Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects
Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 101; pp. 390 - 403 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2014
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2×2×2mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test–retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test–retest reproducibility. White matter b0 SNR reproducibility was on average 7±1% with no significant MRI site effects. Whole brain analysis resulted in no significant test–retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2–4% range for FA and AD and 2–6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.
•We implement a multi-site 3T MRI protocol for brain DTI on 10 EU sites.•We acquire across-session test–retest data on 50 healthy elderly subjects.•We use full brain TBSS and ROI analysis to calculate FA, MD, RD and AD.•Reproducibility errors are in the 2–6% range.•Reproducibility errors tended to be lower in sites with shorter acquisitions. |
---|---|
AbstractList | Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2×2×2mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test–retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test–retest reproducibility. White matter b0 SNR reproducibility was on average 7±1% with no significant MRI site effects. Whole brain analysis resulted in no significant test–retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2–4% range for FA and AD and 2–6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.
•We implement a multi-site 3T MRI protocol for brain DTI on 10 EU sites.•We acquire across-session test–retest data on 50 healthy elderly subjects.•We use full brain TBSS and ROI analysis to calculate FA, MD, RD and AD.•Reproducibility errors are in the 2–6% range.•Reproducibility errors tended to be lower in sites with shorter acquisitions. Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (222mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 plus or minus 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios.Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2x2x2mm3, b=700s/mm2, 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7±1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. |
Author | Marizzoni, Moira Benninghoff, Jens Picco, Agnese Alessandrini, Franco Bosch, Beatriz Arnold, Jennifer Drevelegas, Antonios Floridi, Piero Nobili, Flavio Marra, Camillo Payoux, Pierre Chanoine, Valérie Ranjeva, Jean-Philippe Otto, Josephin Jovicich, Jorge Reiss-Zimmermann, Martin Tsolaki, Magda Bordet, Régis Didic, Mira Gros-Dagnac, Hélène Tarducci, Roberto Frisoni, Giovanni B. Constantinidis, Manos Galluzzi, Samantha Blin, Oliver Ferretti, Antonio Caulo, Massimo Ragucci, Monica Zoccatelli, Giada Roccatagliata, Luca Hoffmann, Karl-Titus Soricelli, Andrea Salvadori, Nicola Aiello, Marco Rossini, Paolo Maria Bartrés-Faz, David Bombois, Stephanie Lopes, Renaud Bargalló, Núria Wiltfang, Jens Beltramello, Alberto |
Author_xml | – sequence: 1 givenname: Jorge orcidid: 0000-0001-9504-7503 surname: Jovicich fullname: Jovicich, Jorge email: jorge.jovicich@unitn.it organization: Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy – sequence: 2 givenname: Moira surname: Marizzoni fullname: Marizzoni, Moira organization: LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine — IRCCS San Giovanni di Dio-FBF, Brescia, Italy – sequence: 3 givenname: Beatriz surname: Bosch fullname: Bosch, Beatriz organization: Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, and IDIBAPS, Barcelona, Spain – sequence: 4 givenname: David surname: Bartrés-Faz fullname: Bartrés-Faz, David organization: Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona and IDIBAPS, Barcelona, Spain – sequence: 5 givenname: Jennifer surname: Arnold fullname: Arnold, Jennifer organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany – sequence: 6 givenname: Jens surname: Benninghoff fullname: Benninghoff, Jens organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany – sequence: 7 givenname: Jens surname: Wiltfang fullname: Wiltfang, Jens organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany – sequence: 8 givenname: Luca surname: Roccatagliata fullname: Roccatagliata, Luca organization: Department of Neuroradiology, IRCSS San Martino University Hospital and IST, Genoa, Italy – sequence: 9 givenname: Agnese surname: Picco fullname: Picco, Agnese organization: Department of Neuroscience, Ophthalmology, Genetics and Mother–Child Health (DINOGMI), University of Genoa, Genoa, Italy – sequence: 10 givenname: Flavio surname: Nobili fullname: Nobili, Flavio organization: Department of Neuroscience, Ophthalmology, Genetics and Mother–Child Health (DINOGMI), University of Genoa, Genoa, Italy – sequence: 11 givenname: Oliver surname: Blin fullname: Blin, Oliver organization: Pharmacology, Assistance Publique — Hôpitaux de Marseille, Aix-Marseille University — CNRS, UMR 7289, Marseille, France – sequence: 12 givenname: Stephanie surname: Bombois fullname: Bombois, Stephanie organization: Department of Neurology, EA1046, Lille University, Lille, France – sequence: 13 givenname: Renaud surname: Lopes fullname: Lopes, Renaud organization: Department of Neuroradiology, EA1046, Lille University, Lille, France – sequence: 14 givenname: Régis surname: Bordet fullname: Bordet, Régis organization: Department of Pharmacology, EA1046, Lille University, Lille, France – sequence: 15 givenname: Valérie surname: Chanoine fullname: Chanoine, Valérie organization: CRMBM–CEMEREM, UMR 7339, Aix Marseille Université — CNRS, Marseille, France – sequence: 16 givenname: Jean-Philippe surname: Ranjeva fullname: Ranjeva, Jean-Philippe organization: CRMBM–CEMEREM, UMR 7339, Aix Marseille Université — CNRS, Marseille, France – sequence: 17 givenname: Mira surname: Didic fullname: Didic, Mira organization: APHM, CHU Timone, Service de Neurologie et Neuropsychologie, Marseille, France – sequence: 18 givenname: Hélène surname: Gros-Dagnac fullname: Gros-Dagnac, Hélène organization: INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825, Toulouse, France – sequence: 19 givenname: Pierre surname: Payoux fullname: Payoux, Pierre organization: INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825, Toulouse, France – sequence: 20 givenname: Giada surname: Zoccatelli fullname: Zoccatelli, Giada organization: Department of Neuroradiology, General Hospital, Verona, Italy – sequence: 21 givenname: Franco surname: Alessandrini fullname: Alessandrini, Franco organization: Department of Neuroradiology, General Hospital, Verona, Italy – sequence: 22 givenname: Alberto surname: Beltramello fullname: Beltramello, Alberto organization: Department of Neuroradiology, General Hospital, Verona, Italy – sequence: 23 givenname: Núria surname: Bargalló fullname: Bargalló, Núria organization: Department of Neuroradiology and Magnetic Resonace Image core Facility, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain – sequence: 24 givenname: Antonio surname: Ferretti fullname: Ferretti, Antonio organization: Department of Neuroscience Imaging and Clinical Sciences, University “G. d'Annunzio” of Chieti, Italy – sequence: 25 givenname: Massimo surname: Caulo fullname: Caulo, Massimo organization: Department of Neuroscience Imaging and Clinical Sciences, University “G. d'Annunzio” of Chieti, Italy – sequence: 26 givenname: Marco surname: Aiello fullname: Aiello, Marco organization: IRCCS SDN, Naples, Italy – sequence: 27 givenname: Monica surname: Ragucci fullname: Ragucci, Monica organization: IRCCS SDN, Naples, Italy – sequence: 28 givenname: Andrea surname: Soricelli fullname: Soricelli, Andrea organization: IRCCS SDN, Naples, Italy – sequence: 29 givenname: Nicola surname: Salvadori fullname: Salvadori, Nicola organization: Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy – sequence: 30 givenname: Roberto surname: Tarducci fullname: Tarducci, Roberto organization: Medical Physics Unit, Perugia General Hospital, Perugia, Italy – sequence: 31 givenname: Piero surname: Floridi fullname: Floridi, Piero organization: Neuroradiology Unit, Perugia General Hospital, Perugia, Italy – sequence: 32 givenname: Magda surname: Tsolaki fullname: Tsolaki, Magda organization: 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 33 givenname: Manos surname: Constantinidis fullname: Constantinidis, Manos organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece – sequence: 34 givenname: Antonios surname: Drevelegas fullname: Drevelegas, Antonios organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece – sequence: 35 givenname: Paolo Maria surname: Rossini fullname: Rossini, Paolo Maria organization: Dept. Geriatrics, Neuroscience & Orthopaedics, Catholic University, Policlinic Gemelli, Rome, Italy – sequence: 36 givenname: Camillo surname: Marra fullname: Marra, Camillo organization: Center for Neuropsychological Research, Catholic University, Rome, Italy – sequence: 37 givenname: Josephin surname: Otto fullname: Otto, Josephin organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany – sequence: 38 givenname: Martin surname: Reiss-Zimmermann fullname: Reiss-Zimmermann, Martin organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany – sequence: 39 givenname: Karl-Titus surname: Hoffmann fullname: Hoffmann, Karl-Titus organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany – sequence: 40 givenname: Samantha surname: Galluzzi fullname: Galluzzi, Samantha organization: LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine — IRCCS San Giovanni di Dio-FBF, Brescia, Italy – sequence: 41 givenname: Giovanni B. surname: Frisoni fullname: Frisoni, Giovanni B. organization: LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine — IRCCS San Giovanni di Dio-FBF, Brescia, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25026156$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2LFDEQhhtZcT_0L0jAi5cek3Qn3bmI7uIXrHjRc8gk1bM1ZpIxSQsD_njTzC7CXNxT1eGpJ-F9L5uzEAM0DWF0xSiTb7arAHOKuDMbWHHK-hWVKzqIJ80Fo0q0Sgz8bNlF146MqfPmMuctpVSxfnzWnHNBuWRCXjR_vs6-YMYCxMewwTI7DMaTBB7NGj2WA4kTKcnY0q5NBkfy3hSsSC515oI2EwzE4TTNGWMgBUKOiSyfw7BZru_A-HJ3IOAdJH8geV5vwZb8vHk6GZ_hxf28an58_PD95nN7--3Tl5v3t63tFS9tL4yx1g1DJ4UVogMJpmODGkYqeQedEpIOfHTGOTVJKxi1YIY1N0ypYRp4d9W8Pnr3Kf6aIRe9w2zBexMgzlkzybmkoh_V_1Ehed9TqbqKvjpBt3FONbxFyHrGZDf2lXp5T83rHTi9TzWYdNAPFVTg7RGwKeacYNIWl2RjqKGj14zqpXO91f8610vnmkpdO6-C8UTw8MYjTq-Pp1DT_42QdLYIwYLDVAvSLuJjJO9OJNZjQGv8Tzg8TvEXnSHkiA |
CitedBy_id | crossref_primary_10_1007_s00415_017_8443_x crossref_primary_10_1186_s12880_016_0145_9 crossref_primary_10_1097_j_pain_0000000000000703 crossref_primary_10_1007_s00330_016_4490_4 crossref_primary_10_1038_s41597_022_01329_y crossref_primary_10_1002_jmri_25056 crossref_primary_10_1017_S1355617715001356 crossref_primary_10_1016_j_pscychresns_2018_06_004 crossref_primary_10_1002_jmri_28887 crossref_primary_10_1007_s11065_015_9291_z crossref_primary_10_1016_j_nicl_2015_12_009 crossref_primary_10_1016_j_neuroimage_2015_07_087 crossref_primary_10_1016_j_dcn_2017_12_002 crossref_primary_10_1016_j_neuroimage_2019_04_067 crossref_primary_10_1016_j_neuroimage_2020_116932 crossref_primary_10_1523_ENEURO_0382_17_2018 crossref_primary_10_3389_fnins_2020_00396 crossref_primary_10_1002_hbm_24579 crossref_primary_10_1016_j_neuroimage_2021_118234 crossref_primary_10_1007_s00330_024_11084_w crossref_primary_10_1002_brb3_615 crossref_primary_10_1016_j_mri_2019_08_024 crossref_primary_10_1162_imag_a_00045 crossref_primary_10_1093_braincomms_fcad210 crossref_primary_10_1002_pmh_1441 crossref_primary_10_1007_s00234_018_2017_1 crossref_primary_10_1152_japplphysiol_00769_2016 crossref_primary_10_1016_j_neurobiolaging_2016_03_016 crossref_primary_10_1016_j_neurobiolaging_2015_01_007 crossref_primary_10_1016_j_neuroimage_2015_07_010 crossref_primary_10_1016_j_neuroimage_2016_01_061 crossref_primary_10_1016_j_mri_2022_06_004 crossref_primary_10_3389_fneur_2019_00265 crossref_primary_10_3348_kjr_2018_19_4_777 crossref_primary_10_1016_j_jalz_2015_05_008 crossref_primary_10_1016_j_neurobiolaging_2015_02_001 crossref_primary_10_1017_S0033291716001410 crossref_primary_10_3390_bioengineering10040397 crossref_primary_10_1002_hbm_23559 crossref_primary_10_1093_schbul_sbw061 crossref_primary_10_1002_hbm_23350 crossref_primary_10_1016_j_mri_2020_11_008 crossref_primary_10_1111_psyp_12769 crossref_primary_10_1002_hbm_23470 crossref_primary_10_1002_hbm_23157 crossref_primary_10_1177_1545968320918841 crossref_primary_10_1016_j_mri_2018_07_011 crossref_primary_10_1016_j_neuroimage_2020_116831 crossref_primary_10_3233_JAD_180152 crossref_primary_10_1016_j_clinph_2025_01_012 crossref_primary_10_1111_joim_12482 crossref_primary_10_1002_hbm_22859 crossref_primary_10_1016_j_neuroimage_2015_07_027 crossref_primary_10_3390_jcm10214987 crossref_primary_10_1016_j_inffus_2022_01_001 crossref_primary_10_3233_JAD_180158 crossref_primary_10_1016_j_nicl_2018_04_037 crossref_primary_10_1002_brb3_759 crossref_primary_10_1016_j_neuroscience_2017_05_048 crossref_primary_10_1186_s13244_023_01374_0 crossref_primary_10_1016_j_neuroimage_2016_04_041 crossref_primary_10_1016_j_neuroimage_2015_08_076 crossref_primary_10_1002_brb3_1363 crossref_primary_10_1111_nyas_13325 crossref_primary_10_3390_brainsci10120966 crossref_primary_10_1007_s11910_018_0894_7 crossref_primary_10_1016_j_biopsych_2024_06_014 crossref_primary_10_1017_S003329171800212X crossref_primary_10_1016_j_arr_2016_01_002 crossref_primary_10_1136_jnnp_2015_311952 crossref_primary_10_3389_fnins_2019_00729 crossref_primary_10_1016_j_ejmp_2023_102610 crossref_primary_10_1038_s41598_017_17738_8 crossref_primary_10_1002_hbm_25838 crossref_primary_10_1016_j_neurobiolaging_2019_06_005 |
Cites_doi | 10.1016/j.neuroimage.2013.05.007 10.1007/s10334-008-0104-8 10.1093/cercor/bhp280 10.3109/02841851.2010.495351 10.3174/ajnr.A1044 10.1016/j.neuroimage.2005.01.028 10.1002/mrm.10609 10.1006/jmrb.1996.0086 10.1097/WCO.0b013e32832d92de 10.1523/JNEUROSCI.5302-10.2011 10.1093/brain/awm294 10.1002/hbm.20794 10.1002/hbm.21192 10.1002/jmri.21053 10.1002/hbm.21225 10.1016/j.neuroimage.2013.03.015 10.1002/nbm.1543 10.1016/j.neuroimage.2009.01.054 10.1259/bjr/22893432 10.3233/JAD-2011-0043 10.1002/jmri.10377 10.1007/s11682-008-9051-2 10.1016/j.neuroimage.2006.09.020 10.3174/ajnr.A3553 10.1002/mrm.21890 10.1016/j.neurobiolaging.2013.12.001 10.1002/mrm.21965 10.1371/journal.pone.0047684 10.1097/01.rli.0000262757.10271.e5 10.1136/jnnp.2007.142786 10.1016/j.neurobiolaging.2005.10.008 10.1016/j.neuroimage.2006.02.024 10.1016/j.pscychresns.2006.01.008 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L 10.1148/radiol.11110195 10.1016/j.mri.2008.06.011 10.3174/ajnr.A2844 10.1016/j.neuroimage.2011.02.010 10.1016/j.neuroimage.2007.02.049 10.1002/mrm.20642 10.1002/jmri.22186 10.1016/j.neuroimage.2006.07.037 10.3174/ajnr.A0488 10.1007/s00406-011-0234-2 10.1016/S1474-4422(08)70163-7 10.1002/jmri.10350 10.1136/jnnp.2009.189639 10.1007/s00415-008-0678-0 10.1016/j.expneurol.2008.12.026 10.1016/j.neuroimage.2008.03.036 10.1212/WNL.0b013e3181e0f7cf 10.3233/JAD-2010-100234 10.1212/WNL.0b013e318206ca61 10.1016/j.neuroimage.2007.02.056 10.1016/j.mri.2013.03.004 10.1016/j.neuroimage.2010.03.011 10.1080/87565641003689556 10.1016/S1053-8119(02)00042-3 10.1523/JNEUROSCI.2904-12.2012 10.1002/jmri.20969 10.1006/nimg.2002.1132 10.1016/j.neuron.2006.08.012 10.1089/brain.2012.0112 10.1002/mrm.23314 10.1002/mrm.22055 10.1016/j.neuroimage.2010.03.046 10.1002/hbm.21370 10.1161/01.STR.32.6.1318 10.1007/BF03324915 10.1093/schbul/sbp088 10.1109/42.796284 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Nov 1, 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Nov 1, 2014 |
CorporateAuthor | The PharmaCog Consortium PharmaCog Consortium |
CorporateAuthor_xml | – name: The PharmaCog Consortium – name: PharmaCog Consortium |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2014.06.075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
EISSN | 1095-9572 |
EndPage | 403 |
ExternalDocumentID | 3465764681 25026156 10_1016_j_neuroimage_2014_06_075 S1053811914005527 |
Genre | Multicenter Study Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c492t-45aaccd77365c553e6ea3179780623e39560728dadd9f6c510cea7b2a1997f723 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Jul 10 22:13:41 EDT 2025 Mon Jul 21 09:48:22 EDT 2025 Wed Aug 13 08:13:46 EDT 2025 Wed Feb 19 02:15:40 EST 2025 Tue Jul 01 02:14:54 EDT 2025 Thu Apr 24 22:52:50 EDT 2025 Fri Feb 23 02:24:27 EST 2024 Tue Aug 26 16:31:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-center Multi-site MRI Brain diffusion tensor imaging Reliability Reproducibility Tract-based spatial statistics |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-45aaccd77365c553e6ea3179780623e39560728dadd9f6c510cea7b2a1997f723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9504-7503 |
PMID | 25026156 |
PQID | 1614116384 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1622605489 proquest_miscellaneous_1562440693 proquest_journals_1614116384 pubmed_primary_25026156 crossref_citationtrail_10_1016_j_neuroimage_2014_06_075 crossref_primary_10_1016_j_neuroimage_2014_06_075 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_06_075 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_06_075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 2014-11-00 2014-Nov-01 20141101 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Sritharan, Egan, Johnston, Horne, Bradshaw, Bohanna, Asadi, Cunnington, Churchyard, Chua, Farrow, Georgiou-Karistianis (bb0275) 2010; 81 Harrison, Caffo, Shiee, Farrell, Bazin, Farrell, Ratchford, Calabresi, Reich (bb0110) 2011; 76 Oouchi, Yamada, Sakai, Kizu, Kubota, Ito, Nishimura (bb0205) 2007; 28 Laganà, Rovaris, Ceccarelli, Venturelli, Marini, Baselli (bb0145) 2010 Pasternak, Westin, Bouix, Seidman, Goldstein, Woo, Petryshen, Mesholam-Gately, McCarley, Kikinis, Shenton, Kubicki (bb0230) 2012; 32 Engvig, Fjell, Westlye, Moberget, Sundseth, Larsen, Walhovd (bb0085) 2012; 33 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bb0245) 1999; 18 Wedeen, Hagmann, Tseng, Reese, Weisskoff (bb0340) 2005; 54 Bonekamp, Nagae, Degaonkar, Matson, Abdalla, Barker, Mori, Horská (bb0035) 2007; 34 Jenkinson, Bannister, Brady, Smith (bb0130) 2002; 17 Kantarci, Avula, Senjem, Samikoglu, Zhang, Weigand, Przybelski, Edmonson, Vemuri, Knopman, Ferman, Boeve, Petersen, Jack (bb0140) 2010; 74 Galluzzi, Testa, Boccardi, Bresciani, Benussi, Ghidoni, Beltramello, Bonetti, Bono, Falini, Magnani, Minonzio, Piovan, Binetti, Frisoni (bb0105) 2009; 21 Correia, Carpenter, Williams (bb0060) 2009; 27 Brander, Kataja, Saastamoinen, Ryymin, Huhtala, Ohman, Soimakallio, Dastidar (bb0040) 2010; 51 Fieremans, Benitez, Jensen, Falangola, Tabesh, Deardorff, Spampinato, Babb, Novikov, Ferris, Helpern (bb0095) 2013 Nov-Dec; 34 Alhamud, Tisdall, Hess, Hasan, Meintjes, van der Kouwe (bb0005) 2012; 68 Marenco, Rawlings, Rohde, Barnett, Honea, Pierpaoli, Weinberger (bb0190) 2006; 147 Likitjaroen, Meindl, Friese, Wagner, Buerger, Hampel, Teipel (bb0165) 2012; 262 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (bb0265) 2006; 31 Wang, Stebbins, Nyenhuis, deToledo-Morrell, Freels, Gencheva, Pedelty, Sripathirathan, Moseley, Turner, Gabrieli, Gorelick (bb0325) 2006; 27 Vaessen, Hofman, Tijssen, Aldenkamp, Jansen, Backes (bb0300) 2010; 51 Pagani, Hirsch, Pouwels, Horsfield, Perego, Gass, Roosendaal, Barkhof, Agosta, Rovaris, Caputo, Giorgio, Palace, Marino, De Stefano, Ropele, Fazekas, Filippi (bb0210) 2010; 31 Scola, Bozzali, Agosta, Magnani, Franceschi, Sormani, Cercignani, Pagani, Falautano, Filippi, Falini (bb0255) 2010; 81 Vollmar, O'Muircheartaigh, Barker, Symms, Thompson, Kumari, Duncan, Richardson, Koepp (bb0310) 2010; 51 Parker, Haroon, Wheeler-Kingshott (bb0220) 2003; 18 Andersson, Jenkinson, Smith (bb0015) 2007 Dietrich, Raya, Reeder, Reiser, Schoenberg (bb0075) 2007; 26 Jansen, Kooi, Kessels, Nicolay, Backes (bb0125) 2007; 42 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (bb0320) 2007; 36 Sage, Van Hecke, Peeters, Sijbers, Robberecht, Parizel, Marchal, Leemans, Sunaert (bb0250) 2009; 30 Landman, Farrell, Jones, Smith, Prince, Mori (bb0150) 2007; 36 Sullivan, Pfefferbaum (bb0280) 2007; 80 Ciccarelli, Catani, Johansen-Berg, Clark, Thompson (bb0050) 2008; 7 Van Horn, Toga (bb0305) 2009; 22 Mielke, Kozauer, Chan, George, Toroney, Zerrate, Bandeen-Roche, Wang, Vanzijl, Pekar, Mori, Lyketsos, Albert (bb0195) 2009; 46 Calabrese, Rinaldi, Seppi, Favaretto, Squarcina, Mattisi, Perini, Bertoldo, Gallo (bb0045) 2011; 261 Pfefferbaum, Adalsteinsson, Sullivan (bb0235) 2003; 18 Heiervang, Behrens, Mackay, Robson, Johansen-Berg (bb0115) 2006; 33 Sullivan, Rohlfing, Pfefferbaum (bb0285) 2010; 35 Magnotta, Kim, Koscik, Beglinger, Espinso, Langbehn, Nopoulos, Paulsen (bb0180) 2009; 3 Wedeen, Wang, Schmahmann, Benner, Tseng, Dai, Pandya, Hagmann, D'Arceuil, de Crespigny (bb0345) 2008; 41 Drago, Babiloni, Bartrés-Faz, Caroli, Bosch, Hensch, Didic, Klafki, Pievani, Jovicich, Venturi, Spitzer, Vecchio, Schoenknecht, Wiltfang, Redolfi, Forloni, Blin, Irving, Davis, Hårdemark, Frisoni (bb0080) 2011; 26 Teipel, Meindl, Wagner, Stieltjes, Reuter, Hauenstein, Filippi, Ernemann, Reiser, Hampel (bb0295) 2010; 22 Fox, Sakaie, Lee, Debbins, Liu, Arnold, Melhem, Smith, Philips, Lowe, Fisher (bb0100) 2012; 33 Huang, Wang, Baliki, Wang, Apkarian, Parrish (bb0120) 2012; 7 Lebel, Beaulieu (bb0155) 2011; 31 Song, Yoshino, Le, Lin, Sun, Cross, Armstrong (bb0270) 2005; 26 Rashid, Hadjiprocopis, Davies, Griffin, Chard, Tiberio, Altmann, Wheeler-Kingshott, Tozer, Thompson, Miller (bb0240) 2008; 255 Papinutto, Maule, Jovicich (bb0215) 2013; 31 Coutu, Chen, Rosas, Salat (bb0065) 2014 Jun; 35 Mori, Zhang (bb0200) 2006; 51 Ciccarelli, Parker, Toosy, Wheeler-Kingshott, Barker, Boulby, Miller, Thompson (bb0055) 2003; 18 Wright, Mougin, Totman, Peters, Brookes, Coxon, Morris, Clemence, Francis, Bowtell, Gowland (bb0365) 2008; 21 Farrell, Landman, Jones, Smith, Prince, van Zijl, Mori (bb0090) 2007; 26 Yendiki, Koldewyn, Kakunoori, Kanwisher, Fischl (bb0370) 2013 Nov 21; 88c Bisdas, Bohning, Besenski, Nicholas, Rumboldt (bb0030) 2008; 29 Ling, Merideth, Caprihan, Pena, Teshiba, Mayer (bb0170) 2012; 33 Takao, Hayashi, Kabasawa, Ohtomo (bb0290) 2012; 33 Weaver, Richards, Liang, Laurino, Samii, Aylward (bb0335) 2009; 216 Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Nobili, Hensch, Tränkner, Schönknecht, Leroy, Lopes, Bordet, Chanoine, Ranjeva, Didic, Gros-Dagnac, Payoux, Zoccatelli, Alessandrini, Beltramello, Bargalló, Blin, Frisoni (bb8888) 2013 Dec; 83 Andersson, Jenkinson, Smith (bb0010) 2007 de Groot, Vernooij, Klein, Ikram, Vos, Smith, Niessen, Andersson (bb0070) 2013; 76 Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0025) 2003; 50 Westlye, Walhovd, Dale, Bjørnerud, Due-Tønnessen, Engvig, Grydeland, Tamnes, Ostby, Fjell (bb0350) 2010; 20 Basser, Pierpaoli (bb0020) 1996; 111 Sidaros, Engberg, Sidaros, Liptrot, Herning, Petersen, Paulson, Jernigan, Rostrup (bb0260) 2008; 131 Wheeler-Kingshott, Cercignani (bb0355) 2009; 61 White, Magnotta, Bockholt, Williams, Wallace, Ehrlich, Mueller, Ho, Jung, Clark, Lauriello, Bustillo, Schulz, Gollub, Andreasen, Calhoun, Lim (bb0360) 2011; 37 Liu, Wang, Gerig, Gouttard, Tao, Fletcher, Styner (bb0175) 2010 Wahlund, Barkhof, Fazekas, Bronge, Augustin, Sjögren, Wallin, Ader, Leys, Pantoni, Pasquier, Erkinjuntti, Scheltens, Changes (bb0315) 2001; 32 Magnotta, Matsui, Liu, Johnson, Long, Bolster, Mueller, Lim, Mori, Helmer, Turner, Reading, Lowe, Aylward, Flashman, Bonett, Paulsen (bb0185) 2012; 2 Leemans, Jones (bb0160) 2009; 61 Pasternak, Sochen, Gur, Intrator, Assaf (bb0225) 2009; 62 Zhu, Hu, Qiu, Taylor, Tso, Yiannoutsos, Navia, Mori, Ekholm, Schifitto, Zhong (bb0375) 2011; 56 Jones, Cercignani (bb0135) 2010; 23 Wansapura, Holland, Dunn, Ball (bb0330) 1999; 9 Wahlund (10.1016/j.neuroimage.2014.06.075_bb0315) 2001; 32 Galluzzi (10.1016/j.neuroimage.2014.06.075_bb0105) 2009; 21 Westlye (10.1016/j.neuroimage.2014.06.075_bb0350) 2010; 20 Pasternak (10.1016/j.neuroimage.2014.06.075_bb0225) 2009; 62 Zhu (10.1016/j.neuroimage.2014.06.075_bb0375) 2011; 56 Vollmar (10.1016/j.neuroimage.2014.06.075_bb0310) 2010; 51 Ciccarelli (10.1016/j.neuroimage.2014.06.075_bb0055) 2003; 18 Parker (10.1016/j.neuroimage.2014.06.075_bb0220) 2003; 18 Bonekamp (10.1016/j.neuroimage.2014.06.075_bb0035) 2007; 34 Oouchi (10.1016/j.neuroimage.2014.06.075_bb0205) 2007; 28 Wakana (10.1016/j.neuroimage.2014.06.075_bb0320) 2007; 36 Farrell (10.1016/j.neuroimage.2014.06.075_bb0090) 2007; 26 Smith (10.1016/j.neuroimage.2014.06.075_bb0265) 2006; 31 Sullivan (10.1016/j.neuroimage.2014.06.075_bb0285) 2010; 35 Sage (10.1016/j.neuroimage.2014.06.075_bb0250) 2009; 30 Song (10.1016/j.neuroimage.2014.06.075_bb0270) 2005; 26 Liu (10.1016/j.neuroimage.2014.06.075_bb0175) 2010 Wright (10.1016/j.neuroimage.2014.06.075_bb0365) 2008; 21 Basser (10.1016/j.neuroimage.2014.06.075_bb0020) 1996; 111 Van Horn (10.1016/j.neuroimage.2014.06.075_bb0305) 2009; 22 Laganà (10.1016/j.neuroimage.2014.06.075_bb0145) 2010 Marenco (10.1016/j.neuroimage.2014.06.075_bb0190) 2006; 147 Papinutto (10.1016/j.neuroimage.2014.06.075_bb0215) 2013; 31 Brander (10.1016/j.neuroimage.2014.06.075_bb0040) 2010; 51 Sullivan (10.1016/j.neuroimage.2014.06.075_bb0280) 2007; 80 Correia (10.1016/j.neuroimage.2014.06.075_bb0060) 2009; 27 White (10.1016/j.neuroimage.2014.06.075_bb0360) 2011; 37 Wansapura (10.1016/j.neuroimage.2014.06.075_bb0330) 1999; 9 Landman (10.1016/j.neuroimage.2014.06.075_bb0150) 2007; 36 Coutu (10.1016/j.neuroimage.2014.06.075_bb0065) 2014; 35 Huang (10.1016/j.neuroimage.2014.06.075_bb0120) 2012; 7 Likitjaroen (10.1016/j.neuroimage.2014.06.075_bb0165) 2012; 262 Fox (10.1016/j.neuroimage.2014.06.075_bb0100) 2012; 33 Pagani (10.1016/j.neuroimage.2014.06.075_bb0210) 2010; 31 Jovicich (10.1016/j.neuroimage.2014.06.075_bb8888) 2013; 83 Bisdas (10.1016/j.neuroimage.2014.06.075_bb0030) 2008; 29 Drago (10.1016/j.neuroimage.2014.06.075_bb0080) 2011; 26 Weaver (10.1016/j.neuroimage.2014.06.075_bb0335) 2009; 216 Yendiki (10.1016/j.neuroimage.2014.06.075_bb0370) 2013; 88c Scola (10.1016/j.neuroimage.2014.06.075_bb0255) 2010; 81 Rueckert (10.1016/j.neuroimage.2014.06.075_bb0245) 1999; 18 Andersson (10.1016/j.neuroimage.2014.06.075_bb0010) Takao (10.1016/j.neuroimage.2014.06.075_bb0290) 2012; 33 Jansen (10.1016/j.neuroimage.2014.06.075_bb0125) 2007; 42 Wheeler-Kingshott (10.1016/j.neuroimage.2014.06.075_bb0355) 2009; 61 Sidaros (10.1016/j.neuroimage.2014.06.075_bb0260) 2008; 131 Vaessen (10.1016/j.neuroimage.2014.06.075_bb0300) 2010; 51 Wedeen (10.1016/j.neuroimage.2014.06.075_bb0345) 2008; 41 Jones (10.1016/j.neuroimage.2014.06.075_bb0135) 2010; 23 Mori (10.1016/j.neuroimage.2014.06.075_bb0200) 2006; 51 Rashid (10.1016/j.neuroimage.2014.06.075_bb0240) 2008; 255 Harrison (10.1016/j.neuroimage.2014.06.075_bb0110) 2011; 76 Sritharan (10.1016/j.neuroimage.2014.06.075_bb0275) 2010; 81 Ling (10.1016/j.neuroimage.2014.06.075_bb0170) 2012; 33 Wedeen (10.1016/j.neuroimage.2014.06.075_bb0340) 2005; 54 Dietrich (10.1016/j.neuroimage.2014.06.075_bb0075) 2007; 26 Calabrese (10.1016/j.neuroimage.2014.06.075_bb0045) 2011; 261 Teipel (10.1016/j.neuroimage.2014.06.075_bb0295) 2010; 22 Andersson (10.1016/j.neuroimage.2014.06.075_bb0015) Fieremans (10.1016/j.neuroimage.2014.06.075_bb0095) 2013; 34 Pasternak (10.1016/j.neuroimage.2014.06.075_bb0230) 2012; 32 Jenkinson (10.1016/j.neuroimage.2014.06.075_bb0130) 2002; 17 Leemans (10.1016/j.neuroimage.2014.06.075_bb0160) 2009; 61 Engvig (10.1016/j.neuroimage.2014.06.075_bb0085) 2012; 33 Kantarci (10.1016/j.neuroimage.2014.06.075_bb0140) 2010; 74 Magnotta (10.1016/j.neuroimage.2014.06.075_bb0180) 2009; 3 Ciccarelli (10.1016/j.neuroimage.2014.06.075_bb0050) 2008; 7 Magnotta (10.1016/j.neuroimage.2014.06.075_bb0185) 2012; 2 Alhamud (10.1016/j.neuroimage.2014.06.075_bb0005) 2012; 68 Wang (10.1016/j.neuroimage.2014.06.075_bb0325) 2006; 27 de Groot (10.1016/j.neuroimage.2014.06.075_bb0070) 2013; 76 Mielke (10.1016/j.neuroimage.2014.06.075_bb0195) 2009; 46 Heiervang (10.1016/j.neuroimage.2014.06.075_bb0115) 2006; 33 Lebel (10.1016/j.neuroimage.2014.06.075_bb0155) 2011; 31 Pfefferbaum (10.1016/j.neuroimage.2014.06.075_bb0235) 2003; 18 Behrens (10.1016/j.neuroimage.2014.06.075_bb0025) 2003; 50 |
References_xml | – start-page: 7628 year: 2010 ident: bb0175 article-title: Quality control of diffusion weighted images publication-title: Proc. Soc. Photo. Opt. Instrum. Eng. – volume: 61 start-page: 1336 year: 2009 end-page: 1349 ident: bb0160 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn. Reson. Med. – volume: 54 start-page: 1377 year: 2005 end-page: 1386 ident: bb0340 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 34 start-page: 2105 year: 2013 Nov-Dec end-page: 2112 ident: bb0095 article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression publication-title: AJNR Am J Neuroradiol – year: 2007 ident: bb0010 article-title: Non-linear optimisation. FMRIB technical report – volume: 261 start-page: 891 year: 2011 end-page: 898 ident: bb0045 article-title: Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study publication-title: Radiology – volume: 26 start-page: 159 year: 2011 end-page: 199 ident: bb0080 article-title: Disease tracking markers for Alzheimer's disease at the prodromal (MCI) stage publication-title: J. Alzheimers Dis. – volume: 30 start-page: 3657 year: 2009 end-page: 3675 ident: bb0250 article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited publication-title: Hum. Brain Mapp. – volume: 255 start-page: 390 year: 2008 end-page: 397 ident: bb0240 article-title: Longitudinal evaluation of clinically early relapsing–remitting multiple sclerosis with diffusion tensor imaging publication-title: J. Neurol. – volume: 33 start-page: 466 year: 2012 end-page: 477 ident: bb0290 article-title: Effect of scanner in longitudinal diffusion tensor imaging studies publication-title: Hum. Brain Mapp. – volume: 27 start-page: 1827 year: 2006 end-page: 1833 ident: bb0325 article-title: Longitudinal changes in white matter following ischemic stroke: a three-year follow-up study publication-title: Neurobiol. Aging – volume: 61 start-page: 1255 year: 2009 end-page: 1260 ident: bb0355 article-title: About “axial” and “radial” diffusivities publication-title: Magn. Reson. Med. – volume: 18 start-page: 348 year: 2003 end-page: 359 ident: bb0055 article-title: From diffusion tractography to quantitative white matter tract measures: a reproducibility study publication-title: NeuroImage – volume: 26 start-page: 756 year: 2007 end-page: 767 ident: bb0090 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 publication-title: J. Magn. Reson. Imaging – volume: 33 start-page: 2390 year: 2012 end-page: 2406 ident: bb0085 article-title: Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study publication-title: Hum. Brain Mapp. – volume: 50 start-page: 1077 year: 2003 end-page: 1088 ident: bb0025 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. – volume: 32 start-page: 17365 year: 2012 end-page: 17372 ident: bb0230 article-title: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset publication-title: J. Neurosci. – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: bb0245 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: bb0265 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage – volume: 26 start-page: 375 year: 2007 end-page: 385 ident: bb0075 article-title: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters publication-title: J. Magn. Reson. Imaging – start-page: 254032 year: 2010 ident: bb0145 article-title: DTI parameter optimisation for acquisition at 1.5 publication-title: Comput. Intell. Neurosci. – volume: 7 start-page: 715 year: 2008 end-page: 727 ident: bb0050 article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments publication-title: Lancet Neurol. – volume: 74 start-page: 1814 year: 2010 end-page: 1821 ident: bb0140 article-title: Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI publication-title: Neurology – volume: 76 start-page: 400 year: 2013 end-page: 411 ident: bb0070 article-title: Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration publication-title: NeuroImage – volume: 31 start-page: 827 year: 2013 end-page: 839 ident: bb0215 article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables publication-title: Magn. Reson. Imaging – volume: 22 start-page: 507 year: 2010 end-page: 522 ident: bb0295 article-title: Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study publication-title: J. Alzheimers Dis. – volume: 37 start-page: 222 year: 2011 end-page: 232 ident: bb0360 article-title: Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study publication-title: Schizophr. Bull. – volume: 34 start-page: 733 year: 2007 end-page: 742 ident: bb0035 article-title: Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences publication-title: NeuroImage – volume: 33 start-page: 50 year: 2012 end-page: 62 ident: bb0170 article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies publication-title: Hum. Brain Mapp. – volume: 9 start-page: 531 year: 1999 end-page: 538 ident: bb0330 article-title: NMR relaxation times in the human brain at 3.0 publication-title: J. Magn. Reson. Imaging – volume: 41 start-page: 1267 year: 2008 end-page: 1277 ident: bb0345 article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers publication-title: NeuroImage – volume: 76 start-page: 179 year: 2011 end-page: 186 ident: bb0110 article-title: Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis publication-title: Neurology – volume: 32 start-page: 1318 year: 2001 end-page: 1322 ident: bb0315 article-title: A new rating scale for age-related white matter changes applicable to MRI and CT publication-title: Stroke – volume: 62 start-page: 717 year: 2009 end-page: 730 ident: bb0225 article-title: Free water elimination and mapping from diffusion MRI publication-title: Magn. Reson. Med. – volume: 27 start-page: 163 year: 2009 end-page: 175 ident: bb0060 article-title: Looking for the optimal DTI acquisition scheme given a maximum scan time: are more b-values a waste of time? publication-title: Magn. Reson. Imaging – volume: 23 start-page: 803 year: 2010 end-page: 820 ident: bb0135 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. – volume: 83 start-page: :472 year: 2013 Dec end-page: 484 ident: bb8888 article-title: PharmaCog Consortium. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage – volume: 20 start-page: 2055 year: 2010 end-page: 2068 ident: bb0350 article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry publication-title: Cereb. Cortex – volume: 88c start-page: 79 year: 2013 Nov 21 end-page: 90 ident: bb0370 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: NeuroImage – volume: 18 start-page: 242 year: 2003 end-page: 254 ident: bb0220 article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements publication-title: J. Magn. Reson. Imaging – volume: 46 start-page: 47 year: 2009 end-page: 55 ident: bb0195 article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease publication-title: NeuroImage – volume: 81 start-page: 257 year: 2010 end-page: 262 ident: bb0275 article-title: A longitudinal diffusion tensor imaging study in symptomatic Huntington's disease publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 3 start-page: 77 year: 2009 end-page: 84 ident: bb0180 article-title: Diffusion tensor imaging in preclinical Huntington's disease publication-title: Brain Imaging Behav. – volume: 80 start-page: S99 year: 2007 end-page: S108 ident: bb0280 article-title: Neuroradiological characterization of normal adult ageing publication-title: Br. J. Radiol. – volume: 111 start-page: 209 year: 1996 end-page: 219 ident: bb0020 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J. Magn. Reson. Ser. B – volume: 21 start-page: 266 year: 2009 end-page: 276 ident: bb0105 article-title: The Italian Brain Normative Archive of structural MR scans: norms for medial temporal atrophy and white matter lesions publication-title: Aging Clin. Exp. Res. – volume: 21 start-page: 121 year: 2008 end-page: 130 ident: bb0365 article-title: Water proton T1 measurements in brain tissue at 7, 3, and 1.5 publication-title: MAGMA – year: 2007 ident: bb0015 article-title: Non-linear registration, aka spatial normalisation. FMRIB technical report – volume: 18 start-page: 427 year: 2003 end-page: 433 ident: bb0235 article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain publication-title: J. Magn. Reson. Imaging – volume: 29 start-page: 1128 year: 2008 end-page: 1133 ident: bb0030 article-title: Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3 publication-title: AJNR Am. J. Neuroradiol. – volume: 22 start-page: 370 year: 2009 end-page: 378 ident: bb0305 article-title: Multisite neuroimaging trials publication-title: Curr. Opin. Neurol. – volume: 81 start-page: 798 year: 2010 end-page: 805 ident: bb0255 article-title: A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 26 start-page: 132 year: 2005 end-page: 140 ident: bb0270 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain publication-title: NeuroImage – volume: 68 start-page: 1097 year: 2012 end-page: 1108 ident: bb0005 article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging publication-title: Magn. Reson. Med. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bb0130 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 147 start-page: 69 year: 2006 end-page: 78 ident: bb0190 article-title: Regional distribution of measurement error in diffusion tensor imaging publication-title: Psychiatry Res. – volume: 36 start-page: 1123 year: 2007 end-page: 1138 ident: bb0150 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 publication-title: NeuroImage – volume: 31 start-page: 1458 year: 2010 end-page: 1468 ident: bb0210 article-title: Intercenter differences in diffusion tensor MRI acquisition publication-title: J. Magn. Reson. Imaging – volume: 31 start-page: 10937 year: 2011 end-page: 10947 ident: bb0155 article-title: Longitudinal development of human brain wiring continues from childhood into adulthood publication-title: J. Neurosci. – volume: 28 start-page: 1102 year: 2007 end-page: 1106 ident: bb0205 article-title: Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers publication-title: AJNR Am. J. Neuroradiol. – volume: 131 start-page: 559 year: 2008 end-page: 572 ident: bb0260 article-title: Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study publication-title: Brain – volume: 216 start-page: 525 year: 2009 end-page: 529 ident: bb0335 article-title: Longitudinal diffusion tensor imaging in Huntington's Disease publication-title: Exp. Neurol. – volume: 51 start-page: 527 year: 2006 end-page: 539 ident: bb0200 article-title: Principles of diffusion tensor imaging and its applications to basic neuroscience research publication-title: Neuron – volume: 2 start-page: 345 year: 2012 end-page: 355 ident: bb0185 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect. – volume: 51 start-page: 1106 year: 2010 end-page: 1116 ident: bb0300 article-title: The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures publication-title: NeuroImage – volume: 262 start-page: 341 year: 2012 end-page: 350 ident: bb0165 article-title: Longitudinal changes of fractional anisotropy in Alzheimer's disease patients treated with galantamine: a 12-month randomized, placebo-controlled, double-blinded study publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 51 start-page: 1384 year: 2010 end-page: 1394 ident: bb0310 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 publication-title: NeuroImage – volume: 56 start-page: 1398 year: 2011 end-page: 1411 ident: bb0375 article-title: Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study publication-title: NeuroImage – volume: 33 start-page: 695 year: 2012 end-page: 700 ident: bb0100 article-title: A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values publication-title: AJNR Am. J. Neuroradiol. – volume: 35 start-page: 233 year: 2010 end-page: 256 ident: bb0285 article-title: Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking publication-title: Dev. Neuropsychol. – volume: 51 start-page: 800 year: 2010 end-page: 807 ident: bb0040 article-title: Diffusion tensor imaging of the brain in a healthy adult population: Normative values and measurement reproducibility at 3 publication-title: Acta Radiol. – volume: 35 start-page: 1412 year: 2014 Jun end-page: 1421 ident: bb0065 article-title: Non-Gaussian water diffusion in aging white matter publication-title: Neurobiol Aging – volume: 33 start-page: 867 year: 2006 end-page: 877 ident: bb0115 article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures publication-title: NeuroImage – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: bb0320 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage – volume: 42 start-page: 327 year: 2007 end-page: 337 ident: bb0125 article-title: Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0 publication-title: Investig. Radiol. – volume: 7 start-page: e47684 year: 2012 ident: bb0120 article-title: Reproducibility of structural, resting-state BOLD and DTI Data between identical scanners publication-title: PLoS ONE – volume: 83 start-page: :472 year: 2013 ident: 10.1016/j.neuroimage.2014.06.075_bb8888 article-title: PharmaCog Consortium. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.007 – volume: 21 start-page: 121 year: 2008 ident: 10.1016/j.neuroimage.2014.06.075_bb0365 article-title: Water proton T1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization publication-title: MAGMA doi: 10.1007/s10334-008-0104-8 – volume: 20 start-page: 2055 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0350 article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp280 – volume: 51 start-page: 800 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0040 article-title: Diffusion tensor imaging of the brain in a healthy adult population: Normative values and measurement reproducibility at 3T and 1.5T publication-title: Acta Radiol. doi: 10.3109/02841851.2010.495351 – volume: 29 start-page: 1128 year: 2008 ident: 10.1016/j.neuroimage.2014.06.075_bb0030 article-title: Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3T in healthy subjects: effect of the applied b-value publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A1044 – volume: 26 start-page: 132 year: 2005 ident: 10.1016/j.neuroimage.2014.06.075_bb0270 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.028 – volume: 50 start-page: 1077 year: 2003 ident: 10.1016/j.neuroimage.2014.06.075_bb0025 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10609 – volume: 111 start-page: 209 year: 1996 ident: 10.1016/j.neuroimage.2014.06.075_bb0020 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J. Magn. Reson. Ser. B doi: 10.1006/jmrb.1996.0086 – volume: 22 start-page: 370 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0305 article-title: Multisite neuroimaging trials publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32832d92de – volume: 31 start-page: 10937 year: 2011 ident: 10.1016/j.neuroimage.2014.06.075_bb0155 article-title: Longitudinal development of human brain wiring continues from childhood into adulthood publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5302-10.2011 – volume: 131 start-page: 559 year: 2008 ident: 10.1016/j.neuroimage.2014.06.075_bb0260 article-title: Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study publication-title: Brain doi: 10.1093/brain/awm294 – volume: 30 start-page: 3657 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0250 article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20794 – volume: 33 start-page: 50 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0170 article-title: Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21192 – volume: 26 start-page: 756 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0090 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21053 – volume: 33 start-page: 466 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0290 article-title: Effect of scanner in longitudinal diffusion tensor imaging studies publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21225 – volume: 76 start-page: 400 year: 2013 ident: 10.1016/j.neuroimage.2014.06.075_bb0070 article-title: Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.015 – volume: 23 start-page: 803 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0135 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. doi: 10.1002/nbm.1543 – volume: 46 start-page: 47 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0195 article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.054 – volume: 80 start-page: S99 issue: Spec No 2 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0280 article-title: Neuroradiological characterization of normal adult ageing publication-title: Br. J. Radiol. doi: 10.1259/bjr/22893432 – volume: 26 start-page: 159 issue: Suppl. 3 year: 2011 ident: 10.1016/j.neuroimage.2014.06.075_bb0080 article-title: Disease tracking markers for Alzheimer's disease at the prodromal (MCI) stage publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-0043 – volume: 18 start-page: 427 year: 2003 ident: 10.1016/j.neuroimage.2014.06.075_bb0235 article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10377 – volume: 3 start-page: 77 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0180 article-title: Diffusion tensor imaging in preclinical Huntington's disease publication-title: Brain Imaging Behav. doi: 10.1007/s11682-008-9051-2 – volume: 34 start-page: 733 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0035 article-title: Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.020 – volume: 34 start-page: 2105 issue: 11 year: 2013 ident: 10.1016/j.neuroimage.2014.06.075_bb0095 article-title: Novel white matter tract integrity metrics sensitive to Alzheimer disease progression publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3553 – volume: 61 start-page: 1336 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0160 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21890 – volume: 35 start-page: 1412 issue: 6 year: 2014 ident: 10.1016/j.neuroimage.2014.06.075_bb0065 article-title: Non-Gaussian water diffusion in aging white matter publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2013.12.001 – volume: 61 start-page: 1255 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0355 article-title: About “axial” and “radial” diffusivities publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21965 – volume: 7 start-page: e47684 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0120 article-title: Reproducibility of structural, resting-state BOLD and DTI Data between identical scanners publication-title: PLoS ONE doi: 10.1371/journal.pone.0047684 – volume: 42 start-page: 327 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0125 article-title: Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0Tesla publication-title: Investig. Radiol. doi: 10.1097/01.rli.0000262757.10271.e5 – volume: 81 start-page: 257 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0275 article-title: A longitudinal diffusion tensor imaging study in symptomatic Huntington's disease publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.142786 – volume: 27 start-page: 1827 year: 2006 ident: 10.1016/j.neuroimage.2014.06.075_bb0325 article-title: Longitudinal changes in white matter following ischemic stroke: a three-year follow-up study publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2005.10.008 – volume: 31 start-page: 1487 year: 2006 ident: 10.1016/j.neuroimage.2014.06.075_bb0265 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 147 start-page: 69 year: 2006 ident: 10.1016/j.neuroimage.2014.06.075_bb0190 article-title: Regional distribution of measurement error in diffusion tensor imaging publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2006.01.008 – volume: 9 start-page: 531 year: 1999 ident: 10.1016/j.neuroimage.2014.06.075_bb0330 article-title: NMR relaxation times in the human brain at 3.0Tesla publication-title: J. Magn. Reson. Imaging doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L – volume: 261 start-page: 891 year: 2011 ident: 10.1016/j.neuroimage.2014.06.075_bb0045 article-title: Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study publication-title: Radiology doi: 10.1148/radiol.11110195 – ident: 10.1016/j.neuroimage.2014.06.075_bb0015 – volume: 27 start-page: 163 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0060 article-title: Looking for the optimal DTI acquisition scheme given a maximum scan time: are more b-values a waste of time? publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.06.011 – volume: 33 start-page: 695 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0100 article-title: A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A2844 – volume: 56 start-page: 1398 year: 2011 ident: 10.1016/j.neuroimage.2014.06.075_bb0375 article-title: Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.010 – volume: 36 start-page: 630 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0320 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 54 start-page: 1377 year: 2005 ident: 10.1016/j.neuroimage.2014.06.075_bb0340 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20642 – volume: 31 start-page: 1458 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0210 article-title: Intercenter differences in diffusion tensor MRI acquisition publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22186 – ident: 10.1016/j.neuroimage.2014.06.075_bb0010 – volume: 33 start-page: 867 year: 2006 ident: 10.1016/j.neuroimage.2014.06.075_bb0115 article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.07.037 – volume: 28 start-page: 1102 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0205 article-title: Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A0488 – volume: 262 start-page: 341 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0165 article-title: Longitudinal changes of fractional anisotropy in Alzheimer's disease patients treated with galantamine: a 12-month randomized, placebo-controlled, double-blinded study publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s00406-011-0234-2 – volume: 7 start-page: 715 year: 2008 ident: 10.1016/j.neuroimage.2014.06.075_bb0050 article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70163-7 – volume: 18 start-page: 242 year: 2003 ident: 10.1016/j.neuroimage.2014.06.075_bb0220 article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10350 – volume: 81 start-page: 798 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0255 article-title: A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2009.189639 – volume: 255 start-page: 390 year: 2008 ident: 10.1016/j.neuroimage.2014.06.075_bb0240 article-title: Longitudinal evaluation of clinically early relapsing–remitting multiple sclerosis with diffusion tensor imaging publication-title: J. Neurol. doi: 10.1007/s00415-008-0678-0 – volume: 216 start-page: 525 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0335 article-title: Longitudinal diffusion tensor imaging in Huntington's Disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2008.12.026 – start-page: 7628 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0175 article-title: Quality control of diffusion weighted images publication-title: Proc. Soc. Photo. Opt. Instrum. Eng. – volume: 41 start-page: 1267 year: 2008 ident: 10.1016/j.neuroimage.2014.06.075_bb0345 article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.036 – volume: 74 start-page: 1814 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0140 article-title: Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI publication-title: Neurology doi: 10.1212/WNL.0b013e3181e0f7cf – volume: 22 start-page: 507 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0295 article-title: Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-100234 – volume: 76 start-page: 179 year: 2011 ident: 10.1016/j.neuroimage.2014.06.075_bb0110 article-title: Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis publication-title: Neurology doi: 10.1212/WNL.0b013e318206ca61 – volume: 36 start-page: 1123 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0150 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.056 – volume: 31 start-page: 827 year: 2013 ident: 10.1016/j.neuroimage.2014.06.075_bb0215 article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.03.004 – start-page: 254032 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0145 article-title: DTI parameter optimisation for acquisition at 1.5T: SNR analysis and clinical application publication-title: Comput. Intell. Neurosci. – volume: 51 start-page: 1106 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0300 article-title: The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.011 – volume: 35 start-page: 233 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0285 article-title: Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking publication-title: Dev. Neuropsychol. doi: 10.1080/87565641003689556 – volume: 88c start-page: 79 year: 2013 ident: 10.1016/j.neuroimage.2014.06.075_bb0370 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: NeuroImage – volume: 18 start-page: 348 year: 2003 ident: 10.1016/j.neuroimage.2014.06.075_bb0055 article-title: From diffusion tractography to quantitative white matter tract measures: a reproducibility study publication-title: NeuroImage doi: 10.1016/S1053-8119(02)00042-3 – volume: 32 start-page: 17365 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0230 article-title: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2904-12.2012 – volume: 26 start-page: 375 year: 2007 ident: 10.1016/j.neuroimage.2014.06.075_bb0075 article-title: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20969 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2014.06.075_bb0130 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 51 start-page: 527 year: 2006 ident: 10.1016/j.neuroimage.2014.06.075_bb0200 article-title: Principles of diffusion tensor imaging and its applications to basic neuroscience research publication-title: Neuron doi: 10.1016/j.neuron.2006.08.012 – volume: 2 start-page: 345 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0185 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect. doi: 10.1089/brain.2012.0112 – volume: 68 start-page: 1097 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0005 article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23314 – volume: 62 start-page: 717 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0225 article-title: Free water elimination and mapping from diffusion MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22055 – volume: 51 start-page: 1384 year: 2010 ident: 10.1016/j.neuroimage.2014.06.075_bb0310 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.046 – volume: 33 start-page: 2390 year: 2012 ident: 10.1016/j.neuroimage.2014.06.075_bb0085 article-title: Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21370 – volume: 32 start-page: 1318 year: 2001 ident: 10.1016/j.neuroimage.2014.06.075_bb0315 article-title: A new rating scale for age-related white matter changes applicable to MRI and CT publication-title: Stroke doi: 10.1161/01.STR.32.6.1318 – volume: 21 start-page: 266 year: 2009 ident: 10.1016/j.neuroimage.2014.06.075_bb0105 article-title: The Italian Brain Normative Archive of structural MR scans: norms for medial temporal atrophy and white matter lesions publication-title: Aging Clin. Exp. Res. doi: 10.1007/BF03324915 – volume: 37 start-page: 222 year: 2011 ident: 10.1016/j.neuroimage.2014.06.075_bb0360 article-title: Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbp088 – volume: 18 start-page: 712 year: 1999 ident: 10.1016/j.neuroimage.2014.06.075_bb0245 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 |
SSID | ssj0009148 |
Score | 2.4355228 |
Snippet | Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 390 |
SubjectTerms | Aged Aged, 80 and over Alzheimer's disease Automation Brain Brain diffusion tensor imaging Diffusion Diffusion Tensor Imaging - instrumentation Diffusion Tensor Imaging - methods Diffusion Tensor Imaging - standards Female Humans Longitudinal Studies Male Middle Aged Multi-center Multi-site MRI Reliability Reproducibility Reproducibility of Results Statistics Studies Tract-based spatial statistics White Matter - anatomy & histology |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La-MwEBalh6WXst3tI32hhV7VxLYeNj2VsKUsZC9tIDchyzK4ZO2SxIdA6W_vjCWn9NAl0KNtDdh6zHyyvm-GkKuihG2DKhRzqUgZT6xkRkrLRspGZZ5k5ahEvfPkr7yf8j8zMdsh414Lg7TK4Pu9T--8dbgzDL05fK6q4QMgAwg3mJ8ME0nFqCjnXOEsv359p3nAYy-HEwnD1oHN4zleXc7I6h-sXCR5cZ_JU3wWoj6DoF0ouvtO9gOGpLf-NQ_Ijqt_kG-TcEr-k7x0qlo8FqbzBusRtQXWvqILN698Wu41bUq6QoEUwzBW0CUSq6EJ6ot86mZa1RSrp7T4O40iz71ZUPwIiHVo7QWUa-qwzPd8TZdtjr90lodkevf7cXzPQpUFZnkWrxgXxlhbKJVIYYVInHQGQAVmJgJo5BLcQKk4LcARZqW0sIatMyqPDVJUShUnR2S3bmp3Qugoz2ykrFGRTbnIVWot4IEsNUWclwBlBkT1HattSEGOlTDmuueaPen3IdE4JBppd0oMSLSxfPZpOLawyfqx073MFByjhlixhe3NxvbDdNzS-ryfKjq4hKUGaM0jRL98QH5tHsNixhMaU7umhTaARjlqkZP_tJEx7kF5mg3IsZ-Gmy4BPAs7YiFPv_T6Z2QPr7zi8pzsrhatuwDotcovu7X1BvfOMFo priority: 102 providerName: Elsevier |
Title | Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914005527 https://dx.doi.org/10.1016/j.neuroimage.2014.06.075 https://www.ncbi.nlm.nih.gov/pubmed/25026156 https://www.proquest.com/docview/1614116384 https://www.proquest.com/docview/1562440693 https://www.proquest.com/docview/1622605489 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2aBEouJU2_NkkXFXpVu7b1YZNDSEvCtiVLKQ3szdiyDBu2drpeHxZCf3tnLNl7StiTD9YY25JmnqQ3bwA-FiUuG3ShuY1lzEVkFM-UMnyiTVDmUVJOSsp3vpmp6a34Ppdzv-HWeFpl7xM7R13UhvbIPyMyEQGBB3Fx_5dT1Sg6XfUlNPbggKTLaFTrud6K7gbCpcLJiMfYwDN5HL-r04tc_MFZSwQv4VQ85WPh6TH42YWh6yN44fEju3Qd_hKe2eoYnt_4E_JjOCT06MSXX8FDl15LX8CWNRUmagsqgsVWdrlw-twbVpdsTZlSnOJZwRpiWGOTZngMW1SMyqi0tK_GiPBerxh9EQY9snaZlBtmqd73csOaNqe9neY13F5f_f465b7cAjciCddcyCwzptA6UtJIGVllM0QXJFGEGMlGtJLSYVygR0xKZXAyG5vpPMyIq1LqMHoD-1Vd2XfAJnliAm0yHZhYyFzHxiAwSOKsCPMSMc0IdP-XU-O1yKkkxjLtSWd36bZ_UuqflPh3Wo4gGCzvnR7HDjZJ35Fpn2-KHjLFoLGD7flg6zGJwxo7Wp_14yb1vqFJtyN5BB-G2zir6agmq2zdYhuEpYKSkqMn2qiQFqMiTkbw1o3J4ZcgsMWlsVQnT7_AKRzS27rcyjPYX69a-x5B1jofw96nf8G4m09jOLj89mM6w-uXq9nPX_8B8XItWg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRYJeKiivhRaMBEeLTWLHiRBCFVBtabenVtqbcRxHWrRNymYjtBK_id_ITJxkT6320nM8UeJ5fWPPA-B9XmDYoHLFXSITLiIbcxPHlo-VDYosSotxQfXO04t4ciV-zORsB_71tTCUVtnbxNZQ55WlM_KPiExEQOBBfLn5zWlqFN2u9iM0vFicufUfDNnqz6ffkL8fwvDk--XXCe-mCnAr0nDFhTTG2lypKJZWysjFzqATpU48CAVcRAGDCpMcFT8tYosya51RWWgoJaNQ1OgATf4DdLxjCvbUTG2a_AbCl97JiCdBkHaZQz6frO1POb9GK0EJZcJ3DZW3ucPb4G7r9k4ew36HV9mxF7AnsOPKA3g47W7kD2CP0Kpv9vwU_rblvLRjbFHRIKQmp6FbbOkWc98PfM2qgq2oMouT_8xZTRnduKQeXsPmJaOxLQ2d4zFKsK-WjP4InSxR-8rNNXM0X3yxZnWT0VlS_Qyu7oURz2G3rEr3Etg4S22grFGBTYTMVGItApE0MXmYFYihRqD6Xda2631OIzgWuk9y-6U3_NHEH035fkqOIBgob3z_jy1o0p6Ruq9vRYus0UltQftpoO0wkMc2W1If9nKjO1tU643mjODd8BitCF0NmdJVDa5BGCyoCDq6Y00cUvArknQEL7xMDluCQBpDcRm_uvsD3sKjyeX0XJ-fXpy9hj36cl_XeQi7q2XjjhDgrbI3rVYx-Hnfavwfm_5lOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swED5KCqUvY-1-Zes2DbZH0diWLJsyxrY2tOsaylihb5otS5CR2V0cMwL7y_bX7S6ynaeWvPTZOmPrpLvvpO_uAN4WDsMGVShuE5lwEZmYZ3Fs-EiZwOVR6kaO8p0vJvHplfhyLa-34F-XC0O0ys4mrgx1URk6Iz9EZCICAg_i0LW0iMvj8Yeb35w6SNFNa9dOwy-Rc7v8g-Fb_f7sGHX9LgzHJ98_n_K2wwA3Ig0XXMgsM6ZQKoqlkTKysc3QoVJVHoQFNqLgQYVJgUYgdbHB9WtspvIwI3qGU1T0AM3_tqKoaADbn04ml9_WJX8D4RPxZMSTIEhbHpFnl62qVU5_oc0gepnwNUTlbc7xNvC7coLjh_CgRa_so19ue7Bly33YuWjv5_dhl7CrL_38CP6ukntpztisorZITUEtuNjczqa-OviSVY4tKE-LkzctWE38bhxS969h05JRE5eGTvUY0e2rOaM_QpdL0j6Pc8ksdRufLVnd5HSyVD-Gq3tRxRMYlFVpnwEb5akJlMlUYBIhc5UYg7AkTbIizB0iqiGobpa1aSuhU0OOme4obz_1Wj-a9KOJ_afkEIJe8sZXA9lAJu0UqbtsV7TPGl3WBrJHvWyLiDzS2VD6oFs3urVMtV7voyG86R-jTaGLoqy0VYNjEBQLSomO7hgThxQKiyQdwlO_JvspQViNgbmMn9_9Aa9hB7ew_no2OX8Bu_ThPsnzAAaLeWNfItpb5K_abcXgx33v5P89amrW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisite+longitudinal+reliability+of+tract-based+spatial+statistics+in+diffusion+tensor+imaging+of+healthy+elderly+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jovicich%2C+Jorge&rft.au=Marizzoni%2C+Moira&rft.au=Bosch%2C+Beatriz&rft.au=Bartres-Faz%2C+David&rft.date=2014-11-01&rft.issn=1053-8119&rft.volume=101&rft.spage=390&rft.epage=403&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.06.075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |