Probing the “Dark Matter” of Protein Fold Space
We used a protein structure prediction method to generate a variety of folds as α-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unb...
Saved in:
Published in | Structure (London) Vol. 17; no. 9; pp. 1244 - 1252 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
09.09.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We used a protein structure prediction method to generate a variety of folds as α-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter. |
---|---|
AbstractList | We used a protein structure prediction method to generate a variety of folds as alpha-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter.We used a protein structure prediction method to generate a variety of folds as alpha-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter. We used a protein structure prediction method to generate a variety of folds as α-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter. We used a protein structure prediction method to generate a variety of folds as alpha-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter. We used a protein structure prediction method to generate a variety of folds as a-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter. |
Author | MacDonald, James T. Jonassen, Inge Taylor, William R. Hollup, Siv Midtun Chelliah, Vijayalakshmi |
Author_xml | – sequence: 1 givenname: William R. surname: Taylor fullname: Taylor, William R. email: wtaylor@nimr.mrc.ac.uk organization: Division of Mathematical Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK – sequence: 2 givenname: Vijayalakshmi surname: Chelliah fullname: Chelliah, Vijayalakshmi organization: Division of Mathematical Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK – sequence: 3 givenname: Siv Midtun surname: Hollup fullname: Hollup, Siv Midtun organization: Department of Informatics, University of Bergen, Norway – sequence: 4 givenname: James T. surname: MacDonald fullname: MacDonald, James T. organization: Division of Mathematical Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK – sequence: 5 givenname: Inge surname: Jonassen fullname: Jonassen, Inge organization: Computational Biology Unit, University of Bergen, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19748345$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1OGzEURi0EKoH2AdigWZXVDNc_scdiVYVSKgWB1HZteZw74DAZp7aD1B0PUl6OJ2GipCy6yOrbnPMtzhHZ70OPhJxQqChQeT6vUo4VA9AVqAoo2yMjWqu6FLSW-2QEWuqSUSYPyVFKcwBgY4AP5JBqJWouxiPC72JofH9f5AcsXp__Xtr4WNzYnDG-Pr8UoS0GIKPvi6vQzYofS-vwIzlobZfw03aPya-rrz8n1-X09tv3yZdp6YRmueSCita1FBRIihqbxmqrpHRMt5Zjw4VqGmq5Bq2oFRL4uEULTinWMgeMH5Ozze8yht8rTNksfHLYdbbHsEpGcQFirOWa_LyT5EKDYroewNMtuGoWODPL6Bc2_jH_ggyA2gAuhpQitsb5bLMPfY7Wd4aCWac3czOkN-v0BpQZ0g8m_c98P9_hXGwcHDI-eYwmOY-9w5mP6LKZBb_DfgPWmZsf |
CitedBy_id | crossref_primary_10_1016_j_jmb_2014_12_002 crossref_primary_10_1002_prot_22651 crossref_primary_10_1016_j_jmb_2024_168791 crossref_primary_10_3390_ijms252312817 crossref_primary_10_1016_j_sbi_2020_04_006 crossref_primary_10_1098_rsif_2014_0419 crossref_primary_10_1002_pro_4934 crossref_primary_10_1002_pro_3488 crossref_primary_10_1371_journal_pone_0028265 crossref_primary_10_1093_bioinformatics_btx352 crossref_primary_10_1021_acs_accounts_7b00186 crossref_primary_10_1016_j_biotechadv_2021_107793 crossref_primary_10_1126_science_aan6864 crossref_primary_10_1186_s12900_017_0073_0 crossref_primary_10_1016_j_jmb_2024_168717 crossref_primary_10_1016_j_compbiolchem_2011_04_008 crossref_primary_10_1080_07391102_2014_1003969 crossref_primary_10_1038_nbt_3994 crossref_primary_10_1088_0953_8984_22_3_033103 crossref_primary_10_1038_s43586_025_00383_1 crossref_primary_10_1021_acs_biomac_1c00131 crossref_primary_10_1089_cmb_2009_0265 crossref_primary_10_1021_jp211052j crossref_primary_10_1002_pro_3279 crossref_primary_10_1038_s41598_018_34533_1 crossref_primary_10_1186_1756_0500_6_303 crossref_primary_10_1038_s41467_018_06391_y crossref_primary_10_1016_j_sbi_2015_12_004 crossref_primary_10_1016_j_jtbi_2013_03_018 crossref_primary_10_1002_bies_201000126 crossref_primary_10_3724_SP_J_1260_2011_00028 crossref_primary_10_1016_j_jsb_2022_107870 crossref_primary_10_1021_acssynbio_8b00225 crossref_primary_10_1371_journal_pone_0164047 crossref_primary_10_1016_j_jsb_2010_07_016 crossref_primary_10_1042_EBC20160018 crossref_primary_10_1038_nchembio_692 crossref_primary_10_1002_bies_201200116 crossref_primary_10_1016_j_cels_2024_09_006 crossref_primary_10_1016_j_jmb_2011_02_056 crossref_primary_10_12688_f1000research_2_94_v1 crossref_primary_10_1016_j_jmb_2021_167160 crossref_primary_10_1093_bioinformatics_bty347 crossref_primary_10_1371_journal_pcbi_1000957 crossref_primary_10_35534_sbe_2023_10006 crossref_primary_10_1073_pnas_1508380112 crossref_primary_10_1002_pro_3742 crossref_primary_10_1111_brv_12905 crossref_primary_10_1002_pro_558 crossref_primary_10_1038_srep41425 crossref_primary_10_4236_am_2019_1011065 crossref_primary_10_1002_pmic_201800069 crossref_primary_10_1186_s12859_019_2796_3 crossref_primary_10_1016_j_compbiolchem_2011_08_002 crossref_primary_10_1016_j_jbc_2023_104579 crossref_primary_10_1021_jacs_9b03705 crossref_primary_10_1038_s41594_023_01029_0 crossref_primary_10_3390_ijms22062787 crossref_primary_10_3390_biom10020193 crossref_primary_10_1016_j_sbi_2015_05_009 crossref_primary_10_1146_annurev_biophys_083012_130315 crossref_primary_10_1016_j_bpj_2017_08_039 crossref_primary_10_1002_pro_2002 crossref_primary_10_1093_bioinformatics_btab598 crossref_primary_10_1016_j_febslet_2013_04_041 crossref_primary_10_1371_journal_pone_0107959 crossref_primary_10_1021_acs_jcim_7b00677 crossref_primary_10_4236_am_2020_119058 crossref_primary_10_1016_j_tibtech_2012_06_001 crossref_primary_10_1039_C7CS00822H |
Cites_doi | 10.1186/gb-2004-5-5-107 10.1073/pnas.0509379103 10.1110/ps.8.3.654 10.1016/j.sbi.2006.04.007 10.1093/nar/25.17.3389 10.1002/prot.21913 10.1038/416657a 10.1093/nar/gki524 10.1016/j.str.2005.05.009 10.1038/35022623 10.1073/pnas.0407152101 10.1006/jmbi.1995.0436 10.1093/bioinformatics/18.10.1350 10.1016/j.jmb.2004.12.055 10.1016/j.sbi.2009.04.009 10.1016/j.febslet.2006.08.070 10.1006/jmbi.1993.1489 10.1093/bioinformatics/16.4.404 10.1093/protein/gzg128 10.1006/jmbi.1998.1645 10.1016/j.compbiolchem.2007.03.002 10.1016/j.sbi.2007.06.002 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd |
Copyright_xml | – notice: 2009 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TB 7U5 8FD FR3 L7M 7X8 |
DOI | 10.1016/j.str.2009.07.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-4186 |
EndPage | 1252 |
ExternalDocumentID | 19748345 10_1016_j_str_2009_07_012 S0969212609002950 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council |
GroupedDBID | --- --K -DZ 0R~ 123 1RT 1~5 2WC 4.4 457 4G. 5VS 62- 6I. 6TJ 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFS ADBBV ADEZE ADJPV AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF HZ~ IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 ~02 29Q 53G AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AGCQF AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CAG CITATION COF FGOYB G-2 OZT R2- SEW Y6R ZXP CGR CUY CVF ECM EFKBS EIF NPM 7TB 7U5 8FD FR3 L7M 7X8 |
ID | FETCH-LOGICAL-c492t-3414fcf107061e9ebba9a766c29fa3eb347bb1a390971a46035fea0c772f2c023 |
IEDL.DBID | IXB |
ISSN | 0969-2126 1878-4186 |
IngestDate | Tue Aug 05 09:28:18 EDT 2025 Fri Jul 11 12:31:53 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Tue Jul 01 04:33:21 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Fri Feb 23 02:32:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | PROTEINS |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-3414fcf107061e9ebba9a766c29fa3eb347bb1a390971a46035fea0c772f2c023 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0969212609002950 |
PMID | 19748345 |
PQID | 34907298 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_734045962 proquest_miscellaneous_34907298 pubmed_primary_19748345 crossref_citationtrail_10_1016_j_str_2009_07_012 crossref_primary_10_1016_j_str_2009_07_012 elsevier_sciencedirect_doi_10_1016_j_str_2009_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-09 |
PublicationDateYYYYMMDD | 2009-09-09 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-09 day: 09 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Structure (London) |
PublicationTitleAlternate | Structure |
PublicationYear | 2009 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Taylor, Bartlett, Chelliah, Klose, Lin, Sheldon, Jonassen (bib27) 2008; 70 Holm, Sander (bib5) 1993; 233 Sadreyev, Kim, Grishin (bib15) 2009; 19 Grant, Lee, Orengo (bib4) 2004; 5 Taylor (bib23) 2006; 580 Johannissen, Taylor (bib6) 2004; 16 Taylor (bib19) 1999; 8 Mallam, Jackson (bib12) 2005; 346 Taylor, Aszódi (bib26) 2005 Lin, May, Taylor (bib10) 2002; 18 Altschul, Madden, Schäffer, Zhang, Zhang, Miller, Lipman (bib1) 1997; 25 Aszódi, Gradwell, Taylor (bib2) 1995; 251 Taylor (bib20) 2000; 406 Friedberg, Godzik (bib3) 2005; 13 Kolodny, Petery, Honig (bib9) 2006; 16 Zhang, Hubner, Arakaki, Shakhnovich, Skolnick (bib29) 2006; 103 Taylor (bib25) 2007; 17 Taylor (bib24) 2007; 31 Taylor (bib22) 2002; 416 Zhang, Skolnick (bib30) 2005; 102 Plaxco, Simons, Baker (bib14) 1998; 277 Zhang, Skolnick (bib31) 2005; 33 Jones (bib8) 2000; 16 Petery, Honig (bib13) 2009; 19 Holm (10.1016/j.str.2009.07.012_bib5) 1993; 233 Zhang (10.1016/j.str.2009.07.012_bib30) 2005; 102 Taylor (10.1016/j.str.2009.07.012_bib24) 2007; 31 Sadreyev (10.1016/j.str.2009.07.012_bib15) 2009; 19 Taylor (10.1016/j.str.2009.07.012_bib23) 2006; 580 Taylor (10.1016/j.str.2009.07.012_bib27) 2008; 70 Aszódi (10.1016/j.str.2009.07.012_bib2) 1995; 251 Taylor (10.1016/j.str.2009.07.012_bib22) 2002; 416 Taylor (10.1016/j.str.2009.07.012_bib25) 2007; 17 Zhang (10.1016/j.str.2009.07.012_bib31) 2005; 33 Grant (10.1016/j.str.2009.07.012_bib4) 2004; 5 Taylor (10.1016/j.str.2009.07.012_bib20) 2000; 406 Taylor (10.1016/j.str.2009.07.012_bib26) 2005 Johannissen (10.1016/j.str.2009.07.012_bib6) 2004; 16 Jones (10.1016/j.str.2009.07.012_bib8) 2000; 16 Altschul (10.1016/j.str.2009.07.012_bib1) 1997; 25 Mallam (10.1016/j.str.2009.07.012_bib12) 2005; 346 Petery (10.1016/j.str.2009.07.012_bib13) 2009; 19 Plaxco (10.1016/j.str.2009.07.012_bib14) 1998; 277 Friedberg (10.1016/j.str.2009.07.012_bib3) 2005; 13 Zhang (10.1016/j.str.2009.07.012_bib29) 2006; 103 Kolodny (10.1016/j.str.2009.07.012_bib9) 2006; 16 Lin (10.1016/j.str.2009.07.012_bib10) 2002; 18 Taylor (10.1016/j.str.2009.07.012_bib19) 1999; 8 |
References_xml | – volume: 31 start-page: 151 year: 2007 end-page: 162 ident: bib24 article-title: Protein knots and fold complexity: some new twists publication-title: Comput. Biol. Chem. – year: 2005 ident: bib26 article-title: Protein Geometry, Classification, Topology and Symmetry: A Computational Analysis of Structure – volume: 70 start-page: 1610 year: 2008 end-page: 1619 ident: bib27 article-title: Prediction of protein structure from ideal forms publication-title: Proteins – volume: 251 start-page: 308 year: 1995 end-page: 326 ident: bib2 article-title: Global fold determination from a small number of distance restraints publication-title: J. Mol. Biol. – volume: 25 start-page: 3389 year: 1997 end-page: 3402 ident: bib1 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res. – volume: 416 start-page: 657 year: 2002 end-page: 660 ident: bib22 article-title: A periodic table for protein structure publication-title: Nature – volume: 103 start-page: 2605 year: 2006 end-page: 2610 ident: bib29 article-title: On the origin and highly likely completeness of single-domain protein structures publication-title: Proc. Natl. Acad. Sci. USA – volume: 277 start-page: 985 year: 1998 end-page: 994 ident: bib14 article-title: Contact order, transition state placement and the refolding rates of single domain proteins publication-title: J. Mol. Biol. – volume: 17 start-page: 354 year: 2007 end-page: 361 ident: bib25 article-title: Evolutionary transitions in protein fold space publication-title: Curr. Opin. Struct. Biol. – volume: 16 start-page: 949 year: 2004 end-page: 955 ident: bib6 article-title: Protein fold comparison by the alignment of topological strings publication-title: Prot. Eng. – volume: 13 start-page: 1203 year: 2005 end-page: 1211 ident: bib3 article-title: Connecting the protein structure universe by using sparse recurring fragments publication-title: Structure – volume: 406 start-page: 916 year: 2000 end-page: 919 ident: bib20 article-title: A deeply knotted protein and how it might fold publication-title: Nature – volume: 33 start-page: 2302 year: 2005 end-page: 2309 ident: bib31 article-title: A protein structure alignment algorithm based on TM-score publication-title: Nucleic Acids Res. – volume: 19 start-page: 1 year: 2009 end-page: 6 ident: bib13 article-title: Is protein classification necessary? towards alternative approaches to function prediction publication-title: Curr. Opin. Struct. Biol. – volume: 102 start-page: 1029 year: 2005 end-page: 1034 ident: bib30 article-title: The protein structure prediction problem could be solved using the current PDB library publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 107 year: 2004 ident: bib4 article-title: Progress towards mapping the universe of protein folds publication-title: Genome Biol. – volume: 18 start-page: 1350 year: 2002 end-page: 1357 ident: bib10 article-title: Threading using neural networks (TUNE): the measure of protein sequence-structure compatibility publication-title: Bioinformatics – volume: 8 start-page: 654 year: 1999 end-page: 665 ident: bib19 article-title: Protein structure alignment using iterated double dynamic programming publication-title: Protein Sci. – volume: 16 start-page: 393 year: 2006 end-page: 398 ident: bib9 article-title: Protein structure comparison: implications for the nature of ’fold space’, and structure and function prediction publication-title: Curr. Opin. Struct. Biol. – volume: 16 start-page: 404 year: 2000 end-page: 405 ident: bib8 article-title: The PSIPRED protein structure prediction server publication-title: Bioinformatics – volume: 346 start-page: 1409 year: 2005 end-page: 1421 ident: bib12 article-title: Folding studies on a knotted protein publication-title: J. Mol. Biol. – volume: 19 start-page: 321 year: 2009 end-page: 328 ident: bib15 article-title: Discrete-continuous duality of protein structure space publication-title: Curr. Opin. Struct. Biol. – volume: 233 start-page: 123 year: 1993 end-page: 138 ident: bib5 article-title: Protein-structure comparison by alignment of distance matrices publication-title: J. Mol. Biol. – volume: 580 start-page: 5263 year: 2006 end-page: 5267 ident: bib23 article-title: Topological accessibility shows a distinct asymmetry in the folds of βα proteins publication-title: FEBS Lett. – volume: 5 start-page: 107 year: 2004 ident: 10.1016/j.str.2009.07.012_bib4 article-title: Progress towards mapping the universe of protein folds publication-title: Genome Biol. doi: 10.1186/gb-2004-5-5-107 – volume: 103 start-page: 2605 year: 2006 ident: 10.1016/j.str.2009.07.012_bib29 article-title: On the origin and highly likely completeness of single-domain protein structures publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0509379103 – volume: 8 start-page: 654 year: 1999 ident: 10.1016/j.str.2009.07.012_bib19 article-title: Protein structure alignment using iterated double dynamic programming publication-title: Protein Sci. doi: 10.1110/ps.8.3.654 – volume: 19 start-page: 1 year: 2009 ident: 10.1016/j.str.2009.07.012_bib13 article-title: Is protein classification necessary? towards alternative approaches to function prediction publication-title: Curr. Opin. Struct. Biol. – volume: 16 start-page: 393 year: 2006 ident: 10.1016/j.str.2009.07.012_bib9 article-title: Protein structure comparison: implications for the nature of ’fold space’, and structure and function prediction publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2006.04.007 – volume: 25 start-page: 3389 year: 1997 ident: 10.1016/j.str.2009.07.012_bib1 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 70 start-page: 1610 year: 2008 ident: 10.1016/j.str.2009.07.012_bib27 article-title: Prediction of protein structure from ideal forms publication-title: Proteins doi: 10.1002/prot.21913 – volume: 416 start-page: 657 year: 2002 ident: 10.1016/j.str.2009.07.012_bib22 article-title: A periodic table for protein structure publication-title: Nature doi: 10.1038/416657a – year: 2005 ident: 10.1016/j.str.2009.07.012_bib26 – volume: 33 start-page: 2302 year: 2005 ident: 10.1016/j.str.2009.07.012_bib31 article-title: A protein structure alignment algorithm based on TM-score publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki524 – volume: 13 start-page: 1203 year: 2005 ident: 10.1016/j.str.2009.07.012_bib3 article-title: Connecting the protein structure universe by using sparse recurring fragments publication-title: Structure doi: 10.1016/j.str.2005.05.009 – volume: 406 start-page: 916 year: 2000 ident: 10.1016/j.str.2009.07.012_bib20 article-title: A deeply knotted protein and how it might fold publication-title: Nature doi: 10.1038/35022623 – volume: 102 start-page: 1029 year: 2005 ident: 10.1016/j.str.2009.07.012_bib30 article-title: The protein structure prediction problem could be solved using the current PDB library publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407152101 – volume: 251 start-page: 308 year: 1995 ident: 10.1016/j.str.2009.07.012_bib2 article-title: Global fold determination from a small number of distance restraints publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0436 – volume: 18 start-page: 1350 year: 2002 ident: 10.1016/j.str.2009.07.012_bib10 article-title: Threading using neural networks (TUNE): the measure of protein sequence-structure compatibility publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.10.1350 – volume: 346 start-page: 1409 year: 2005 ident: 10.1016/j.str.2009.07.012_bib12 article-title: Folding studies on a knotted protein publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.12.055 – volume: 19 start-page: 321 year: 2009 ident: 10.1016/j.str.2009.07.012_bib15 article-title: Discrete-continuous duality of protein structure space publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.04.009 – volume: 580 start-page: 5263 year: 2006 ident: 10.1016/j.str.2009.07.012_bib23 article-title: Topological accessibility shows a distinct asymmetry in the folds of βα proteins publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.08.070 – volume: 233 start-page: 123 year: 1993 ident: 10.1016/j.str.2009.07.012_bib5 article-title: Protein-structure comparison by alignment of distance matrices publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1489 – volume: 16 start-page: 404 year: 2000 ident: 10.1016/j.str.2009.07.012_bib8 article-title: The PSIPRED protein structure prediction server publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.4.404 – volume: 16 start-page: 949 year: 2004 ident: 10.1016/j.str.2009.07.012_bib6 article-title: Protein fold comparison by the alignment of topological strings publication-title: Prot. Eng. doi: 10.1093/protein/gzg128 – volume: 277 start-page: 985 year: 1998 ident: 10.1016/j.str.2009.07.012_bib14 article-title: Contact order, transition state placement and the refolding rates of single domain proteins publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.1645 – volume: 31 start-page: 151 year: 2007 ident: 10.1016/j.str.2009.07.012_bib24 article-title: Protein knots and fold complexity: some new twists publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2007.03.002 – volume: 17 start-page: 354 year: 2007 ident: 10.1016/j.str.2009.07.012_bib25 article-title: Evolutionary transitions in protein fold space publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2007.06.002 |
SSID | ssj0002500 |
Score | 2.239966 |
Snippet | We used a protein structure prediction method to generate a variety of folds as α-carbon models with realistic secondary structures and good hydrophobic... We used a protein structure prediction method to generate a variety of folds as alpha-carbon models with realistic secondary structures and good hydrophobic... We used a protein structure prediction method to generate a variety of folds as a-carbon models with realistic secondary structures and good hydrophobic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1244 |
SubjectTerms | Models, Molecular Molecular Probes Protein Folding PROTEINS Proteins - chemistry |
Title | Probing the “Dark Matter” of Protein Fold Space |
URI | https://dx.doi.org/10.1016/j.str.2009.07.012 https://www.ncbi.nlm.nih.gov/pubmed/19748345 https://www.proquest.com/docview/34907298 https://www.proquest.com/docview/734045962 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqEBIL4k15FA9MSKGp7Tw8lkJVURVVPEQ3yw42KlQpKu3A1h8Cf66_hLOTFDG0A1Km6BxZ5-Tuu9zddwidEQ6YVRPqxdpIj2mSeJxFgcdjrpQCQEGVbXDu3IatR3bTC3ol1Ch6YWxZZW77M5vurHV-p5prs_re71fvAXxzMLyhz21qycXtlMWuia93ObfG4OLdfxYQ9qx0kdl0NV4f41FOWRld-DWyyDctwp7OBzU30UYOHnE9298WKul0G61l4yQ_dxDtWlKl9AUDqMOz6deVHL3hjiPQnE2_8dDgrmVl6Ke4ORw843sIl_UuemxePzRaXj4UwUsYJ2MPvA4ziYGoDTyx5lopyWUUhgnhRlIIjVmkVE1SbsmhJAt9Ghgt_QRQtCEJeOg9tJIOU32AsFOOpL4JdMRUGHCAJsYEksCyhES6jPxCHSLJGcPt4IqBKErDXgVo0E6y5MKPBGiwjM7nS94zuoxlwqzQsfhz5gLM-bJlp8V5CPgWbIJDpno4-RCUcUuEHpcRXiARUQYYlofwkP3sJH-3CZFVTFlw-L9dHaH1LNFkr2O0Mh5N9AnglbGqoNV6--6pXXEv5g8WzOgv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SEb2Ib-szB0_C2m2S3WyOWi31USlUobeQrIlUy7b0cfDWH6J_rr_EyT4UD-1B2NMyWcJMMvPNTvINQmdEAGY1hHqRscpjhsSeYDzwRCS01gAoqHYXnJuPYeOZ3XWCzhKqFXdh3LHK3PdnPj311vmbSq7NyqDbrbQBfAtwvKEvXGnJ5e3LgAa42523nasfdwwxPv3RAtKeEy9Km-khr9F4mHNW8gu_SuYFp3ngMw1C9Q20nqNHfJlNcBMtmWQLrWT9JD-2EW05VqXkFQOqw7Pp57UavuNmyqA5m37hvsUtR8vQTXC933vBbciXzQ56rt881Rpe3hXBi5kgYw_CDrOxhbQNQrERRmslFA_DmAirKOTGjGtdVVQ4dijFQp8G1ig_BhhtSQwheheVkn5i9hFOlaOobwPDmQ4DAdjE2kARGBYTbsrIL9Qh45wy3HWu6MnibNibBA26VpZC-lyCBsvo_GfIIOPLWCTMCh3LP0aX4M8XDTst7CFhM7gKh0pMfzKSlAnHhB6VEZ4jwSkDECtC-MheZsnfaUJqFVEWHPxvVqdotfHUfJAPt4_3h2gtqzq55wiVxsOJOQbwMtYn6eL8Bnx96aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+%22Dark+Matter%22+of+Protein+Fold+Space&rft.jtitle=Structure+%28London%29&rft.au=Taylor%2C+William+R&rft.au=Chelliah%2C+Vijayalakshmi&rft.au=Hollup%2C+Siv+Midtun&rft.au=MacDonald%2C+James+T&rft.date=2009-09-09&rft.issn=0969-2126&rft.volume=17&rft.issue=9&rft.spage=1244&rft.epage=1252&rft_id=info:doi/10.1016%2Fj.str.2009.07.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-2126&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-2126&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-2126&client=summon |