Forest pest monitoring and early warning using UAV remote sensing and computer vision techniques
Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 401 - 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments. |
---|---|
AbstractList | Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments. Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments.Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments. Abstract Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based object detection models to adversarial attacks raises concerns about their reliability and robustness in real-world deployments. To address this challenge, we propose SC-RTDETR, a novel framework for secure and robust object detection in forest pest monitoring using UAV imagery. SC-RTDETR integrates a soft-thresholding adaptive filtering module and a cascaded group attention mechanism into the Real-time Detection Transformer (RTDETR) architecture, significantly enhancing its resilience against adversarial perturbations. Extensive experiments on a real-world pine wilt disease dataset demonstrate the superior performance of SC-RTDETR, with an improvement of 7.1% in mean Average Precision (mAP) and 6.5% in F1-score under strong adversarial attack conditions compared to state-of-the-art methods. The ablation studies and visualizations provide insights into the effectiveness of the proposed components, validating their contributions to the overall robustness and performance of SC-RTDETR. Our framework offers a promising solution for accurate and reliable forest pest monitoring in non-secure environments. |
ArticleNumber | 401 |
Author | Li, Xiaoyu Wang, AChuan |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu organization: College of Computer and Control Engineering, Northeast Forestry University – sequence: 2 givenname: AChuan surname: Wang fullname: Wang, AChuan email: Wangac@nefu.edu.cn organization: College of Computer and Control Engineering, Northeast Forestry University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39748102$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1TAQhS1UREvpC7BAkdiwCfgvTrxCVUWhUiU2lK2ZxJNbXyV2sJNWfXuce9vSssCLsTX-5nh0PK_JgQ8eCXnL6EdGRfMpSVbppqRclo2USpbiBTniVFYlF5wfPDkfkpOUtjSvimvJ9CtyKHQtG0b5Efl1HiKmuZjWMAbv5hCd3xTgbYEQh7viFqJfM0ta49XpzyLiGGYsEvr0gHZhnJYZY3Hjkgu-mLG79u73gukNednDkPDkfj8mV-dffpx9Ky-_f704O70sO6n5XAprLTat7Guslai0bW2lsVISGtUrqFVb960VCD2TQvWaCegFSgAG2upGi2Nysde1AbZmim6EeGcCOLNLhLgxEGfXDWh023eK2VYKmz2iCFLXCrtWtYDAWpq1Pu-1pqUd0Xbo5wjDM9HnN95dm024MYyp7KwQWeHDvUIMqwuzGV3qcBjAY1iSEaxinDLJmoy-_wfdhiX67NWOyhDlVabePW3psZeHn8wA3wNdDClF7B8RRs06MWY_MSZPjNlNjFnbFPuiNK2_jvHv2_-p-gP6icUM |
Cites_doi | 10.1038/s41598-020-79653-9 10.1109/CVPR.2019.00284 10.3390/rs11060643 10.1109/JSTARS.2024.3372113 10.1007/978-3-319-10602-1_48 10.1145/3128572.3140448 10.1109/SP.2017.49 10.1109/CVPR.2019.00790 10.1145/3128572.3140444 10.1109/SP.2019.00044 10.1109/CVPR.2018.00957 10.1145/3133956.3134057 10.1145/3422622 10.1109/CVPR.2016.282 10.1109/ICCV.2017.324 10.14722/ndss.2018.23198 10.1109/CVPR.2018.00191 10.1109/JSTARS.2024.3447788 10.1109/ICCV.2017.153 10.1007/978-3-319-46448-0_2 10.1109/WACV.2019.00143 10.1145/3338501.3357372 10.1155/2017/3296874 10.1080/17538947.2024.2346259 10.1145/3097983.3098158 10.1109/CVPR.2019.00624 10.1109/ICCV.2019.00051 10.1016/j.rse.2018.06.028 10.1109/MGRS.2016.2540798 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-84464-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_9bfc61db43d0450ea4976ecb6baea1b0 PMC11697433 39748102 10_1038_s41598_024_84464_3 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-3ddde8b4f7e76359dbd59e564a86f6a76b7fbd3eaf1436f913af3e4aa1a9d9893 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:24:19 EDT 2025 Thu Aug 21 18:35:05 EDT 2025 Fri Jul 11 00:49:14 EDT 2025 Wed Aug 13 03:26:04 EDT 2025 Wed Feb 19 02:03:12 EST 2025 Tue Jul 01 02:06:36 EDT 2025 Fri Feb 21 02:35:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Forest pest monitoring Real-time detection transformer (RTDETR) Object detection Early warning Cascaded group attention UAV remote sensing Adversarial attacks Soft-thresholding adaptive filtering |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-3ddde8b4f7e76359dbd59e564a86f6a76b7fbd3eaf1436f913af3e4aa1a9d9893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3151014025?pq-origsite=%requestingapplication% |
PMID | 39748102 |
PQID | 3151014025 |
PQPubID | 2041939 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9bfc61db43d0450ea4976ecb6baea1b0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11697433 proquest_miscellaneous_3151201418 proquest_journals_3151014025 pubmed_primary_39748102 crossref_primary_10_1038_s41598_024_84464_3 springer_journals_10_1038_s41598_024_84464_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-02 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 84464_CR47 84464_CR46 84464_CR45 84464_CR44 84464_CR49 S Ren (84464_CR7) 2015; 28 84464_CR48 L Zhang (84464_CR1) 2016; 4 84464_CR43 84464_CR42 A Safonova (84464_CR5) 2019; 11 84464_CR41 84464_CR40 M Onishi (84464_CR4) 2021; 11 84464_CR58 84464_CR57 84464_CR56 S Cao (84464_CR12) 2024; 17 84464_CR55 84464_CR18 84464_CR17 84464_CR16 84464_CR15 84464_CR59 84464_CR50 J Zhu (84464_CR13) 2024 84464_CR10 84464_CR54 84464_CR53 H Salman (84464_CR23) 2020; 33 84464_CR52 Y Xie (84464_CR11) 2024; 131 B Kellenberger (84464_CR3) 2018; 216 84464_CR25 84464_CR24 84464_CR29 84464_CR28 84464_CR27 84464_CR8 84464_CR61 84464_CR9 84464_CR60 84464_CR21 84464_CR20 I Goodfellow (84464_CR51) 2014; 63 84464_CR62 84464_CR19 84464_CR36 84464_CR35 84464_CR34 84464_CR33 84464_CR39 84464_CR38 84464_CR37 84464_CR32 84464_CR31 84464_CR30 84464_CR2 84464_CR6 D Wu (84464_CR22) 2020; 33 W Xu (84464_CR14) 2024; 17 D Wang (84464_CR26) 2021; 34 |
References_xml | – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 84464_CR4 publication-title: Sci. Rep. doi: 10.1038/s41598-020-79653-9 – volume: 33 start-page: 3533 year: 2020 ident: 84464_CR23 publication-title: Adv. Neural Inf. Process. Syst. – ident: 84464_CR28 – volume: 131 year: 2024 ident: 84464_CR11 publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 84464_CR16 doi: 10.1109/CVPR.2019.00284 – volume: 11 start-page: 643 issue: 6 year: 2019 ident: 84464_CR5 publication-title: Remote Sens. doi: 10.3390/rs11060643 – ident: 84464_CR57 – ident: 84464_CR34 – volume: 17 start-page: 6514 year: 2024 ident: 84464_CR14 publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2024.3372113 – ident: 84464_CR10 doi: 10.1007/978-3-319-10602-1_48 – ident: 84464_CR27 doi: 10.1145/3128572.3140448 – ident: 84464_CR47 – ident: 84464_CR19 doi: 10.1109/SP.2017.49 – ident: 84464_CR29 doi: 10.1109/CVPR.2019.00790 – volume: 33 start-page: 2958 year: 2020 ident: 84464_CR22 publication-title: Adv. Neural Inf. Process. Syst. – ident: 84464_CR42 doi: 10.1145/3128572.3140444 – ident: 84464_CR20 – ident: 84464_CR62 – ident: 84464_CR24 – volume: 34 start-page: 28784 year: 2021 ident: 84464_CR26 publication-title: Adv. Neural Inf. Process. Syst. – ident: 84464_CR33 doi: 10.1109/SP.2019.00044 – ident: 84464_CR58 – ident: 84464_CR37 – ident: 84464_CR17 – ident: 84464_CR50 – ident: 84464_CR21 doi: 10.1109/CVPR.2018.00957 – ident: 84464_CR61 – ident: 84464_CR9 – ident: 84464_CR44 – ident: 84464_CR40 – ident: 84464_CR49 doi: 10.1145/3133956.3134057 – volume: 63 start-page: 139 issue: 11 year: 2014 ident: 84464_CR51 publication-title: Commun. ACM doi: 10.1145/3422622 – ident: 84464_CR55 – ident: 84464_CR18 doi: 10.1109/CVPR.2016.282 – ident: 84464_CR59 – ident: 84464_CR6 doi: 10.1109/ICCV.2017.324 – ident: 84464_CR36 – ident: 84464_CR43 doi: 10.14722/ndss.2018.23198 – ident: 84464_CR53 doi: 10.1109/CVPR.2018.00191 – volume: 17 start-page: 16342 year: 2024 ident: 84464_CR12 publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2024.3447788 – ident: 84464_CR32 – ident: 84464_CR15 doi: 10.1109/ICCV.2017.153 – ident: 84464_CR8 doi: 10.1007/978-3-319-46448-0_2 – ident: 84464_CR60 – ident: 84464_CR45 – ident: 84464_CR30 doi: 10.1109/WACV.2019.00143 – ident: 84464_CR41 – ident: 84464_CR48 doi: 10.1145/3338501.3357372 – ident: 84464_CR2 doi: 10.1155/2017/3296874 – year: 2024 ident: 84464_CR13 publication-title: Int. J. Dig. Earth doi: 10.1080/17538947.2024.2346259 – ident: 84464_CR35 – ident: 84464_CR56 doi: 10.1145/3097983.3098158 – volume: 28 start-page: 91 year: 2015 ident: 84464_CR7 publication-title: Adv. Neural Inf. Process. Syst. – ident: 84464_CR31 – ident: 84464_CR52 – ident: 84464_CR54 doi: 10.1109/CVPR.2019.00624 – ident: 84464_CR38 doi: 10.1109/ICCV.2019.00051 – ident: 84464_CR39 – volume: 216 start-page: 139 year: 2018 ident: 84464_CR3 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.028 – ident: 84464_CR46 – volume: 4 start-page: 22 issue: 2 year: 2016 ident: 84464_CR1 publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – ident: 84464_CR25 |
SSID | ssj0000529419 |
Score | 2.4367833 |
Snippet | Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of UAV-based... Abstract Unmanned aerial vehicle (UAV) remote sensing has revolutionized forest pest monitoring and early warning systems. However, the susceptibility of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 401 |
SubjectTerms | Adversarial attacks Early warning Environmental monitoring Forest pest monitoring Forests Humanities and Social Sciences multidisciplinary Object detection Pests Remote sensing Science Science (multidisciplinary) Soft-thresholding adaptive filtering UAV remote sensing Unmanned aerial vehicles Warning systems Wilt |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJaReEB-lBNrKSNxK1Dh2HPvYIqqKAye26s2MYxs4kFbNVoh_z4ydXbqUiguXHBIncubFmTf2-A1jb8AY7bVINTQQapWUrX0YMGpNDZA-uLEhq31-1GcL9eGiu7hV6otywoo8cDHckfVp0CJ4JQOyjyaCQgcaB689RBA-R-vo824FU0XVu7VK2HmXTCPN0YSeinaTtao2GAKpWm54oizY_zeWeTdZ8o8V0-yITh-zRzOD5Mel50_Ygzg-ZQ9LTcmfz9hnKrY5LfkVHb7nEUvP4TAGHknNmP8okyGcUt6_8MXxOb-OCFjkEyWzz02HudoDL5vP-Vrrddphi9P3n96d1XMZhXpQtl3WMuAvzHiV-kjqczb40NnYaQVGJw299n3yQUZIyJ10skJCklEBCLDBIp95zrbGyzG-YLzvWo93GGm8VkJ5YxvVA63EWeJJumKHK5O6q6KW4fIqtzSuAOAQAJcBcLJiJ2T1dUtSus4nEH834-_-hX_F9laYuXn4TU4K-tVgaNxV7PX6Mg4cWg2BMV7elDYtpbmaiu0WiNc9QZKmDFKvipkN8De6unll_PY1i3MLofFmiS_3dvWd_O7X_bZ4-T9s8Yptt1SemGaI2j22tby-ifvImZb-IA-PX4-eFP4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nj9QgFCe6xsSL8duuq8HEm5IthVI4mdW42Xjw5Ji5IRRYPWxnnM7G-N_ve5TpZvy69NBCA7wH_Hjv8XuEvHJaK694Yq52gckkDfOhh1Nrqh3yg2sTMtvnJ3W2kB-X7bIY3MYSVrlbE_NCHVY92siPBUftgdNO-3b9g2HWKPSulhQaN8ktpC5Dre6W3WxjQS-W5KbclamFPh5hv8I7ZY1kGg5Ckom9_SjT9v8Na_4ZMvmb3zRvR6f3yN2CI-nJJPj75EYcHpDbU2bJXw_JV0y5OW7pGh8Xed7if6gbAo3IaUx_TiYRioHv53Rx8oVuIogt0hFD2kvRvuR8oNMVdDozvo6PyOL0w-f3Z6wkU2C9NM2WiQALmfYydRE56EzwoTWxVdJplZTrlO-SDyK6BAhKJcOFSyJK57gzwQCqeUwOhtUQnxLatY2HGlporySXXptadg79cQbRkqrI692Q2vXEmWGzr1toOwnAggBsFoAVFXmHoz6XRL7r_GK1Obdl-ljjU6948FIEwKB1dBJgVOy98i467uuKHO1kZsskHO21ylTk5fwZpg_6RNwQV5dTmQaDXXVFnkwinlsCUE1qAGAV0XvC32vq_pfh-7dM0c25gsoCOvdmpyfX7fr3WBz-vxvPyJ0G0w-jBag5IgfbzWV8Dpho619kxb8Cw7gK5A priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkhcEN8ECjISN4iIY8exjwuiqvbABRb1ZuzYLhzIVputUP99Z5xk0UI5cMkhtqOJx2M_e8ZvAF47rZVXPJWucqGUSZrShw53ralyxA-uTchsn5_U6Uouz5qzA6jnuzA5aD9TWuZpeo4OezfgQkOXwWpZatzByFLcgiOiasexfbRYLD8vdycr5LuS3Ew3ZCqhb2i8twplsv6bEObfgZJ_eEvzInRyD-5O6JEtRnnvw0HsH8DtMZ_k1UP4Rok2hy27oMfPbK30Heb6wCIxGbNf40EIo3D3c7ZafGWbiMqKbKBA9qlqN2V6YOPFc7bjeR0ewerk45cPp-WUQqHspKm3pQg4fWkvUxuJec4EHxoTGyWdVkm5Vvk2-SCiS4ibVDJcuCSidI47Ewximcdw2K_7-BRY29QeW2ihvZJcem0q2TrywhnCSKqAN3OX2ouRKcNmD7fQdlSARQXYrAArCnhPvb6rSSzX-cV6c24nrVvjU6d48FIERJ5VdBLBU-y88i467qsCjmed2cn0Bis4TTO4LW4KeLUrRqMhT4jr4_pyrFNTiKsu4Mmo4p0kCNCkRthVgN5T_p6o-yX9j--ZmJtzhY0F_tzbeZz8luvfffHs_6o_hzs1JSGmc6D6GA63m8v4ApHR1r-cTOEaF7wKQw priority: 102 providerName: Springer Nature |
Title | Forest pest monitoring and early warning using UAV remote sensing and computer vision techniques |
URI | https://link.springer.com/article/10.1038/s41598-024-84464-3 https://www.ncbi.nlm.nih.gov/pubmed/39748102 https://www.proquest.com/docview/3151014025 https://www.proquest.com/docview/3151201418 https://pubmed.ncbi.nlm.nih.gov/PMC11697433 https://doaj.org/article/9bfc61db43d0450ea4976ecb6baea1b0 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ISQuFW8CZWUkbhBIYsexDwhtV62qlagQsGhvwY6dgkSzZbMV9N8z4ySLFpYDl0SK7ciZ8cSfX98H8MwoJa1M69gkxsWiFjq2rsJRa50Y4gdX2gW2zzN5OhPTeT7fgUHuqDdgu3VoR3pSs-W3lz-_X7_BgH_dHRlXr1rshOigWCZihaMbEfNd2MeeqSBFg7c93O-4vjMtgtYHkbDHCCay_hzN9tds9FWB0n8bDv17O-Ufa6qhqzq5BQc9xmTjrlHchh3f3IEbnerk9V34THKc7Ypd0uUixDS9h5nGMU98x-xHN13CaFP8OZuNP7GlR5d61tJ29z5r1etBsO54Oluzwbb3YHZy_HFyGvdCC3EldLaKucOfnLKiLjzx02lnXa59LoVRspamkLaorePe1IiuZK1TbmruhTGp0U4j4rkPe82i8Q-BFXlmsYTiykqRCqt0IgpDa3WakJSM4Plg0vKy49Mowzo4V2XngBIdUAYHlDyCI7L6OidxYYcHi-V52YdWqW1dydRZwR16NfFGIMTylZXWeJPaJILDwWfl0L5KntLPCAfPeQRP18kYWrReYhq_uOryZLQRVkXwoHPxuiYI44RCcBaB2nD-RlU3U5qvXwJ9d5pKLMzx414M7eR3vf5ti0f_ZbnHcDMjpWKaLMoOYW-1vPJPED6t7Ah2i3kxgv3xePphivej47N37_HpRE5GYUpiFKLmF_ULGcc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuBAkaCE0SNY8exDwiVR7Wlpacu2ptrx07hQHbZbFX1T_EbmXEe1fK69ZJD4kSOZ8b-xjP-hpAXVinpJKtTm1mfilro1PkKvNY6s8gPrrSPbJ9HcjIVn2bFbIP8HM7CYFrlMCfGidrPK9wj3-EMtQe8neLt4keKVaMwujqU0OjU4iBcnIPL1r7Z_wDyfZnnex-P30_SvqpAWgmdr1LuwaKVE3UZkIxNe-cLHQoprJK1tKV0Ze08D7YGKCFrzbiteRDWMqu9Vki-BFP-NVh4M3T2ylk57ulg1Eww3Z_NybjaaWF9xDNsuUgVOF4i5WvrXywT8Dds-2eK5m9x2rj87d0mt3rcSnc7RbtDNkJzl1zvKlle3CMnWOKzXdEFXr7HeQK_Q23jaUAOZXrebcFQTLQ_pdPdL3QZQE0CbTGFvm9a9TUmaHfknY4Ms-19Mr2SYX5ANpt5E7YILYvcwRuKKycFE07pTJQW438a0ZlMyKthSM2i4-gwMbbOlekEYEAAJgrA8IS8w1EfWyK_drwxX56a3lyNdnUlmXeCe8C8WbACYFuonHQ2WOayhGwPMjO90bfmUkUT8nx8DOaKMRjbhPlZ1ybH5FqVkIediMeeADQUCgBfQtSa8Ne6uv6k-fY1UoIzJuFlDj_3etCTy379eywe_f83npEbk-PPh-Zw_-jgMbmZY-lj3H3Kt8nmankWngAeW7mn0QgoOblqq_sFMyVJsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN4NFDASnCDaJHYc-4BQS7tqKVpViEW9uXZsFw5kl81WVf8avw5PXtXyuvWSQ2JHtufhbzzjGYCXWghueOpjnWgbM89kbGwZrFafaMwPLqRtsn1O-cGMfTjJTzbgZ38XBsMqe53YKGo7L_GMfExT5J5g7eRj34VFHO9N3i1-xFhBCj2tfTmNlkWO3OVFMN_qt4d7gdavsmyy__n9QdxVGIhLJrNVTG2QbmGYLxwmZpPW2Fy6nDMtuOe64KbwxlKnfYAV3MuUak8d0zrV0kqBiZiC-t8s0Coawebu_vT403DCgz40lsrupk5CxbgOuyXeaMtYLIIZxmK6ths2RQP-hnT_DNj8zWvbbIaTO3C7Q7Fkp2W7u7Dhqntwo61reXkfTrHgZ70iC3x8b7QG_ofoyhKHGZXJRXsgQzDs_ozMdr6QpQtM40iNAfVd07KrOEHaC_BkyDdbP4DZtSz0QxhV88ptASnyzIQeggrDWcqMkAkrNHoDJWI1HsHrfknVos3YoRpPOxWqJYAKBFANARSNYBdXfWiJ2babF_PlmeqEV0njS55aw6gNCDhxmgUQ50rDjXY6NUkE2z3NVKcCanXFsBG8GD4H4UWPjK7c_Lxtk2GorYjgUUviYSQBKDIR4F8EYo34a0Nd_1J9-9okCE9THjrTMLk3PZ9cjevfa_H4_9N4DjeDxKmPh9OjJ3ArwzrIeBSVbcNotTx3TwM4W5lnnRQQOL1uwfsFDf9PTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forest+pest+monitoring+and+early+warning+using+UAV+remote+sensing+and+computer+vision+techniques&rft.jtitle=Scientific+reports&rft.au=Li%2C+Xiaoyu&rft.au=Wang%2C+AChuan&rft.date=2025-01-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-84464-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_84464_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |