Forest pest monitoring and early warning using UAV remote sensing and computer vision techniques

Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 401 - 20
Main Authors Li, Xiaoyu, Wang, AChuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments.
AbstractList Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments.
Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments.Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments.
Abstract Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments.
ArticleNumber 401
Author Li, Xiaoyu
Wang, AChuan
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
  organization: College of Computer and Control Engineering, Northeast Forestry University
– sequence: 2
  givenname: AChuan
  surname: Wang
  fullname: Wang, AChuan
  email: Wangac@nefu.edu.cn
  organization: College of Computer and Control Engineering, Northeast Forestry University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39748102$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhS1UREvpC7BAkdiwCfgvTrxCVUWhUiU2lK2ZxJNbXyV2sJNWfXuce9vSssCLsTX-5nh0PK_JgQ8eCXnL6EdGRfMpSVbppqRclo2USpbiBTniVFYlF5wfPDkfkpOUtjSvimvJ9CtyKHQtG0b5Efl1HiKmuZjWMAbv5hCd3xTgbYEQh7viFqJfM0ta49XpzyLiGGYsEvr0gHZhnJYZY3Hjkgu-mLG79u73gukNednDkPDkfj8mV-dffpx9Ky-_f704O70sO6n5XAprLTat7Guslai0bW2lsVISGtUrqFVb960VCD2TQvWaCegFSgAG2upGi2Nysde1AbZmim6EeGcCOLNLhLgxEGfXDWh023eK2VYKmz2iCFLXCrtWtYDAWpq1Pu-1pqUd0Xbo5wjDM9HnN95dm024MYyp7KwQWeHDvUIMqwuzGV3qcBjAY1iSEaxinDLJmoy-_wfdhiX67NWOyhDlVabePW3psZeHn8wA3wNdDClF7B8RRs06MWY_MSZPjNlNjFnbFPuiNK2_jvHv2_-p-gP6icUM
Cites_doi 10.1038/s41598-020-79653-9
10.1109/CVPR.2019.00284
10.3390/rs11060643
10.1109/JSTARS.2024.3372113
10.1007/978-3-319-10602-1_48
10.1145/3128572.3140448
10.1109/SP.2017.49
10.1109/CVPR.2019.00790
10.1145/3128572.3140444
10.1109/SP.2019.00044
10.1109/CVPR.2018.00957
10.1145/3133956.3134057
10.1145/3422622
10.1109/CVPR.2016.282
10.1109/ICCV.2017.324
10.14722/ndss.2018.23198
10.1109/CVPR.2018.00191
10.1109/JSTARS.2024.3447788
10.1109/ICCV.2017.153
10.1007/978-3-319-46448-0_2
10.1109/WACV.2019.00143
10.1145/3338501.3357372
10.1155/2017/3296874
10.1080/17538947.2024.2346259
10.1145/3097983.3098158
10.1109/CVPR.2019.00624
10.1109/ICCV.2019.00051
10.1016/j.rse.2018.06.028
10.1109/MGRS.2016.2540798
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-84464-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20
ExternalDocumentID oai_doaj_org_article_9bfc61db43d0450ea4976ecb6baea1b0
PMC11697433
39748102
10_1038_s41598_024_84464_3
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-3ddde8b4f7e76359dbd59e564a86f6a76b7fbd3eaf1436f913af3e4aa1a9d9893
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:24:19 EDT 2025
Thu Aug 21 18:35:05 EDT 2025
Fri Jul 11 00:49:14 EDT 2025
Wed Aug 13 03:26:04 EDT 2025
Wed Feb 19 02:03:12 EST 2025
Tue Jul 01 02:06:36 EDT 2025
Fri Feb 21 02:35:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Forest pest monitoring
Real-time detection transformer (RTDETR)
Object detection
Early warning
Cascaded group attention
UAV remote sensing
Adversarial attacks
Soft-thresholding adaptive filtering
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-3ddde8b4f7e76359dbd59e564a86f6a76b7fbd3eaf1436f913af3e4aa1a9d9893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3151014025?pq-origsite=%requestingapplication%
PMID 39748102
PQID 3151014025
PQPubID 2041939
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_9bfc61db43d0450ea4976ecb6baea1b0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11697433
proquest_miscellaneous_3151201418
proquest_journals_3151014025
pubmed_primary_39748102
crossref_primary_10_1038_s41598_024_84464_3
springer_journals_10_1038_s41598_024_84464_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 84464_CR47
84464_CR46
84464_CR45
84464_CR44
84464_CR49
S Ren (84464_CR7) 2015; 28
84464_CR48
L Zhang (84464_CR1) 2016; 4
84464_CR43
84464_CR42
A Safonova (84464_CR5) 2019; 11
84464_CR41
84464_CR40
M Onishi (84464_CR4) 2021; 11
84464_CR58
84464_CR57
84464_CR56
S Cao (84464_CR12) 2024; 17
84464_CR55
84464_CR18
84464_CR17
84464_CR16
84464_CR15
84464_CR59
84464_CR50
J Zhu (84464_CR13) 2024
84464_CR10
84464_CR54
84464_CR53
H Salman (84464_CR23) 2020; 33
84464_CR52
Y Xie (84464_CR11) 2024; 131
B Kellenberger (84464_CR3) 2018; 216
84464_CR25
84464_CR24
84464_CR29
84464_CR28
84464_CR27
84464_CR8
84464_CR61
84464_CR9
84464_CR60
84464_CR21
84464_CR20
I Goodfellow (84464_CR51) 2014; 63
84464_CR62
84464_CR19
84464_CR36
84464_CR35
84464_CR34
84464_CR33
84464_CR39
84464_CR38
84464_CR37
84464_CR32
84464_CR31
84464_CR30
84464_CR2
84464_CR6
D Wu (84464_CR22) 2020; 33
W Xu (84464_CR14) 2024; 17
D Wang (84464_CR26) 2021; 34
References_xml – volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 84464_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79653-9
– volume: 33
  start-page: 3533
  year: 2020
  ident: 84464_CR23
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 84464_CR28
– volume: 131
  year: 2024
  ident: 84464_CR11
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 84464_CR16
  doi: 10.1109/CVPR.2019.00284
– volume: 11
  start-page: 643
  issue: 6
  year: 2019
  ident: 84464_CR5
  publication-title: Remote Sens.
  doi: 10.3390/rs11060643
– ident: 84464_CR57
– ident: 84464_CR34
– volume: 17
  start-page: 6514
  year: 2024
  ident: 84464_CR14
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2024.3372113
– ident: 84464_CR10
  doi: 10.1007/978-3-319-10602-1_48
– ident: 84464_CR27
  doi: 10.1145/3128572.3140448
– ident: 84464_CR47
– ident: 84464_CR19
  doi: 10.1109/SP.2017.49
– ident: 84464_CR29
  doi: 10.1109/CVPR.2019.00790
– volume: 33
  start-page: 2958
  year: 2020
  ident: 84464_CR22
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 84464_CR42
  doi: 10.1145/3128572.3140444
– ident: 84464_CR20
– ident: 84464_CR62
– ident: 84464_CR24
– volume: 34
  start-page: 28784
  year: 2021
  ident: 84464_CR26
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 84464_CR33
  doi: 10.1109/SP.2019.00044
– ident: 84464_CR58
– ident: 84464_CR37
– ident: 84464_CR17
– ident: 84464_CR50
– ident: 84464_CR21
  doi: 10.1109/CVPR.2018.00957
– ident: 84464_CR61
– ident: 84464_CR9
– ident: 84464_CR44
– ident: 84464_CR40
– ident: 84464_CR49
  doi: 10.1145/3133956.3134057
– volume: 63
  start-page: 139
  issue: 11
  year: 2014
  ident: 84464_CR51
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– ident: 84464_CR55
– ident: 84464_CR18
  doi: 10.1109/CVPR.2016.282
– ident: 84464_CR59
– ident: 84464_CR6
  doi: 10.1109/ICCV.2017.324
– ident: 84464_CR36
– ident: 84464_CR43
  doi: 10.14722/ndss.2018.23198
– ident: 84464_CR53
  doi: 10.1109/CVPR.2018.00191
– volume: 17
  start-page: 16342
  year: 2024
  ident: 84464_CR12
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2024.3447788
– ident: 84464_CR32
– ident: 84464_CR15
  doi: 10.1109/ICCV.2017.153
– ident: 84464_CR8
  doi: 10.1007/978-3-319-46448-0_2
– ident: 84464_CR60
– ident: 84464_CR45
– ident: 84464_CR30
  doi: 10.1109/WACV.2019.00143
– ident: 84464_CR41
– ident: 84464_CR48
  doi: 10.1145/3338501.3357372
– ident: 84464_CR2
  doi: 10.1155/2017/3296874
– year: 2024
  ident: 84464_CR13
  publication-title: Int. J. Dig. Earth
  doi: 10.1080/17538947.2024.2346259
– ident: 84464_CR35
– ident: 84464_CR56
  doi: 10.1145/3097983.3098158
– volume: 28
  start-page: 91
  year: 2015
  ident: 84464_CR7
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 84464_CR31
– ident: 84464_CR52
– ident: 84464_CR54
  doi: 10.1109/CVPR.2019.00624
– ident: 84464_CR38
  doi: 10.1109/ICCV.2019.00051
– ident: 84464_CR39
– volume: 216
  start-page: 139
  year: 2018
  ident: 84464_CR3
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.028
– ident: 84464_CR46
– volume: 4
  start-page: 22
  issue: 2
  year: 2016
  ident: 84464_CR1
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: 84464_CR25
SSID ssj0000529419
Score 2.4367833
Snippet Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based...
Abstract Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 401
SubjectTerms Adversarial attacks
Early warning
Environmental monitoring
Forest pest monitoring
Forests
Humanities and Social Sciences
multidisciplinary
Object detection
Pests
Remote sensing
Science
Science (multidisciplinary)
Soft-thresholding adaptive filtering
UAV remote sensing
Unmanned aerial vehicles
Warning systems
Wilt
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJaReEB-lBNrKSNxK1Dh2HPvYIqqKAye26s2MYxs4kFbNVoh_z4ydXbqUiguXHBIncubFmTf2-A1jb8AY7bVINTQQapWUrX0YMGpNDZA-uLEhq31-1GcL9eGiu7hV6otywoo8cDHckfVp0CJ4JQOyjyaCQgcaB689RBA-R-vo824FU0XVu7VK2HmXTCPN0YSeinaTtao2GAKpWm54oizY_zeWeTdZ8o8V0-yITh-zRzOD5Mel50_Ygzg-ZQ9LTcmfz9hnKrY5LfkVHb7nEUvP4TAGHknNmP8okyGcUt6_8MXxOb-OCFjkEyWzz02HudoDL5vP-Vrrddphi9P3n96d1XMZhXpQtl3WMuAvzHiV-kjqczb40NnYaQVGJw299n3yQUZIyJ10skJCklEBCLDBIp95zrbGyzG-YLzvWo93GGm8VkJ5YxvVA63EWeJJumKHK5O6q6KW4fIqtzSuAOAQAJcBcLJiJ2T1dUtSus4nEH834-_-hX_F9laYuXn4TU4K-tVgaNxV7PX6Mg4cWg2BMV7elDYtpbmaiu0WiNc9QZKmDFKvipkN8De6unll_PY1i3MLofFmiS_3dvWd_O7X_bZ4-T9s8Yptt1SemGaI2j22tby-ifvImZb-IA-PX4-eFP4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nj9QgFCe6xsSL8duuq8HEm5IthVI4mdW42Xjw5Ji5IRRYPWxnnM7G-N_ve5TpZvy69NBCA7wH_Hjv8XuEvHJaK694Yq52gckkDfOhh1Nrqh3yg2sTMtvnJ3W2kB-X7bIY3MYSVrlbE_NCHVY92siPBUftgdNO-3b9g2HWKPSulhQaN8ktpC5Dre6W3WxjQS-W5KbclamFPh5hv8I7ZY1kGg5Ckom9_SjT9v8Na_4ZMvmb3zRvR6f3yN2CI-nJJPj75EYcHpDbU2bJXw_JV0y5OW7pGh8Xed7if6gbAo3IaUx_TiYRioHv53Rx8oVuIogt0hFD2kvRvuR8oNMVdDozvo6PyOL0w-f3Z6wkU2C9NM2WiQALmfYydRE56EzwoTWxVdJplZTrlO-SDyK6BAhKJcOFSyJK57gzwQCqeUwOhtUQnxLatY2HGlporySXXptadg79cQbRkqrI692Q2vXEmWGzr1toOwnAggBsFoAVFXmHoz6XRL7r_GK1Obdl-ljjU6948FIEwKB1dBJgVOy98i467uuKHO1kZsskHO21ylTk5fwZpg_6RNwQV5dTmQaDXXVFnkwinlsCUE1qAGAV0XvC32vq_pfh-7dM0c25gsoCOvdmpyfX7fr3WBz-vxvPyJ0G0w-jBag5IgfbzWV8Dpho619kxb8Cw7gK5A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkhcEN8ECjISN4iIY8exjwuiqvbABRb1ZuzYLhzIVputUP99Z5xk0UI5cMkhtqOJx2M_e8ZvAF47rZVXPJWucqGUSZrShw53ralyxA-uTchsn5_U6Uouz5qzA6jnuzA5aD9TWuZpeo4OezfgQkOXwWpZatzByFLcgiOiasexfbRYLD8vdycr5LuS3Ew3ZCqhb2i8twplsv6bEObfgZJ_eEvzInRyD-5O6JEtRnnvw0HsH8DtMZ_k1UP4Rok2hy27oMfPbK30Heb6wCIxGbNf40EIo3D3c7ZafGWbiMqKbKBA9qlqN2V6YOPFc7bjeR0ewerk45cPp-WUQqHspKm3pQg4fWkvUxuJec4EHxoTGyWdVkm5Vvk2-SCiS4ibVDJcuCSidI47Ewximcdw2K_7-BRY29QeW2ihvZJcem0q2TrywhnCSKqAN3OX2ouRKcNmD7fQdlSARQXYrAArCnhPvb6rSSzX-cV6c24nrVvjU6d48FIERJ5VdBLBU-y88i467qsCjmed2cn0Bis4TTO4LW4KeLUrRqMhT4jr4_pyrFNTiKsu4Mmo4p0kCNCkRthVgN5T_p6o-yX9j--ZmJtzhY0F_tzbeZz8luvfffHs_6o_hzs1JSGmc6D6GA63m8v4ApHR1r-cTOEaF7wKQw
  priority: 102
  providerName: Springer Nature
Title Forest pest monitoring and early warning using UAV remote sensing and computer vision techniques
URI https://link.springer.com/article/10.1038/s41598-024-84464-3
https://www.ncbi.nlm.nih.gov/pubmed/39748102
https://www.proquest.com/docview/3151014025
https://www.proquest.com/docview/3151201418
https://pubmed.ncbi.nlm.nih.gov/PMC11697433
https://doaj.org/article/9bfc61db43d0450ea4976ecb6baea1b0
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ISQuFW8CZWUkbhBIYsexDwhtV62qlagQsGhvwY6dgkSzZbMV9N8z4ySLFpYDl0SK7ciZ8cSfX98H8MwoJa1M69gkxsWiFjq2rsJRa50Y4gdX2gW2zzN5OhPTeT7fgUHuqDdgu3VoR3pSs-W3lz-_X7_BgH_dHRlXr1rshOigWCZihaMbEfNd2MeeqSBFg7c93O-4vjMtgtYHkbDHCCay_hzN9tds9FWB0n8bDv17O-Ufa6qhqzq5BQc9xmTjrlHchh3f3IEbnerk9V34THKc7Ypd0uUixDS9h5nGMU98x-xHN13CaFP8OZuNP7GlR5d61tJ29z5r1etBsO54Oluzwbb3YHZy_HFyGvdCC3EldLaKucOfnLKiLjzx02lnXa59LoVRspamkLaorePe1IiuZK1TbmruhTGp0U4j4rkPe82i8Q-BFXlmsYTiykqRCqt0IgpDa3WakJSM4Plg0vKy49Mowzo4V2XngBIdUAYHlDyCI7L6OidxYYcHi-V52YdWqW1dydRZwR16NfFGIMTylZXWeJPaJILDwWfl0L5KntLPCAfPeQRP18kYWrReYhq_uOryZLQRVkXwoHPxuiYI44RCcBaB2nD-RlU3U5qvXwJ9d5pKLMzx414M7eR3vf5ti0f_ZbnHcDMjpWKaLMoOYW-1vPJPED6t7Ah2i3kxgv3xePphivej47N37_HpRE5GYUpiFKLmF_ULGcc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuBAkaCE0SNY8exDwiVR7Wlpacu2ptrx07hQHbZbFX1T_EbmXEe1fK69ZJD4kSOZ8b-xjP-hpAXVinpJKtTm1mfilro1PkKvNY6s8gPrrSPbJ9HcjIVn2bFbIP8HM7CYFrlMCfGidrPK9wj3-EMtQe8neLt4keKVaMwujqU0OjU4iBcnIPL1r7Z_wDyfZnnex-P30_SvqpAWgmdr1LuwaKVE3UZkIxNe-cLHQoprJK1tKV0Ze08D7YGKCFrzbiteRDWMqu9Vki-BFP-NVh4M3T2ylk57ulg1Eww3Z_NybjaaWF9xDNsuUgVOF4i5WvrXywT8Dds-2eK5m9x2rj87d0mt3rcSnc7RbtDNkJzl1zvKlle3CMnWOKzXdEFXr7HeQK_Q23jaUAOZXrebcFQTLQ_pdPdL3QZQE0CbTGFvm9a9TUmaHfknY4Ms-19Mr2SYX5ANpt5E7YILYvcwRuKKycFE07pTJQW438a0ZlMyKthSM2i4-gwMbbOlekEYEAAJgrA8IS8w1EfWyK_drwxX56a3lyNdnUlmXeCe8C8WbACYFuonHQ2WOayhGwPMjO90bfmUkUT8nx8DOaKMRjbhPlZ1ybH5FqVkIediMeeADQUCgBfQtSa8Ne6uv6k-fY1UoIzJuFlDj_3etCTy379eywe_f83npEbk-PPh-Zw_-jgMbmZY-lj3H3Kt8nmankWngAeW7mn0QgoOblqq_sFMyVJsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN4NFDASnCDaJHYc-4BQS7tqKVpViEW9uXZsFw5kl81WVf8avw5PXtXyuvWSQ2JHtufhbzzjGYCXWghueOpjnWgbM89kbGwZrFafaMwPLqRtsn1O-cGMfTjJTzbgZ38XBsMqe53YKGo7L_GMfExT5J5g7eRj34VFHO9N3i1-xFhBCj2tfTmNlkWO3OVFMN_qt4d7gdavsmyy__n9QdxVGIhLJrNVTG2QbmGYLxwmZpPW2Fy6nDMtuOe64KbwxlKnfYAV3MuUak8d0zrV0kqBiZiC-t8s0Coawebu_vT403DCgz40lsrupk5CxbgOuyXeaMtYLIIZxmK6ths2RQP-hnT_DNj8zWvbbIaTO3C7Q7Fkp2W7u7Dhqntwo61reXkfTrHgZ70iC3x8b7QG_ofoyhKHGZXJRXsgQzDs_ozMdr6QpQtM40iNAfVd07KrOEHaC_BkyDdbP4DZtSz0QxhV88ptASnyzIQeggrDWcqMkAkrNHoDJWI1HsHrfknVos3YoRpPOxWqJYAKBFANARSNYBdXfWiJ2babF_PlmeqEV0njS55aw6gNCDhxmgUQ50rDjXY6NUkE2z3NVKcCanXFsBG8GD4H4UWPjK7c_Lxtk2GorYjgUUviYSQBKDIR4F8EYo34a0Nd_1J9-9okCE9THjrTMLk3PZ9cjevfa_H4_9N4DjeDxKmPh9OjJ3ArwzrIeBSVbcNotTx3TwM4W5lnnRQQOL1uwfsFDf9PTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forest+pest+monitoring+and+early+warning+using+UAV+remote+sensing+and+computer+vision+techniques&rft.jtitle=Scientific+reports&rft.au=Li%2C+Xiaoyu&rft.au=Wang%2C+AChuan&rft.date=2025-01-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-84464-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_84464_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon