Employing deep learning model to evaluate speech information in acoustic simulations of Cochlear implants
Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder CI simulations is assessed through speech recognition experiments with normally-hearing subjects, a process that can be time-consuming, costl...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 24056 - 17 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.10.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-73173-6 |
Cover
Loading…
Abstract | Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder CI simulations is assessed through speech recognition experiments with normally-hearing subjects, a process that can be time-consuming, costly, and subject to individual variability. As an alternative approach, we utilized an advanced deep learning speech recognition model to investigate the intelligibility of CI simulations. We evaluated model’s performance on vocoder-processed words and sentences with varying vocoder parameters. The number of vocoder bands, frequency range, and envelope dynamic range were adjusted to simulate sound processing settings in CI devices. Additionally, we manipulated the low-cutoff frequency and intensity quantization of vocoder envelopes to simulate psychophysical temporal and intensity resolutions in CI patients. The results were evaluated within the context of the audio analysis performed in the model. Interestingly, the deep learning model, despite not being originally designed to mimic human speech processing, exhibited a human-like response to alterations in vocoder parameters, resembling existing human subject results. This approach offers significant time and cost savings compared to testing human subjects, and eliminates learning and fatigue effects during testing. Our findings demonstrate the potential of speech recognition models in facilitating auditory research. |
---|---|
AbstractList | Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder CI simulations is assessed through speech recognition experiments with normally-hearing subjects, a process that can be time-consuming, costly, and subject to individual variability. As an alternative approach, we utilized an advanced deep learning speech recognition model to investigate the intelligibility of CI simulations. We evaluated model’s performance on vocoder-processed words and sentences with varying vocoder parameters. The number of vocoder bands, frequency range, and envelope dynamic range were adjusted to simulate sound processing settings in CI devices. Additionally, we manipulated the low-cutoff frequency and intensity quantization of vocoder envelopes to simulate psychophysical temporal and intensity resolutions in CI patients. The results were evaluated within the context of the audio analysis performed in the model. Interestingly, the deep learning model, despite not being originally designed to mimic human speech processing, exhibited a human-like response to alterations in vocoder parameters, resembling existing human subject results. This approach offers significant time and cost savings compared to testing human subjects, and eliminates learning and fatigue effects during testing. Our findings demonstrate the potential of speech recognition models in facilitating auditory research. Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder CI simulations is assessed through speech recognition experiments with normally-hearing subjects, a process that can be time-consuming, costly, and subject to individual variability. As an alternative approach, we utilized an advanced deep learning speech recognition model to investigate the intelligibility of CI simulations. We evaluated model's performance on vocoder-processed words and sentences with varying vocoder parameters. The number of vocoder bands, frequency range, and envelope dynamic range were adjusted to simulate sound processing settings in CI devices. Additionally, we manipulated the low-cutoff frequency and intensity quantization of vocoder envelopes to simulate psychophysical temporal and intensity resolutions in CI patients. The results were evaluated within the context of the audio analysis performed in the model. Interestingly, the deep learning model, despite not being originally designed to mimic human speech processing, exhibited a human-like response to alterations in vocoder parameters, resembling existing human subject results. This approach offers significant time and cost savings compared to testing human subjects, and eliminates learning and fatigue effects during testing. Our findings demonstrate the potential of speech recognition models in facilitating auditory research.Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder CI simulations is assessed through speech recognition experiments with normally-hearing subjects, a process that can be time-consuming, costly, and subject to individual variability. As an alternative approach, we utilized an advanced deep learning speech recognition model to investigate the intelligibility of CI simulations. We evaluated model's performance on vocoder-processed words and sentences with varying vocoder parameters. The number of vocoder bands, frequency range, and envelope dynamic range were adjusted to simulate sound processing settings in CI devices. Additionally, we manipulated the low-cutoff frequency and intensity quantization of vocoder envelopes to simulate psychophysical temporal and intensity resolutions in CI patients. The results were evaluated within the context of the audio analysis performed in the model. Interestingly, the deep learning model, despite not being originally designed to mimic human speech processing, exhibited a human-like response to alterations in vocoder parameters, resembling existing human subject results. This approach offers significant time and cost savings compared to testing human subjects, and eliminates learning and fatigue effects during testing. Our findings demonstrate the potential of speech recognition models in facilitating auditory research. Abstract Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder CI simulations is assessed through speech recognition experiments with normally-hearing subjects, a process that can be time-consuming, costly, and subject to individual variability. As an alternative approach, we utilized an advanced deep learning speech recognition model to investigate the intelligibility of CI simulations. We evaluated model’s performance on vocoder-processed words and sentences with varying vocoder parameters. The number of vocoder bands, frequency range, and envelope dynamic range were adjusted to simulate sound processing settings in CI devices. Additionally, we manipulated the low-cutoff frequency and intensity quantization of vocoder envelopes to simulate psychophysical temporal and intensity resolutions in CI patients. The results were evaluated within the context of the audio analysis performed in the model. Interestingly, the deep learning model, despite not being originally designed to mimic human speech processing, exhibited a human-like response to alterations in vocoder parameters, resembling existing human subject results. This approach offers significant time and cost savings compared to testing human subjects, and eliminates learning and fatigue effects during testing. Our findings demonstrate the potential of speech recognition models in facilitating auditory research. |
ArticleNumber | 24056 |
Author | Azadpour, Mahan Sinha, Rahul |
Author_xml | – sequence: 1 givenname: Rahul surname: Sinha fullname: Sinha, Rahul organization: Department of Otolaryngology, New York University Grossman School of Medicine – sequence: 2 givenname: Mahan surname: Azadpour fullname: Azadpour, Mahan email: Mahan.Azadpour@nyulangone.org organization: Department of Otolaryngology, New York University Grossman School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39402071$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1UREvpH-CALHHhEvBX4viE0KqUSpW4wNlynMmuV44d7KRS_329m7a0HPDBHo-feWc0nrfoJMQACL2n5DMlvP2SBa1VWxEmKsmp5FXzCp0xIuqKccZOntmn6CLnPSmrZkpQ9QadciUII5KeIXc5Tj7eubDFPcCEPZgUDrcx9uDxHDHcGr-YGXCeAOwOuzDENJrZxVBsbGxc8uwszm5c_NGdcRzwJtrdQQy7ksCEOb9DrwfjM1w8nOfo9_fLX5sf1c3Pq-vNt5vKCsXmilvRml6STlKiRGfbrqlbYyhrWmZ7RRoGgnFlhrIxO1gOHIamJ1JCC93Q8XN0ver20ez1lNxo0p2OxumjI6atNqkU7EFbaZTteyrqrhZcQVeW4LIbGDCQNSlaX1etaelG6C2EORn_QvTlS3A7vY23mlIhFZO8KHx6UEjxzwJ51qPLFnxpCZTGaU5p00hZshb04z_oPi4plF4dKVG3ktaF-vC8pKdaHr-0AGwFbIo5JxieEEr0YXT0Ojq6jI4-jo5uShBfg3KBwxbS39z_iboHLRrH3w |
Cites_doi | 10.1097/MAO.0000000000001409 10.1121/1.3592521 10.1121/1.1786871 10.3766/jaaa.15077 10.1101/2021.04.19.440438 10.1121/1.1886405 10.1126/science.270.5234.303 10.1097/AUD.0000000000000163 10.1016/j.heares.2008.04.012 10.1097/00003446-200002000-00006 10.1121/10.0006446 10.1121/1.429605 10.1177/2331216516646556 10.48550/arXiv.2212.04356 10.1097/01.aud.0000202357.40662.8500003446-200604000-00005[pii] 10.1080/03655230410017562 10.1097/AUD.0b013e31822c2549 10.1371/journal.pone.0244632 10.1007/s10162-022-00834-6 10.1121/1.5009602 10.1121/1.1423926 10.1097/AUD.0b013e3182a768e8 10.1037/0096-3445.134.2.222 10.1121/10.0009411 10.1037/0096-1523.34.2.460 10.1121/1.1317557 10.1121/1.3158835 10.1109/TBME.2022.3167113 10.1080/0954898X.2016.1219412 10.1097/00001756-200209160-00013 10.1121/1.1381538 10.1177/2331216514553783 10.1016/j.heares.2022.108584 10.1121/1.2823453 10.1109/Msp.2014.2371671 10.1007/s10162-018-0658-8 10.1121/1.417949 10.1121/1.419603 10.1109/10.764939 10.1016/j.heares.2011.11.009 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-73173-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : Directory of Open Access Journals [open access] |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_c7a9cdd145b5439ebbbb437bf2e2e750 PMC11479273 39402071 10_1038_s41598_024_73173_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R21 DC020305 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 88A 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-3c48ad70b71094bc8b658aa12682cd9062e4239af2392cfc3e3ef6d077e8ebfb3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:20 EDT 2025 Thu Aug 21 18:30:59 EDT 2025 Thu Aug 07 14:50:24 EDT 2025 Wed Aug 13 08:43:38 EDT 2025 Mon Jul 21 06:00:00 EDT 2025 Tue Jul 01 03:23:13 EDT 2025 Thu May 22 04:32:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-3c48ad70b71094bc8b658aa12682cd9062e4239af2392cfc3e3ef6d077e8ebfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-73173-6 |
PMID | 39402071 |
PQID | 3116458715 |
PQPubID | 2041939 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c7a9cdd145b5439ebbbb437bf2e2e750 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11479273 proquest_miscellaneous_3116677437 proquest_journals_3116458715 pubmed_primary_39402071 crossref_primary_10_1038_s41598_024_73173_6 springer_journals_10_1038_s41598_024_73173_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-14 |
PublicationDateYYYYMMDD | 2024-10-14 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | LandsbergerDMSvrakicMRolandJTJrSvirskyMThe Relationship Between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear ImplantsEar Hear.201536e20721310.1097/AUD.0000000000000163258606244549170 JethanamestDAzadpourMZemanAMSagiESvirskyMAA Smartphone Application for Customized Frequency Table Selection in Cochlear ImplantsOtol Neurotol201738e253e26110.1097/MAO.0000000000001409288063355556943 WonJHDrennanWRNieKJameysonEMRubinsteinJTAcoustic temporal modulation detection and speech perception in cochlear implant listenersJ. Acoust. Soc. Am.20111303763882011ASAJ..130..376W10.1121/1.3592521217869063155593 SpahrAJDevelopment and validation of the AzBio sentence listsEar Hear.20123311211710.1097/AUD.0b013e31822c2549218291344643855 AzadpourMMcKayCMSvirskyMAEffect of Pulse Rate on Loudness Discrimination in Cochlear Implant UsersJ. Assoc. Res. Otolaryngol.20181928729910.1007/s10162-018-0658-8295321905962473 FaulknerARosenSNormanCThe right information may matter more than frequency-place alignment: simulations of frequency-aligned and upward shifting cochlear implant processors for a shallow electrode array insertionEar Hear.20062713915210.1097/01.aud.0000202357.40662.8500003446-200604000-00005[pii]16518142 Brochier, T. et al. From Microphone to Phoneme: An End-to-End Computational Neural Model for Predicting Speech Perception with Cochlear Implants. IEEE Trans Biomed Eng PP, https://doi.org/10.1109/TBME.2022.3167113 (2022). ShannonRVZengFGKamathVWygonskiJEkelidMSpeech recognition with primarily temporal cuesScience19952703033041995Sci...270..303S1:CAS:528:DyaK2MXoslehsL8%3D10.1126/science.270.5234.3037569981 BiererJASpindlerEBiererSMWrightRAn Examination of Sources of Variability Across the Consonant-Nucleus-Consonant Test in Cochlear Implant ListenersTrends in hearing2016201810.1177/2331216516646556 StaffordRCStaffordJWWellsJDLoizouPCKellerMDVocoder simulations of highly focused cochlear stimulation with limited dynamic range and discriminable stepsEar Hear.20143526227010.1097/AUD.0b013e3182a768e824322978 XuLThompsonCSPfingstBERelative contributions of spectral and temporal cues for phoneme recognitionJ. Acoust. Soc. Am.2005117325532672005ASAJ..117.3255X10.1121/1.188640515957791 Vaswani A., S. N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin, I. in Neural Information Processing Systems. 5998–6008. BruceICA stochastic model of the electrically stimulated auditory nerve: pulse-train responseIEEE Trans Biomed Eng1999466306371:STN:280:DyaK1M3osFemtQ%3D%3D10.1109/10.76493910356869 FriesenLMShannonRVBaskentDWangXSpeech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implantsJ. Acoust. Soc. Am.2001110115011632001ASAJ..110.1150F1:STN:280:DC%2BD3Mvns1artw%3D%3D10.1121/1.138153811519582 MonaghanJJMCarlyonRPDeeksJMModulation Depth Discrimination by Cochlear Implant UsersJ. Assoc. Res. Otolaryngol.20222328529910.1007/s10162-022-00834-6350806848964891 BingabrMEspinoza-VarasBLoizouPCSimulating the effect of spread of excitation in cochlear implantsHear Res2008241737910.1016/j.heares.2008.04.012185561602596864 Grange, J. A., Culling, J. F., Harris, N. S. L. & Bergfeld, S. Cochlear implant simulator with independent representation of the full spiral ganglion. J. Acoust. Soc. Am. 142, EL484, https://doi.org/10.1121/1.5009602 (2017). FraserMMcKayCMTemporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cuesHear Res2012283596910.1016/j.heares.2011.11.009221464253314947 LoizouPCDormanMFitzkeJThe effect of reduced dynamic range on speech understanding: implications for patients with cochlear implantsEar Hear.20002125311:STN:280:DC%2BD3c7ntVentg%3D%3D10.1097/00003446-200002000-0000610708071 WoutersJMcDermottHJFrancartTSound Coding in Cochlear ImplantsIeee Signal Proc Mag20153267802015ISPM...32...67W10.1109/Msp.2014.2371671 KohlrauschAFasselRDauTThe influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriersJ. Acoust. Soc. Am.20001087237342000ASAJ..108..723K1:STN:280:DC%2BC2sbivVWmug%3D%3D10.1121/1.42960510955639 TakanenMBruceICSeeberBUPhenomenological modelling of electrically stimulated auditory nerve fibers: A reviewNetwork20162715718510.1080/0954898X.2016.121941227573993 FitzgeraldMBProsolovichKTanCTGlassmanEKSvirskyMASelf-Selection of Frequency Tables with Bilateral Mismatches in an Acoustic Simulation of a Cochlear ImplantJ. Am. Acad. Audiol.20172838539410.3766/jaaa.15077285347295563263 LoizouPCDormanMPoroyOSpahrTSpeech recognition by normal-hearing and cochlear implant listeners as a function of intensity resolutionJ. Acoust. Soc. Am.2000108237723872000ASAJ..108.2377L1:STN:280:DC%2BD3M%2FnsVGiug%3D%3D10.1121/1.131755711108378 Oxenham, A. J. & Kreft, H. A. Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing. Trends in hearing 18, https://doi.org/10.1177/2331216514553783 (2014). GoupellMJDravesGTLitovskyRYRecognition of vocoded words and sentences in quiet and multi-talker babble with children and adultsPLoS ONE2020151:CAS:528:DC%2BB3MXlsF2mtg%3D%3D10.1371/journal.pone.0244632333734277771688 Weerts, L. R. S., Clopath C.; Goodman D. F. M. . The Psychometrics of Automatic Speech Recognition. bioRxiv, https://doi.org/10.1101/2021.04.19.440438 (2021). Radford, A. K., J.W.; Xu, T.; Brockman, G.; McLeavey, C.; Sutskever, I. Robust Speech Recognition via Large-ScaleWeak Supervision. arXiv, https://doi.org/10.48550/arXiv.2212.04356 (2022). Shannon, R. V., Fu, Q. J. & Galvin, J., 3rd. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol Suppl, 50–54, https://doi.org/10.1080/03655230410017562 (2004). RossbachJKollmeierBMeyerBTA model of speech recognition for hearing-impaired listeners based on deep learningJ. Acoust. Soc. Am.202215114172022ASAJ..151.1417R10.1121/10.000941135364918 FuQJTemporal processing and speech recognition in cochlear implant usersNeuroreport2002131635163910.1097/00001756-200209160-0001312352617 DormanMFLoizouPCRaineyDSpeech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputsJ. Acoust. Soc. Am.1997102240324111997ASAJ..102.2403D1:STN:280:DyaK1c%2FgvFeitQ%3D%3D10.1121/1.4196039348698 LoebachJLPisoniDBPerceptual learning of spectrally degraded speech and environmental soundsJ. Acoust. Soc. Am.2008123112611392008ASAJ..123.1126L10.1121/1.282345318247913 ZengFGSpeech dynamic range and its effect on cochlear implant performanceJ. Acoust. Soc. Am.20021113773862002ASAJ..111..377Z10.1121/1.142392611831811 DavisMHJohnsrudeISHervais-AdelmanATaylorKMcGettiganCLexical information drives perceptual learning of distorted speech: evidence from the comprehension of noise-vocoded sentencesJ Exp Psychol Gen200513422224110.1037/0096-3445.134.2.22215869347 GiffordRHSunderhausLWDawantBMLabadieRFNobleJHCochlear implant spectral bandwidth for optimizing electric and acoustic stimulation (EAS)Hear Res202242610.1016/j.heares.2022.1085843598596410036878 KreftHADonaldsonGSNelsonDAEffects of pulse rate and electrode array design on intensity discrimination in cochlear implant usersJ. Acoust. Soc. Am.2004116225822682004ASAJ..116.2258K10.1121/1.178687115532657 Hervais-AdelmanADavisMHJohnsrudeISCarlyonRPPerceptual learning of noise vocoded words: effects of feedback and lexicalityJ. Exp. Psychol. Hum. Percept. Perform.20083446047410.1037/0096-1523.34.2.46018377182 SouzaPRosenSEffects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speechJ. Acoust. Soc. Am.20091267928052009ASAJ..126..792S10.1121/1.3158835196400442730710 SagiEAzadpourMNeukamJCapachNHSvirskyMAReducing interaural tonotopic mismatch preserves binaural unmasking in cochlear implant simulations of single-sided deafnessJ. Acoust. Soc. Am.202115023162021ASAJ..150.2316S10.1121/10.0006446347174908637719 NelsonDASchmitzJLDonaldsonGSViemeisterNFJavelEIntensity discrimination as a function of stimulus level with electric stimulationJ. Acoust. Soc. Am.1996100239324141996ASAJ..100.2393N1:STN:280:DyaK2s%2FhvFSgsg%3D%3D10.1121/1.4179498865646 LM Friesen (73173_CR15) 2001; 110 MH Davis (73173_CR17) 2005; 134 P Souza (73173_CR9) 2009; 126 MF Dorman (73173_CR6) 1997; 102 DM Landsberger (73173_CR25) 2015; 36 FG Zeng (73173_CR31) 2002; 111 M Bingabr (73173_CR12) 2008; 241 RC Stafford (73173_CR13) 2014; 35 A Hervais-Adelman (73173_CR16) 2008; 34 AJ Spahr (73173_CR19) 2012; 33 QJ Fu (73173_CR28) 2002; 13 HA Kreft (73173_CR41) 2004; 116 RV Shannon (73173_CR5) 1995; 270 D Jethanamest (73173_CR11) 2017; 38 JA Bierer (73173_CR23) 2016; 20 M Takanen (73173_CR39) 2016; 27 A Faulkner (73173_CR24) 2006; 27 MB Fitzgerald (73173_CR10) 2017; 28 73173_CR20 RH Gifford (73173_CR26) 2022; 426 E Sagi (73173_CR27) 2021; 150 73173_CR1 73173_CR40 73173_CR2 PC Loizou (73173_CR34) 2000; 108 DA Nelson (73173_CR36) 1996; 100 73173_CR22 JJM Monaghan (73173_CR33) 2022; 23 M Fraser (73173_CR32) 2012; 283 73173_CR7 M Azadpour (73173_CR35) 2018; 19 MJ Goupell (73173_CR21) 2020; 15 JH Won (73173_CR29) 2011; 130 JL Loebach (73173_CR18) 2008; 123 J Rossbach (73173_CR3) 2022; 151 A Kohlrausch (73173_CR30) 2000; 108 J Wouters (73173_CR4) 2015; 32 L Xu (73173_CR8) 2005; 117 73173_CR37 PC Loizou (73173_CR14) 2000; 21 IC Bruce (73173_CR38) 1999; 46 37292787 - bioRxiv. 2023 May 24:2023.05.23.541843. doi: 10.1101/2023.05.23.541843 37461629 - Res Sq. 2023 Jun 29:rs.3.rs-3085032. doi: 10.21203/rs.3.rs-3085032/v1 |
References_xml | – reference: BruceICA stochastic model of the electrically stimulated auditory nerve: pulse-train responseIEEE Trans Biomed Eng1999466306371:STN:280:DyaK1M3osFemtQ%3D%3D10.1109/10.76493910356869 – reference: SagiEAzadpourMNeukamJCapachNHSvirskyMAReducing interaural tonotopic mismatch preserves binaural unmasking in cochlear implant simulations of single-sided deafnessJ. Acoust. Soc. Am.202115023162021ASAJ..150.2316S10.1121/10.0006446347174908637719 – reference: NelsonDASchmitzJLDonaldsonGSViemeisterNFJavelEIntensity discrimination as a function of stimulus level with electric stimulationJ. Acoust. Soc. Am.1996100239324141996ASAJ..100.2393N1:STN:280:DyaK2s%2FhvFSgsg%3D%3D10.1121/1.4179498865646 – reference: ZengFGSpeech dynamic range and its effect on cochlear implant performanceJ. Acoust. Soc. Am.20021113773862002ASAJ..111..377Z10.1121/1.142392611831811 – reference: Grange, J. A., Culling, J. F., Harris, N. S. L. & Bergfeld, S. Cochlear implant simulator with independent representation of the full spiral ganglion. J. Acoust. Soc. Am. 142, EL484, https://doi.org/10.1121/1.5009602 (2017). – reference: Shannon, R. V., Fu, Q. J. & Galvin, J., 3rd. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol Suppl, 50–54, https://doi.org/10.1080/03655230410017562 (2004). – reference: KohlrauschAFasselRDauTThe influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriersJ. Acoust. Soc. Am.20001087237342000ASAJ..108..723K1:STN:280:DC%2BC2sbivVWmug%3D%3D10.1121/1.42960510955639 – reference: DormanMFLoizouPCRaineyDSpeech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputsJ. Acoust. Soc. Am.1997102240324111997ASAJ..102.2403D1:STN:280:DyaK1c%2FgvFeitQ%3D%3D10.1121/1.4196039348698 – reference: LoizouPCDormanMFitzkeJThe effect of reduced dynamic range on speech understanding: implications for patients with cochlear implantsEar Hear.20002125311:STN:280:DC%2BD3c7ntVentg%3D%3D10.1097/00003446-200002000-0000610708071 – reference: SouzaPRosenSEffects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speechJ. Acoust. Soc. Am.20091267928052009ASAJ..126..792S10.1121/1.3158835196400442730710 – reference: Weerts, L. R. S., Clopath C.; Goodman D. F. M. . The Psychometrics of Automatic Speech Recognition. bioRxiv, https://doi.org/10.1101/2021.04.19.440438 (2021). – reference: XuLThompsonCSPfingstBERelative contributions of spectral and temporal cues for phoneme recognitionJ. Acoust. Soc. Am.2005117325532672005ASAJ..117.3255X10.1121/1.188640515957791 – reference: Radford, A. K., J.W.; Xu, T.; Brockman, G.; McLeavey, C.; Sutskever, I. Robust Speech Recognition via Large-ScaleWeak Supervision. arXiv, https://doi.org/10.48550/arXiv.2212.04356 (2022). – reference: GoupellMJDravesGTLitovskyRYRecognition of vocoded words and sentences in quiet and multi-talker babble with children and adultsPLoS ONE2020151:CAS:528:DC%2BB3MXlsF2mtg%3D%3D10.1371/journal.pone.0244632333734277771688 – reference: StaffordRCStaffordJWWellsJDLoizouPCKellerMDVocoder simulations of highly focused cochlear stimulation with limited dynamic range and discriminable stepsEar Hear.20143526227010.1097/AUD.0b013e3182a768e824322978 – reference: LandsbergerDMSvrakicMRolandJTJrSvirskyMThe Relationship Between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear ImplantsEar Hear.201536e20721310.1097/AUD.0000000000000163258606244549170 – reference: BiererJASpindlerEBiererSMWrightRAn Examination of Sources of Variability Across the Consonant-Nucleus-Consonant Test in Cochlear Implant ListenersTrends in hearing2016201810.1177/2331216516646556 – reference: ShannonRVZengFGKamathVWygonskiJEkelidMSpeech recognition with primarily temporal cuesScience19952703033041995Sci...270..303S1:CAS:528:DyaK2MXoslehsL8%3D10.1126/science.270.5234.3037569981 – reference: GiffordRHSunderhausLWDawantBMLabadieRFNobleJHCochlear implant spectral bandwidth for optimizing electric and acoustic stimulation (EAS)Hear Res202242610.1016/j.heares.2022.1085843598596410036878 – reference: SpahrAJDevelopment and validation of the AzBio sentence listsEar Hear.20123311211710.1097/AUD.0b013e31822c2549218291344643855 – reference: FuQJTemporal processing and speech recognition in cochlear implant usersNeuroreport2002131635163910.1097/00001756-200209160-0001312352617 – reference: JethanamestDAzadpourMZemanAMSagiESvirskyMAA Smartphone Application for Customized Frequency Table Selection in Cochlear ImplantsOtol Neurotol201738e253e26110.1097/MAO.0000000000001409288063355556943 – reference: WonJHDrennanWRNieKJameysonEMRubinsteinJTAcoustic temporal modulation detection and speech perception in cochlear implant listenersJ. Acoust. Soc. Am.20111303763882011ASAJ..130..376W10.1121/1.3592521217869063155593 – reference: FraserMMcKayCMTemporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cuesHear Res2012283596910.1016/j.heares.2011.11.009221464253314947 – reference: MonaghanJJMCarlyonRPDeeksJMModulation Depth Discrimination by Cochlear Implant UsersJ. Assoc. Res. Otolaryngol.20222328529910.1007/s10162-022-00834-6350806848964891 – reference: RossbachJKollmeierBMeyerBTA model of speech recognition for hearing-impaired listeners based on deep learningJ. Acoust. Soc. Am.202215114172022ASAJ..151.1417R10.1121/10.000941135364918 – reference: Vaswani A., S. N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin, I. in Neural Information Processing Systems. 5998–6008. – reference: Hervais-AdelmanADavisMHJohnsrudeISCarlyonRPPerceptual learning of noise vocoded words: effects of feedback and lexicalityJ. Exp. Psychol. Hum. Percept. Perform.20083446047410.1037/0096-1523.34.2.46018377182 – reference: LoizouPCDormanMPoroyOSpahrTSpeech recognition by normal-hearing and cochlear implant listeners as a function of intensity resolutionJ. Acoust. Soc. Am.2000108237723872000ASAJ..108.2377L1:STN:280:DC%2BD3M%2FnsVGiug%3D%3D10.1121/1.131755711108378 – reference: KreftHADonaldsonGSNelsonDAEffects of pulse rate and electrode array design on intensity discrimination in cochlear implant usersJ. Acoust. Soc. Am.2004116225822682004ASAJ..116.2258K10.1121/1.178687115532657 – reference: DavisMHJohnsrudeISHervais-AdelmanATaylorKMcGettiganCLexical information drives perceptual learning of distorted speech: evidence from the comprehension of noise-vocoded sentencesJ Exp Psychol Gen200513422224110.1037/0096-3445.134.2.22215869347 – reference: LoebachJLPisoniDBPerceptual learning of spectrally degraded speech and environmental soundsJ. Acoust. Soc. Am.2008123112611392008ASAJ..123.1126L10.1121/1.282345318247913 – reference: WoutersJMcDermottHJFrancartTSound Coding in Cochlear ImplantsIeee Signal Proc Mag20153267802015ISPM...32...67W10.1109/Msp.2014.2371671 – reference: BingabrMEspinoza-VarasBLoizouPCSimulating the effect of spread of excitation in cochlear implantsHear Res2008241737910.1016/j.heares.2008.04.012185561602596864 – reference: AzadpourMMcKayCMSvirskyMAEffect of Pulse Rate on Loudness Discrimination in Cochlear Implant UsersJ. Assoc. Res. Otolaryngol.20181928729910.1007/s10162-018-0658-8295321905962473 – reference: FitzgeraldMBProsolovichKTanCTGlassmanEKSvirskyMASelf-Selection of Frequency Tables with Bilateral Mismatches in an Acoustic Simulation of a Cochlear ImplantJ. Am. Acad. Audiol.20172838539410.3766/jaaa.15077285347295563263 – reference: Oxenham, A. J. & Kreft, H. A. Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing. Trends in hearing 18, https://doi.org/10.1177/2331216514553783 (2014). – reference: TakanenMBruceICSeeberBUPhenomenological modelling of electrically stimulated auditory nerve fibers: A reviewNetwork20162715718510.1080/0954898X.2016.121941227573993 – reference: Brochier, T. et al. From Microphone to Phoneme: An End-to-End Computational Neural Model for Predicting Speech Perception with Cochlear Implants. IEEE Trans Biomed Eng PP, https://doi.org/10.1109/TBME.2022.3167113 (2022). – reference: FriesenLMShannonRVBaskentDWangXSpeech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implantsJ. Acoust. Soc. Am.2001110115011632001ASAJ..110.1150F1:STN:280:DC%2BD3Mvns1artw%3D%3D10.1121/1.138153811519582 – reference: FaulknerARosenSNormanCThe right information may matter more than frequency-place alignment: simulations of frequency-aligned and upward shifting cochlear implant processors for a shallow electrode array insertionEar Hear.20062713915210.1097/01.aud.0000202357.40662.8500003446-200604000-00005[pii]16518142 – volume: 38 start-page: e253 year: 2017 ident: 73173_CR11 publication-title: Otol Neurotol doi: 10.1097/MAO.0000000000001409 – volume: 130 start-page: 376 year: 2011 ident: 73173_CR29 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3592521 – volume: 116 start-page: 2258 year: 2004 ident: 73173_CR41 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1786871 – volume: 28 start-page: 385 year: 2017 ident: 73173_CR10 publication-title: J. Am. Acad. Audiol. doi: 10.3766/jaaa.15077 – ident: 73173_CR2 doi: 10.1101/2021.04.19.440438 – volume: 117 start-page: 3255 year: 2005 ident: 73173_CR8 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1886405 – volume: 270 start-page: 303 year: 1995 ident: 73173_CR5 publication-title: Science doi: 10.1126/science.270.5234.303 – volume: 36 start-page: e207 year: 2015 ident: 73173_CR25 publication-title: Ear Hear. doi: 10.1097/AUD.0000000000000163 – volume: 241 start-page: 73 year: 2008 ident: 73173_CR12 publication-title: Hear Res doi: 10.1016/j.heares.2008.04.012 – volume: 21 start-page: 25 year: 2000 ident: 73173_CR14 publication-title: Ear Hear. doi: 10.1097/00003446-200002000-00006 – volume: 150 start-page: 2316 year: 2021 ident: 73173_CR27 publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0006446 – volume: 108 start-page: 723 year: 2000 ident: 73173_CR30 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.429605 – volume: 20 start-page: 1 year: 2016 ident: 73173_CR23 publication-title: Trends in hearing doi: 10.1177/2331216516646556 – ident: 73173_CR1 doi: 10.48550/arXiv.2212.04356 – volume: 27 start-page: 139 year: 2006 ident: 73173_CR24 publication-title: Ear Hear. doi: 10.1097/01.aud.0000202357.40662.8500003446-200604000-00005[pii] – ident: 73173_CR7 doi: 10.1080/03655230410017562 – volume: 33 start-page: 112 year: 2012 ident: 73173_CR19 publication-title: Ear Hear. doi: 10.1097/AUD.0b013e31822c2549 – volume: 15 year: 2020 ident: 73173_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0244632 – volume: 23 start-page: 285 year: 2022 ident: 73173_CR33 publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-022-00834-6 – ident: 73173_CR20 doi: 10.1121/1.5009602 – volume: 111 start-page: 377 year: 2002 ident: 73173_CR31 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1423926 – ident: 73173_CR40 – volume: 35 start-page: 262 year: 2014 ident: 73173_CR13 publication-title: Ear Hear. doi: 10.1097/AUD.0b013e3182a768e8 – volume: 134 start-page: 222 year: 2005 ident: 73173_CR17 publication-title: J Exp Psychol Gen doi: 10.1037/0096-3445.134.2.222 – volume: 151 start-page: 1417 year: 2022 ident: 73173_CR3 publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0009411 – volume: 34 start-page: 460 year: 2008 ident: 73173_CR16 publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.34.2.460 – volume: 108 start-page: 2377 year: 2000 ident: 73173_CR34 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1317557 – volume: 126 start-page: 792 year: 2009 ident: 73173_CR9 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3158835 – ident: 73173_CR37 doi: 10.1109/TBME.2022.3167113 – volume: 27 start-page: 157 year: 2016 ident: 73173_CR39 publication-title: Network doi: 10.1080/0954898X.2016.1219412 – volume: 13 start-page: 1635 year: 2002 ident: 73173_CR28 publication-title: Neuroreport doi: 10.1097/00001756-200209160-00013 – volume: 110 start-page: 1150 year: 2001 ident: 73173_CR15 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1381538 – ident: 73173_CR22 doi: 10.1177/2331216514553783 – volume: 426 year: 2022 ident: 73173_CR26 publication-title: Hear Res doi: 10.1016/j.heares.2022.108584 – volume: 123 start-page: 1126 year: 2008 ident: 73173_CR18 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2823453 – volume: 32 start-page: 67 year: 2015 ident: 73173_CR4 publication-title: Ieee Signal Proc Mag doi: 10.1109/Msp.2014.2371671 – volume: 19 start-page: 287 year: 2018 ident: 73173_CR35 publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-018-0658-8 – volume: 100 start-page: 2393 year: 1996 ident: 73173_CR36 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.417949 – volume: 102 start-page: 2403 year: 1997 ident: 73173_CR6 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.419603 – volume: 46 start-page: 630 year: 1999 ident: 73173_CR38 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.764939 – volume: 283 start-page: 59 year: 2012 ident: 73173_CR32 publication-title: Hear Res doi: 10.1016/j.heares.2011.11.009 – reference: 37292787 - bioRxiv. 2023 May 24:2023.05.23.541843. doi: 10.1101/2023.05.23.541843 – reference: 37461629 - Res Sq. 2023 Jun 29:rs.3.rs-3085032. doi: 10.21203/rs.3.rs-3085032/v1 |
SSID | ssj0000529419 |
Score | 2.4362483 |
Snippet | Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder... Abstract Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 24056 |
SubjectTerms | 631/114/1305 631/378 692/308/575 Acoustics Adult Auditory discrimination learning Cochlea Cochlear Implants Deep Learning Female Humanities and Social Sciences Humans Information processing Male multidisciplinary Psychophysics Science Science (multidisciplinary) Simulation Speech Speech Intelligibility - physiology Speech Perception - physiology Speech recognition Transplants & implants Voice recognition |
SummonAdditionalLinks | – databaseName: DOAJ : Directory of Open Access Journals [open access] dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPJMKchI3MBq_EjsHEtFVVUqJyr1ZvkxZvdAdkWWQ_89Yzu7dHmICzmsok02sWbGO9_I4-8j5G3npElCd2yAtmUq-IG5VgOLjqfMggM85M3JV5_6i2t1edPd3JH6yj1hlR64Gu4kaDeEGLnqfIfJEzweSmqfBAjQtVrHnHenmKqs3mJQfJh3ybTSnEyYqfJuMqGYxpwpWb-XiQph_59Q5u_Nkr-smJZEdP6IPJwRJD2tIz8k92B8TO5XTcnbJ2RZNXzxpzQCrOksC_GFFs0bulnRmeAb6LQGCAs6c6dmD-E5xb_IovBFp-XXWdtroqtEz1ZhkR9Gl_iC3D3zlFyff_x8dsFmPQUW1CA2TAZlXNStz_2XygfjEX44x0VvRIiZsBgyHaBL-CFCChIkpD62WoMBn7x8Rg7G1QgvCA2tz9hSQnSdSqn1MnJ0LgfujEMM0ZB3W9vadaXNsGW5WxpbPWHRE7Z4wvYN-ZDNv7szU16XLzAQ7BwI9l-B0JDjrfPsPA8nKzmWgx0WhV1D3uwu4wzKyyJuBDRouadHFCx1Q55XX-9GknXjBaKwhpi9KNgb6v6VcbkoLN1YaOoBwWFD3m8D5ue4_m6Lo_9hi5fkgciRnjtv1DE52Hz7Dq8QPG386zJPfgDdIxlU priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6uJ7cTJCUFFVSHBiUp7s_wYd_fAZmmWA_-eGce71fLKIYrydDx-fPaMv4-x161TfZKmFQPUtdDBD8LVBkR0TSIWHGgCLU7-_KU7v9CfFu2iTLhNJaxy1ybmhjqOgebIT1SDwL5FeN--23wXpBpF3tUioXGT3SLqMhp8mYXZz7GQF0s3Q1krU6v-ZML-itaUSS0M9pxKdAf9Uabt_xvW_DNk8je_ae6Ozu6xuwVH8vez4e-zG7B-wG7PypI_H7LVrOSLj_IIsOFFHOKSZ-Ubvh15ofkGPm0AwpIXBlWyEx5zbCizzhefVt-KwtfEx8RPx7Ckl_EVfoBiaB6xi7OPX0_PRVFVEEEPcitU0L2LpvYUhal96D2CEOca2fUyRKItBiIFdAl3MqSgQEHqYm0M9OCTV4_Z0Xpcw1PGQ-0JYSqIrtUp1V7FBk3cQON6h0iiYm92eWs3M3mGzU5v1dvZEhYtYbMlbFexD5T9-zuJ-DqfGK8ubalHNhg3hBgb3foWsRR43LQyPkmQgOinYsc749lSGyd7XXYq9mp_GesROUfcGjBD8z0dYmFlKvZktvU-JaQeLxGLVaw_KAUHST28sl4tM1c3DjfNgBCxYm93BeY6Xf_Oi2f__43n7I6kMkyRNfqYHW2vfsALBEdb_zLXgF8wEg-m priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIiQuFd-kFGQkbhCR2E6cHGFFVSHBiUq9WbYz7u6BZNUsB_49M06yaKEcyCGKYiexZmzPc2b8BuBN5VQTpanyFosi18G3uSsM5p0rI7PgYBl4c_KXr_XFpf58VV0dgVz2wqSg_URpmabpJTrs_UiGhjeDSZ0bMnkqr-_AXaZu5zC-Vb3a_1dhz5Uu23l_TKGaWx49sEGJqv82fPl3mOQfvtJkgs4fwMmMHcWHqbUP4Qj7R3Bvyib58zFspuy99KjoELdiTghxLVK2G7EbxEztjWLcIoa1mFlTWTd0LWhyTLm9xLj5Pmf1GsUQxWoIa36Z2NAHOG7mCVyef_q2usjnTAp50K3c5SroxnWm8Bx5qX1oPAEP50pZNzJ0TFWMTAToIp1kiEGhwlh3hTHYoI9ePYXjfujxOYhQeEaVCjtX6RgLr7qS1Fpi6RpH6CGDt4ts7XYizLDJ0a0aO2nCkiZs0oStM_jI4t_XZLLrdGO4ubaz8m0wrg1dV-rKV4Sf0NOhlfFRokRCPBmcLcqz8wgcrSppIVjRcrDK4PW-mMYOO0RcjyTQVKcm_KtMBs8mXe9bwhnjJeGvDJqDXnDQ1MOSfrNO_Ny0xDQtwcIM3i0d5ne7_i2L0_-r_gLuS-7THF2jz-B4d_MDXxJA2vlXaUT8Au4vDYA priority: 102 providerName: Springer Nature |
Title | Employing deep learning model to evaluate speech information in acoustic simulations of Cochlear implants |
URI | https://link.springer.com/article/10.1038/s41598-024-73173-6 https://www.ncbi.nlm.nih.gov/pubmed/39402071 https://www.proquest.com/docview/3116458715 https://www.proquest.com/docview/3116677437 https://pubmed.ncbi.nlm.nih.gov/PMC11479273 https://doaj.org/article/c7a9cdd145b5439ebbbb437bf2e2e750 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRaC9IK4jMCoj8QaBxHbi5AGhrto0VdqEgEp9i2znZK0ESWk7afv3HDtJUaG8kIckytU65zjnc2x_H8CbRIus4ioJc4yiUFqThzpSGJY6rhwLDsbWTU6-vEovJnI8TaZ70MsddQZc7WzaOT2pyfL7-9ufd5-own9sp4xnH1aUhNxEMS5DRelQhOk-HFJmUk7K4bKD-y3XN89lnHdzZ3bfegT3nVg4j1S8lao8o_8uGPr3aMo_ulR9pjp_CA86iMmGbUw8gj2sH8O9VnTy7gnMW5FfupWViAvW6UZcMy-Kw9YN6xjAka0WiHbGOnJV50LaZ_QN9RJgbDX_0Yl_rVhTsVFjZ-5hbE4vcMNrnsLk_Ozb6CLsBBdCK3O-DoWVmS5VZNwATWlsZgifaB3zNOO2dIzG6PgCdUUrbisrUGCVlpFSmKGpjHgGB3VT43NgNjIOfAosdSKrKjKijMn7McY60wQyAnjb27ZYtLwahe8PF1nROqUgpxTeKUUawKkz_-ZKx4ntDzTL66KrYoVVOrdlGcvEJASz0NAihTIVR44EjAI46Z1X9HFWiJjaiwm1GpMAXm9OUxVz_Sa6RjKovyYlmCxUAMetrzcl6WMlgGwrCraKun2mns88jTe1RFVO6DGAd33A_C7Xv23x4v_f9BKOuAt1NyBHnsDBenmDrwhTrc0A9tVUDeBwOBx_HdP29Ozq8xc6OkpHA_-fYuCr0i8vHiY4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVAheEDeGAosET2DV3l1fDwjR0iqlhxBqpb4tu-txkwfiUAeh_il-IzM-UoXrrXmwovjazLHz2TM7H8DLxKq8klkSFhhFofauCG2UYVjauOIuOBh7Xpx8eJSOT_TH0-R0DX4Oa2G4rHKYE9uJuqw9vyPfVDEB-4TgffJu_i1k1ijOrg4UGp1Z7OPFD3pka97ufSD9vpJyd-d4exz2rAKh14VchMrr3JZZ5LgKUTufOwrC1sYyzaUvuW0vclM8W9FG-sorVFilZZRlmKOrnKLrXoN1rQgqjGB9a-fo0-flWx3Om-m46FfnRCrfbChC8io2qcOMYrUK05UI2BIF_A3d_lmk-Vumtg2Au7fhVo9cxfvO1O7AGs7uwvWOy_LiHkw77mA6VZSIc9HTUZyJlmtHLGrRNxZH0cwR_UT0PVvZMui7oKm5ZRYTzfRrzynWiLoS27Wf8MXElG7AVTv34eRKJP4ARrN6ho9A-MgxplVY2kRXVeRUGZNRxRjb3BJ2CeD1IFsz79p1mDbNrnLTacKQJkyrCZMGsMXiXx7JrbbbH-rzM9N7rvGZLXxZxjpxCaE3dPTRKnOVRImEtwLYGJRnev9vzKW1BvBiuZs8l9MxdoYk0PaYlNC3ygJ42Ol6ORLmq5eE_gLIV6xgZaire2bTSdsdnB5ws4JAaQBvBoO5HNe_ZfH4_3_jOdwYHx8emIO9o_0ncFOyPXNdj96A0eL8Oz4laLZwz3p_EPDlql3wF9RCTnc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNbCdODghBy6qlUHGg0t6M7Uy6eyBZmkWof41fx9hJtlpet-4hWm1e3nl4vmTG8wE8y4woaq6yuMQkiaWzZWwShXFl0tp3wcHU-cXJH4_y_WP5fpbNtuDnuBbGl1WOc2KYqKvW-XfkE5ESsM8I3meTeiiL-LQ3fb38FnsGKZ9pHek0ehM5xLMf9PjWvTrYI10_53z67vPufjwwDMROlnwVCycLU6nE-opEaV1hKSAbk_K84K7yLXzRN8gzNW24q51AgXVeJUphgba2gq57CS4rQWGTfEnN1Pr9js-gybQc1ukkoph0FCv9ejYuY0VRW8T5RiwMlAF_w7l_lmv-lrMNoXB6A64PGJa96Y3uJmxhcwuu9KyWZ7dh0bMI06msQlyygZjihAXWHbZq2dBiHFm3RHRzNnRv9TZC3xlN0oFjjHWLrwO7WMfamu22bu4vxhZ0A1-_cweOL0Ted2G7aRu8D8wl1qNbgZXJZF0nVlQpmVeKqSkMqSOCF6Ns9bJv3KFDwl0UuteEJk3ooAmdR_DWi399pG-6HX5oT0_04MPaKVO6qkplZjPCcWjpI4WyNUeOhLwi2BmVp4eZoNPndhvB0_Vu8mGfmDENkkDDMTnhcKEiuNfrej0Sz1zPCQdGUGxYwcZQN_c0i3noE06PuqokeBrBy9Fgzsf1b1k8-P_feAJXyfH0h4Ojw4dwjXtz9gU-cge2V6ff8RFhtJV9HJyBwZeL9r5fldJRRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+deep+learning+model+to+evaluate+speech+information+in+acoustic+simulations+of+Cochlear+implants&rft.jtitle=Scientific+reports&rft.au=Sinha%2C+Rahul&rft.au=Azadpour%2C+Mahan&rft.date=2024-10-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-73173-6&rft_id=info%3Apmid%2F39402071&rft.externalDocID=PMC11479273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |