Functional Characterization of Clostridium difficile Spore Coat Proteins
Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional...
Saved in:
Published in | Journal of Bacteriology Vol. 195; no. 7; pp. 1492 - 1503 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. |
---|---|
AbstractList | Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. [PUBLICATION ABSTRACT] Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface.Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins ( cotA , cotB , cotCB , cotD , cotE , and sodA ) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA , presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD , cotE , and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD , a superoxide dismutase (SOD), encoded by sodA , and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE . These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H 2 O 2 . Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: JB |
Author | Fairweather, Neil Cutting, Simon M Dembek, Marcin La Ragione, Roberto Phetcharaburanin, Jutarop Mikelsone, Anna Brisson, Marie-Clémence Brisson, Alain R Tan, Sisareuth Permpoonpattana, Patima Hong, Huynh A |
Author_xml | – sequence: 1 fullname: Permpoonpattana, Patima – sequence: 2 fullname: Phetcharaburanin, Jutarop – sequence: 3 fullname: Mikelsone, Anna – sequence: 4 fullname: Dembek, Marcin – sequence: 5 fullname: Tan, Sisareuth – sequence: 6 fullname: Brisson, Marie-Clémence – sequence: 7 fullname: La Ragione, Roberto – sequence: 8 fullname: Brisson, Alain R – sequence: 9 fullname: Fairweather, Neil – sequence: 10 fullname: Hong, Huynh A – sequence: 11 fullname: Cutting, Simon M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23335421$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktFr1TAUxoNM3N3VJ9-1shdBOnOSJm1fBFeccwwU5p5Dmp7cm0vbXJNWmX-97TqHDsSnwMnvfJzvfOeIHPS-R0KeAz0BYMXbi9MTyoBmKbBHZAW0LFIhOD0gKzrV0xJKfkiOYtxRClkm2BNyyDjnImOwIudnY28G53vdJtVWB20GDO6nnkuJt0nV-jgE17ixSxpnrTOuxeRq7wMmlddD8iX4AV0fn5LHVrcRn929a3J99uFrdZ5efv74qXp_mZqsZEPKC8pqXRgLBUXd2EZQbErOs5xCXTIJmcibEtEYLWgtpQVkkgJa0By1pHxN3i26-7HusDHYD0G3ah9cp8ON8tqpv396t1Ub_11xybLJ8yTw-k4g-G8jxkF1LhpsW92jH6MCmRciB6Dwf5SD5Hk5b3NNjh-gOz-GaasLJQso2Ey9-HP4-6l_5zEBbxbABB9jQHuPAFVz2uriVN2mrWC2Ag9o44bb6Cbnrv1Hz6ulZ-s22x8uoNKxU7taQSlUrmBKaWJeLozVXulNcFFdXzEKYr4gWdCS_wIlFr9f |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1099_jmm_0_001048 crossref_primary_10_3390_tropicalmed8120506 crossref_primary_10_1089_fpd_2014_1842 crossref_primary_10_1128_MMBR_00050_15 crossref_primary_10_1371_journal_pgen_1003756 crossref_primary_10_1002_jsde_12293 crossref_primary_10_1038_s42003_024_06521_x crossref_primary_10_3389_fmicb_2019_01733 crossref_primary_10_1016_j_biombioe_2020_105679 crossref_primary_10_1371_journal_ppat_1009516 crossref_primary_10_1016_j_mib_2021_11_004 crossref_primary_10_1016_j_vaccine_2019_02_052 crossref_primary_10_1080_22221751_2022_2119168 crossref_primary_10_1111_mmi_15316 crossref_primary_10_1371_journal_pone_0132805 crossref_primary_10_3390_microorganisms8111640 crossref_primary_10_1002_prca_201700182 crossref_primary_10_1128_jb_00466_22 crossref_primary_10_1016_j_anaerobe_2021_102352 crossref_primary_10_1016_j_anaerobe_2023_102752 crossref_primary_10_3390_vaccines11050887 crossref_primary_10_1038_nrmicro_2016_108 crossref_primary_10_3390_ijms23010550 crossref_primary_10_3390_v14122772 crossref_primary_10_1111_1758_2229_12200 crossref_primary_10_1111_mmi_14090 crossref_primary_10_1128_JB_00369_13 crossref_primary_10_3389_fmicb_2024_1416665 crossref_primary_10_3390_vaccines8010073 crossref_primary_10_1128_JB_00266_17 crossref_primary_10_1371_journal_ppat_1007004 crossref_primary_10_1371_journal_ppat_1011741 crossref_primary_10_1111_hel_12997 crossref_primary_10_3390_ijms23063405 crossref_primary_10_1016_j_tim_2014_04_003 crossref_primary_10_3390_pathogens12020235 crossref_primary_10_1371_journal_pgen_1003782 crossref_primary_10_1371_journal_pgen_1003660 crossref_primary_10_1016_j_anaerobe_2019_04_009 crossref_primary_10_1021_pr4005629 crossref_primary_10_1128_microbiolspec_GPP3_0040_2018 crossref_primary_10_1186_s12864_015_1663_5 crossref_primary_10_1016_j_anaerobe_2017_02_018 crossref_primary_10_1371_journal_pgen_1005562 crossref_primary_10_1128_JB_00200_15 crossref_primary_10_1128_jb_00079_22 crossref_primary_10_3390_microorganisms8030313 crossref_primary_10_1128_cmr_00157_22 crossref_primary_10_1371_journal_ppat_1012507 crossref_primary_10_1016_j_anaerobe_2024_102822 crossref_primary_10_1128_JB_01469_14 crossref_primary_10_1146_annurev_micro_011320_011321 crossref_primary_10_1016_j_bios_2020_112440 crossref_primary_10_1186_1759_8753_5_2 crossref_primary_10_1093_ofid_ofv206 crossref_primary_10_1128_iai_00549_22 crossref_primary_10_1371_journal_ppat_1007199 crossref_primary_10_1038_s41598_021_93305_6 crossref_primary_10_1107_S2053230X20006147 crossref_primary_10_2217_fmb_14_2 crossref_primary_10_1093_infdis_jix488 crossref_primary_10_1186_s12864_015_1613_2 crossref_primary_10_1016_j_anaerobe_2017_04_001 crossref_primary_10_1128_AEM_02334_17 crossref_primary_10_1128_microbiolspec_GPP3_0017_2018 crossref_primary_10_4161_19490976_2014_969632 crossref_primary_10_1016_j_anaerobe_2019_102078 crossref_primary_10_3390_microorganisms10101918 crossref_primary_10_1016_j_anaerobe_2015_12_001 crossref_primary_10_1111_1462_2920_14505 crossref_primary_10_1016_j_jprot_2015_03_035 crossref_primary_10_1128_jb_00175_24 crossref_primary_10_3389_fmicb_2021_624618 crossref_primary_10_1128_msphere_00424_20 crossref_primary_10_1186_1471_2164_15_160 crossref_primary_10_1074_jbc_RA118_004273 crossref_primary_10_1111_mmi_12611 crossref_primary_10_3390_antibiotics10080948 crossref_primary_10_1128_microbiolspec_TBS_0023_2016 crossref_primary_10_1038_s41598_018_35050_x crossref_primary_10_1016_j_anaerobe_2024_102844 crossref_primary_10_1016_j_anaerobe_2025_102941 crossref_primary_10_1111_mmi_12856 crossref_primary_10_1128_AEM_03410_15 crossref_primary_10_1016_j_mib_2022_01_008 |
Cites_doi | 10.1038/ng1830 10.1101/gad.2.8.1047 10.1128/jcm.16.6.1096-1101.1982 10.1128/JB.186.4.1129-1135.2004 10.1056/NEJMoa051590 10.1128/JB.01497-09 10.1016/j.vaccine.2003.11.021 10.1134/S0003683806010169 10.1128/JB.00597-09 10.1128/br.40.4.908-962.1976 10.1099/mic.0.046243-0 10.1128/JB.180.9.2285-2291.1998 10.1104/pp.124.4.1515 10.1074/jbc.M111.263889 10.1128/IAI.71.5.2810-2818.2003 10.1016/j.mimet.2007.05.021 10.1128/JB.05182-11 10.1111/j.1365-2958.2005.04968.x 10.1016/j.resmic.2008.11.002 10.1111/j.1469-0691.2008.01992.x 10.1128/AEM.00718-10 10.1016/j.jmb.2003.12.009 10.1111/j.1365-2958.2010.07495.x 10.1016/j.chembiol.2005.07.009 10.1016/j.febslet.2006.08.019 10.1074/jbc.M004161200 10.1046/j.1365-2958.2003.03471.x 10.1371/journal.pone.0024894 10.1016/S0040-8166(97)80031-6 10.1056/NEJMoa051639 10.1016/j.mimet.2009.10.018 10.1128/IAI.00558-09 10.1006/meth.1999.0909 10.1099/mic.0.2008/016592-0 10.1097/QCO.0b013e32818be71d 10.1016/j.mimet.2009.05.004 10.1128/JB.00445-10 10.1086/521861 10.1016/0092-8674(90)90362-I 10.1146/annurev.micro.61.080706.093224 10.1099/jmm.0.45790-0 10.1128/IAI.00130-11 10.1128/MCB.01918-08 10.1128/AEM.65.12.5338-5344.1999 10.1038/nrmicro2164 10.1503/cmaj.1040979 10.1111/j.1432-1033.1974.tb03714.x 10.1038/nrmicro1288 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Apr 2013 Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
Copyright_xml | – notice: Copyright American Society for Microbiology Apr 2013 – notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1128/JB.02104-12 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts AGRICOLA MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5530 1067-8832 |
EndPage | 1503 |
ExternalDocumentID | PMC3624542 2916267331 23335421 10_1128_JB_02104_12 jb_195_7_1492 US201500146809 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W ABPPZ ABPTK ABTAH ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AEQTP AFDAS AFFDN AFFNX AFMIJ AFRAH AGCDD AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FBQ FRP GX1 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-S P2P PQQKQ QZG RHF RHI RNS RPM RSF RXW TAE TR2 UCJ UHB UKR UPT VH1 VQA W8F WH7 WHG WOQ X7M XFK Y6R YQT YR2 YZZ ZA5 ZCA ZCG ZGI ZXP ZY4 ~02 ~KM AAGFI AAYXX ADXHL AGVNZ CITATION H13 P-O CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c492t-3802ba8cf180eadfd50ed9334701b9261457d9eecca50b66f1e2601ef1a3ea603 |
ISSN | 0021-9193 1098-5530 |
IngestDate | Thu Aug 21 14:14:03 EDT 2025 Fri Jul 11 08:47:37 EDT 2025 Fri Jul 11 05:18:54 EDT 2025 Mon Jun 30 08:42:15 EDT 2025 Mon Jul 21 05:52:29 EDT 2025 Thu Apr 24 23:05:44 EDT 2025 Tue Jul 01 03:26:22 EDT 2025 Wed May 18 15:26:52 EDT 2016 Wed Dec 27 19:09:33 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c492t-3802ba8cf180eadfd50ed9334701b9261457d9eecca50b66f1e2601ef1a3ea603 |
Notes | http://dx.doi.org/10.1128/JB.02104-12 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://jb.asm.org/content/jb/195/7/1492.full.pdf |
PMID | 23335421 |
PQID | 1316681823 |
PQPubID | 40724 |
PageCount | 12 |
ParticipantIDs | fao_agris_US201500146809 proquest_miscellaneous_1678571101 proquest_miscellaneous_1316379233 highwire_asm_jb_195_7_1492 crossref_primary_10_1128_JB_02104_12 crossref_citationtrail_10_1128_JB_02104_12 pubmed_primary_23335421 proquest_journals_1316681823 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3624542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2013 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 Logan C (e_1_3_2_34_2) 2000; 275 Zheng L (e_1_3_2_44_2) 1988; 2 e_1_3_2_41_2 e_1_3_2_24_2 e_1_3_2_47_2 Sekiya M (e_1_3_2_36_2) 2006; 580 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 Hussain HA (e_1_3_2_20_2) 2005; 54 Mizobata T (e_1_3_2_35_2) 2000; 267 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 Fagan RP (e_1_3_2_29_2) 2011; 286 Duc LH (e_1_3_2_38_2) 2004; 22 e_1_3_2_27_2 e_1_3_2_48_2 Henrissat B (e_1_3_2_42_2) 2000; 124 Attar F (e_1_3_2_32_2) 2006; 42 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_23_2 e_1_3_2_25_2 e_1_3_2_46_2 Cutting S (e_1_3_2_15_2) 1990; 62 Paredes-Sabja D (e_1_3_2_22_2) 2008; 154 Eggertson L (e_1_3_2_6_2) 2004; 171 Rao FV (e_1_3_2_43_2) 2005; 12 Henriques AO (e_1_3_2_50_2) 2000; 20 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_13_2 e_1_3_2_2_2 Vonberg RP (e_1_3_2_4_2) 2008; 14 Marklund S (e_1_3_2_31_2) 1974; 47 Kim H (e_1_3_2_45_2) 2006; 59 Vohra P (e_1_3_2_11_2) 2011; 157 Haraldsen JD (e_1_3_2_14_2) 2003; 48 12694623 - Mol Microbiol. 2003 May;48(3):811-21 21299645 - Mol Microbiol. 2011 Feb;79(4):882-99 21330434 - Microbiology. 2011 May;157(Pt 5):1343-53 4215654 - Eur J Biochem. 1974 Sep 16;47(3):469-74 2115401 - Cell. 1990 Jul 27;62(2):239-50 16521587 - Prikl Biokhim Mikrobiol. 2006 Jan-Feb;42(1):111-6 18035610 - Annu Rev Microbiol. 2007;61:555-88 15673506 - J Med Microbiol. 2005 Feb;54(Pt 2):137-41 16322602 - N Engl J Med. 2005 Dec 8;353(23):2442-9 19332553 - Mol Cell Biol. 2009 Jun;29(11):3229-40 18412710 - Clin Microbiol Infect. 2008 May;14 Suppl 5:2-20 19528959 - Nat Rev Microbiol. 2009 Jul;7(7):526-36 15121298 - Vaccine. 2004 May 7;22(15-16):1873-85 9573176 - J Bacteriol. 1998 May;180(9):2285-91 11115868 - Plant Physiol. 2000 Dec;124(4):1515-9 20675495 - J Bacteriol. 2010 Oct;192(19):4904-11 21949780 - PLoS One. 2011;6(9):e24894 17658189 - J Microbiol Methods. 2007 Sep;70(3):452-64 16938293 - FEBS Lett. 2006 Sep 18;580(21):5016-22 14762008 - J Bacteriol. 2004 Feb;186(4):1129-35 10866831 - Eur J Biochem. 2000 Jul;267(13):4264-71 19068230 - Res Microbiol. 2009 Mar;160(2):134-43 19542279 - J Bacteriol. 2009 Sep;191(17):5377-86 14757055 - J Mol Biol. 2004 Feb 13;336(2):421-39 19445976 - J Microbiol Methods. 2009 Jul;78(1):79-85 9281845 - Tissue Cell. 1997 Aug;29(4):449-61 16804543 - Nat Genet. 2006 Jul;38(7):779-86 19564382 - Infect Immun. 2009 Sep;77(9):3661-9 10610808 - Methods. 2000 Jan;20(1):95-110 16322603 - N Engl J Med. 2005 Dec 8;353(23):2433-41 12736 - Bacteriol Rev. 1976 Dec;40(4):908-62 20047906 - J Bacteriol. 2010 Mar;192(5):1455-8 16183021 - Chem Biol. 2005 Sep;12(9):973-80 16390444 - Mol Microbiol. 2006 Jan;59(2):487-502 10862622 - J Biol Chem. 2000 Sep 29;275(39):30019-28 21949071 - J Bacteriol. 2011 Dec;193(23):6461-70 21659510 - J Biol Chem. 2011 Aug 5;286(31):27483-93 15238481 - CMAJ. 2004 Jul 6;171(1):19-21 19891996 - J Microbiol Methods. 2010 Jan;80(1):49-55 18177221 - Clin Infect Dis. 2008 Jan 15;46 Suppl 1:S43-9 12704155 - Infect Immun. 2003 May;71(5):2810-8 17609596 - Curr Opin Infect Dis. 2007 Aug;20(4):376-83 21482682 - Infect Immun. 2011 Jun;79(6):2295-302 7161375 - J Clin Microbiol. 1982 Dec;16(6):1096-101 16261177 - Nat Rev Microbiol. 2005 Dec;3(12):969-78 18667557 - Microbiology. 2008 Aug;154(Pt 8):2241-50 10583986 - Appl Environ Microbiol. 1999 Dec;65(12):5338-44 20802075 - Appl Environ Microbiol. 2010 Oct;76(20):6895-900 3139490 - Genes Dev. 1988 Aug;2(8):1047-54 |
References_xml | – ident: e_1_3_2_17_2 doi: 10.1038/ng1830 – volume: 2 start-page: 1047 year: 1988 ident: e_1_3_2_44_2 article-title: Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore publication-title: Genes Dev. doi: 10.1101/gad.2.8.1047 – ident: e_1_3_2_21_2 doi: 10.1128/jcm.16.6.1096-1101.1982 – ident: e_1_3_2_46_2 doi: 10.1128/JB.186.4.1129-1135.2004 – ident: e_1_3_2_8_2 doi: 10.1056/NEJMoa051590 – ident: e_1_3_2_40_2 doi: 10.1128/JB.01497-09 – volume: 22 start-page: 1873 year: 2004 ident: e_1_3_2_38_2 article-title: Intracellular fate and immunogenicity of B. subtilis spores publication-title: Vaccine doi: 10.1016/j.vaccine.2003.11.021 – volume: 42 start-page: 101 year: 2006 ident: e_1_3_2_32_2 article-title: A comparative study of superoxide dismutase activity assays in Crocus sativus L publication-title: Corm. Appl. Biochem. Microbiol. doi: 10.1134/S0003683806010169 – ident: e_1_3_2_13_2 doi: 10.1128/JB.00597-09 – ident: e_1_3_2_47_2 doi: 10.1128/br.40.4.908-962.1976 – volume: 157 start-page: 1343 year: 2011 ident: e_1_3_2_11_2 article-title: Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile publication-title: Microbiology doi: 10.1099/mic.0.046243-0 – ident: e_1_3_2_49_2 doi: 10.1128/JB.180.9.2285-2291.1998 – volume: 124 start-page: 1515 year: 2000 ident: e_1_3_2_42_2 article-title: Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics publication-title: Plant Physiol. doi: 10.1104/pp.124.4.1515 – volume: 286 start-page: 27483 year: 2011 ident: e_1_3_2_29_2 article-title: Clostridium difficile has two parallel and essential Sec secretion systems publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.263889 – ident: e_1_3_2_37_2 doi: 10.1128/IAI.71.5.2810-2818.2003 – ident: e_1_3_2_24_2 doi: 10.1016/j.mimet.2007.05.021 – ident: e_1_3_2_19_2 doi: 10.1128/JB.05182-11 – volume: 59 start-page: 487 year: 2006 ident: e_1_3_2_45_2 article-title: The Bacillus subtilis spore coat protein interaction network publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04968.x – volume: 267 start-page: 4264 year: 2000 ident: e_1_3_2_35_2 article-title: Overproduction of Thermus sp. YS 8-13 manganese catalase in Escherichia coli production of soluble apoenzyme and in vitro formation of active holoenzyme publication-title: Eur. J. Biochem. – ident: e_1_3_2_30_2 doi: 10.1016/j.resmic.2008.11.002 – volume: 14 start-page: 2 year: 2008 ident: e_1_3_2_4_2 article-title: Infection control measures to limit the spread of Clostridium difficile publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2008.01992.x – ident: e_1_3_2_39_2 doi: 10.1128/AEM.00718-10 – ident: e_1_3_2_27_2 doi: 10.1016/j.jmb.2003.12.009 – ident: e_1_3_2_28_2 doi: 10.1111/j.1365-2958.2010.07495.x – volume: 12 start-page: 973 year: 2005 ident: e_1_3_2_43_2 article-title: Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2005.07.009 – volume: 580 start-page: 5016 year: 2006 ident: e_1_3_2_36_2 article-title: Biochemical characterisation of the recombinant peroxiredoxin (FhePrx) of the liver fluke, Fasciola hepatica publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.08.019 – volume: 275 start-page: 30019 year: 2000 ident: e_1_3_2_34_2 article-title: Cloning, overexpression, and characterization of peroxiredoxin and NADH peroxiredoxin reductase from Thermus aquaticus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004161200 – volume: 48 start-page: 811 year: 2003 ident: e_1_3_2_14_2 article-title: Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03471.x – ident: e_1_3_2_12_2 doi: 10.1371/journal.pone.0024894 – ident: e_1_3_2_41_2 doi: 10.1016/S0040-8166(97)80031-6 – ident: e_1_3_2_7_2 doi: 10.1056/NEJMoa051639 – ident: e_1_3_2_26_2 doi: 10.1016/j.mimet.2009.10.018 – ident: e_1_3_2_5_2 doi: 10.1128/IAI.00558-09 – volume: 20 start-page: 95 year: 2000 ident: e_1_3_2_50_2 article-title: Structure and assembly of the bacterial endospore coat publication-title: Methods doi: 10.1006/meth.1999.0909 – volume: 154 start-page: 2241 year: 2008 ident: e_1_3_2_22_2 article-title: Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD) publication-title: Microbiology doi: 10.1099/mic.0.2008/016592-0 – ident: e_1_3_2_10_2 doi: 10.1097/QCO.0b013e32818be71d – ident: e_1_3_2_25_2 doi: 10.1016/j.mimet.2009.05.004 – ident: e_1_3_2_9_2 doi: 10.1128/JB.00445-10 – ident: e_1_3_2_3_2 doi: 10.1086/521861 – volume: 62 start-page: 239 year: 1990 ident: e_1_3_2_15_2 article-title: A forespore checkpoint for mother cell gene expression during development in B. subtilis publication-title: Cell doi: 10.1016/0092-8674(90)90362-I – ident: e_1_3_2_18_2 doi: 10.1146/annurev.micro.61.080706.093224 – volume: 54 start-page: 137 year: 2005 ident: e_1_3_2_20_2 article-title: Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Derm) and demonstration that the conjugative transposon Tn916DE enters the genome of this strain at multiple sites publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.45790-0 – ident: e_1_3_2_23_2 doi: 10.1128/IAI.00130-11 – ident: e_1_3_2_33_2 doi: 10.1128/MCB.01918-08 – ident: e_1_3_2_48_2 doi: 10.1128/AEM.65.12.5338-5344.1999 – ident: e_1_3_2_2_2 doi: 10.1038/nrmicro2164 – volume: 171 start-page: 19 year: 2004 ident: e_1_3_2_6_2 article-title: Hospitals battling outbreaks of C. difficile publication-title: CMAJ doi: 10.1503/cmaj.1040979 – volume: 47 start-page: 469 year: 1974 ident: e_1_3_2_31_2 article-title: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1974.tb03714.x – ident: e_1_3_2_16_2 doi: 10.1038/nrmicro1288 – reference: 15673506 - J Med Microbiol. 2005 Feb;54(Pt 2):137-41 – reference: 16804543 - Nat Genet. 2006 Jul;38(7):779-86 – reference: 19542279 - J Bacteriol. 2009 Sep;191(17):5377-86 – reference: 19068230 - Res Microbiol. 2009 Mar;160(2):134-43 – reference: 18035610 - Annu Rev Microbiol. 2007;61:555-88 – reference: 19445976 - J Microbiol Methods. 2009 Jul;78(1):79-85 – reference: 17658189 - J Microbiol Methods. 2007 Sep;70(3):452-64 – reference: 10866831 - Eur J Biochem. 2000 Jul;267(13):4264-71 – reference: 10583986 - Appl Environ Microbiol. 1999 Dec;65(12):5338-44 – reference: 21949071 - J Bacteriol. 2011 Dec;193(23):6461-70 – reference: 12736 - Bacteriol Rev. 1976 Dec;40(4):908-62 – reference: 21330434 - Microbiology. 2011 May;157(Pt 5):1343-53 – reference: 19564382 - Infect Immun. 2009 Sep;77(9):3661-9 – reference: 15238481 - CMAJ. 2004 Jul 6;171(1):19-21 – reference: 7161375 - J Clin Microbiol. 1982 Dec;16(6):1096-101 – reference: 12694623 - Mol Microbiol. 2003 May;48(3):811-21 – reference: 16521587 - Prikl Biokhim Mikrobiol. 2006 Jan-Feb;42(1):111-6 – reference: 16322603 - N Engl J Med. 2005 Dec 8;353(23):2433-41 – reference: 20802075 - Appl Environ Microbiol. 2010 Oct;76(20):6895-900 – reference: 19891996 - J Microbiol Methods. 2010 Jan;80(1):49-55 – reference: 19528959 - Nat Rev Microbiol. 2009 Jul;7(7):526-36 – reference: 15121298 - Vaccine. 2004 May 7;22(15-16):1873-85 – reference: 9281845 - Tissue Cell. 1997 Aug;29(4):449-61 – reference: 16938293 - FEBS Lett. 2006 Sep 18;580(21):5016-22 – reference: 14757055 - J Mol Biol. 2004 Feb 13;336(2):421-39 – reference: 4215654 - Eur J Biochem. 1974 Sep 16;47(3):469-74 – reference: 14762008 - J Bacteriol. 2004 Feb;186(4):1129-35 – reference: 20675495 - J Bacteriol. 2010 Oct;192(19):4904-11 – reference: 18177221 - Clin Infect Dis. 2008 Jan 15;46 Suppl 1:S43-9 – reference: 11115868 - Plant Physiol. 2000 Dec;124(4):1515-9 – reference: 21949780 - PLoS One. 2011;6(9):e24894 – reference: 18412710 - Clin Microbiol Infect. 2008 May;14 Suppl 5:2-20 – reference: 10862622 - J Biol Chem. 2000 Sep 29;275(39):30019-28 – reference: 17609596 - Curr Opin Infect Dis. 2007 Aug;20(4):376-83 – reference: 9573176 - J Bacteriol. 1998 May;180(9):2285-91 – reference: 12704155 - Infect Immun. 2003 May;71(5):2810-8 – reference: 18667557 - Microbiology. 2008 Aug;154(Pt 8):2241-50 – reference: 16390444 - Mol Microbiol. 2006 Jan;59(2):487-502 – reference: 16183021 - Chem Biol. 2005 Sep;12(9):973-80 – reference: 16261177 - Nat Rev Microbiol. 2005 Dec;3(12):969-78 – reference: 21299645 - Mol Microbiol. 2011 Feb;79(4):882-99 – reference: 10610808 - Methods. 2000 Jan;20(1):95-110 – reference: 16322602 - N Engl J Med. 2005 Dec 8;353(23):2442-9 – reference: 3139490 - Genes Dev. 1988 Aug;2(8):1047-54 – reference: 21482682 - Infect Immun. 2011 Jun;79(6):2295-302 – reference: 21659510 - J Biol Chem. 2011 Aug 5;286(31):27483-93 – reference: 20047906 - J Bacteriol. 2010 Mar;192(5):1455-8 – reference: 2115401 - Cell. 1990 Jul 27;62(2):239-50 – reference: 19332553 - Mol Cell Biol. 2009 Jun;29(11):3229-40 |
SSID | ssj0014452 |
Score | 2.4078615 |
Snippet | Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their... Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley... Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their... |
SourceID | pubmedcentral proquest pubmed crossref highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1492 |
SubjectTerms | Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology catalase chitinase Clostridium difficile Clostridium difficile - genetics Clostridium difficile - growth & development Clostridium difficile - metabolism Detoxification Enzymatic activity enzyme activity Enzymes - genetics Enzymes - metabolism exine functional properties Gene Knockout Techniques Genes humans Hydrogen peroxide insertional mutagenesis Manganese Mutagenesis, Insertional mutants Mutation pathogens peroxiredoxin Polymerization post-translational modification Proteins spores Spores, Bacterial - genetics Spores, Bacterial - growth & development Spores, Bacterial - metabolism superoxide dismutase |
Title | Functional Characterization of Clostridium difficile Spore Coat Proteins |
URI | http://jb.asm.org/content/195/7/1492.abstract https://www.ncbi.nlm.nih.gov/pubmed/23335421 https://www.proquest.com/docview/1316681823 https://www.proquest.com/docview/1316379233 https://www.proquest.com/docview/1678571101 https://pubmed.ncbi.nlm.nih.gov/PMC3624542 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2ISReEPd1DBSkPSG1JHauj6ysVNU2JtFKfbPsxNnC1qRa0wf2Z_irnJM4bjKVCXiJqtq5-Xw-_uwcf4eQI-kFMgImDh1Jqr4bBNiloOMlkSdCm7HUdXA38tm5P565k7k339n51YpaWpdyEN9t3VfyP1aF_8CuuEv2HyxrLgp_wG-wLxzBwnD8KxuPYFDSa3lDI7x8Z0jg8KbArBxJtl5UiVCyOMPIQWDcmKtOlLhLAJNdrv7AUGV9wc7C-wV48mVR5EtRAq0UWuU_23j3iysEAjwMWEvkOtfXuhS3xdIYN7tWKBJZr6XmuTn3i1pIda23EMVaE1wvSWB6CLcT3tF8a2oHnp5lG2GptkPGCBGnTpI4ULUPRolTzGbUcdJ1Kk6NxqDlcmGKR7ePBRT3N0yOBzitRXHGzZDXfOY__8ZHs9NTPj2ZT7ul1QhPgTtTH7Na7pJHFOYhmCLj69zEEMFk1NNy9PVb6A2gcOdPrft2KM9uKoqWGPW2ic39-NwW4Zk-I081DqzPNeyekx2VvyCP69ylP1-S8QZ81n3wWUVqtcBnGfBZFfgsBJ_VgO8VmY1OpsNxX6fl6MfQ1GWfhTaVIoxTJ7TBD6WJZ6skYswNbAf6PfA9L0gihb7Bs6Xvp45C3TqVOoIp4dvsNdnLAWP7xFKpq1SYxJHypGuHSth2nCRRAs2qEpqwHvnYtByPtWY9pk654dXclYZ8csyrZuYO7ZEjU3lZS7Vsr7YPJuDiEgZRPvtOcckPFZRCO-qRg8YuXKwW_IfkgDsecMRYjxw2luLaB6y4wxzfB85L4VE_mGLw0PjZTeSqWNd1GMp0PlQHOKMXABV3euRNbXzzDnAi81wKJUEHFqYCKsR3S_LsqlKKB3bqwqkHDz_6W_Jk04sPyV55u1bvgGqX8n0F999pSdX7 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Characterization+of+Clostridium+difficile+Spore+Coat+Proteins&rft.jtitle=Journal+of+bacteriology&rft.au=Permpoonpattana%2C+Patima&rft.au=Phetcharaburanin%2C+Jutarop&rft.au=Mikelsone%2C+Anna&rft.au=Dembek%2C+Marcin&rft.date=2013-04-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=195&rft.issue=7&rft.spage=1492&rft_id=info:doi/10.1128%2FJB.02104-12&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2916267331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |