Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods
Hydrological models always suffer from different sources of uncertainties. As the distributed hydrological models play a very important role in water resource management, reliable quantification of uncertainty in hydrological modeling results is quite necessary. The purpose of this study is to apply...
Saved in:
Published in | Ecological engineering Vol. 76; pp. 110 - 121 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrological models always suffer from different sources of uncertainties. As the distributed hydrological models play a very important role in water resource management, reliable quantification of uncertainty in hydrological modeling results is quite necessary. The purpose of this study is to apply three uncertainty analysis methods to a distributed hydrological modeling system, quantify the impact of parameter uncertainties, and examine their performance and capability. Due to the important location and typical hilly features, the upper reaches of the Wenjing River watershed in Western China were selected as the study area. The soil and water assessment tool (SWAT) model was applied to simulate the surface runoff during 1998–2002 and validated by the observed data. After global sensitivity analysis and modeling calibration, the Nash–Sutcliffe coefficient (NSE) and coefficient of determination (R2) values of surface runoff for calibration are 0.75 and 0.80, and for verification periods were up to 0.74 and 0.87, respectively. Three uncertainty analysis methods were further conducted and compared within the same modeling framework: (1) the sequential uncertainty fitting algorithm (SUFI-2), (2) the generalized likelihood uncertainty estimation (GLUE) method, and (3) the parameter solution (ParaSol) method. Through the comparison of a set of proposed evaluation criteria for uncertainty analysis methods in this study, including R-factor, P-factor, the ratio of P-factor and P-factor, computation efficiency, and performance of best estimates (NSE and R2), the SUFI-2 method was able to provide more reasonable and balanced predictive results than the other two methods. |
---|---|
AbstractList | Hydrological models always suffer from different sources of uncertainties. As the distributed hydrological models play a very important role in water resource management, reliable quantification of uncertainty in hydrological modeling results is quite necessary. The purpose of this study is to apply three uncertainty analysis methods to a distributed hydrological modeling system, quantify the impact of parameter uncertainties, and examine their performance and capability. Due to the important location and typical hilly features, the upper reaches of the Wenjing River watershed in Western China were selected as the study area. The soil and water assessment tool (SWAT) model was applied to simulate the surface runoff during 1998–2002 and validated by the observed data. After global sensitivity analysis and modeling calibration, the Nash–Sutcliffe coefficient (NSE) and coefficient of determination (R2) values of surface runoff for calibration are 0.75 and 0.80, and for verification periods were up to 0.74 and 0.87, respectively. Three uncertainty analysis methods were further conducted and compared within the same modeling framework: (1) the sequential uncertainty fitting algorithm (SUFI-2), (2) the generalized likelihood uncertainty estimation (GLUE) method, and (3) the parameter solution (ParaSol) method. Through the comparison of a set of proposed evaluation criteria for uncertainty analysis methods in this study, including R-factor, P-factor, the ratio of P-factor and P-factor, computation efficiency, and performance of best estimates (NSE and R2), the SUFI-2 method was able to provide more reasonable and balanced predictive results than the other two methods. Hydrological models always suffer from different sources of uncertainties. As the distributed hydrological models play a very important role in water resource management, reliable quantification of uncertainty in hydrological modeling results is quite necessary. The purpose of this study is to apply three uncertainty analysis methods to a distributed hydrological modeling system, quantify the impact of parameter uncertainties, and examine their performance and capability. Due to the important location and typical hilly features, the upper reaches of the Wenjing River watershed in Western China were selected as the study area. The soil and water assessment tool (SWAT) model was applied to simulate the surface runoff during 1998-2002 and validated by the observed data. After global sensitivity analysis and modeling calibration, the Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2) values of surface runoff for calibration are 0.75 and 0.80, and for verification periods were up to 0.74 and 0.87, respectively. Three uncertainty analysis methods were further conducted and compared within the same modeling framework: (1) the sequential uncertainty fitting algorithm (SUFI-2), (2) the generalized likelihood uncertainty estimation (GLUE) method, and (3) the parameter solution (ParaSol) method. Through the comparison of a set of proposed evaluation criteria for uncertainty analysis methods in this study, including R-factor, P-factor, the ratio of P-factor and P-factor, computation efficiency, and performance of best estimates (NSE and R 2), the SUFI-2 method was able to provide more reasonable and balanced predictive results than the other two methods. |
Author | Wu, Hongjing Chen, Bing |
Author_xml | – sequence: 1 givenname: Hongjing surname: Wu fullname: Wu, Hongjing email: hjwu@mun.ca organization: Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada – sequence: 2 givenname: Bing surname: Chen fullname: Chen, Bing email: bchen@mun.ca organization: Key Laboratory of Regional Energy and Environmental Systems optimization, Sino-Canada Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206, China |
BookMark | eNqNkc1qGzEUhUVJoU7aRyho2UVmqpFG80MXpRgnDRhampouhUa68siMpVTSOPg5-sKVcVbduKuD4HwHdL9rdOW8A4TeV6SsSNV83JWg_ARuW1JS1SXhZY5XaFF1LS2avqdXaEF6youOt_UbdB3jjhDSUt4v0J_VQU6zTNZt8ewUhCStS0cMMdm9TBCxdVjbmIId5gQaj0cd_OS3VskJ772G6YQaH3AaAf8Ctzu9f9gDBPycB0IcM5VHlqN1Eg9HfL_erG7x4-buoaC3WDqNv8sgH32egzR6Hd-i10ZOEd695A3a3K1-Lr8W62_3D8sv60LVPU1FzTnlLTRD3TOjFaHdIDVRLWWyNqxpCTeSgmGkpg0F2jWsHobBcDaYzjAD7AZ9OO8-Bf97zj8WexsVTJN04OcoaL5SVbVtzS5Wc4vQvuek-Y8qbbMUxqpc5eeqCj7GAEY8hXz1cBQVESe1Yide1IqTWkG4yJG5T_9wyqbs0LsUpJ0u0p_PNOTbHiwEEZWF7F7bACoJ7e2Fhb_NG8YJ |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2023_129458 crossref_primary_10_3390_su141912201 crossref_primary_10_3390_rs14020400 crossref_primary_10_3390_hydrology9100183 crossref_primary_10_1007_s11269_023_03549_2 crossref_primary_10_1016_j_jhydrol_2019_124303 crossref_primary_10_1007_s13762_022_04477_1 crossref_primary_10_1007_s42452_021_04201_7 crossref_primary_10_1016_j_catena_2019_104082 crossref_primary_10_1080_02626667_2021_2014057 crossref_primary_10_3390_land13010018 crossref_primary_10_2166_wcc_2023_037 crossref_primary_10_1016_j_ecoleng_2016_05_011 crossref_primary_10_1016_j_jhydrol_2020_125260 crossref_primary_10_3390_w10040445 crossref_primary_10_1016_j_agwat_2015_10_029 crossref_primary_10_5194_hess_26_5315_2022 crossref_primary_10_1007_s11676_022_01590_2 crossref_primary_10_1134_S1064229320090021 crossref_primary_10_3390_rs16244646 crossref_primary_10_1007_s11269_024_04039_9 crossref_primary_10_1111_1752_1688_12516 crossref_primary_10_1016_j_scitotenv_2020_139421 crossref_primary_10_3390_w10050642 crossref_primary_10_1061_JHYEFF_HEENG_6008 crossref_primary_10_1002_hyp_15084 crossref_primary_10_1155_2024_1007081 crossref_primary_10_2166_nh_2022_131 crossref_primary_10_1007_s10661_021_09221_9 crossref_primary_10_1007_s13201_019_1122_6 crossref_primary_10_1016_j_jhydrol_2022_128304 crossref_primary_10_1016_j_quaint_2020_11_032 crossref_primary_10_3389_frwa_2023_1268593 crossref_primary_10_1007_s00477_025_02909_1 crossref_primary_10_1016_j_pce_2020_102899 crossref_primary_10_3390_w11010112 crossref_primary_10_4236_jwarp_2017_91006 crossref_primary_10_1007_s12665_018_7619_8 crossref_primary_10_1080_02626667_2024_2438332 crossref_primary_10_3390_hydrology11120207 crossref_primary_10_1007_s10661_018_7145_x crossref_primary_10_1016_j_jhydrol_2021_126767 crossref_primary_10_1038_s41598_021_96250_6 crossref_primary_10_1016_j_agwat_2024_109231 crossref_primary_10_1016_j_jhydrol_2023_129837 crossref_primary_10_1016_j_atmosres_2018_12_032 crossref_primary_10_3390_w12061840 crossref_primary_10_1016_j_atmosres_2023_106673 crossref_primary_10_1016_j_ecoleng_2018_11_007 crossref_primary_10_1016_j_envsoft_2017_03_018 crossref_primary_10_1016_j_jhydrol_2021_126598 crossref_primary_10_3390_w16020208 crossref_primary_10_1007_s40808_018_0483_4 crossref_primary_10_1016_j_ejrh_2023_101620 crossref_primary_10_3390_su16041691 crossref_primary_10_1016_j_scitotenv_2024_177251 crossref_primary_10_3390_rs11030304 crossref_primary_10_1016_j_scitotenv_2020_140156 crossref_primary_10_1007_s00477_015_1099_0 crossref_primary_10_1080_15715124_2019_1597727 crossref_primary_10_1002_rra_3655 crossref_primary_10_1007_s00477_022_02377_x crossref_primary_10_3390_rs13050866 crossref_primary_10_1051_lhb_2017003 crossref_primary_10_1016_j_heliyon_2021_e08509 crossref_primary_10_1007_s10661_021_09184_x crossref_primary_10_3390_rs12010179 crossref_primary_10_1016_j_ejrh_2022_101135 crossref_primary_10_3390_w15050999 crossref_primary_10_1016_j_atmosres_2019_104746 crossref_primary_10_3390_su151813850 crossref_primary_10_1007_s40899_022_00727_9 crossref_primary_10_1016_j_envsoft_2022_105383 crossref_primary_10_1016_j_scitotenv_2020_137213 crossref_primary_10_3390_w12030878 crossref_primary_10_1016_j_jhydrol_2024_131298 crossref_primary_10_1016_j_jhydrol_2025_133078 crossref_primary_10_1016_j_ecohyd_2024_09_007 crossref_primary_10_1016_j_sciaf_2022_e01093 crossref_primary_10_3390_rs14215385 crossref_primary_10_1155_2022_1826942 crossref_primary_10_3390_hydrology7040085 crossref_primary_10_1016_j_ejrh_2023_101489 crossref_primary_10_1016_j_gecco_2015_10_007 crossref_primary_10_1007_s11356_023_28700_9 crossref_primary_10_1016_j_ejrh_2023_101484 crossref_primary_10_1016_j_ecoleng_2014_12_007 crossref_primary_10_1016_j_envsoft_2020_104857 crossref_primary_10_1016_j_jhydrol_2018_11_049 crossref_primary_10_1016_j_heliyon_2022_e09711 crossref_primary_10_3390_w9060384 crossref_primary_10_3390_w17060907 crossref_primary_10_1007_s00704_017_2309_0 crossref_primary_10_3390_su152215875 crossref_primary_10_1016_j_jher_2018_05_001 crossref_primary_10_1016_j_jhydrol_2017_01_006 crossref_primary_10_5194_amt_14_2299_2021 crossref_primary_10_2166_nh_2018_222 crossref_primary_10_2166_nh_2021_073 crossref_primary_10_3390_w16020221 crossref_primary_10_1002_ird_2211 crossref_primary_10_1007_s11707_018_0695_y crossref_primary_10_1080_15715124_2022_2101464 crossref_primary_10_3390_w16233501 crossref_primary_10_3390_w13030341 crossref_primary_10_1007_s11600_023_01270_7 crossref_primary_10_1016_j_jhydrol_2023_129198 crossref_primary_10_3390_rs15215178 crossref_primary_10_3390_su15119106 crossref_primary_10_1007_s40899_023_00827_0 crossref_primary_10_3390_w6113433 crossref_primary_10_5194_hess_19_4127_2015 crossref_primary_10_3390_rs16132481 crossref_primary_10_1007_s11356_022_18968_8 crossref_primary_10_1007_s00477_020_01904_y crossref_primary_10_3390_w15040813 crossref_primary_10_3390_w10091177 crossref_primary_10_1016_j_jhydrol_2015_12_045 crossref_primary_10_2166_ws_2023_055 crossref_primary_10_2166_ws_2023_332 crossref_primary_10_1111_wej_12424 crossref_primary_10_3390_toxics2020291 crossref_primary_10_1007_s10230_018_00587_w crossref_primary_10_3390_hydrology8040154 crossref_primary_10_3390_w10060690 crossref_primary_10_1029_2020WR029149 crossref_primary_10_1016_j_envsoft_2022_105497 crossref_primary_10_1007_s12517_021_07170_8 crossref_primary_10_1016_j_scitotenv_2022_158589 crossref_primary_10_1016_j_agwat_2022_107682 |
Cites_doi | 10.1016/S0022-1694(96)03329-X 10.1016/j.advwatres.2011.01.008 10.1016/j.jhydrol.2009.12.028 10.1111/j.1752-1688.1998.tb05961.x 10.1007/s11269-008-9329-6 10.1029/2002WR001642 10.1016/0022-1694(94)90057-4 10.1002/hyp.398 10.1016/j.scitotenv.2008.06.009 10.5194/hess-16-121-2012 10.2166/hydro.2007.104 10.1016/j.jhydrol.2006.09.014 10.1016/j.agee.2011.05.015 10.1016/j.jhydrol.2008.05.012 10.1029/91WR02985 10.1029/2003WR002378 10.1016/j.jhydrol.2007.04.006 10.1029/2000WR900351 10.1016/j.scitotenv.2009.12.007 10.1016/j.proenv.2012.01.170 10.5194/hess-13-1235-2009 10.2166/wst.2006.007 10.1002/esp.266 10.1016/S0022-1694(98)00198-X 10.1029/95WR03723 10.1002/hyp.3360060305 10.1029/2000WR900405 10.1016/j.advwatres.2007.12.003 10.1623/hysj.53.5.977 10.1061/(ASCE)0733-9429(1995)121:2(171) 10.1029/1998WR900018 10.1016/0022-1694(70)90255-6 10.1016/j.jhydrol.2006.02.013 10.1016/j.jhydrol.2006.04.046 10.1029/2005WR004640 10.1029/2006WR005497 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7QH 7SN 7ST 7U6 7UA C1K F1W H97 L.G SOI 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.ecoleng.2014.05.014 |
DatabaseName | CrossRef Aqualine Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-6992 |
EndPage | 121 |
ExternalDocumentID | 10_1016_j_ecoleng_2014_05_014 S0925857414002237 |
GeographicLocations | China, People's Rep China |
GeographicLocations_xml | – name: China, People's Rep – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AETEA AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SEN SES SET SEW SPCBC SSA SSJ SSZ T5K UHS VH1 WUQ Y6R YV5 ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QH 7SN 7ST 7U6 7UA C1K F1W H97 L.G SOI 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c492t-455257e6b493fdc028bad0c723a4f36705fa2ef304262e28634bbbf53bf8f3fe3 |
IEDL.DBID | .~1 |
ISSN | 0925-8574 |
IngestDate | Fri Jul 11 09:40:15 EDT 2025 Thu Jul 10 23:19:06 EDT 2025 Fri Jul 11 02:04:02 EDT 2025 Tue Jul 01 01:24:51 EDT 2025 Thu Apr 24 23:16:07 EDT 2025 Fri Feb 23 02:29:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SWAT SUFI-2 Hydrological modeling GLUE ParaSol Uncertainty analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-455257e6b493fdc028bad0c723a4f36705fa2ef304262e28634bbbf53bf8f3fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1727699331 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000117743 proquest_miscellaneous_1770299506 proquest_miscellaneous_1727699331 crossref_primary_10_1016_j_ecoleng_2014_05_014 crossref_citationtrail_10_1016_j_ecoleng_2014_05_014 elsevier_sciencedirect_doi_10_1016_j_ecoleng_2014_05_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Ecological engineering |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Moradkhani, Sorooshian (bib0125) 2009 Vrugt, Gupta, Bouten, Sorooshian (bib0210) 2003; 39 van Griensven, Meixner (bib0195) 2006; 53 Carpenter, Georgakakos (bib0055) 2006; 329 Shrestha, Kayastha, Solomatine (bib0170) 2009; 13 Blasone, Vrugt, Madsen, Rosbjerg, Robinson, Zyvoloski (bib0045) 2008; 31 Bastola, Murphy, Sweeney (bib0035) 2011; 34 Nash, Sutcliffe (bib1234) 1970; 10 Brazier, Beven, Anthony, Rowan (bib0050) 2001; 26 Jin, Xu, Zhang, Singh (bib0095) 2010; 383 Duan (bib0070) 2003 Thiemann, Trosset, Gupta, Sorooshian (bib0180) 2001; 37 Winchell, Sprinivasan, Diluzion, Arnold (bib0215) 2009 Legates, McCabe (bib0110) 1999; 35 Arnold, Williams, Maidment (bib0015) 1995; 121 Kavetski, Franks, Kuczera (bib0100) 2003 Yang, Reichert, Abbaspour, Yang (bib0230) 2007; 340 Duan, Soroosh, Gupta (bib0065) 1994; 158 Mantovan, Todini (bib0135) 2006; 330 Neitsch, Arnold, Kiniry, Williams (bib0140) 2011 Beven, Binley (bib0040) 1992; 6 Rostamian, Jaleh, Afyuni, Mousavi, Heidarpour, Jalalian, Abbaspour (bib0150) 2008; 53 Aronica, Bates, Horritt (bib0030) 2002; 16 McKay, Beckman, Conover (bib0120) 1979; 21 Feyen, Beven, De Smedt, Freer (bib0075) 2001; 37 Abbaspour, Yang, Maximov, Siber, Bogner, Mieleitner, Zobrist, Srinivasan (bib0005) 2007; 333 Shen, Hong, Yu, Niu (bib0160) 2010; 408 IWHR (bib0090) 2005 Vazquez, Beven, Feyen (bib0205) 2009; 23 Shen, Hong, Yu, Liu (bib0155) 2008; 405 Gong, Shen, Hong, Liu, Liao (bib0085) 2011; 142 Shen, Chen, Chen (bib0165) 2012; 16 Abbaspour (bib0010) 2011 Xue, Chen, Wu (bib0220) 2013 Refsgaard (bib0145) 1997; 198 Arnold, Srinivasan, Muttiah, Williams (bib0020) 1998; 34 Duan, Gupta, Sorooshian (bib0060) 1992; 28 Mugunthan, Shoemaker (bib0130) 2006; 42 Arnold, Kiniry, Srinivasan, Williams, Haney, Neitsch (bib0025) 2013 Kuczera, Parent (bib0105) 1998; 211 Marshall, Nott, Sharma (bib0115) 2004; 40 USDA Soil Conservation Service (bib0185) 1972 van Griensven, Meixner (bib0190) 2004 Tang, Xu, Xu (bib0175) 2012; 13 Yang, Reichert, Abbaspour, Xia, Yang (bib0235) 2008; 358 van Griensven, Meixner (bib0200) 2007; 9 Yang, Reichert, Abbaspour (bib0225) 2007; 43 Freer, Beven, Ambroise (bib0080) 1996; 32 Marshall (10.1016/j.ecoleng.2014.05.014_bib0115) 2004; 40 Jin (10.1016/j.ecoleng.2014.05.014_bib0095) 2010; 383 Kavetski (10.1016/j.ecoleng.2014.05.014_bib0100) 2003 Shrestha (10.1016/j.ecoleng.2014.05.014_bib0170) 2009; 13 Mantovan (10.1016/j.ecoleng.2014.05.014_bib0135) 2006; 330 Legates (10.1016/j.ecoleng.2014.05.014_bib0110) 1999; 35 Carpenter (10.1016/j.ecoleng.2014.05.014_bib0055) 2006; 329 Arnold (10.1016/j.ecoleng.2014.05.014_bib0015) 1995; 121 IWHR (10.1016/j.ecoleng.2014.05.014_bib0090) 2005 Shen (10.1016/j.ecoleng.2014.05.014_bib0160) 2010; 408 Moradkhani (10.1016/j.ecoleng.2014.05.014_bib0125) 2009 Tang (10.1016/j.ecoleng.2014.05.014_bib0175) 2012; 13 Mugunthan (10.1016/j.ecoleng.2014.05.014_bib0130) 2006; 42 Bastola (10.1016/j.ecoleng.2014.05.014_bib0035) 2011; 34 Winchell (10.1016/j.ecoleng.2014.05.014_bib0215) 2009 Vrugt (10.1016/j.ecoleng.2014.05.014_bib0210) 2003; 39 Blasone (10.1016/j.ecoleng.2014.05.014_bib0045) 2008; 31 Shen (10.1016/j.ecoleng.2014.05.014_bib0155) 2008; 405 Arnold (10.1016/j.ecoleng.2014.05.014_bib0020) 1998; 34 van Griensven (10.1016/j.ecoleng.2014.05.014_bib0190) 2004 Nash (10.1016/j.ecoleng.2014.05.014_bib1234) 1970; 10 Thiemann (10.1016/j.ecoleng.2014.05.014_bib0180) 2001; 37 van Griensven (10.1016/j.ecoleng.2014.05.014_bib0195) 2006; 53 Duan (10.1016/j.ecoleng.2014.05.014_bib0065) 1994; 158 Yang (10.1016/j.ecoleng.2014.05.014_bib0225) 2007; 43 Yang (10.1016/j.ecoleng.2014.05.014_bib0235) 2008; 358 Freer (10.1016/j.ecoleng.2014.05.014_bib0080) 1996; 32 Neitsch (10.1016/j.ecoleng.2014.05.014_bib0140) 2011 Feyen (10.1016/j.ecoleng.2014.05.014_bib0075) 2001; 37 Vazquez (10.1016/j.ecoleng.2014.05.014_bib0205) 2009; 23 Duan (10.1016/j.ecoleng.2014.05.014_bib0070) 2003 McKay (10.1016/j.ecoleng.2014.05.014_bib0120) 1979; 21 Arnold (10.1016/j.ecoleng.2014.05.014_bib0025) 2013 Kuczera (10.1016/j.ecoleng.2014.05.014_bib0105) 1998; 211 Beven (10.1016/j.ecoleng.2014.05.014_bib0040) 1992; 6 Rostamian (10.1016/j.ecoleng.2014.05.014_bib0150) 2008; 53 Aronica (10.1016/j.ecoleng.2014.05.014_bib0030) 2002; 16 Brazier (10.1016/j.ecoleng.2014.05.014_bib0050) 2001; 26 Abbaspour (10.1016/j.ecoleng.2014.05.014_bib0010) 2011 van Griensven (10.1016/j.ecoleng.2014.05.014_bib0200) 2007; 9 Xue (10.1016/j.ecoleng.2014.05.014_bib0220) 2013 Yang (10.1016/j.ecoleng.2014.05.014_bib0230) 2007; 340 Duan (10.1016/j.ecoleng.2014.05.014_bib0060) 1992; 28 Abbaspour (10.1016/j.ecoleng.2014.05.014_bib0005) 2007; 333 Shen (10.1016/j.ecoleng.2014.05.014_bib0165) 2012; 16 Gong (10.1016/j.ecoleng.2014.05.014_bib0085) 2011; 142 Refsgaard (10.1016/j.ecoleng.2014.05.014_bib0145) 1997; 198 USDA Soil Conservation Service (10.1016/j.ecoleng.2014.05.014_bib0185) 1972 |
References_xml | – volume: 53 start-page: 51 year: 2006 end-page: 59 ident: bib0195 article-title: Methods to quantify and identify the sources of uncertainty for river basin water quality models publication-title: Water Sci. Technol. – volume: 23 start-page: 1325 year: 2009 end-page: 1349 ident: bib0205 article-title: GLUE based assessment on the overall predictions of a MIKE SHE application publication-title: Water Resour. Manag. – year: 2009 ident: bib0215 article-title: ARCSWAT 2.3.4 Interface for SWAT2005. User's Guide – volume: 198 start-page: 69 year: 1997 end-page: 97 ident: bib0145 article-title: Parameterization, calibration, and validation of distributed hydrological models publication-title: J. Hydrol. – volume: 16 start-page: 121 year: 2012 end-page: 132 ident: bib0165 article-title: Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China publication-title: Hydrol. Earth Syst. Sci. – year: 2013 ident: bib0025 article-title: Soil and Water Assessment Tool Input/Output File Documentation Version 2012 – volume: 53 start-page: 977 year: 2008 end-page: 988 ident: bib0150 article-title: Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran publication-title: Hydrol. Sci. J. – volume: 333 start-page: 413 year: 2007 end-page: 430 ident: bib0005 article-title: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT publication-title: J. Hydrol. – volume: 340 start-page: 167 year: 2007 end-page: 182 ident: bib0230 article-title: Hydrological modelling of the Chaohe Basin in China: statistical model formulation and Bayesian inference publication-title: J. Hydrol. – volume: 34 start-page: 73 year: 1998 end-page: 89 ident: bib0020 article-title: Large area hydrologic modeling and assessment. Part I: Model development publication-title: J. Am. Water Resour. Assoc. – volume: 26 start-page: 1333 year: 2001 end-page: 1352 ident: bib0050 article-title: Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions publication-title: Earth Surf. Process. Landf. – volume: 43 start-page: W10401 year: 2007 ident: bib0225 article-title: Bayesian uncertainty analysis in distributed hydrological modelling: a case study in the Thur River basin (Switzerland) publication-title: Water Resour. Res. – start-page: 1 year: 2009 end-page: 24 ident: bib0125 article-title: General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis publication-title: Hydrological Modelling and the Water Cycle – volume: 39 year: 2003 ident: bib0210 article-title: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters publication-title: Water Resour. Res. – volume: 330 start-page: 368 year: 2006 end-page: 381 ident: bib0135 article-title: Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology publication-title: J. Hydrol. – volume: 358 start-page: 1 year: 2008 end-page: 23 ident: bib0235 article-title: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China publication-title: J. Hydrol. – volume: 32 start-page: 2161 year: 1996 end-page: 2173 ident: bib0080 article-title: Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach publication-title: Water Resour. Res. – volume: 34 start-page: 562 year: 2011 end-page: 576 ident: bib0035 article-title: The role of hydrological modeling uncertainties in climate change impact assessments of Irish river catchment publication-title: Adv. Water Resour. – volume: 28 start-page: 1015 year: 1992 end-page: 1031 ident: bib0060 article-title: Effective and efficient global optimization for conceptual rainfall-runoff models publication-title: Water Resour. Res. – volume: 158 start-page: 265 year: 1994 end-page: 284 ident: bib0065 article-title: Optimal use of the SCE-UA global optimization method for calibrating watershed models publication-title: J. Hydrol. – year: 2005 ident: bib0090 article-title: Investigation on Current Drinking Water Supply Mechanism in Chongzhou – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: bib1234 article-title: River flow forecasting through conceptual models part I — A discussion of principles publication-title: J. Hydrol. – volume: 121 start-page: 171 year: 1995 end-page: 183 ident: bib0015 article-title: Continuous-time water and sediment routing model for large basins publication-title: J. Hydrol. Eng. – volume: 13 start-page: 1760 year: 2012 end-page: 1770 ident: bib0175 article-title: Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting publication-title: Procedia Environ. Sci. – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: bib0120 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 16 start-page: 2001 year: 2002 end-page: 2016 ident: bib0030 article-title: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE publication-title: Hydrol. Process. – volume: 6 start-page: 279 year: 1992 end-page: 298 ident: bib0040 article-title: The future of distributed models – model calibration and uncertainty prediction publication-title: Hydrol. Process. – volume: 211 start-page: 69 year: 1998 end-page: 85 ident: bib0105 article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm publication-title: J. Hydrol. – volume: 40 start-page: W02501 year: 2004 ident: bib0115 article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall–runoff modeling publication-title: Water Resour. Res. – volume: 142 start-page: 246 year: 2011 end-page: 255 ident: bib0085 article-title: Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology publication-title: Agric. Ecosyst. Environ. – start-page: 89 year: 2003 end-page: 104 ident: bib0070 article-title: Global optimization for watershed model calibration publication-title: Calibration of Watershed Models – volume: 408 start-page: 1971 year: 2010 end-page: 1978 ident: bib0160 article-title: Parameter uncertainty analysis of non-point source pollution from different land use types publication-title: Sci. Total Environ. – year: 1972 ident: bib0185 article-title: Section 4: hydrology publication-title: National Engineering Handbook – volume: 13 start-page: 1235 year: 2009 end-page: 1248 ident: bib0170 article-title: A novel approach to parameter uncertainty analysis of hydrological models using neural networks publication-title: Hydrol. Earth Syst. Sci. – volume: 31 start-page: 630 year: 2008 end-page: 648 ident: bib0045 article-title: Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling publication-title: Adv. Water Resour. – start-page: 49 year: 2003 end-page: 68 ident: bib0100 article-title: Confronting input uncertainty in environmental modelling publication-title: Calibration of Watershed Models – volume: 42 start-page: W10428 year: 2006 ident: bib0130 article-title: Assessing the impacts of parameter uncertainty for computationally expensive groundwater models publication-title: Water Resour. Res. – volume: 329 start-page: 174 year: 2006 end-page: 185 ident: bib0055 article-title: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales publication-title: J. Hydrol. – year: 2013 ident: bib0220 article-title: Parameter uncertainty analysis of surface flow and sediment yield in the Huolin Basin in China publication-title: J. Hydrol. Eng. – year: 2011 ident: bib0140 article-title: Soil and Water Assessment Tool Theoretical Documentation, Version 2009 – volume: 37 start-page: 2521 year: 2001 end-page: 2535 ident: bib0180 article-title: Bayesian recursive parameter estimation for hydrologic models publication-title: Water Resour. Res. – volume: 37 start-page: 625 year: 2001 end-page: 638 ident: bib0075 article-title: Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations publication-title: Water Resour. Res. – year: 2004 ident: bib0190 article-title: Dealing with unidentifiable sources of uncertainty within environmental models publication-title: Proceedings of the International Environmental Modelling and Software Society – volume: 383 start-page: 147 year: 2010 end-page: 155 ident: bib0095 article-title: Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model publication-title: J. Hydrol. – year: 2011 ident: bib0010 article-title: SWAT-CUP4: SWAT Calibration and Uncertainty Programs – A User Manual – volume: 405 start-page: 195 year: 2008 end-page: 205 ident: bib0155 article-title: Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China publication-title: Sci. Total Environ. – volume: 9 start-page: 277 year: 2007 end-page: 291 ident: bib0200 article-title: A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models publication-title: J. Hydroinform. – volume: 35 start-page: 233 year: 1999 end-page: 241 ident: bib0110 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. – year: 2005 ident: 10.1016/j.ecoleng.2014.05.014_bib0090 – volume: 198 start-page: 69 issue: 1–4 year: 1997 ident: 10.1016/j.ecoleng.2014.05.014_bib0145 article-title: Parameterization, calibration, and validation of distributed hydrological models publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03329-X – volume: 34 start-page: 562 year: 2011 ident: 10.1016/j.ecoleng.2014.05.014_bib0035 article-title: The role of hydrological modeling uncertainties in climate change impact assessments of Irish river catchment publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.01.008 – volume: 383 start-page: 147 year: 2010 ident: 10.1016/j.ecoleng.2014.05.014_bib0095 article-title: Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.12.028 – volume: 34 start-page: 73 year: 1998 ident: 10.1016/j.ecoleng.2014.05.014_bib0020 article-title: Large area hydrologic modeling and assessment. Part I: Model development publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1998.tb05961.x – start-page: 1 year: 2009 ident: 10.1016/j.ecoleng.2014.05.014_bib0125 article-title: General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis – year: 2011 ident: 10.1016/j.ecoleng.2014.05.014_bib0010 – volume: 23 start-page: 1325 year: 2009 ident: 10.1016/j.ecoleng.2014.05.014_bib0205 article-title: GLUE based assessment on the overall predictions of a MIKE SHE application publication-title: Water Resour. Manag. doi: 10.1007/s11269-008-9329-6 – volume: 39 issue: 8 year: 2003 ident: 10.1016/j.ecoleng.2014.05.014_bib0210 article-title: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters publication-title: Water Resour. Res. doi: 10.1029/2002WR001642 – volume: 158 start-page: 265 year: 1994 ident: 10.1016/j.ecoleng.2014.05.014_bib0065 article-title: Optimal use of the SCE-UA global optimization method for calibrating watershed models publication-title: J. Hydrol. doi: 10.1016/0022-1694(94)90057-4 – volume: 16 start-page: 2001 year: 2002 ident: 10.1016/j.ecoleng.2014.05.014_bib0030 article-title: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE publication-title: Hydrol. Process. doi: 10.1002/hyp.398 – volume: 405 start-page: 195 issue: 1–3 year: 2008 ident: 10.1016/j.ecoleng.2014.05.014_bib0155 article-title: Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.06.009 – year: 2013 ident: 10.1016/j.ecoleng.2014.05.014_bib0220 article-title: Parameter uncertainty analysis of surface flow and sediment yield in the Huolin Basin in China publication-title: J. Hydrol. Eng. – volume: 16 start-page: 121 year: 2012 ident: 10.1016/j.ecoleng.2014.05.014_bib0165 article-title: Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-121-2012 – volume: 9 start-page: 277 issue: 4 year: 2007 ident: 10.1016/j.ecoleng.2014.05.014_bib0200 article-title: A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models publication-title: J. Hydroinform. doi: 10.2166/hydro.2007.104 – volume: 21 start-page: 239 year: 1979 ident: 10.1016/j.ecoleng.2014.05.014_bib0120 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 333 start-page: 413 issue: 2–4 year: 2007 ident: 10.1016/j.ecoleng.2014.05.014_bib0005 article-title: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.09.014 – volume: 142 start-page: 246 year: 2011 ident: 10.1016/j.ecoleng.2014.05.014_bib0085 article-title: Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.05.015 – volume: 358 start-page: 1 year: 2008 ident: 10.1016/j.ecoleng.2014.05.014_bib0235 article-title: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.05.012 – volume: 28 start-page: 1015 year: 1992 ident: 10.1016/j.ecoleng.2014.05.014_bib0060 article-title: Effective and efficient global optimization for conceptual rainfall-runoff models publication-title: Water Resour. Res. doi: 10.1029/91WR02985 – volume: 40 start-page: W02501 year: 2004 ident: 10.1016/j.ecoleng.2014.05.014_bib0115 article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall–runoff modeling publication-title: Water Resour. Res. doi: 10.1029/2003WR002378 – volume: 340 start-page: 167 year: 2007 ident: 10.1016/j.ecoleng.2014.05.014_bib0230 article-title: Hydrological modelling of the Chaohe Basin in China: statistical model formulation and Bayesian inference publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.04.006 – start-page: 89 year: 2003 ident: 10.1016/j.ecoleng.2014.05.014_bib0070 article-title: Global optimization for watershed model calibration – volume: 37 start-page: 625 issue: 3 year: 2001 ident: 10.1016/j.ecoleng.2014.05.014_bib0075 article-title: Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations publication-title: Water Resour. Res. doi: 10.1029/2000WR900351 – start-page: 49 year: 2003 ident: 10.1016/j.ecoleng.2014.05.014_bib0100 article-title: Confronting input uncertainty in environmental modelling – volume: 408 start-page: 1971 issue: 8 year: 2010 ident: 10.1016/j.ecoleng.2014.05.014_bib0160 article-title: Parameter uncertainty analysis of non-point source pollution from different land use types publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.12.007 – volume: 13 start-page: 1760 year: 2012 ident: 10.1016/j.ecoleng.2014.05.014_bib0175 article-title: Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2012.01.170 – year: 2004 ident: 10.1016/j.ecoleng.2014.05.014_bib0190 article-title: Dealing with unidentifiable sources of uncertainty within environmental models – volume: 13 start-page: 1235 year: 2009 ident: 10.1016/j.ecoleng.2014.05.014_bib0170 article-title: A novel approach to parameter uncertainty analysis of hydrological models using neural networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-1235-2009 – volume: 53 start-page: 51 issue: 1 year: 2006 ident: 10.1016/j.ecoleng.2014.05.014_bib0195 article-title: Methods to quantify and identify the sources of uncertainty for river basin water quality models publication-title: Water Sci. Technol. doi: 10.2166/wst.2006.007 – volume: 26 start-page: 1333 year: 2001 ident: 10.1016/j.ecoleng.2014.05.014_bib0050 article-title: Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.266 – volume: 211 start-page: 69 issue: 1–4 year: 1998 ident: 10.1016/j.ecoleng.2014.05.014_bib0105 article-title: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00198-X – volume: 32 start-page: 2161 year: 1996 ident: 10.1016/j.ecoleng.2014.05.014_bib0080 article-title: Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach publication-title: Water Resour. Res. doi: 10.1029/95WR03723 – volume: 6 start-page: 279 issue: 3 year: 1992 ident: 10.1016/j.ecoleng.2014.05.014_bib0040 article-title: The future of distributed models – model calibration and uncertainty prediction publication-title: Hydrol. Process. doi: 10.1002/hyp.3360060305 – year: 2013 ident: 10.1016/j.ecoleng.2014.05.014_bib0025 – volume: 37 start-page: 2521 issue: 10 year: 2001 ident: 10.1016/j.ecoleng.2014.05.014_bib0180 article-title: Bayesian recursive parameter estimation for hydrologic models publication-title: Water Resour. Res. doi: 10.1029/2000WR900405 – volume: 31 start-page: 630 year: 2008 ident: 10.1016/j.ecoleng.2014.05.014_bib0045 article-title: Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2007.12.003 – year: 2011 ident: 10.1016/j.ecoleng.2014.05.014_bib0140 – volume: 53 start-page: 977 issue: 5 year: 2008 ident: 10.1016/j.ecoleng.2014.05.014_bib0150 article-title: Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.53.5.977 – volume: 121 start-page: 171 issue: 2 year: 1995 ident: 10.1016/j.ecoleng.2014.05.014_bib0015 article-title: Continuous-time water and sediment routing model for large basins publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)0733-9429(1995)121:2(171) – volume: 35 start-page: 233 year: 1999 ident: 10.1016/j.ecoleng.2014.05.014_bib0110 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. doi: 10.1029/1998WR900018 – volume: 10 start-page: 282 issue: 3 year: 1970 ident: 10.1016/j.ecoleng.2014.05.014_bib1234 article-title: River flow forecasting through conceptual models part I — A discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – year: 1972 ident: 10.1016/j.ecoleng.2014.05.014_bib0185 article-title: Section 4: hydrology – volume: 329 start-page: 174 issue: 1–2 year: 2006 ident: 10.1016/j.ecoleng.2014.05.014_bib0055 article-title: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.02.013 – volume: 330 start-page: 368 year: 2006 ident: 10.1016/j.ecoleng.2014.05.014_bib0135 article-title: Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.04.046 – year: 2009 ident: 10.1016/j.ecoleng.2014.05.014_bib0215 – volume: 42 start-page: W10428 year: 2006 ident: 10.1016/j.ecoleng.2014.05.014_bib0130 article-title: Assessing the impacts of parameter uncertainty for computationally expensive groundwater models publication-title: Water Resour. Res. doi: 10.1029/2005WR004640 – volume: 43 start-page: W10401 year: 2007 ident: 10.1016/j.ecoleng.2014.05.014_bib0225 article-title: Bayesian uncertainty analysis in distributed hydrological modelling: a case study in the Thur River basin (Switzerland) publication-title: Water Resour. Res. doi: 10.1029/2006WR005497 |
SSID | ssj0007259 |
Score | 2.495586 |
Snippet | Hydrological models always suffer from different sources of uncertainties. As the distributed hydrological models play a very important role in water resource... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110 |
SubjectTerms | algorithms China Coefficients Estimates Freshwater GLUE Hydrological modeling Hydrology Mathematical models ParaSol rivers Runoff Soil and Water Assessment Tool model SUFI-2 SWAT Uncertainty Uncertainty analysis water management watershed hydrology Watersheds |
Title | Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods |
URI | https://dx.doi.org/10.1016/j.ecoleng.2014.05.014 https://www.proquest.com/docview/1727699331 https://www.proquest.com/docview/1770299506 https://www.proquest.com/docview/2000117743 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqcoEDgkJFeVRG4thNNn7s41hVCWkDFWqI2pvlJ03UbqokFcqFP8EfZmbXSwpSqcTJ8mrGsnbsmW-1M98Q8iErAbUbw5PCMpuIUOrE2IwlTGjuuBWB1Sn_n0-z4UScXMiLLXLU1sJgWmX0_Y1Pr711fNKNb7N7M512x2nJAOtCRBQYiDhWlAuR4ynv_NikeeRMNnx7TCYovani6c468IWH_Uoww0s0BJ7ivvj0l6euw8_gGXkacSM9bLb2nGz5aoc8ucMmuEN2-5uiNRCNt3b5gvzsR0rv6huFMNYkAazWFAk2rhFr0mlFHTLoYvMr7-jl2i1ap0jrXjmoCvCWAlyk576a4fwMUzrod438nJegBYvU3bipWdOPnyb9AzqeDI4TdkB15egXvdDjOSxXt6xeviSTQf_r0TCJzRgSK0q2SoRE3lSfGVHy4CzAEqNdanPGtQjIAieDZj7wmuLesyLjwhgTJDehCDx4vku2q3nlXxFqXOaN6BmvwXY5M0aWvcCsKJwDj2N6e0S0JlA2MpVjw4wr1aakzVS0nELLqVQqGPZI57faTUPV8ZBC0dpX_XHmFISTh1Tft-dBwX3Enyy68vPbpUJAmAHo471_yeQpwACZZvfLsBqtAzjnr_9_m2_IY5jJJmfuLdleLW79OwBRK7Nf35J98ujweDQ8xXF0dj76BViZIII |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHBIWK8jQS3LrJxo99HDggSEhoWiHSiN5ce23TRLCpklRVLvwJfgp_kJldLwGkUgmpp9XueizL4535rP38DSEvkhxQuzE8ygpWRMLnOjJFwiImNLe8EJ5VlP_9g6Q_Fu-P5NEG-dGchUFaZYj9dUyvonV40g6z2T6dTNqjOGeAdSEjCkxEPA3Myj23Ood92-LV4C04-SVjve7hm34USgtEhcjZMhISVUBdYkTOvS0gyRpt4yJlXAuPmmbSa-Y8rwTbHcsSLowxXnLjM8-949DvNXJdQLjAsgmtb2teScpkLfDHZITDWx8bak9bsKXEAilIKRO1Yqi4KCH-lRqqfNe7Q24HoEpf13Nxl2y4covc-k2-cItsd9en5KBpCBOLe-R7N2iIl58p5M2adbBcUVT0-Irglk5KalGyF6ttOUtPVnbeRGFaFedBU8DTFPAp_eTKKd5_RA4JPdcoCHoCVtBJVf6bmhV9Nxx3d-lo3BtEbJfq0tIPeq5HM-iuqpG9uE_GV-KibbJZzkr3gFBjE2dExzgNiyVlxsi841khMmshxJnODhGNC1QRpNGxQscX1XDgpip4TqHnVCwVXHZI65fZaa0NcplB1vhX_bHIFeSvy0yfN-tBQQDAvzq6dLOzhUIEmgDK5J1_tUljwB0yTi5uw6rtAewG-MP_H-YzcqN_uD9Uw8HB3iNyE97ImrD3mGwu52fuCSC4pXlafTGUHF_1J_oTR5Nanw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+uncertainty+estimates+in+distributed+hydrological+modeling+for+the+Wenjing+River+watershed+in+China+by+GLUE%2C+SUFI-2%2C+and+ParaSol+methods&rft.jtitle=Ecological+engineering&rft.au=Wu%2C+Hongjing&rft.au=Chen%2C+Bing&rft.date=2015-03-01&rft.pub=Elsevier+B.V&rft.issn=0925-8574&rft.eissn=1872-6992&rft.volume=76&rft.spage=110&rft.epage=121&rft_id=info:doi/10.1016%2Fj.ecoleng.2014.05.014&rft.externalDocID=S0925857414002237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8574&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8574&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8574&client=summon |