Preventive machine learning models incorporating health checkup data and hair mineral analysis for low bone mass identification

Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total o...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 18792 - 10
Main Authors Kang, Su Jeong, Kim, Joung Ouk (Ryan), Kim, Moon Jong, Hur, Yang-Im, Haam, Ji-Hee, Han, Kunhee, Kim, Young-Sang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-69090-3

Cover

Abstract Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below − 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.
AbstractList Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below − 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.
Abstract Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below − 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.
Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below - 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.
Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below − 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.
Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below - 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains unexplored. This study aimed to develop ML models for predicting low bone mass (LBM) using health checkup data and hair mineral analysis. A total of 1206 postmenopausal women and 820 men aged 50 years or older at a health promotion center were included in this study. LBM was defined as a T-score below - 1 at the lumbar, femur neck, or total hip area. The proportion of individuals with LBM was 59.4% (n = 1205). The features used in the models comprised 50 health checkup items and 22 hair minerals. The ML algorithms employed were Extreme Gradient Boosting (XGB), Random Forest (RF), Gradient Boosting (GB), and Adaptive Boosting (AdaBoost). The subjects were divided into training and test datasets with an 80:20 ratio. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and an F1 score were evaluated to measure the performances of the models. Through 50 repetitions, the mean (standard deviation) AUROC for LBM was 0.744 (± 0.021) for XGB, the highest among the models, followed by 0.737 (± 0.023) for AdaBoost, and 0.733 (± 0.023) for GB, and 0.732 (± 0.021) for RF. The XGB model had an accuracy of 68.7%, sensitivity of 80.7%, specificity of 51.1%, PPV of 70.9%, NPV of 64.3%, and an F1 score of 0.754. However, these performance metrics did not demonstrate notable differences among the models. The XGB model identified sulfur, sodium, mercury, copper, magnesium, arsenic, and phosphate as crucial hair mineral features. The study findings emphasize the significance of employing ML algorithms for predicting LBM. Integrating health checkup data and hair mineral analysis into these models may provide valuable insights into identifying individuals at risk of LBM.
ArticleNumber 18792
Author Hur, Yang-Im
Kim, Moon Jong
Han, Kunhee
Kim, Joung Ouk (Ryan)
Haam, Ji-Hee
Kim, Young-Sang
Kang, Su Jeong
Author_xml – sequence: 1
  givenname: Su Jeong
  orcidid: 0009-0006-1052-2832
  surname: Kang
  fullname: Kang, Su Jeong
  organization: Department of Family Medicine, CHA Bundang Medical Center, CHA University School of Medicine
– sequence: 2
  givenname: Joung Ouk (Ryan)
  orcidid: 0000-0002-1870-5469
  surname: Kim
  fullname: Kim, Joung Ouk (Ryan)
  organization: Department of AI and Big Data, Swiss School of Management
– sequence: 3
  givenname: Moon Jong
  orcidid: 0000-0002-7961-4616
  surname: Kim
  fullname: Kim, Moon Jong
  organization: Department of Family Medicine, CHA Bundang Medical Center, CHA University School of Medicine
– sequence: 4
  givenname: Yang-Im
  orcidid: 0000-0002-2633-9980
  surname: Hur
  fullname: Hur, Yang-Im
  organization: Department of Family Medicine, CHA Bundang Medical Center, CHA University School of Medicine
– sequence: 5
  givenname: Ji-Hee
  orcidid: 0009-0004-3131-0156
  surname: Haam
  fullname: Haam, Ji-Hee
  organization: Department of Family Medicine, CHA Bundang Medical Center, CHA University School of Medicine
– sequence: 6
  givenname: Kunhee
  orcidid: 0000-0001-8307-7692
  surname: Han
  fullname: Han, Kunhee
  organization: Department of Family Medicine, Seoul Medical Center
– sequence: 7
  givenname: Young-Sang
  orcidid: 0000-0002-7397-5410
  surname: Kim
  fullname: Kim, Young-Sang
  email: zeroup@cha.ac.kr
  organization: Department of Family Medicine, CHA Bundang Medical Center, CHA University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39138235$$D View this record in MEDLINE/PubMed
BookMark eNp9kjtvFDEQx1coiISQL0CBLNHQLPixduwKoYhHpEhQQG357NlbH7v2Ye8dSsVXZy4bQkKBC9sa_-c3D8_T5ijlBE3znNHXjAr9pnZMGt1S3rXKUENb8ag54bSTLRecH927HzdntW4oLslNx8yT5lgYJjQX8qT59aXAHtIc90Am54eYgIzgSoppTaYcYKwkJp_LNhc3H4wDuHEeiB_Af99tSXCzIy4FMrhYyIT-xY1ocON1jZX0uZAx_yQrzB4DVKSFQ7g-esTl9Kx53Luxwtntedp8-_D-68Wn9urzx8uLd1et7wyfWyH5eegYC0IxqSVWrRQXfkVB913fKWr6_lyCY5JT7qk-B6Wo9D1luCFCnDaXCzdkt7HbEidXrm120d4YcllbV-boR7AalF6tDA9Ui44G50AaFSh3PfOGOoestwtru1tNEDzWgzU_gD58SXGw67y3jOF3qE4i4dUtoeQfO6iznWL1MI4uQd5VK6jhWmmhBEpf_iPd5F3B9i4qrBfTRNWL-ynd5fLno1HAF4EvudYC_Z2EUXsYKLsMlMXW2puBsgeqWJwqitMayt_Y__H6DfHkzmU
Cites_doi 10.1161/CIRCULATIONAHA.105.594929
10.2165/00024677-200403030-00006
10.1177/03000605241244754
10.3390/bioengineering10030277
10.1056/NEJMp1702071
10.1016/j.bone.2013.05.002
10.1016/j.jtemb.2020.126534
10.1024/0300-9831/a000160
10.1007/s00198-007-0394-0
10.1016/S0030-5898(20)31563-7
10.1210/jc.2010-1886
10.1007/s12603-022-1789-5
10.1016/j.mcna.2021.05.016
10.1097/01.alc.0000128382.79375.b6
10.3390/healthcare10061107
10.1080/gye.16.3.245.250
10.1007/s001980050199
10.1016/S0140-6736(10)62349-5
10.15563/jalliedhealthsci.12.16
10.1007/s11657-020-00802-8
10.1016/j.cmpb.2021.106584
10.3390/ijerph18147635
10.1053/j.semdp.2023.02.002
10.1161/circulationaha.115.001593
10.5489/cuaj.2695
10.3390/s22239235
10.17946/jrst.2020.43.6.495
10.1056/NEJMcp070341
10.1016/j.cca.2016.06.036
10.1016/s0140-6736(02)08657-9
10.1007/s001980170070
10.1007/s12011-007-0011-2
10.1017/ice.2018.265
10.3349/ymj.2013.54.6.1321
10.1001/archinte.164.10.1108
10.1016/j.ajog.2005.08.047
10.1001/jama.2018.14854
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-69090-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Proquest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
ProQuest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
en accès libre
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_8e68bb92d08340daae596d02af1c90aa
PMC11322645
39138235
10_1038_s41598_024_69090_3
Genre Journal Article
GrantInformation_xml – fundername: the Korean Fund for Regenerative Medicine (KFRM) grant
  grantid: KFRM 23C0102L1
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c492t-3527d411d3615850246623cb0e8f4f4609ff75ea15202c087e6605cf015cfc493
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:12:32 EDT 2025
Thu Aug 21 18:34:31 EDT 2025
Thu Sep 04 18:42:48 EDT 2025
Wed Aug 13 01:46:35 EDT 2025
Wed Feb 19 02:02:28 EST 2025
Tue Jul 01 01:02:21 EDT 2025
Fri Feb 21 02:37:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hair mineral analysis
Bone mineral density
Extreme gradient boosting
Machine learning
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-3527d411d3615850246623cb0e8f4f4609ff75ea15202c087e6605cf015cfc493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-1052-2832
0000-0001-8307-7692
0000-0002-7961-4616
0009-0004-3131-0156
0000-0002-1870-5469
0000-0002-2633-9980
0000-0002-7397-5410
OpenAccessLink https://www.proquest.com/docview/3092520083?pq-origsite=%requestingapplication%
PMID 39138235
PQID 3092520083
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_8e68bb92d08340daae596d02af1c90aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11322645
proquest_miscellaneous_3092868363
proquest_journals_3092520083
pubmed_primary_39138235
crossref_primary_10_1038_s41598_024_69090_3
springer_journals_10_1038_s41598_024_69090_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-13
PublicationDateYYYYMMDD 2024-08-13
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Gambacciani, Monteleone, Ciaponi, Sacco, Genazzani (CR42) 2004; 3
Koh (CR7) 2001; 12
Rachner, Khosla, Hofbauer (CR1) 2011; 377
He, Lin, Zhu, Zhu, Xu (CR41) 2024; 52
Cummings, Melton (CR4) 2002; 359
Roth, Battegay, Juchler, Vogt, Widmer (CR11) 2018; 39
Inui (CR34) 2023
Yang, Lai, Tsou, Hwang (CR33) 2021
Anam, Insogna (CR3) 2021; 105
Deo (CR13) 2015; 132
Park (CR18) 2020; 61
Piercy (CR22) 2018; 320
Kotkowiak (CR35) 1997; 43
Chen, Asch (CR12) 2017; 376
Rubin (CR6) 2013; 56
Cadarette, Jaglal, Murray (CR9) 1999; 10
Sedrine (CR10) 2002; 16
Gunzerath, Faden, Zakhari, Warren (CR21) 2004; 28
Sky-Peck (CR16) 1990; 8
Khosla, Melton (CR40) 2007; 356
Albahra (CR27) 2023; 40
Yamashiro, Ogata, Nakamura, Tanei, Kawasaki (CR36) 2021; 12
Boden, Kaplan (CR38) 1990; 21
Sai, Walters, Fang, Gallagher (CR44) 2011; 96
Nohara, Matsumoto, Soejima, Nakashima (CR29) 2022; 214
Canalis, Mazziotti, Giustina, Bilezikian (CR43) 2007; 18
Song, Barrett-Connor, Chung, Kim, Kim (CR17) 2007; 118
Khan (CR23) 2022; 22
CR28
Park (CR19) 2013; 83
Zou, O’Malley, Mauri (CR26) 2007; 115
Morris (CR37) 2017; 467
CR25
CR24
Lane (CR2) 2006; 194
Yoo (CR14) 2013; 54
Lee, Kim, Song (CR15) 2022; 26
CR20
Cadarette (CR8) 2000; 162
Rull, Cano-García Mdel, Arrabal-Martín, Arrabal-Polo (CR39) 2015; 9
Lee, Lee (CR30) 2020; 43
Kwon (CR32) 2022
Shim (CR31) 2020; 15
Siris (CR5) 2004; 164
J-G Shim (69090_CR31) 2020; 15
CH Song (69090_CR17) 2007; 118
O Yang (69090_CR33) 2021
RC Deo (69090_CR13) 2015; 132
69090_CR28
K Yamashiro (69090_CR36) 2021; 12
S Khosla (69090_CR40) 2007; 356
L Kotkowiak (69090_CR35) 1997; 43
L Gunzerath (69090_CR21) 2004; 28
HH Sky-Peck (69090_CR16) 1990; 8
69090_CR20
TK Yoo (69090_CR14) 2013; 54
69090_CR25
69090_CR24
ES Siris (69090_CR5) 2004; 164
AJ Sai (69090_CR44) 2011; 96
E Canalis (69090_CR43) 2007; 18
TD Rachner (69090_CR1) 2011; 377
YA Lee (69090_CR15) 2022; 26
H Morris (69090_CR37) 2017; 467
I-J Lee (69090_CR30) 2020; 43
KC Park (69090_CR18) 2020; 61
SD Boden (69090_CR38) 1990; 21
JH Chen (69090_CR12) 2017; 376
LKH Koh (69090_CR7) 2001; 12
SM Cadarette (69090_CR9) 1999; 10
AK Anam (69090_CR3) 2021; 105
SR Cummings (69090_CR4) 2002; 359
SJ Park (69090_CR19) 2013; 83
KH Zou (69090_CR26) 2007; 115
Y He (69090_CR41) 2024; 52
KH Rubin (69090_CR6) 2013; 56
KL Piercy (69090_CR22) 2018; 320
MA Rull (69090_CR39) 2015; 9
Y Nohara (69090_CR29) 2022; 214
A Inui (69090_CR34) 2023
JA Roth (69090_CR11) 2018; 39
IU Khan (69090_CR23) 2022; 22
SM Cadarette (69090_CR8) 2000; 162
NE Lane (69090_CR2) 2006; 194
S Albahra (69090_CR27) 2023; 40
WB Sedrine (69090_CR10) 2002; 16
M Gambacciani (69090_CR42) 2004; 3
Y Kwon (69090_CR32) 2022
References_xml – volume: 115
  start-page: 654
  year: 2007
  end-page: 657
  ident: CR26
  article-title: Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.594929
– volume: 162
  start-page: 1289
  year: 2000
  end-page: 1294
  ident: CR8
  article-title: Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry
  publication-title: Cmaj
– volume: 3
  start-page: 191
  year: 2004
  end-page: 196
  ident: CR42
  article-title: Effects of oral contraceptives on bone mineral density
  publication-title: Treat. Endocrinol.
  doi: 10.2165/00024677-200403030-00006
– volume: 52
  start-page: 3000605241244754
  year: 2024
  ident: CR41
  article-title: Deep learning in the radiologic diagnosis of osteoporosis: A literature review
  publication-title: J. Int. Med. Res.
  doi: 10.1177/03000605241244754
– year: 2023
  ident: CR34
  article-title: Screening for osteoporosis from blood test data in elderly women using a machine learning approach
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10030277
– volume: 376
  start-page: 2507
  year: 2017
  end-page: 2509
  ident: CR12
  article-title: Machine learning and prediction in medicine: Beyond the peak of inflated expectations
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1702071
– volume: 56
  start-page: 16
  year: 2013
  end-page: 22
  ident: CR6
  article-title: Comparison of different screening tools (FRAX(R), OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture: A population-based prospective study
  publication-title: Bone
  doi: 10.1016/j.bone.2013.05.002
– volume: 61
  start-page: 126534
  year: 2020
  ident: CR18
  article-title: Low selenium levels are associated with decreased bone mineral densities
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2020.126534
– volume: 83
  start-page: 154
  year: 2013
  end-page: 161
  ident: CR19
  article-title: Hair calcium concentration is associated with calcium intake and bone mineral density
  publication-title: Int. J. Vitam. Nutr. Res.
  doi: 10.1024/0300-9831/a000160
– volume: 18
  start-page: 1319
  year: 2007
  end-page: 1328
  ident: CR43
  article-title: Glucocorticoid-induced osteoporosis: Pathophysiology and therapy
  publication-title: Osteop. Int.
  doi: 10.1007/s00198-007-0394-0
– volume: 21
  start-page: 31
  year: 1990
  end-page: 42
  ident: CR38
  article-title: Calcium Homeostasis
  publication-title: Orthopedic Clinics of North America
  doi: 10.1016/S0030-5898(20)31563-7
– volume: 96
  start-page: E436
  year: 2011
  end-page: E446
  ident: CR44
  article-title: Relationship between vitamin D, parathyroid hormone, and bone health
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2010-1886
– volume: 26
  start-page: 515
  year: 2022
  end-page: 520
  ident: CR15
  article-title: Associations between hair mineral concentrations and skeletal muscle mass in Korean adults
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-022-1789-5
– volume: 105
  start-page: 1117
  year: 2021
  end-page: 1134
  ident: CR3
  article-title: Update on osteoporosis screening and management
  publication-title: Med. Clin. North Am.
  doi: 10.1016/j.mcna.2021.05.016
– volume: 8
  start-page: 70
  year: 1990
  end-page: 80
  ident: CR16
  article-title: Distribution of trace elements in human hair
  publication-title: Clin. Physiol. Biochem.
– volume: 28
  start-page: 829
  year: 2004
  end-page: 847
  ident: CR21
  article-title: National Institute on alcohol abuse and alcoholism report on moderate drinking
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1097/01.alc.0000128382.79375.b6
– ident: CR25
– year: 2022
  ident: CR32
  article-title: Osteoporosis pre-screening using ensemble machine learning in postmenopausal Korean women
  publication-title: Healthcare
  doi: 10.3390/healthcare10061107
– volume: 16
  start-page: 245
  year: 2002
  end-page: 250
  ident: CR10
  article-title: Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry
  publication-title: Gynecol. Endocrinol.
  doi: 10.1080/gye.16.3.245.250
– volume: 10
  start-page: 85
  year: 1999
  end-page: 90
  ident: CR9
  article-title: Validation of the simple calculated osteoporosis risk estimation (SCORE) for patient selection for bone densitometry
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980050199
– volume: 377
  start-page: 1276
  year: 2011
  end-page: 1287
  ident: CR1
  article-title: Osteoporosis: Now and the future
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)62349-5
– volume: 12
  start-page: 16
  year: 2021
  end-page: 23
  ident: CR36
  article-title: Relationship between self-reported osteoporosis and mineral concentrations in female hair
  publication-title: J. Allied Health Sci.
  doi: 10.15563/jalliedhealthsci.12.16
– volume: 43
  start-page: 225
  year: 1997
  end-page: 238
  ident: CR35
  article-title: Behavior of selected bio-elements in women with osteoporosis
  publication-title: Ann. Acad. Med. Stetin
– volume: 15
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR31
  article-title: Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women
  publication-title: Arch. Osteop.
  doi: 10.1007/s11657-020-00802-8
– volume: 214
  start-page: 106584
  year: 2022
  ident: CR29
  article-title: Explanation of machine learning models using shapley additive explanation and application for real data in hospital
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2021.106584
– year: 2021
  ident: CR33
  article-title: Development of machine learning models for prediction of osteoporosis from clinical health examination data
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18147635
– volume: 40
  start-page: 71
  year: 2023
  end-page: 87
  ident: CR27
  article-title: Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review of data preprocessing and basic supervised concepts
  publication-title: Semin. Diagn. Pathol.
  doi: 10.1053/j.semdp.2023.02.002
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  ident: CR13
  article-title: Machine learning in medicine
  publication-title: Circulation
  doi: 10.1161/circulationaha.115.001593
– volume: 9
  start-page: 183
  year: 2015
  end-page: 186
  ident: CR39
  article-title: The importance of urinary calcium in postmenopausal women with osteoporotic fracture
  publication-title: Can. Urol. Assoc. J.
  doi: 10.5489/cuaj.2695
– volume: 22
  start-page: 9235
  year: 2022
  ident: CR23
  article-title: A proactive attack detection for heating, ventilation, and air conditioning (HVAC) system using explainable extreme gradient boosting model (XGBoost)
  publication-title: Sensors
  doi: 10.3390/s22239235
– volume: 43
  start-page: 495
  year: 2020
  end-page: 502
  ident: CR30
  article-title: Predictive of osteoporosis by tree-based machine learning model in post-menopause woman
  publication-title: J. Radiol. Sci. Technol.
  doi: 10.17946/jrst.2020.43.6.495
– volume: 356
  start-page: 2293
  year: 2007
  end-page: 2300
  ident: CR40
  article-title: Clinical practice
  publication-title: Osteopenia. N. Engl. J. Med.
  doi: 10.1056/NEJMcp070341
– volume: 467
  start-page: 34
  year: 2017
  end-page: 41
  ident: CR37
  article-title: Clinical usefulness of bone turnover marker concentrations in osteoporosis
  publication-title: Clinica chimica acta
  doi: 10.1016/j.cca.2016.06.036
– volume: 359
  start-page: 1761
  year: 2002
  end-page: 1767
  ident: CR4
  article-title: Epidemiology and outcomes of osteoporotic fractures
  publication-title: Lancet
  doi: 10.1016/s0140-6736(02)08657-9
– volume: 12
  start-page: 699
  year: 2001
  end-page: 705
  ident: CR7
  article-title: A simple tool to identify asian women at increased risk of osteoporosis
  publication-title: Osteop. Int.
  doi: 10.1007/s001980170070
– volume: 118
  start-page: 1
  year: 2007
  end-page: 9
  ident: CR17
  article-title: Associations of calcium and magnesium in serum and hair with bone mineral density in premenopausal women
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-007-0011-2
– volume: 39
  start-page: 1457
  year: 2018
  end-page: 1462
  ident: CR11
  article-title: Introduction to machine learning in digital healthcare epidemiology
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2018.265
– volume: 54
  start-page: 1321
  year: 2013
  end-page: 1330
  ident: CR14
  article-title: Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2013.54.6.1321
– volume: 164
  start-page: 1108
  year: 2004
  end-page: 1112
  ident: CR5
  article-title: Bone mineral density thresholds for pharmacological intervention to prevent fractures
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.164.10.1108
– ident: CR28
– ident: CR24
– volume: 194
  start-page: S3
  year: 2006
  end-page: S11
  ident: CR2
  article-title: Epidemiology, etiology, and diagnosis of osteoporosis
  publication-title: Am. J. Obstetr. Gynecol.
  doi: 10.1016/j.ajog.2005.08.047
– ident: CR20
– volume: 320
  start-page: 2020
  year: 2018
  end-page: 2028
  ident: CR22
  article-title: The physical activity guidelines for Americans
  publication-title: JAMA
  doi: 10.1001/jama.2018.14854
– volume: 9
  start-page: 183
  year: 2015
  ident: 69090_CR39
  publication-title: Can. Urol. Assoc. J.
  doi: 10.5489/cuaj.2695
– volume: 39
  start-page: 1457
  year: 2018
  ident: 69090_CR11
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2018.265
– ident: 69090_CR28
– volume: 356
  start-page: 2293
  year: 2007
  ident: 69090_CR40
  publication-title: Osteopenia. N. Engl. J. Med.
  doi: 10.1056/NEJMcp070341
– volume: 61
  start-page: 126534
  year: 2020
  ident: 69090_CR18
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2020.126534
– volume: 105
  start-page: 1117
  year: 2021
  ident: 69090_CR3
  publication-title: Med. Clin. North Am.
  doi: 10.1016/j.mcna.2021.05.016
– volume: 21
  start-page: 31
  year: 1990
  ident: 69090_CR38
  publication-title: Orthopedic Clinics of North America
  doi: 10.1016/S0030-5898(20)31563-7
– volume: 96
  start-page: E436
  year: 2011
  ident: 69090_CR44
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2010-1886
– volume: 26
  start-page: 515
  year: 2022
  ident: 69090_CR15
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-022-1789-5
– year: 2021
  ident: 69090_CR33
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18147635
– volume: 12
  start-page: 16
  year: 2021
  ident: 69090_CR36
  publication-title: J. Allied Health Sci.
  doi: 10.15563/jalliedhealthsci.12.16
– volume: 10
  start-page: 85
  year: 1999
  ident: 69090_CR9
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980050199
– ident: 69090_CR25
– volume: 320
  start-page: 2020
  year: 2018
  ident: 69090_CR22
  publication-title: JAMA
  doi: 10.1001/jama.2018.14854
– volume: 164
  start-page: 1108
  year: 2004
  ident: 69090_CR5
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.164.10.1108
– volume: 194
  start-page: S3
  year: 2006
  ident: 69090_CR2
  publication-title: Am. J. Obstetr. Gynecol.
  doi: 10.1016/j.ajog.2005.08.047
– volume: 359
  start-page: 1761
  year: 2002
  ident: 69090_CR4
  publication-title: Lancet
  doi: 10.1016/s0140-6736(02)08657-9
– volume: 54
  start-page: 1321
  year: 2013
  ident: 69090_CR14
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2013.54.6.1321
– volume: 43
  start-page: 495
  year: 2020
  ident: 69090_CR30
  publication-title: J. Radiol. Sci. Technol.
  doi: 10.17946/jrst.2020.43.6.495
– volume: 12
  start-page: 699
  year: 2001
  ident: 69090_CR7
  publication-title: Osteop. Int.
  doi: 10.1007/s001980170070
– year: 2022
  ident: 69090_CR32
  publication-title: Healthcare
  doi: 10.3390/healthcare10061107
– volume: 467
  start-page: 34
  year: 2017
  ident: 69090_CR37
  publication-title: Clinica chimica acta
  doi: 10.1016/j.cca.2016.06.036
– volume: 56
  start-page: 16
  year: 2013
  ident: 69090_CR6
  publication-title: Bone
  doi: 10.1016/j.bone.2013.05.002
– volume: 40
  start-page: 71
  year: 2023
  ident: 69090_CR27
  publication-title: Semin. Diagn. Pathol.
  doi: 10.1053/j.semdp.2023.02.002
– year: 2023
  ident: 69090_CR34
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10030277
– volume: 52
  start-page: 300060524124475
  year: 2024
  ident: 69090_CR41
  publication-title: J. Int. Med. Res.
  doi: 10.1177/03000605241244754
– volume: 115
  start-page: 654
  year: 2007
  ident: 69090_CR26
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.594929
– volume: 16
  start-page: 245
  year: 2002
  ident: 69090_CR10
  publication-title: Gynecol. Endocrinol.
  doi: 10.1080/gye.16.3.245.250
– volume: 214
  start-page: 106584
  year: 2022
  ident: 69090_CR29
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2021.106584
– volume: 18
  start-page: 1319
  year: 2007
  ident: 69090_CR43
  publication-title: Osteop. Int.
  doi: 10.1007/s00198-007-0394-0
– volume: 8
  start-page: 70
  year: 1990
  ident: 69090_CR16
  publication-title: Clin. Physiol. Biochem.
– volume: 15
  start-page: 1
  year: 2020
  ident: 69090_CR31
  publication-title: Arch. Osteop.
  doi: 10.1007/s11657-020-00802-8
– volume: 22
  start-page: 9235
  year: 2022
  ident: 69090_CR23
  publication-title: Sensors
  doi: 10.3390/s22239235
– ident: 69090_CR20
– volume: 43
  start-page: 225
  year: 1997
  ident: 69090_CR35
  publication-title: Ann. Acad. Med. Stetin
– volume: 118
  start-page: 1
  year: 2007
  ident: 69090_CR17
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-007-0011-2
– volume: 132
  start-page: 1920
  year: 2015
  ident: 69090_CR13
  publication-title: Circulation
  doi: 10.1161/circulationaha.115.001593
– volume: 3
  start-page: 191
  year: 2004
  ident: 69090_CR42
  publication-title: Treat. Endocrinol.
  doi: 10.2165/00024677-200403030-00006
– ident: 69090_CR24
– volume: 377
  start-page: 1276
  year: 2011
  ident: 69090_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)62349-5
– volume: 376
  start-page: 2507
  year: 2017
  ident: 69090_CR12
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1702071
– volume: 162
  start-page: 1289
  year: 2000
  ident: 69090_CR8
  publication-title: Cmaj
– volume: 83
  start-page: 154
  year: 2013
  ident: 69090_CR19
  publication-title: Int. J. Vitam. Nutr. Res.
  doi: 10.1024/0300-9831/a000160
– volume: 28
  start-page: 829
  year: 2004
  ident: 69090_CR21
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1097/01.alc.0000128382.79375.b6
SSID ssj0000529419
Score 2.430607
Snippet Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models remains...
Abstract Machine learning (ML) models have been increasingly employed to predict osteoporosis. However, the incorporation of hair minerals into ML models...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 18792
SubjectTerms 631/114
692/163
692/163/2743/316/801
Aged
Algorithms
Arsenic
Bone Density
Bone mass
Bone mineral density
Extreme gradient boosting
Female
Femur
Hair
Hair - chemistry
Hair - metabolism
Hair mineral analysis
Health promotion
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Magnesium
Male
Mercury
Middle Aged
Minerals
Minerals - analysis
Minerals - metabolism
multidisciplinary
Osteoporosis
Osteoporosis - diagnosis
Osteoporosis - metabolism
Post-menopause
ROC Curve
Science
Science (multidisciplinary)
Sulfur
SummonAdditionalLinks – databaseName: en accès libre
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fTxQxEG4MCYkvRFHx8CA18U03dNtut30UwuViIk-Q8NZ0u61clD1yPyA88a870-6dHGp88bXb3TYz051v2uk3hHxoIhchelMgN1ghZe0LjbtN4OldXcWKt4lK6euZGl_IL5fV5aNSX5gTlumBs-COdFC6aQxvAStI1joXKqNaxl0svWEuQSNm2KNgKrN6cyNL09-SYUIfzcFT4W0yLgsICA38fDY8USLs_xPK_D1Z8smJaXJEoxdkp0eQ9HOe-UvyLHS7ZDvXlLx_RR5WpEy3gV6nTMlA-9IQ32iqezOnyMiQCYyxMV-FpKA9_315QzFnlLqupVduMqPXk0RLDQ2ZvIQCyKU_pne0mXY4wBy-1vYZR0nJr8nF6PT8ZFz0VRYKLw1fFIDA6laWZSsA3OgKBKQAEvmGBR1llIrhrm4VHDh6xj3TdVAQAvkIOMJH-IR4Q7Y6GPItoTVTxvgKYk7Mm6tLIyM3WmkeJPxYXDMgH1cStzeZTMOmQ3ChbdaPheFt0o8VA3KMSln3RCLs1ADmYXvzsP8yjwEZrlRq-9U5t4IZjnRTGsZ4v34M6woPS1wXpsvcB6YuFPTZyxawnokwyNwoqgHRG7axMdXNJ93kKnF3lxj9KwmvflqZ0a95_V0W-_9DFu_Ic472j4S-Yki2FrNlOABItWgO0-r5CbWYHRY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbxQhECe1xsSXxm-vVoOJb7rKAsvCgzFqbBqT-uQlfSMsC-3Fdq-9j2qf-q93BnbPnJ6-srCwzLDzGxh-Q8irJnIRojcFcoMVUta-0LjbBJbe1VWseJuolA6_qYOx_HpUHW2RId1RP4Hzja4d5pMaz07f_rq4-gAL_n2-Mq7fzcEI4UUxLgvw9Qz8V26R22CZFDpjhz3cz1zf3MjS9HdnNjdds0-Jxn8T9vw7hPKPc9RknvbvkZ0eV9KPWRHuk63QPSB3cqbJq4fkeqBqugz0LMVPBtonjDimKRvOnCJPQ6Y1xsJ8QZKCTP2P5TnFSFLqupaeuMmMnk0SWTUUZEoTCtCXnk5_0mbaYQdzeFvbxyEl0T8i4_0v3z8fFH3uhcJLwxcF4LK6lWXZCoA8uoIJUgCUfMOCjjJKxXCvtwoOzD_jnuk6KHCMfAR04SO8Qjwm2x10-ZTQmiljfAWeKEbT1aWRkRutNA8SfjeuGZHXw4zb80yxYdPRuNA2y8dC9zbJx4oR-YRCWdVEeuxUMJ0d2361WR2UbhrDWwCYkrXOhcqolnEXS2-YcyOyN4jUDipnBTMcSag09PFy9RhWGx6huC5Ml7kODF0oqPMka8BqJMIgn6OoRkSv6cbaUNefdJOTxOhd4p6AktD0zaBGv8f177nY_f9nPCN3OWo2EviKPbK9mC3Dc4BQi-ZFWhc3SrgXAw
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTx0hECZW06SXprW2PmsbmvRWN2WBZeFYX2qMiZ408UZYFvSldZ95P2o8-a93Bnafea099MrCMmEG5hsYPgj53EQuQvSmQG6wQsraFxp3m8DTu7qKFW8TldLpmTq-kCeX1eUG4cNdmJS0nygt0zI9ZId9nYOjwctgXBYQzxlYO56RLQ1xHVr1WI1X-yp4ciVL09-PYUI_0XTNByWq_qfw5d9pkn-clSYXdPSKvOyxI_2WpX1NNkK3TZ7n1yTv35CHgY7pV6A3KUcy0P5RiCuaXryZU-RiyNTFWJgvQVLQm_-xvKWYLUpd19JrN5nRm0kipIaCTFtCAd7Sn9M72kw77GAOf2v7XKOk3h1ycfT9fHxc9O8rFF4avigAe9WtLMtWAKzRFQyQAjDkGxZ0lFEqhvu5VXDg4hn3TNdBQfDjIyAIH-EX4i3Z7KDLXUJrpozxFUSbmDFXl0ZGbrTSPEhYUlwzIl-GEbe3mUbDpuNvoW3Wj4XubdKPFSNyiEpZ1UQK7FQwnV3Z3iSsDko3jeEtgEjJWudCZVTLuIulN8y5EdkfVGr7eTm3ghmORFMa-vi0-gwzCo9JXBemy1wHRBcK6rzLFrCSRBjkbBTViOg121gTdf1LN7lOrN0lxv1KQtODwYwe5fr3WOz9X_X35AVHS0fSXrFPNhezZfgAsGnRfEzz5DcGXBGs
  priority: 102
  providerName: Springer Nature
Title Preventive machine learning models incorporating health checkup data and hair mineral analysis for low bone mass identification
URI https://link.springer.com/article/10.1038/s41598-024-69090-3
https://www.ncbi.nlm.nih.gov/pubmed/39138235
https://www.proquest.com/docview/3092520083
https://www.proquest.com/docview/3092868363
https://pubmed.ncbi.nlm.nih.gov/PMC11322645
https://doaj.org/article/8e68bb92d08340daae596d02af1c90aa
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxJtAWRmJG0R1bMexT2i7alWt1AoBlfZmOY7TrqDJsg8QJ_46M06y1fK6JJLjxI5n7BnPjL8h5HVZcxFqb1LEBkulLHyq0doEkt4VeZ3zKkIpnZ2r0ws5neWz3uC26sMqhzUxLtRV69FGfiiY4QgRpMW7xdcUs0ahd7VPoXGb7EfoMuDnYlZsbSzoxZKZ6c_KMKEPVyCv8EwZlylsCw0sQTvyKML2_03X_DNk8je_aRRHJ_fJvV6PpOOO8A_IrdA8JHe6zJI_HpGfAzTTt0CvY7xkoH2CiEsas9-sKOIydDDGWNgdiKRAQ_95s6AYOUpdU9ErN1_S63kEp4aCDsKEgqpLv7Tfadk22MAKvlb1cUeR1I_Jxcnxp8lp2udaSL00fJ2CHlZUMssqASqOzmGAFChGvmRB17KWiqFtNw8OxD3jnukiKNgI-Rq0CV_DJ8QTstdAk88ILZgyxuew88TouSIzsuZGK82DhOXFlQl5M4y4XXSQGja6woW2HX0sNG8jfaxIyBESZVsT4bBjQbu8tP3ssjooXZaGV8AeklXOhdyoinFXZ94w5xJyMJDU9nN0ZW84KiGvto9hdqHLxDWh3XR1oOtCQZ2nHQdseyIM4jeKPCF6hzd2urr7pJlfRQTvDG0ASsKrbwc2uunXv8fi-f9_4wW5y5GzEbBXHJC99XITXoLKtC5HcV6MyP54PP04hfvR8fn7D1A6UZNRNEPA9UzqX2cFGZA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8WChgJThA1sZ3EPiBEodWWPoRQK_VmHMdpV9Dssg-qnvhH_EZmnGSr5XXr1XFsJzP2jOfxDcDzouLCV05HhA0WSZm7SJG1CSW9zdMq5WWAUtrbzwaH8sNRerQCP7tcGAqr7M7EcFCXI0c28nURa04QQUq8GX-LqGoUeVe7EhoNW-z48zO8sk1fb79H-r7gfGvz4N0gaqsKRE5qPotQ48hLmSSlQGGuUpRRGaoAroi9qmQls5ismKm3KNhi7mKV-wxVfleh3HQVDiFw3CuwKimjtQerG5v7Hz8trDrkN5OJbrNzYqHWpyghKYuNywgvohoPvSUJGAoF_E27_TNI8zdPbRCAWzfhRqu5srcNq92CFV_fhqtNLcvzO_CjA4P67tlpiND0rC1JccxCvZ0pIySIBjiZGpsUTIZc477Mx4xiVZmtS3ZihxN2Ogxw2NjQgKYwVK7Z19EZK0Y1TTDF0co20ikw1104vBQ63INejVM-AJbHmdYuxbsuxevliZYV1ypT3Es80GzRh5fdHzfjBsTDBOe7UKahj8HpTaCPEX3YIKIsehIAd2gYTY5Nu5-N8pkqCs1LZEgZl9b6VGdlzG2VOB1b24e1jqSmPRWm5oKH-_Bs8Rj3MzlpbO1H86YPLl1k2Od-wwGLlQhNiJEi7YNa4o2lpS4_qYcnATM8IatDJvHVVx0bXazr3__i4f8_4ylcGxzs7Zrd7f2dR3CdE5cTXLBYg95sMvePUWGbFU_aXcLg82VvzF93Nk-N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNEmtuPYB4SAsmopVByotDfjOE67gibLZpeqJ_4Xv44ZJ9lqed16dRzbycx4xjPjbwh5UlSM-8rpGLHBYiFyFyv0NoGmt3lWZawMUEof9uXOgXg3ySYb5OdwFwbTKoc9MWzUZePQRz7iiWYIEaT4qOrTIj5uj1_OvsVYQQojrUM5jY5F9vzpCRzf2he720Drp4yN3356sxP3FQZiJzRbxGB95KVI05KDYlcZ6CsJ5oArEq8qUQmZoEcz8xaUXMJconIvwfx3FehQV8EQHMa9QC7mHKwqkKV8kq_8OxhBE6nu7-kkXI1a0JV4n42JGI6kGra_NV0YSgb8zc79M13zt5htUIXja-Rqb8PSVx3TXScbvr5BLnVVLU9vkh8DLNR3T49DrqanfXGKQxoq77QUMSE6CGVs7C5jUuAf92U5o5i1Sm1d0iM7ndPjaQDGhoYOPoWCmU2_Nie0aGqcoIXRyj7nKbDZLXJwLlS4TTZrmPIuoXkitXYZnHoxcy9PtaiYVlIxL2Brs0VEng1_3Mw6OA8TwvBcmY4-BqY3gT6GR-Q1EmXVE6G4Q0MzPzS9ZBvlpSoKzUpgTZGU1vpMyzJhtkqdTqyNyNZAUtPvD6054-aIPF49BsnGcI2tfbPs-sDSuYQ-dzoOWK2Ea8SO5FlE1BpvrC11_Uk9PQro4Sn6H6SAV58PbHS2rn__i3v__4xH5DKIo3m_u793n1xhyOSIG8y3yOZivvQPwHJbFA-DiFDy-bxl8hdedFJU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preventive+machine+learning+models+incorporating+health+checkup+data+and+hair+mineral+analysis+for+low+bone+mass+identification&rft.jtitle=Scientific+reports&rft.au=Kang%2C+Su+Jeong&rft.au=Kim%2C+Joung+Ouk+%28Ryan%29&rft.au=Kim%2C+Moon+Jong&rft.au=Hur%2C+Yang-Im&rft.date=2024-08-13&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=18792&rft_id=info:doi/10.1038%2Fs41598-024-69090-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon