On shear layer atomization within closed channels: Numerical simulations of a cough-replicating experiment

Aerosol generation during coughing and sneezing has gained major relevance due to the current COVID pandemic. The atomization involved in this process takes place in the complex context of the respiratory system and develops very rapidly. In order to get further insights on the early spray generatio...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 231; p. 105125
Main Authors Pairetti, César, Villiers, Raphaël, Zaleski, Stéphane
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.12.2021
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2021.105125

Cover

Abstract Aerosol generation during coughing and sneezing has gained major relevance due to the current COVID pandemic. The atomization involved in this process takes place in the complex context of the respiratory system and develops very rapidly. In order to get further insights on the early spray generation, we introduce a simplified model of physiological coughing or sneezing, in the form of a thin liquid layer subject to a rapid (30 m/s) air stream. The setup is simulated using the Volume-Of-Fluid method with octree mesh adaptation, the latter allowing grid sizes small enough to capture the Kolmogorov length scale. The results confirm the trend to an intermediate distribution between a Log-Normal and a Pareto distribution P(d)∝d−3.3 for the distribution of droplet sizes in agreement with a previous re-analysis of experimental results by one of the authors. The mechanism of atomization does not differ qualitatively from the multiphase mixing layer experiments and simulations. No mechanism for a bimodal distribution, also sometimes observed, is evidenced in these simulations.
AbstractList Aerosol generation during coughing and sneezing has gained major relevance due to the current COVID pandemic. The atomization involved in this process takes place in the complex context of the respiratory system and develops very rapidly. In order to get further insights on the early spray generation, we introduce a simplified model of physiological coughing or sneezing, in the form of a thin liquid layer subject to a rapid (30 m/s) air stream. The setup is simulated using the Volume-Of-Fluid method with octree mesh adaptation, the latter allowing grid sizes small enough to capture the Kolmogorov length scale. The results confirm the trend to an intermediate distribution between a Log-Normal and a Pareto distribution P(d)∝d−3.3 for the distribution of droplet sizes in agreement with a previous re-analysis of experimental results by one of the authors. The mechanism of atomization does not differ qualitatively from the multiphase mixing layer experiments and simulations. No mechanism for a bimodal distribution, also sometimes observed, is evidenced in these simulations.
Aerosol generation during coughing and sneezing has gained major relevance due to the current COVID pandemic. The atomization involved in this process takes place in the complex context of the respiratory system and develops very rapidly. In order to get further insights on the early spray generation, we introduce a simplified model of physiological coughing or sneezing, in the form of a thin liquid layer subject to a rapid (30 m/s) air stream. The setup is simulated using the Volume-Of-Fluid method with octree mesh adaptation, the latter allowing grid sizes small enough to capture the Kolmogorov length scale. The results confirm the trend to an intermediate distribution between a Log-Normal and a Pareto distribution
Aerosol generation during coughing and sneezing has gained major relevance due to the current COVID pandemic. The atomization involved in this process takes place in the complex context of the respiratory system and develops very rapidly. In order to get further insights on the early spray generation, we introduce a simplified model of physiological coughing or sneezing, in the form of a thin liquid layer subject to a rapid (30 m/s) air stream. The setup is simulated using the Volume-Of-Fluid method with octree mesh adaptation, the latter allowing grid sizes small enough to capture the Kolmogorov length scale. The results confirm the trend to an intermediate distribution between a Log-Normal and a Pareto distribution P (d) ⍺ d-3.3 for the distribution of droplet sizes in agreement with a previous re-analysis of experimental results by one of the authors. The mechanism of atomization does not differ qualitatively from the multiphase mixing layer experiments and simulations. No mechanism for a bimodal distribution, also sometimes observed, is evidenced in these simulations.
ArticleNumber 105125
Author Pairetti, César
Zaleski, Stéphane
Villiers, Raphaël
Author_xml – sequence: 1
  givenname: César
  surname: Pairetti
  fullname: Pairetti, César
  organization: Sorbonne Université and CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Paris, France
– sequence: 2
  givenname: Raphaël
  surname: Villiers
  fullname: Villiers, Raphaël
  organization: Sorbonne Université and CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Paris, France
– sequence: 3
  givenname: Stéphane
  orcidid: 0000-0003-2004-9090
  surname: Zaleski
  fullname: Zaleski, Stéphane
  email: stephane.zaleski@sorbonne-universite.fr
  organization: Sorbonne Université and CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, Paris, France
BackLink https://hal.sorbonne-universite.fr/hal-03653064$$DView record in HAL
BookMark eNqFkUFv1DAQhS1UJLaF34AlThyy2IkTN0gcVhVQpBW9wNly7HHjyLGD7bSUX4-3AQ5cerI8_t6bGb9zdOaDB4ReU7KnhHbvpr0K82LcavW-JjUt1ZbW7TO0o5e8rwhn_AztCGFtxfuGvEDnKU2k3Jua7dB043EaQUbs5ANELHOY7S-ZbfD43ubReqxcSKCxGqX34NJ7_HWdIVolHU52Xt0jnHAwWGIV1tuxirC48p6tv8XwcynwDD6_RM-NdAle_Tkv0PdPH79dXVfHm89frg7HSrG-zhVrSNlCUtYNemihb7nWhtAejBm61oDmig6aqbrjBBjtZEMGLXtgjYFLGHhzgd5uvqN0Yim9ZXwQQVpxfTiKU400XduQjt3Rwr7Z2CWGHyukLKawRl_GE3VHGa05YSfHDxulYkgpghHK5se1c5TWCUrEKQoxiX9RiFMUYoui6Pl_-r9jPa08bMry8XBnIYqkLHgF2kZQWehgn_T4DWH1rJY
CitedBy_id crossref_primary_10_1016_j_cmpb_2025_108601
crossref_primary_10_1063_5_0174014
crossref_primary_10_1016_j_jcp_2021_110810
crossref_primary_10_1038_s41598_022_18788_3
crossref_primary_10_1063_5_0219332
crossref_primary_10_1103_PhysRevFluids_8_074802
crossref_primary_10_1063_5_0234109
crossref_primary_10_1016_j_compfluid_2023_106022
crossref_primary_10_1063_5_0101917
crossref_primary_10_1016_j_compfluid_2022_105758
Cites_doi 10.1017/jfm.2018.825
10.1017/S0022172400019288
10.1016/j.ijmultiphaseflow.2019.01.004
10.1016/j.jcp.2009.04.042
10.1016/j.ijmultiphaseflow.2020.103439
10.1080/15459620590918466
10.1103/PhysRevFluids.2.014005
10.1146/annurev.fluid.31.1.567
10.2514/3.9525
10.1007/s00348-015-2078-4
10.1017/jfm.2016.835
10.1016/j.jcp.2009.12.018
10.1063/5.0011960
10.1146/annurev.fluid.40.111406.102200
10.1017/S002211201000474X
10.1038/213095a0
10.1146/annurev-fluid-122316-045034
10.1017/jfm.2014.88
10.1103/PhysRevLett.106.104502
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Dec 15, 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Dec 15, 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.compfluid.2021.105125
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1879-0747
ExternalDocumentID oai_HAL_hal_03653064v1
10_1016_j_compfluid_2021_105125
S0045793021002681
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
T9H
VH1
WUQ
7SC
7TB
7U5
8FD
EFKBS
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c492t-430021a146bdb5e957ddf019effb65fed7c1bd4c2670e416a30bda9e43fe8eb73
IEDL.DBID AIKHN
ISSN 0045-7930
IngestDate Fri May 09 12:12:51 EDT 2025
Fri Jul 25 07:30:58 EDT 2025
Tue Jul 01 02:21:32 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Fri Feb 23 02:47:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Covid
Sneeze
Droplets
Pareto distribution
Simulation
Atomization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-430021a146bdb5e957ddf019effb65fed7c1bd4c2670e416a30bda9e43fe8eb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2004-9090
OpenAccessLink https://hal.sorbonne-universite.fr/hal-03653064
PQID 2614127047
PQPubID 2045265
ParticipantIDs hal_primary_oai_HAL_hal_03653064v1
proquest_journals_2614127047
crossref_citationtrail_10_1016_j_compfluid_2021_105125
crossref_primary_10_1016_j_compfluid_2021_105125
elsevier_sciencedirect_doi_10_1016_j_compfluid_2021_105125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & fluids
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Balachandar, Zaleski, Soldati, Ahmadi, Bourouiba (b3) 2020; 132
Zandian, Sirignano, Hussain (b18) 2019; 113
Ling, Fuster, Tryggvason, Zaleski (b19) 2019; 859
Pope (b27) 2001
Nicas, Nazaroff, Hubbard (b11) 2017; 2
Gorokhovski, Herrmann (b16) 2008; 40
Herrmann (b31) 2011; 21
Marty (b32) 2015
Weymouth, Yue (b23) 2010; 229
Pairetti, Damián, Nigro, Popinet, Zaleski (b24) 2020; 30
Xie, Li, Sun, Liu (b7) 2009; 6
Chong, Ng, Hori, Yang, Verzicco, Lohse (b8) 2020
Wells (b12) 1955
Scharfman, Techet, Bush, Bourouiba (b10) 2016; 57
van Hooft, Popinet, van Heerwaarden, van der Linden, de Roode, van de Wiel (b28) 2018
Bourouiba (b2) 2020; 323
Duguid (b5) 1946; 44
Villermaux, Bossa (b14) 2011; 668
King, Brock, Lundell (b15) 1985; 58
Hoepffner, Blumenthal, Zaleski (b30) 2011; 106
Ling, Fuster, Zaleski, Tryggvason (b13) 2017; 2
Constante-Amores, Kahouadji, Batchvarov, Shin, Chergui, Juric, Matar (b20) 2020
Dimotakis (b29) 1986; 24
Agbaglah, Chiodi, Desjardins (b17) 2017; 812
Bourouiba (b4) 2020; 53
Scardovelli, Zaleski (b26) 1999; 31
Tryggvason, Scardovelli, Zaleski (b21) 2011
Popinet (b25) 2018; 50
Bourouiba, Dehandschoewercker, Bush (b1) 2014; 745
Loudon, Roberts (b6) 1967; 213
Dbouk, Drikakis (b9) 2020; 32
Popinet (b22) 2009; 228
Balachandar (10.1016/j.compfluid.2021.105125_b3) 2020; 132
Duguid (10.1016/j.compfluid.2021.105125_b5) 1946; 44
Popinet (10.1016/j.compfluid.2021.105125_b25) 2018; 50
Villermaux (10.1016/j.compfluid.2021.105125_b14) 2011; 668
Herrmann (10.1016/j.compfluid.2021.105125_b31) 2011; 21
Loudon (10.1016/j.compfluid.2021.105125_b6) 1967; 213
Tryggvason (10.1016/j.compfluid.2021.105125_b21) 2011
King (10.1016/j.compfluid.2021.105125_b15) 1985; 58
Ling (10.1016/j.compfluid.2021.105125_b19) 2019; 859
Bourouiba (10.1016/j.compfluid.2021.105125_b4) 2020; 53
Pope (10.1016/j.compfluid.2021.105125_b27) 2001
Bourouiba (10.1016/j.compfluid.2021.105125_b1) 2014; 745
Gorokhovski (10.1016/j.compfluid.2021.105125_b16) 2008; 40
Hoepffner (10.1016/j.compfluid.2021.105125_b30) 2011; 106
Chong (10.1016/j.compfluid.2021.105125_b8) 2020
Dbouk (10.1016/j.compfluid.2021.105125_b9) 2020; 32
Scardovelli (10.1016/j.compfluid.2021.105125_b26) 1999; 31
Popinet (10.1016/j.compfluid.2021.105125_b22) 2009; 228
Weymouth (10.1016/j.compfluid.2021.105125_b23) 2010; 229
Dimotakis (10.1016/j.compfluid.2021.105125_b29) 1986; 24
Wells (10.1016/j.compfluid.2021.105125_b12) 1955
Zandian (10.1016/j.compfluid.2021.105125_b18) 2019; 113
Marty (10.1016/j.compfluid.2021.105125_b32) 2015
Ling (10.1016/j.compfluid.2021.105125_b13) 2017; 2
Pairetti (10.1016/j.compfluid.2021.105125_b24) 2020; 30
Scharfman (10.1016/j.compfluid.2021.105125_b10) 2016; 57
Constante-Amores (10.1016/j.compfluid.2021.105125_b20) 2020
Nicas (10.1016/j.compfluid.2021.105125_b11) 2017; 2
Bourouiba (10.1016/j.compfluid.2021.105125_b2) 2020; 323
Xie (10.1016/j.compfluid.2021.105125_b7) 2009; 6
Agbaglah (10.1016/j.compfluid.2021.105125_b17) 2017; 812
van Hooft (10.1016/j.compfluid.2021.105125_b28) 2018
References_xml – volume: 132
  year: 2020
  ident: b3
  article-title: Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines
  publication-title: Int J Multiph Flow
– volume: 30
  year: 2020
  ident: b24
  article-title: Mesh resolution effects on primary atomization simulations
  publication-title: At Sprays
– volume: 24
  start-page: 1791
  year: 1986
  end-page: 1796
  ident: b29
  article-title: Entrainment and growth of a fully developed, two-dimensional shear layer
  publication-title: AIAA J
– volume: 44
  start-page: 471
  year: 1946
  end-page: 479
  ident: b5
  article-title: The size and the duration of air-carriage of respiratory droplets and droplet-nuclei
  publication-title: Epidemiol Infect
– volume: 57
  start-page: 24
  year: 2016
  ident: b10
  article-title: Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets
  publication-title: Exp Fluids
– volume: 21
  start-page: 283
  year: 2011
  end-page: 301
  ident: b31
  article-title: On simulating primary atomization using the refined level set grid method
  publication-title: AAS
– volume: 2
  year: 2017
  ident: b13
  article-title: Spray formation in a quasiplanar gas–liquid mixing layer at moderate density ratios: A numerical closeup
  publication-title: Phys Rev Fluids
– volume: 6
  start-page: S703
  year: 2009
  end-page: S714
  ident: b7
  article-title: Exhaled droplets due to talking and coughing
  publication-title: J R Soc Interface
– volume: 50
  start-page: 49
  year: 2018
  end-page: 75
  ident: b25
  article-title: Numerical models of surface tension
  publication-title: Annu Rev Fluid Mech
– volume: 53
  year: 2020
  ident: b4
  article-title: The fluid dynamics of disease transmission
  publication-title: Annu Rev Fluid Mech
– year: 2020
  ident: b20
  article-title: Direct numerical simulations of transient turbulent jets: vortex-interface interactions
– volume: 213
  start-page: 95
  year: 1967
  end-page: 96
  ident: b6
  article-title: Relation between the airborne diameters of respiratory droplets and the diameter of the stains left after recovery
  publication-title: Nature
– volume: 228
  start-page: 5838
  year: 2009
  end-page: 5866
  ident: b22
  article-title: An accurate adaptive solver for surface-tension-driven interfacial flows
  publication-title: J Comput Phys
– volume: 229
  start-page: 2853
  year: 2010
  end-page: 2865
  ident: b23
  article-title: Conservative volume-of-fluid method for free-surface simulations on cartesian-grids
  publication-title: J Comput Phys
– volume: 323
  start-page: 1837
  year: 2020
  end-page: 1838
  ident: b2
  article-title: Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19
  publication-title: JAMA
– year: 2020
  ident: b8
  article-title: Extended lifetime of respiratory droplets in a turbulent vapour puff and its implications on airborne disease transmission
– volume: 2
  start-page: 143
  year: 2017
  end-page: 154
  ident: b11
  article-title: Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens
  publication-title: J Occup Environ Hyg
– volume: 745
  start-page: 537
  year: 2014
  end-page: 563
  ident: b1
  article-title: Violent expiratory events: on coughing and sneezing
  publication-title: J Fluid Mech
– volume: 32
  year: 2020
  ident: b9
  article-title: On coughing and airborne droplet transmission to humans
  publication-title: Phys Fluids
– volume: 113
  start-page: 117
  year: 2019
  end-page: 141
  ident: b18
  article-title: Length-scale cascade and spread rate of atomizing planar liquid jets
  publication-title: Int J Multiph Flow
– start-page: 1
  year: 2018
  end-page: 23
  ident: b28
  article-title: Towards adaptive grids for atmospheric boundary-layer simulations
  publication-title: Bound-Lay Meteorol
– year: 1955
  ident: b12
  article-title: Airborne contagion and air hygiene. An ecological study of droplet infections
– volume: 40
  start-page: 343
  year: 2008
  end-page: 366
  ident: b16
  article-title: Modeling primary atomization
  publication-title: Annu Rev Fluid Mech
– volume: 668
  start-page: 412
  year: 2011
  end-page: 435
  ident: b14
  article-title: Drop fragmentation on impact
  publication-title: J Fluid Mech
– volume: 58
  start-page: 1776
  year: 1985
  end-page: 1782
  ident: b15
  article-title: Clearance of mucus by simulated cough
  publication-title: Physiology.Org
– volume: 31
  start-page: 567
  year: 1999
  end-page: 603
  ident: b26
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu Rev Fluid Mech
– volume: 106
  year: 2011
  ident: b30
  article-title: Self-similar wave produced by local perturbation of the Kelvin-Helmholtz shear-layer instability
  publication-title: Phys Rev Lett
– year: 2011
  ident: b21
  article-title: Direct numerical simulations of gas-liquid multiphase flows
– year: 2001
  ident: b27
  article-title: Turbulent flows
– volume: 812
  start-page: 1024
  year: 2017
  end-page: 1038
  ident: b17
  article-title: Numerical simulation of the initial destabilization of an air-blasted liquid layer
  publication-title: J Fluid Mech
– volume: 859
  start-page: 268
  year: 2019
  end-page: 307
  ident: b19
  article-title: A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability
  publication-title: J Fluid Mech
– year: 2015
  ident: b32
  article-title: Contribution à l’étude de l’atomisation assistée d’un liquide : instabilité de cisaillement et génération du spray
– volume: 859
  start-page: 268
  year: 2019
  ident: 10.1016/j.compfluid.2021.105125_b19
  article-title: A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2018.825
– volume: 44
  start-page: 471
  issue: 6
  year: 1946
  ident: 10.1016/j.compfluid.2021.105125_b5
  article-title: The size and the duration of air-carriage of respiratory droplets and droplet-nuclei
  publication-title: Epidemiol Infect
  doi: 10.1017/S0022172400019288
– start-page: 1
  year: 2018
  ident: 10.1016/j.compfluid.2021.105125_b28
  article-title: Towards adaptive grids for atmospheric boundary-layer simulations
  publication-title: Bound-Lay Meteorol
– volume: 21
  start-page: 283
  issue: 4
  year: 2011
  ident: 10.1016/j.compfluid.2021.105125_b31
  article-title: On simulating primary atomization using the refined level set grid method
  publication-title: AAS
– volume: 323
  start-page: 1837
  issue: 18
  year: 2020
  ident: 10.1016/j.compfluid.2021.105125_b2
  article-title: Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19
  publication-title: JAMA
– volume: 113
  start-page: 117
  year: 2019
  ident: 10.1016/j.compfluid.2021.105125_b18
  article-title: Length-scale cascade and spread rate of atomizing planar liquid jets
  publication-title: Int J Multiph Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.01.004
– volume: 228
  start-page: 5838
  issue: 16
  year: 2009
  ident: 10.1016/j.compfluid.2021.105125_b22
  article-title: An accurate adaptive solver for surface-tension-driven interfacial flows
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2009.04.042
– volume: 132
  year: 2020
  ident: 10.1016/j.compfluid.2021.105125_b3
  article-title: Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines
  publication-title: Int J Multiph Flow
  doi: 10.1016/j.ijmultiphaseflow.2020.103439
– year: 1955
  ident: 10.1016/j.compfluid.2021.105125_b12
– volume: 2
  start-page: 143
  issue: 3
  year: 2017
  ident: 10.1016/j.compfluid.2021.105125_b11
  article-title: Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens
  publication-title: J Occup Environ Hyg
  doi: 10.1080/15459620590918466
– volume: 2
  issue: 1
  year: 2017
  ident: 10.1016/j.compfluid.2021.105125_b13
  article-title: Spray formation in a quasiplanar gas–liquid mixing layer at moderate density ratios: A numerical closeup
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.2.014005
– volume: 31
  start-page: 567
  issue: 1
  year: 1999
  ident: 10.1016/j.compfluid.2021.105125_b26
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.31.1.567
– year: 2020
  ident: 10.1016/j.compfluid.2021.105125_b20
– volume: 24
  start-page: 1791
  year: 1986
  ident: 10.1016/j.compfluid.2021.105125_b29
  article-title: Entrainment and growth of a fully developed, two-dimensional shear layer
  publication-title: AIAA J
  doi: 10.2514/3.9525
– volume: 57
  start-page: 24
  issue: 2
  year: 2016
  ident: 10.1016/j.compfluid.2021.105125_b10
  article-title: Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-2078-4
– volume: 812
  start-page: 1024
  year: 2017
  ident: 10.1016/j.compfluid.2021.105125_b17
  article-title: Numerical simulation of the initial destabilization of an air-blasted liquid layer
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.835
– volume: 229
  start-page: 2853
  issue: 8
  year: 2010
  ident: 10.1016/j.compfluid.2021.105125_b23
  article-title: Conservative volume-of-fluid method for free-surface simulations on cartesian-grids
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2009.12.018
– volume: 32
  issue: 5
  year: 2020
  ident: 10.1016/j.compfluid.2021.105125_b9
  article-title: On coughing and airborne droplet transmission to humans
  publication-title: Phys Fluids
  doi: 10.1063/5.0011960
– volume: 40
  start-page: 343
  year: 2008
  ident: 10.1016/j.compfluid.2021.105125_b16
  article-title: Modeling primary atomization
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.40.111406.102200
– year: 2001
  ident: 10.1016/j.compfluid.2021.105125_b27
– volume: 30
  issue: 12
  year: 2020
  ident: 10.1016/j.compfluid.2021.105125_b24
  article-title: Mesh resolution effects on primary atomization simulations
  publication-title: At Sprays
– volume: 668
  start-page: 412
  year: 2011
  ident: 10.1016/j.compfluid.2021.105125_b14
  article-title: Drop fragmentation on impact
  publication-title: J Fluid Mech
  doi: 10.1017/S002211201000474X
– volume: 53
  year: 2020
  ident: 10.1016/j.compfluid.2021.105125_b4
  article-title: The fluid dynamics of disease transmission
  publication-title: Annu Rev Fluid Mech
– year: 2020
  ident: 10.1016/j.compfluid.2021.105125_b8
– volume: 213
  start-page: 95
  issue: 5071
  year: 1967
  ident: 10.1016/j.compfluid.2021.105125_b6
  article-title: Relation between the airborne diameters of respiratory droplets and the diameter of the stains left after recovery
  publication-title: Nature
  doi: 10.1038/213095a0
– volume: 6
  start-page: S703
  issue: Suppl. 6
  year: 2009
  ident: 10.1016/j.compfluid.2021.105125_b7
  article-title: Exhaled droplets due to talking and coughing
  publication-title: J R Soc Interface
– year: 2011
  ident: 10.1016/j.compfluid.2021.105125_b21
– volume: 50
  start-page: 49
  year: 2018
  ident: 10.1016/j.compfluid.2021.105125_b25
  article-title: Numerical models of surface tension
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122316-045034
– volume: 58
  start-page: 1776
  issue: 6
  year: 1985
  ident: 10.1016/j.compfluid.2021.105125_b15
  article-title: Clearance of mucus by simulated cough
  publication-title: Physiology.Org
– volume: 745
  start-page: 537
  year: 2014
  ident: 10.1016/j.compfluid.2021.105125_b1
  article-title: Violent expiratory events: on coughing and sneezing
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2014.88
– year: 2015
  ident: 10.1016/j.compfluid.2021.105125_b32
– volume: 106
  year: 2011
  ident: 10.1016/j.compfluid.2021.105125_b30
  article-title: Self-similar wave produced by local perturbation of the Kelvin-Helmholtz shear-layer instability
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.104502
SSID ssj0004324
Score 2.4034052
Snippet Aerosol generation during coughing and sneezing has gained major relevance due to the current COVID pandemic. The atomization involved in this process takes...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105125
SubjectTerms Atomization
Atomizing
Biomechanics
Chaotic Dynamics
Computer Science
Condensed Matter
Covid
Droplets
Engineering Sciences
Finite element method
Fluids mechanics
Mathematical models
Mechanics
Modeling and Simulation
Nonlinear Sciences
Octrees
Pareto distribution
Physics
Respiratory system
Shear layers
Simulation
Sneeze
Sneezing
Soft Condensed Matter
Title On shear layer atomization within closed channels: Numerical simulations of a cough-replicating experiment
URI https://dx.doi.org/10.1016/j.compfluid.2021.105125
https://www.proquest.com/docview/2614127047
https://hal.sorbonne-universite.fr/hal-03653064
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZgubQH1Ke6lCKr4poSx3a85rZCRdsC20uRuFmxPW6DQhaRXY797fUQZ3moEoceY8myNZ7Mw575PkL2lQflRWGz6MyKTOggs0nQNgOv0XswKCu8Gjibl7Nz8f1CXmyQo6EXBssqk-3vbfqdtU4jB0maB9d1jT2-QkbtwqQlJhLYfr1VcF3KEdmafjuZze_bI3nRgzELRGfk-aMyL6zcDs2qRtTQgiHtLUPa7H87qc3fWC35xGjfeaLjV2Q7hZB02u_yNdmA9g15-QBY8C25_NHSDrmqaVPFmJrGzPoqNVxSvHmtW-qaRQeeYuNvG5c-pPNV_3jT0K6-SqReHV0EWlGHVD7ZDaS37vYXvScGeEfOj7_-PJpliVUhc0IXy0xw9OtVtJDWWwlaKu9DDPQgBFvKAF45Zr1wRalyiOFaxXPrKw2CB5iAVfw9GbWLFj4QKpXwigXNGXdC6XICldYAAnInuFP5mJSDGI1LkOPIfNGYobbs0qzlb1D-ppf_mOTridc96sbzUw6HczKPFMhE3_D85M_xZNdLIeT2bHpqcCx6eIlZ2i0bk93h4E360TsTE1CBj_dC7fzPBj6SF_iFdTJM7pLR8mYFn2K0s7R7ZPPLH7aXdPovUsAAXQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUoHFoOFS2t2BZaq-KaksR2vOaGEGiBZXsBiZsV2-MSFLKI7PbIb8ezcZaCKnHo1ZFla-zMh-fNPEJ2pQPpeG6SYMzyhCsvkqFXJgGn0HpkUJT4NHA-KUaX_PRKXK2Qw74WBmGVUfd3On2hrePIXpTm3l1VYY0vF-F2YdASAgksv17jgknE9f18eMJ5YMu5Ls2MvRlZ-gzkhbhtX88r7BmaZ0h6myFp9r9N1JtrxEq-UNkLO3S8Qd5HB5IedHv8QFag-UjW_2oruElufjW0RaZqWpfBo6Yhrr6N5ZYU312rhtp62oKjWPbbhKX36WTepW5q2la3kdKrpVNPS2qRyCe5h5jpbn7TJ1qAT-Ty-OjicJREToXEcpXPEs7QqpdBPxpnBCghnfPBzQPvTSE8OGkz47jNC5lCcNZKlhpXKuDMwxCMZJ_JajNtYItQIbmTmVcsY5ZLVQyhVAqAQ2o5szIdkKIXo7ax4TjyXtS6R5bd6KX8Ncpfd_IfkHQ58a7rufH6lP3-nPSz66ODZXh98o9wssulsOH26GCscSzYd4Ex2p9sQLb7g9fxN291CD85pu65_PI_G_hO3o4uzsd6fDI5-0re4RdEzGRim6zO7uewE_yemfm2uNePgosBKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+shear+layer+atomization+within+closed+channels%3A+Numerical+simulations+of+a+cough-replicating+experiment&rft.jtitle=Computers+%26+fluids&rft.au=Pairetti%2C+C%C3%A9sar&rft.au=Villiers%2C+Rapha%C3%ABl&rft.au=Zaleski%2C+St%C3%A9phane&rft.date=2021-12-15&rft.pub=Elsevier&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=231&rft_id=info:doi/10.1016%2Fj.compfluid.2021.105125&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03653064v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon