuroimage.2014.06.075_bb0120) 2012; 7
Likitjaroen (10.1016/j.neuroimage.2014.06.075_bb0165) 2012; 262
Fox (10.1016/j.neuroimage.2014.06.075_bb0100) 2012; 33
Pagani (10.1016/j.neuroimage.2014.06.075_bb0210) 2010; 31
Jovicich (10.1016/j.neuroimage.2014.06.075_bb8888) 2013; 83
Bisdas (10.1016/j.neuroimage.2014.06.075_bb0030) 2008; 29
Drago (10.1016/j.neuroimage.2014.06.075_bb0080) 2011; 26
Weaver (10.1016/j.neuroimage.2014.06.075_bb0335) 2009; 216
Yendiki (10.1016/j.neuroimage.2014.06.075_bb0370) 2013; 88c
Scola (10.1016/j.neuroimage.2014.06.075_bb0255) 2010; 81
Rueckert (10.1016/j.neuroimage.2014.06.075_bb0245) 1999; 18
Andersson (10.1016/j.neuroimage.2014.06.075_bb0010)
Takao (10.1016/j.neuroimage.2014.06.075_bb0290) 2012; 33
Jansen (10.1016/j.neuroimage.2014.06.075_bb0125) 2007; 42
Wheeler-Kingshott (10.1016/j.neuroimage.2014.06.075_bb0355) 2009; 61
Sidaros (10.1016/j.neuroimage.2014.06.075_bb0260) 2008; 131
Vaessen (10.1016/j.neuroimage.2014.06.075_bb0300) 2010; 51
Wedeen (10.1016/j.neuroimage.2014.06.075_bb0345) 2008; 41
Jones (10.1016/j.neuroimage.2014.06.075_bb0135) 2010; 23
Mori (10.1016/j.neuroimage.2014.06.075_bb0200) 2006; 51
Rashid (10.1016/j.neuroimage.2014.06.075_bb0240) 2008; 255
Harrison (10.1016/j.neuroimage.2014.06.075_bb0110) 2011; 76
Sritharan (10.1016/j.neuroimage.2014.06.075_bb0275) 2010; 81
Ling (10.1016/j.neuroimage.2014.06.075_bb0170) 2012; 33
Wedeen (10.1016/j.neuroimage.2014.06.075_bb0340) 2005; 54
Dietrich (10.1016/j.neuroimage.2014.06.075_bb0075) 2007; 26
Calabrese (10.1016/j.neuroimage.2014.06.075_bb0045) 2011; 261
Teipel (10.1016/j.neuroimage.2014.06.075_bb0295) 2010; 22
Andersson (10.1016/j.neuroimage.2014.06.075_bb0015)
Fieremans (10.1016/j.neuroimage.2014.06.075_bb0095) 2013; 34
Pasternak (10.1016/j.neuroimage.2014.06.075_bb0230) 2012; 32
Jenkinson (10.1016/j.neuroimage.2014.06.075_bb0130) 2002; 17
Leemans (10.1016/j.neuroimage.2014.06.075_bb0160) 2009; 61
Engvig (10.1016/j.neuroimage.2014.06.075_bb0085) 2012; 33
Kantarci (10.1016/j.neuroimage.2014.06.075_bb0140) 2010; 74
Magnotta (10.1016/j.neuroimage.2014.06.075_bb0180) 2009; 3
Ciccarelli (10.1016/j.neuroimage.2014.06.075_bb0050) 2008; 7
Magnotta (10.1016/j.neuroimage.2014.06.075_bb0185) 2012; 2
Alhamud (10.1016/j.neuroimage.2014.06.075_bb0005) 2012; 68
Wang (10.1016/j.neuroimage.2014.06.075_bb0325) 2006; 27
de Groot (10.1016/j.neuroimage.2014.06.075_bb0070) 2013; 76
Mielke (10.1016/j.neuroimage.2014.06.075_bb0195) 2009; 46
Heiervang (10.1016/j.neuroimage.2014.06.075_bb0115) 2006; 33
Lebel (10.1016/j.neuroimage.2014.06.075_bb0155) 2011; 31
Pfefferbaum (10.1016/j.neuroimage.2014.06.075_bb0235) 2003; 18
Behrens (10.1016/j.neuroimage.2014.06.075_bb0025) 2003; 50
References_xml – start-page: 7628
  year: 2010
  ident: bb0175
  article-title: Quality control of diffusion weighted images
  publication-title: Proc. Soc. Photo. Opt. Instrum. Eng.
– volume: 61
  start-page: 1336
  year: 2009
  end-page: 1349
  ident: bb0160
  article-title: The B-matrix must be rotated when correcting for subject motion in DTI data
  publication-title: Magn. Reson. Med.
– volume: 54
  start-page: 1377
  year: 2005
  end-page: 1386
  ident: bb0340
  article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 34
  start-page: 2105
  year: 2013 Nov-Dec
  end-page: 2112
  ident: bb0095
  article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression
  publication-title: AJNR Am J Neuroradiol
– year: 2007
  ident: bb0010
  article-title: Non-linear optimisation. FMRIB technical report
– volume: 261
  start-page: 891
  year: 2011
  end-page: 898
  ident: bb0045
  article-title: Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study
  publication-title: Radiology
– volume: 26
  start-page: 159
  year: 2011
  end-page: 199
  ident: bb0080
  article-title: Disease tracking markers for Alzheimer's disease at the prodromal (MCI) stage
  publication-title: J. Alzheimers Dis.
– volume: 30
  start-page: 3657
  year: 2009
  end-page: 3675
  ident: bb0250
  article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited
  publication-title: Hum. Brain Mapp.
– volume: 255
  start-page: 390
  year: 2008
  end-page: 397
  ident: bb0240
  article-title: Longitudinal evaluation of clinically early relapsing–remitting multiple sclerosis with diffusion tensor imaging
  publication-title: J. Neurol.
– volume: 33
  start-page: 466
  year: 2012
  end-page: 477
  ident: bb0290
  article-title: Effect of scanner in longitudinal diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
– volume: 27
  start-page: 1827
  year: 2006
  end-page: 1833
  ident: bb0325
  article-title: Longitudinal changes in white matter following ischemic stroke: a three-year follow-up study
  publication-title: Neurobiol. Aging
– volume: 61
  start-page: 1255
  year: 2009
  end-page: 1260
  ident: bb0355
  article-title: About “axial” and “radial” diffusivities
  publication-title: Magn. Reson. Med.
– volume: 18
  start-page: 348
  year: 2003
  end-page: 359
  ident: bb0055
  article-title: From diffusion tractography to quantitative white matter tract measures: a reproducibility study
  publication-title: NeuroImage
– volume: 26
  start-page: 756
  year: 2007
  end-page: 767
  ident: bb0090
  article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5
  publication-title: J. Magn. Reson. Imaging
– volume: 33
  start-page: 2390
  year: 2012
  end-page: 2406
  ident: bb0085
  article-title: Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study
  publication-title: Hum. Brain Mapp.
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: bb0025
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
– volume: 32
  start-page: 17365
  year: 2012
  end-page: 17372
  ident: bb0230
  article-title: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset
  publication-title: J. Neurosci.
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bb0245
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 1487
  year: 2006
  end-page: 1505
  ident: bb0265
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: NeuroImage
– volume: 26
  start-page: 375
  year: 2007
  end-page: 385
  ident: bb0075
  article-title: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters
  publication-title: J. Magn. Reson. Imaging
– start-page: 254032
  year: 2010
  ident: bb0145
  article-title: DTI parameter optimisation for acquisition at 1.5
  publication-title: Comput. Intell. Neurosci.
– volume: 7
  start-page: 715
  year: 2008
  end-page: 727
  ident: bb0050
  article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments
  publication-title: Lancet Neurol.
– volume: 74
  start-page: 1814
  year: 2010
  end-page: 1821
  ident: bb0140
  article-title: Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI
  publication-title: Neurology
– volume: 76
  start-page: 400
  year: 2013
  end-page: 411
  ident: bb0070
  article-title: Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration
  publication-title: NeuroImage
– volume: 31
  start-page: 827
  year: 2013
  end-page: 839
  ident: bb0215
  article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables
  publication-title: Magn. Reson. Imaging
– volume: 22
  start-page: 507
  year: 2010
  end-page: 522
  ident: bb0295
  article-title: Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study
  publication-title: J. Alzheimers Dis.
– volume: 37
  start-page: 222
  year: 2011
  end-page: 232
  ident: bb0360
  article-title: Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study
  publication-title: Schizophr. Bull.
– volume: 34
  start-page: 733
  year: 2007
  end-page: 742
  ident: bb0035
  article-title: Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences
  publication-title: NeuroImage
– volume: 33
  start-page: 50
  year: 2012
  end-page: 62
  ident: bb0170
  article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 531
  year: 1999
  end-page: 538
  ident: bb0330
  article-title: NMR relaxation times in the human brain at 3.0
  publication-title: J. Magn. Reson. Imaging
– volume: 41
  start-page: 1267
  year: 2008
  end-page: 1277
  ident: bb0345
  article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers
  publication-title: NeuroImage
– volume: 76
  start-page: 179
  year: 2011
  end-page: 186
  ident: bb0110
  article-title: Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis
  publication-title: Neurology
– volume: 32
  start-page: 1318
  year: 2001
  end-page: 1322
  ident: bb0315
  article-title: A new rating scale for age-related white matter changes applicable to MRI and CT
  publication-title: Stroke
– volume: 62
  start-page: 717
  year: 2009
  end-page: 730
  ident: bb0225
  article-title: Free water elimination and mapping from diffusion MRI
  publication-title: Magn. Reson. Med.
– volume: 27
  start-page: 163
  year: 2009
  end-page: 175
  ident: bb0060
  article-title: Looking for the optimal DTI acquisition scheme given a maximum scan time: are more b-values a waste of time?
  publication-title: Magn. Reson. Imaging
– volume: 23
  start-page: 803
  year: 2010
  end-page: 820
  ident: bb0135
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
– volume: 83
  start-page: :472
  year: 2013 Dec
  end-page: 484
  ident: bb8888
  article-title: PharmaCog Consortium. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
– volume: 20
  start-page: 2055
  year: 2010
  end-page: 2068
  ident: bb0350
  article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry
  publication-title: Cereb. Cortex
– volume: 88c
  start-page: 79
  year: 2013 Nov 21
  end-page: 90
  ident: bb0370
  article-title: Spurious group differences due to head motion in a diffusion MRI study
  publication-title: NeuroImage
– volume: 18
  start-page: 242
  year: 2003
  end-page: 254
  ident: bb0220
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J. Magn. Reson. Imaging
– volume: 46
  start-page: 47
  year: 2009
  end-page: 55
  ident: bb0195
  article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease
  publication-title: NeuroImage
– volume: 81
  start-page: 257
  year: 2010
  end-page: 262
  ident: bb0275
  article-title: A longitudinal diffusion tensor imaging study in symptomatic Huntington's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 3
  start-page: 77
  year: 2009
  end-page: 84
  ident: bb0180
  article-title: Diffusion tensor imaging in preclinical Huntington's disease
  publication-title: Brain Imaging Behav.
– volume: 80
  start-page: S99
  year: 2007
  end-page: S108
  ident: bb0280
  article-title: Neuroradiological characterization of normal adult ageing
  publication-title: Br. J. Radiol.
– volume: 111
  start-page: 209
  year: 1996
  end-page: 219
  ident: bb0020
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magn. Reson. Ser. B
– volume: 21
  start-page: 266
  year: 2009
  end-page: 276
  ident: bb0105
  article-title: The Italian Brain Normative Archive of structural MR scans: norms for medial temporal atrophy and white matter lesions
  publication-title: Aging Clin. Exp. Res.
– volume: 21
  start-page: 121
  year: 2008
  end-page: 130
  ident: bb0365
  article-title: Water proton T1 measurements in brain tissue at 7, 3, and 1.5
  publication-title: MAGMA
– year: 2007
  ident: bb0015
  article-title: Non-linear registration, aka spatial normalisation. FMRIB technical report
– volume: 18
  start-page: 427
  year: 2003
  end-page: 433
  ident: bb0235
  article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain
  publication-title: J. Magn. Reson. Imaging
– volume: 29
  start-page: 1128
  year: 2008
  end-page: 1133
  ident: bb0030
  article-title: Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 22
  start-page: 370
  year: 2009
  end-page: 378
  ident: bb0305
  article-title: Multisite neuroimaging trials
  publication-title: Curr. Opin. Neurol.
– volume: 81
  start-page: 798
  year: 2010
  end-page: 805
  ident: bb0255
  article-title: A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 26
  start-page: 132
  year: 2005
  end-page: 140
  ident: bb0270
  article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain
  publication-title: NeuroImage
– volume: 68
  start-page: 1097
  year: 2012
  end-page: 1108
  ident: bb0005
  article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0130
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 147
  start-page: 69
  year: 2006
  end-page: 78
  ident: bb0190
  article-title: Regional distribution of measurement error in diffusion tensor imaging
  publication-title: Psychiatry Res.
– volume: 36
  start-page: 1123
  year: 2007
  end-page: 1138
  ident: bb0150
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5
  publication-title: NeuroImage
– volume: 31
  start-page: 1458
  year: 2010
  end-page: 1468
  ident: bb0210
  article-title: Intercenter differences in diffusion tensor MRI acquisition
  publication-title: J. Magn. Reson. Imaging
– volume: 31
  start-page: 10937
  year: 2011
  end-page: 10947
  ident: bb0155
  article-title: Longitudinal development of human brain wiring continues from childhood into adulthood
  publication-title: J. Neurosci.
– volume: 28
  start-page: 1102
  year: 2007
  end-page: 1106
  ident: bb0205
  article-title: Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 131
  start-page: 559
  year: 2008
  end-page: 572
  ident: bb0260
  article-title: Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study
  publication-title: Brain
– volume: 216
  start-page: 525
  year: 2009
  end-page: 529
  ident: bb0335
  article-title: Longitudinal diffusion tensor imaging in Huntington's Disease
  publication-title: Exp. Neurol.
– volume: 51
  start-page: 527
  year: 2006
  end-page: 539
  ident: bb0200
  article-title: Principles of diffusion tensor imaging and its applications to basic neuroscience research
  publication-title: Neuron
– volume: 2
  start-page: 345
  year: 2012
  end-page: 355
  ident: bb0185
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect.
– volume: 51
  start-page: 1106
  year: 2010
  end-page: 1116
  ident: bb0300
  article-title: The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures
  publication-title: NeuroImage
– volume: 262
  start-page: 341
  year: 2012
  end-page: 350
  ident: bb0165
  article-title: Longitudinal changes of fractional anisotropy in Alzheimer's disease patients treated with galantamine: a 12-month randomized, placebo-controlled, double-blinded study
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 51
  start-page: 1384
  year: 2010
  end-page: 1394
  ident: bb0310
  article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0
  publication-title: NeuroImage
– volume: 56
  start-page: 1398
  year: 2011
  end-page: 1411
  ident: bb0375
  article-title: Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study
  publication-title: NeuroImage
– volume: 33
  start-page: 695
  year: 2012
  end-page: 700
  ident: bb0100
  article-title: A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 35
  start-page: 233
  year: 2010
  end-page: 256
  ident: bb0285
  article-title: Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking
  publication-title: Dev. Neuropsychol.
– volume: 51
  start-page: 800
  year: 2010
  end-page: 807
  ident: bb0040
  article-title: Diffusion tensor imaging of the brain in a healthy adult population: Normative values and measurement reproducibility at 3
  publication-title: Acta Radiol.
– volume: 35
  start-page: 1412
  year: 2014 Jun
  end-page: 1421
  ident: bb0065
  article-title: Non-Gaussian water diffusion in aging white matter
  publication-title: Neurobiol Aging
– volume: 33
  start-page: 867
  year: 2006
  end-page: 877
  ident: bb0115
  article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures
  publication-title: NeuroImage
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: bb0320
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
– volume: 42
  start-page: 327
  year: 2007
  end-page: 337
  ident: bb0125
  article-title: Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0
  publication-title: Investig. Radiol.
– volume: 7
  start-page: e47684
  year: 2012
  ident: bb0120
  article-title: Reproducibility of structural, resting-state BOLD and DTI Data between identical scanners
  publication-title: PLoS ONE
– volume: 83
  start-page: :472
  year: 2013
  ident: 10.1016/j.neuroimage.2014.06.075_bb8888
  article-title: PharmaCog Consortium. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.007
– volume: 21
  start-page: 121
  year: 2008
  ident: 10.1016/j.neuroimage.2014.06.075_bb0365
  article-title: Water proton T1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization
  publication-title: MAGMA
  doi: 10.1007/s10334-008-0104-8
– volume: 20
  start-page: 2055
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0350
  article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp280
– volume: 51
  start-page: 800
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0040
  article-title: Diffusion tensor imaging of the brain in a healthy adult population: Normative values and measurement reproducibility at 3T and 1.5T
  publication-title: Acta Radiol.
  doi: 10.3109/02841851.2010.495351
– volume: 29
  start-page: 1128
  year: 2008
  ident: 10.1016/j.neuroimage.2014.06.075_bb0030
  article-title: Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3T in healthy subjects: effect of the applied b-value
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1044
– volume: 26
  start-page: 132
  year: 2005
  ident: 10.1016/j.neuroimage.2014.06.075_bb0270
  article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.028
– volume: 50
  start-page: 1077
  year: 2003
  ident: 10.1016/j.neuroimage.2014.06.075_bb0025
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 111
  start-page: 209
  year: 1996
  ident: 10.1016/j.neuroimage.2014.06.075_bb0020
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magn. Reson. Ser. B
  doi: 10.1006/jmrb.1996.0086
– volume: 22
  start-page: 370
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0305
  article-title: Multisite neuroimaging trials
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32832d92de
– volume: 31
  start-page: 10937
  year: 2011
  ident: 10.1016/j.neuroimage.2014.06.075_bb0155
  article-title: Longitudinal development of human brain wiring continues from childhood into adulthood
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5302-10.2011
– volume: 131
  start-page: 559
  year: 2008
  ident: 10.1016/j.neuroimage.2014.06.075_bb0260
  article-title: Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study
  publication-title: Brain
  doi: 10.1093/brain/awm294
– volume: 30
  start-page: 3657
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0250
  article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20794
– volume: 33
  start-page: 50
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0170
  article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21192
– volume: 26
  start-page: 756
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0090
  article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21053
– volume: 33
  start-page: 466
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0290
  article-title: Effect of scanner in longitudinal diffusion tensor imaging studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21225
– volume: 76
  start-page: 400
  year: 2013
  ident: 10.1016/j.neuroimage.2014.06.075_bb0070
  article-title: Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.015
– volume: 23
  start-page: 803
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0135
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1543
– volume: 46
  start-page: 47
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0195
  article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.054
– volume: 80
  start-page: S99
  issue: Spec No 2
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0280
  article-title: Neuroradiological characterization of normal adult ageing
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr/22893432
– volume: 26
  start-page: 159
  issue: Suppl. 3
  year: 2011
  ident: 10.1016/j.neuroimage.2014.06.075_bb0080
  article-title: Disease tracking markers for Alzheimer's disease at the prodromal (MCI) stage
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-0043
– volume: 18
  start-page: 427
  year: 2003
  ident: 10.1016/j.neuroimage.2014.06.075_bb0235
  article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10377
– volume: 3
  start-page: 77
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0180
  article-title: Diffusion tensor imaging in preclinical Huntington's disease
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-008-9051-2
– volume: 34
  start-page: 733
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0035
  article-title: Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.020
– volume: 34
  start-page: 2105
  issue: 11
  year: 2013
  ident: 10.1016/j.neuroimage.2014.06.075_bb0095
  article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3553
– volume: 61
  start-page: 1336
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0160
  article-title: The B-matrix must be rotated when correcting for subject motion in DTI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21890
– volume: 35
  start-page: 1412
  issue: 6
  year: 2014
  ident: 10.1016/j.neuroimage.2014.06.075_bb0065
  article-title: Non-Gaussian water diffusion in aging white matter
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.12.001
– volume: 61
  start-page: 1255
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0355
  article-title: About “axial” and “radial” diffusivities
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21965
– volume: 7
  start-page: e47684
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0120
  article-title: Reproducibility of structural, resting-state BOLD and DTI Data between identical scanners
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0047684
– volume: 42
  start-page: 327
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0125
  article-title: Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0Tesla
  publication-title: Investig. Radiol.
  doi: 10.1097/01.rli.0000262757.10271.e5
– volume: 81
  start-page: 257
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0275
  article-title: A longitudinal diffusion tensor imaging study in symptomatic Huntington's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.142786
– volume: 27
  start-page: 1827
  year: 2006
  ident: 10.1016/j.neuroimage.2014.06.075_bb0325
  article-title: Longitudinal changes in white matter following ischemic stroke: a three-year follow-up study
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2005.10.008
– volume: 31
  start-page: 1487
  year: 2006
  ident: 10.1016/j.neuroimage.2014.06.075_bb0265
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.024
– volume: 147
  start-page: 69
  year: 2006
  ident: 10.1016/j.neuroimage.2014.06.075_bb0190
  article-title: Regional distribution of measurement error in diffusion tensor imaging
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2006.01.008
– volume: 9
  start-page: 531
  year: 1999
  ident: 10.1016/j.neuroimage.2014.06.075_bb0330
  article-title: NMR relaxation times in the human brain at 3.0Tesla
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
– volume: 261
  start-page: 891
  year: 2011
  ident: 10.1016/j.neuroimage.2014.06.075_bb0045
  article-title: Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study
  publication-title: Radiology
  doi: 10.1148/radiol.11110195
– ident: 10.1016/j.neuroimage.2014.06.075_bb0015
– volume: 27
  start-page: 163
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0060
  article-title: Looking for the optimal DTI acquisition scheme given a maximum scan time: are more b-values a waste of time?
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.06.011
– volume: 33
  start-page: 695
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0100
  article-title: A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2844
– volume: 56
  start-page: 1398
  year: 2011
  ident: 10.1016/j.neuroimage.2014.06.075_bb0375
  article-title: Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.010
– volume: 36
  start-page: 630
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0320
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 54
  start-page: 1377
  year: 2005
  ident: 10.1016/j.neuroimage.2014.06.075_bb0340
  article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20642
– volume: 31
  start-page: 1458
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0210
  article-title: Intercenter differences in diffusion tensor MRI acquisition
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22186
– ident: 10.1016/j.neuroimage.2014.06.075_bb0010
– volume: 33
  start-page: 867
  year: 2006
  ident: 10.1016/j.neuroimage.2014.06.075_bb0115
  article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.07.037
– volume: 28
  start-page: 1102
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0205
  article-title: Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A0488
– volume: 262
  start-page: 341
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0165
  article-title: Longitudinal changes of fractional anisotropy in Alzheimer's disease patients treated with galantamine: a 12-month randomized, placebo-controlled, double-blinded study
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-011-0234-2
– volume: 7
  start-page: 715
  year: 2008
  ident: 10.1016/j.neuroimage.2014.06.075_bb0050
  article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70163-7
– volume: 18
  start-page: 242
  year: 2003
  ident: 10.1016/j.neuroimage.2014.06.075_bb0220
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10350
– volume: 81
  start-page: 798
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0255
  article-title: A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2009.189639
– volume: 255
  start-page: 390
  year: 2008
  ident: 10.1016/j.neuroimage.2014.06.075_bb0240
  article-title: Longitudinal evaluation of clinically early relapsing–remitting multiple sclerosis with diffusion tensor imaging
  publication-title: J. Neurol.
  doi: 10.1007/s00415-008-0678-0
– volume: 216
  start-page: 525
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0335
  article-title: Longitudinal diffusion tensor imaging in Huntington's Disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2008.12.026
– start-page: 7628
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0175
  article-title: Quality control of diffusion weighted images
  publication-title: Proc. Soc. Photo. Opt. Instrum. Eng.
– volume: 41
  start-page: 1267
  year: 2008
  ident: 10.1016/j.neuroimage.2014.06.075_bb0345
  article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.036
– volume: 74
  start-page: 1814
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0140
  article-title: Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e0f7cf
– volume: 22
  start-page: 507
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0295
  article-title: Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-100234
– volume: 76
  start-page: 179
  year: 2011
  ident: 10.1016/j.neuroimage.2014.06.075_bb0110
  article-title: Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318206ca61
– volume: 36
  start-page: 1123
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0150
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.056
– volume: 31
  start-page: 827
  year: 2013
  ident: 10.1016/j.neuroimage.2014.06.075_bb0215
  article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2013.03.004
– start-page: 254032
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0145
  article-title: DTI parameter optimisation for acquisition at 1.5T: SNR analysis and clinical application
  publication-title: Comput. Intell. Neurosci.
– volume: 51
  start-page: 1106
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0300
  article-title: The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.011
– volume: 35
  start-page: 233
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0285
  article-title: Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking
  publication-title: Dev. Neuropsychol.
  doi: 10.1080/87565641003689556
– volume: 88c
  start-page: 79
  year: 2013
  ident: 10.1016/j.neuroimage.2014.06.075_bb0370
  article-title: Spurious group differences due to head motion in a diffusion MRI study
  publication-title: NeuroImage
– volume: 18
  start-page: 348
  year: 2003
  ident: 10.1016/j.neuroimage.2014.06.075_bb0055
  article-title: From diffusion tractography to quantitative white matter tract measures: a reproducibility study
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(02)00042-3
– volume: 32
  start-page: 17365
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0230
  article-title: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2904-12.2012
– volume: 26
  start-page: 375
  year: 2007
  ident: 10.1016/j.neuroimage.2014.06.075_bb0075
  article-title: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20969
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2014.06.075_bb0130
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 51
  start-page: 527
  year: 2006
  ident: 10.1016/j.neuroimage.2014.06.075_bb0200
  article-title: Principles of diffusion tensor imaging and its applications to basic neuroscience research
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.08.012
– volume: 2
  start-page: 345
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0185
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0112
– volume: 68
  start-page: 1097
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0005
  article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23314
– volume: 62
  start-page: 717
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0225
  article-title: Free water elimination and mapping from diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22055
– volume: 51
  start-page: 1384
  year: 2010
  ident: 10.1016/j.neuroimage.2014.06.075_bb0310
  article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.046
– volume: 33
  start-page: 2390
  year: 2012
  ident: 10.1016/j.neuroimage.2014.06.075_bb0085
  article-title: Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21370
– volume: 32
  start-page: 1318
  year: 2001
  ident: 10.1016/j.neuroimage.2014.06.075_bb0315
  article-title: A new rating scale for age-related white matter changes applicable to MRI and CT
  publication-title: Stroke
  doi: 10.1161/01.STR.32.6.1318
– volume: 21
  start-page: 266
  year: 2009
  ident: 10.1016/j.neuroimage.2014.06.075_bb0105
  article-title: The Italian Brain Normative Archive of structural MR scans: norms for medial temporal atrophy and white matter lesions
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/BF03324915
– volume: 37
  start-page: 222
  year: 2011
  ident: 10.1016/j.neuroimage.2014.06.075_bb0360
  article-title: Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbp088
– volume: 18
  start-page: 712
  year: 1999
  ident: 10.1016/j.neuroimage.2014.06.075_bb0245
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
SSID ssj0009148
Score 2.4355228
Snippet Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 390
SubjectTerms Aged
Aged, 80 and over
Alzheimer's disease
Automation
Brain
Brain diffusion tensor imaging
Diffusion
Diffusion Tensor Imaging - instrumentation
Diffusion Tensor Imaging - methods
Diffusion Tensor Imaging - standards
Female
Humans
Longitudinal Studies
Male
Middle Aged
Multi-center
Multi-site MRI
Reliability
Reproducibility
Reproducibility of Results
Statistics
Studies
Tract-based spatial statistics
White Matter - anatomy & histology
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La-MwEBalh6WXst3tI32hhV7VxLYeNj2VsKUsZC9tIDchyzK4ZO2SxIdA6W_vjCWn9NAl0KNtDdh6zHyyvm-GkKuihG2DKhRzqUgZT6xkRkrLRspGZZ5k5ahEvfPkr7yf8j8zMdsh414Lg7TK4Pu9T--8dbgzDL05fK6q4QMgAwg3mJ8ME0nFqCjnXOEsv359p3nAYy-HEwnD1oHN4zleXc7I6h-sXCR5cZ_JU3wWoj6DoF0ouvtO9gOGpLf-NQ_Ijqt_kG-TcEr-k7x0qlo8FqbzBusRtQXWvqILN698Wu41bUq6QoEUwzBW0CUSq6EJ6ot86mZa1RSrp7T4O40iz71ZUPwIiHVo7QWUa-qwzPd8TZdtjr90lodkevf7cXzPQpUFZnkWrxgXxlhbKJVIYYVInHQGQAVmJgJo5BLcQKk4LcARZqW0sIatMyqPDVJUShUnR2S3bmp3Qugoz2ykrFGRTbnIVWot4IEsNUWclwBlBkT1HattSEGOlTDmuueaPen3IdE4JBppd0oMSLSxfPZpOLawyfqx073MFByjhlixhe3NxvbDdNzS-ryfKjq4hKUGaM0jRL98QH5tHsNixhMaU7umhTaARjlqkZP_tJEx7kF5mg3IsZ-Gmy4BPAs7YiFPv_T6Z2QPr7zi8pzsrhatuwDotcovu7X1BvfOMFo
  priority: 102
  providerName: Elsevier
Title Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914005527
https://dx.doi.org/10.1016/j.neuroimage.2014.06.075
https://www.ncbi.nlm.nih.gov/pubmed/25026156
https://www.proquest.com/docview/1614116384
https://www.proquest.com/docview/1562440693
https://www.proquest.com/docview/1622605489
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2aBEouJU2_NkkXFXpVu7b1YZNDSEvCtiVLKQ3szdiyDBu2drpeHxZCf3tnLNl7StiTD9YY25JmnqQ3bwA-FiUuG3ShuY1lzEVkFM-UMnyiTVDmUVJOSsp3vpmp6a34Ppdzv-HWeFpl7xM7R13UhvbIPyMyEQGBB3Fx_5dT1Sg6XfUlNPbggKTLaFTrud6K7gbCpcLJiMfYwDN5HL-r04tc_MFZSwQv4VQ85WPh6TH42YWh6yN44fEju3Qd_hKe2eoYnt_4E_JjOCT06MSXX8FDl15LX8CWNRUmagsqgsVWdrlw-twbVpdsTZlSnOJZwRpiWGOTZngMW1SMyqi0tK_GiPBerxh9EQY9snaZlBtmqd73csOaNqe9neY13F5f_f465b7cAjciCddcyCwzptA6UtJIGVllM0QXJFGEGMlGtJLSYVygR0xKZXAyG5vpPMyIq1LqMHoD-1Vd2XfAJnliAm0yHZhYyFzHxiAwSOKsCPMSMc0IdP-XU-O1yKkkxjLtSWd36bZ_UuqflPh3Wo4gGCzvnR7HDjZJ35Fpn2-KHjLFoLGD7flg6zGJwxo7Wp_14yb1vqFJtyN5BB-G2zir6agmq2zdYhuEpYKSkqMn2qiQFqMiTkbw1o3J4ZcgsMWlsVQnT7_AKRzS27rcyjPYX69a-x5B1jofw96nf8G4m09jOLj89mM6w-uXq9nPX_8B8XItWg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRYJeKiivhRaMBEeLTWLHiRBCFVBtabenVtqbcRxHWrRNymYjtBK_id_ITJxkT6320nM8UeJ5fWPPA-B9XmDYoHLFXSITLiIbcxPHlo-VDYosSotxQfXO04t4ciV-zORsB_71tTCUVtnbxNZQ55WlM_KPiExEQOBBfLn5zWlqFN2u9iM0vFicufUfDNnqz6ffkL8fwvDk--XXCe-mCnAr0nDFhTTG2lypKJZWysjFzqATpU48CAVcRAGDCpMcFT8tYosya51RWWgoJaNQ1OgATf4DdLxjCvbUTG2a_AbCl97JiCdBkHaZQz6frO1POb9GK0EJZcJ3DZW3ucPb4G7r9k4ew36HV9mxF7AnsOPKA3g47W7kD2CP0Kpv9vwU_rblvLRjbFHRIKQmp6FbbOkWc98PfM2qgq2oMouT_8xZTRnduKQeXsPmJaOxLQ2d4zFKsK-WjP4InSxR-8rNNXM0X3yxZnWT0VlS_Qyu7oURz2G3rEr3Etg4S22grFGBTYTMVGItApE0MXmYFYihRqD6Xda2631OIzgWuk9y-6U3_NHEH035fkqOIBgob3z_jy1o0p6Ruq9vRYus0UltQftpoO0wkMc2W1If9nKjO1tU643mjODd8BitCF0NmdJVDa5BGCyoCDq6Y00cUvArknQEL7xMDluCQBpDcRm_uvsD3sKjyeX0XJ-fXpy9hj36cl_XeQi7q2XjjhDgrbI3rVYx-Hnfavwfm_5lOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swED5KCqUvY-1-Zes2DbZH0diWLJsyxrY2tOsaylihb5otS5CR2V0cMwL7y_bX7S6ynaeWvPTZOmPrpLvvpO_uAN4WDsMGVShuE5lwEZmYZ3Fs-EiZwOVR6kaO8p0vJvHplfhyLa-34F-XC0O0ys4mrgx1URk6Iz9EZCICAg_i0LW0iMvj8Yeb35w6SNFNa9dOwy-Rc7v8g-Fb_f7sGHX9LgzHJ98_n_K2wwA3Ig0XXMgsM6ZQKoqlkTKysc3QoVJVHoQFNqLgQYVJgUYgdbHB9WtspvIwI3qGU1T0AM3_tqKoaADbn04ml9_WJX8D4RPxZMSTIEhbHpFnl62qVU5_oc0gepnwNUTlbc7xNvC7coLjh_CgRa_so19ue7Bly33YuWjv5_dhl7CrL_38CP6ukntpztisorZITUEtuNjczqa-OviSVY4tKE-LkzctWE38bhxS969h05JRE5eGTvUY0e2rOaM_QpdL0j6Pc8ksdRufLVnd5HSyVD-Gq3tRxRMYlFVpnwEb5akJlMlUYBIhc5UYg7AkTbIizB0iqiGobpa1aSuhU0OOme4obz_1Wj-a9KOJ_afkEIJe8sZXA9lAJu0UqbtsV7TPGl3WBrJHvWyLiDzS2VD6oFs3urVMtV7voyG86R-jTaGLoqy0VYNjEBQLSomO7hgThxQKiyQdwlO_JvspQViNgbmMn9_9Aa9hB7ew_no2OX8Bu_ThPsnzAAaLeWNfItpb5K_abcXgx33v5P89amrW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisite+longitudinal+reliability+of+tract-based+spatial+statistics+in+diffusion+tensor+imaging+of+healthy+elderly+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jovicich%2C+Jorge&rft.au=Marizzoni%2C+Moira&rft.au=Bosch%2C+Beatriz&rft.au=Bartres-Faz%2C+David&rft.date=2014-11-01&rft.issn=1053-8119&rft.volume=101&rft.spage=390&rft.epage=403&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.06.075&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon