Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy

Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 48; pp. 17266 - 17271
Main Authors Zhang, Suping, Cui, Bing, Lai, Hsien, Liu, Grace, Ghia, Emanuela M., Widhopf, George F., Zhang, Zhuhong, Wu, Christina C. N., Chen, Liguang, Wu, Rongrong, Schwab, Richard, Carson, Dennis A., Kipps, Thomas J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.12.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1 . We found that ROR1-positive (ROR1 ⁺) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1 ᴺᵉᵍ) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial–mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1 ⁺ cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer. Significance This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human ovarian cancer stem cells (CSCs), on which it seems to play a functional role in promoting migration/invasion or spheroid formation in vitro and tumor engraftment in immune-deficient mice. Treatment with a humanized mAb specific for ROR1 (UC-961) could inhibit the capacity of ovarian cancer cells to migrate, form spheroids, or engraft immune-deficient mice. Moreover, such treatment inhibited the growth of tumor xenografts, which in turn had a reduced capacity to engraft immune-deficient mice and were relatively depleted of cells with features of CSC, suggesting that treatment with UC-961 could impair CSC renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which may be targeted for anti-CSC therapy.
AbstractList Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1(+)) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1(Neg)) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial-mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1(+) cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.
Significance This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human ovarian cancer stem cells (CSCs), on which it seems to play a functional role in promoting migration/invasion or spheroid formation in vitro and tumor engraftment in immune-deficient mice. Treatment with a humanized mAb specific for ROR1 (UC-961) could inhibit the capacity of ovarian cancer cells to migrate, form spheroids, or engraft immune-deficient mice. Moreover, such treatment inhibited the growth of tumor xenografts, which in turn had a reduced capacity to engraft immune-deficient mice and were relatively depleted of cells with features of CSC, suggesting that treatment with UC-961 could impair CSC renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which may be targeted for anti-CSC therapy. Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1 . We found that ROR1-positive (ROR1 + ) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1 Neg ) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial–mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1 + cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.
This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human ovarian cancer stem cells (CSCs), on which it seems to play a functional role in promoting migration/invasion or spheroid formation in vitro and tumor engraftment in immune-deficient mice. Treatment with a humanized mAb specific for ROR1 (UC-961) could inhibit the capacity of ovarian cancer cells to migrate, form spheroids, or engraft immune-deficient mice. Moreover, such treatment inhibited the growth of tumor xenografts, which in turn had a reduced capacity to engraft immune-deficient mice and were relatively depleted of cells with features of CSC, suggesting that treatment with UC-961 could impair CSC renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which may be targeted for anti-CSC therapy. Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1 . We found that ROR1-positive (ROR1 + ) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1 Neg ) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial–mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1 + cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.
Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1⁺) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1Neg) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial-mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1⁺ cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xe nog raft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.
Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1 . We found that ROR1-positive (ROR1 ⁺) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1 ᴺᵉᵍ) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial–mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1 ⁺ cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer. Significance This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human ovarian cancer stem cells (CSCs), on which it seems to play a functional role in promoting migration/invasion or spheroid formation in vitro and tumor engraftment in immune-deficient mice. Treatment with a humanized mAb specific for ROR1 (UC-961) could inhibit the capacity of ovarian cancer cells to migrate, form spheroids, or engraft immune-deficient mice. Moreover, such treatment inhibited the growth of tumor xenografts, which in turn had a reduced capacity to engraft immune-deficient mice and were relatively depleted of cells with features of CSC, suggesting that treatment with UC-961 could impair CSC renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which may be targeted for anti-CSC therapy.
Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1+) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (...) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial-mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1+ cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer. (ProQuest: ... denotes formulae/symbols omitted.)
Author Zhang, Zhuhong
Widhopf, George F.
Wu, Rongrong
Carson, Dennis A.
Zhang, Suping
Lai, Hsien
Ghia, Emanuela M.
Cui, Bing
Wu, Christina C. N.
Schwab, Richard
Kipps, Thomas J.
Chen, Liguang
Liu, Grace
Author_xml – sequence: 1
  givenname: Suping
  surname: Zhang
  fullname: Zhang, Suping
– sequence: 2
  givenname: Bing
  surname: Cui
  fullname: Cui, Bing
– sequence: 3
  givenname: Hsien
  surname: Lai
  fullname: Lai, Hsien
– sequence: 4
  givenname: Grace
  surname: Liu
  fullname: Liu, Grace
– sequence: 5
  givenname: Emanuela M.
  surname: Ghia
  fullname: Ghia, Emanuela M.
– sequence: 6
  givenname: George F.
  surname: Widhopf
  fullname: Widhopf, George F.
– sequence: 7
  givenname: Zhuhong
  surname: Zhang
  fullname: Zhang, Zhuhong
– sequence: 8
  givenname: Christina C. N.
  surname: Wu
  fullname: Wu, Christina C. N.
– sequence: 9
  givenname: Liguang
  surname: Chen
  fullname: Chen, Liguang
– sequence: 10
  givenname: Rongrong
  surname: Wu
  fullname: Wu, Rongrong
– sequence: 11
  givenname: Richard
  surname: Schwab
  fullname: Schwab, Richard
– sequence: 12
  givenname: Dennis A.
  surname: Carson
  fullname: Carson, Dennis A.
– sequence: 13
  givenname: Thomas J.
  surname: Kipps
  fullname: Kipps, Thomas J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25411317$$D View this record in MEDLINE/PubMed
BookMark eNpdks1u1DAUhS1URKeFNSvAEhsWpPV1HMfeVEIVf1KlkQpdWzcZeyajGTvYmUJ3fYe-IU-CowzDz8qL8_mTj45PyJEP3hLyHNgZsLo87z2mMxCgK60B4BGZAdNQSKHZEZkxxutCCS6OyUlKa8aYrhR7Qo55JQBKqGcE57cYO_S0Rd_aSNNgt7S1m02i9kcfbUr0en4Nb-n3VdeuRoo2lg4Yl3awC-pCpOiH7uf9wyQoRkExCuiwshH7u6fkscNNss_25ym5-fD-6-Wn4mr-8fPlu6uiFZoPBV9gJR1zqqlRWssAlHMoNFqFOUEuS2cr1biFcAJ5AxorxtA1rZBlm9uckovJ2--arV201g8RN6aP3RbjnQnYmX8T363MMtwawSWrKp0Fb_aCGL7tbBrMtktjE_Q27JIBybXOoFAZff0fug676HO9TJVC1aWoRKbOJ6qNIaVo3eExwMw4nxnnM3_myzde_t3hwP_eKwN0D4w3DzoAI5SBmkuZkRcTsk5DiAdGlLxW-V_k_NWUOwwGl7FL5uYLZyAZg1JpBeUvDvq3YQ
CitedBy_id crossref_primary_10_1111_cas_12858
crossref_primary_10_15252_embj_2022112614
crossref_primary_10_1007_s13277_016_5294_5
crossref_primary_10_1038_nrc4019
crossref_primary_10_1016_j_ctrv_2019_101934
crossref_primary_10_3389_fonc_2016_00115
crossref_primary_10_1016_j_jbior_2019_100669
crossref_primary_10_1007_s12104_017_9797_9
crossref_primary_10_1111_jcmm_14148
crossref_primary_10_3390_cancers14153618
crossref_primary_10_1158_1078_0432_CCR_16_2083
crossref_primary_10_1016_j_clml_2015_02_010
crossref_primary_10_3390_cancers15041275
crossref_primary_10_1016_j_ebiom_2019_04_061
crossref_primary_10_1038_s41598_020_70924_z
crossref_primary_10_3233_CBM_201463
crossref_primary_10_1038_s41419_021_03855_w
crossref_primary_10_1182_blood_2016_04_712562
crossref_primary_10_1038_s41551_019_0486_0
crossref_primary_10_1155_2016_2603092
crossref_primary_10_1007_s41745_020_00174_5
crossref_primary_10_1016_j_biocel_2018_12_010
crossref_primary_10_1038_s41598_017_04756_9
crossref_primary_10_3390_cells8030210
crossref_primary_10_1530_ERC_18_0112
crossref_primary_10_3390_biomedicines8060170
crossref_primary_10_1038_s41392_020_00249_w
crossref_primary_10_3892_ijo_2017_4129
crossref_primary_10_1080_2162402X_2017_1326437
crossref_primary_10_1186_s12885_016_2903_z
crossref_primary_10_3892_mmr_2018_9500
crossref_primary_10_3390_cells8111380
crossref_primary_10_1186_s40064_016_2660_0
crossref_primary_10_3390_medicines5010016
crossref_primary_10_1002_jcp_25759
crossref_primary_10_1186_s12967_019_02178_x
crossref_primary_10_1016_j_procbio_2020_07_008
crossref_primary_10_1186_s13045_016_0318_6
crossref_primary_10_4137_CGM_S21221
crossref_primary_10_3390_pharmaceutics14040837
crossref_primary_10_1038_nrc_2016_97
crossref_primary_10_1016_j_semcancer_2019_10_006
crossref_primary_10_1038_s41420_023_01527_6
crossref_primary_10_3892_ol_2016_4115
crossref_primary_10_18632_oncotarget_23605
crossref_primary_10_1038_ncomms10060
crossref_primary_10_1002_ctm2_1670
crossref_primary_10_3892_ijo_2019_4795
crossref_primary_10_1038_nrd_2015_13
crossref_primary_10_18632_oncotarget_21143
crossref_primary_10_1038_oncsis_2017_25
crossref_primary_10_3390_cancers11030310
crossref_primary_10_1371_journal_pone_0124450
crossref_primary_10_1002_1878_0261_12414
crossref_primary_10_3892_ijo_2015_3241
crossref_primary_10_1016_j_ygyno_2018_01_025
crossref_primary_10_3390_biology12121492
crossref_primary_10_1080_08977194_2018_1472089
crossref_primary_10_2147_OTT_S254607
crossref_primary_10_3390_cells8080812
crossref_primary_10_1158_0008_5472_CAN_20_2571
crossref_primary_10_1371_journal_pone_0133152
crossref_primary_10_1007_s10967_018_5755_y
crossref_primary_10_1177_2058739218762058
crossref_primary_10_1016_j_bmcl_2023_129589
crossref_primary_10_3390_cancers8090079
crossref_primary_10_1007_s10555_020_09874_x
crossref_primary_10_1517_14728222_2015_1025753
crossref_primary_10_1155_2019_9394615
crossref_primary_10_3390_cancers14235827
crossref_primary_10_1038_s41467_019_13700_6
crossref_primary_10_1016_j_isci_2022_104193
crossref_primary_10_1016_j_biocel_2018_11_012
crossref_primary_10_1016_j_ygyno_2015_09_085
crossref_primary_10_12688_f1000research_126337_1
crossref_primary_10_18632_oncotarget_5643
crossref_primary_10_3389_fmed_2023_1121020
crossref_primary_10_1007_s00109_019_01807_8
crossref_primary_10_1080_17460441_2016_1243525
crossref_primary_10_1080_08880018_2019_1646365
crossref_primary_10_1039_D1TB01837J
crossref_primary_10_4252_wjsc_v11_i7_383
crossref_primary_10_3389_fonc_2021_680834
crossref_primary_10_1016_j_critrevonc_2017_06_007
crossref_primary_10_3390_pharmaceutics15041148
crossref_primary_10_1038_oncsis_2016_32
crossref_primary_10_1371_journal_pone_0128151
crossref_primary_10_1016_j_biopha_2020_110946
crossref_primary_10_1186_s12967_019_2005_1
crossref_primary_10_1111_cas_14825
crossref_primary_10_1038_s41419_020_03009_4
crossref_primary_10_3389_fcell_2021_699487
crossref_primary_10_1155_2017_5295286
crossref_primary_10_1016_j_imlet_2017_11_010
crossref_primary_10_1016_j_biopha_2023_114609
crossref_primary_10_3390_jfb13040260
crossref_primary_10_1042_BCJ20160782
crossref_primary_10_3390_cancers11050718
crossref_primary_10_1172_JCI83535
crossref_primary_10_18632_oncotarget_22559
crossref_primary_10_1016_j_celrep_2018_01_053
crossref_primary_10_1016_j_tranon_2017_01_014
crossref_primary_10_1042_EBC20220025
crossref_primary_10_3390_ijms241310683
crossref_primary_10_1002_sctm_19_0424
crossref_primary_10_3389_fcell_2020_583087
crossref_primary_10_3390_medicina58121867
crossref_primary_10_3390_medicina59050994
crossref_primary_10_3987_COM_23_14869
crossref_primary_10_1016_j_yexcr_2020_112009
crossref_primary_10_1080_14737159_2016_1194758
crossref_primary_10_4049_jimmunol_1801327
crossref_primary_10_1016_j_semcancer_2021_03_008
crossref_primary_10_1016_j_ctrv_2019_05_006
crossref_primary_10_18632_oncotarget_21618
crossref_primary_10_3390_cancers10080241
crossref_primary_10_3390_cancers12051267
crossref_primary_10_18632_oncotarget_15860
crossref_primary_10_1002_cbf_3172
crossref_primary_10_1038_s41598_020_58864_0
crossref_primary_10_1016_j_stem_2018_05_018
crossref_primary_10_1016_j_yexcr_2022_113150
crossref_primary_10_1016_j_apsb_2017_06_007
crossref_primary_10_1182_blood_2021014760
crossref_primary_10_1182_blood_2017_05_786947
crossref_primary_10_1016_j_cellsig_2023_110588
crossref_primary_10_1080_07391102_2019_1635914
crossref_primary_10_3390_cells10010142
Cites_doi 10.1002/cncr.26215
10.1200/JCO.1996.14.6.1895
10.1158/1535-7163.MCT-10-0788
10.1158/0008-5472.CAN-08-0364
10.1016/j.critrevonc.2010.07.004
10.1371/journal.pone.0084941
10.1056/NEJM199601043340101
10.1158/1078-0432.CCR-08-0196
10.1158/1535-7163.MCT-10-0563
10.1038/nm.3418
10.1016/S0046-8177(98)90066-1
10.1038/onc.2008.374
10.1002/path.2793
10.1159/000112847
10.1186/1757-2215-3-28
10.1038/ng.127
10.4161/cc.8.1.7533
10.1371/journal.pone.0029079
10.1200/JCO.2006.10.2517
10.2741/3693
10.1038/srep05811
10.1016/j.leukres.2011.06.021
10.1371/journal.pone.0010277
10.1016/j.semcancer.2012.04.001
10.1186/1471-2407-9-221
10.1158/0008-5472.CAN-07-6341
10.1073/pnas.0712148105
10.1172/JCI200420800
10.1016/j.ajpath.2011.11.015
10.1073/pnas.0603672103
10.1172/JCI69815
10.1073/pnas.0506580102
10.2217/nnm.12.22
10.1016/j.ccr.2012.02.008
10.1371/journal.pone.0057799
10.1002/stem.236
10.1016/j.ajpath.2012.08.024
10.1158/0008-5472.CAN-10-3175
10.1158/0008-5472.CAN-12-3832
10.1073/pnas.1308374111
10.1002/hon.948
10.1046/j.1432-1327.1998.2510549.x
10.1371/journal.pone.0031127
10.1158/0008-5472.CAN-10-2662
10.1186/1476-4598-12-24
10.1158/0008-5472.CAN-07-6595
10.1158/1078-0432.CCR-09-2317
10.1158/0008-5472.CAN-06-3126
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 2, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 2, 2014
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1419599111
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE



Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Targeting ROR1 on ovarian cancer stem cells
EISSN 1091-6490
EndPage 17271
ExternalDocumentID 3521676911
10_1073_pnas_1419599111
25411317
111_48_17266
43278649
US201600138981
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA023100
– fundername: NCI NIH HHS
  grantid: P30CA23100
– fundername: NCI NIH HHS
  grantid: P01-CA081534
– fundername: NCI NIH HHS
  grantid: P01 CA081534
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: PO1-CA081534
– fundername: California Institute for Regenerative Medicine (CIRM)
  grantid: DR1-01430
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c492t-2da56f0f8b7a6ee0118ffa49ae8aa56a263fe58bfd4f4a2b19a500afbc463c113
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:25:27 EDT 2024
Sat Aug 17 01:34:18 EDT 2024
Fri Sep 13 00:31:16 EDT 2024
Fri Aug 23 03:01:25 EDT 2024
Sat Sep 28 08:04:32 EDT 2024
Wed Nov 11 00:30:04 EST 2020
Fri Feb 02 07:06:05 EST 2024
Wed Dec 27 19:19:36 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords PDX mice model
ovarian cancer stem cell
ROR1
monoclonal antibody
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-2da56f0f8b7a6ee0118ffa49ae8aa56a263fe58bfd4f4a2b19a500afbc463c113
Notes http://dx.doi.org/10.1073/pnas.1419599111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: S.Z. and T.J.K. designed research; S.Z., B.C., H.L., G.L., Z.Z., C.C.N.W., L.C., and R.W. performed research; G.F.W. and R.S. contributed new reagents/analytic tools; S.Z., B.C., H.L., G.L., E.M.G., D.A.C., and T.J.K. analyzed data; and S.Z., H.L., and T.J.K. wrote the paper.
Contributed by Dennis A. Carson, October 22, 2014 (sent for review September 15, 2014; reviewed by Brunhilde H. Felding)
Reviewers included: B.H.F., The Scripps Research Institute.
1S.Z. and B.C. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/111/48/17266.full.pdf
PMID 25411317
PQID 1634873454
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1629955948
jstor_primary_43278649
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4260559
crossref_primary_10_1073_pnas_1419599111
proquest_journals_1634873454
fao_agris_US201600138981
pnas_primary_111_48_17266
pubmed_primary_25411317
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2014-12-02
PublicationDateYYYYMMDD 2014-12-02
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 18698038 - Clin Cancer Res. 2008 Aug 15;14(16):5198-208
22471722 - Nanomedicine (Lond). 2012 Apr;7(4):597-615
18593951 - Cancer Res. 2008 Jul 1;68(13):5478-86
18287027 - Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3047-52
18443585 - Nat Genet. 2008 May;40(5):499-507
9490025 - Eur J Biochem. 1998 Feb 1;251(3):549-57
25056203 - Sci Rep. 2014;4:5811
23593543 - Am J Cancer Res. 2013 Apr 03;3(2):221-9
20422001 - PLoS One. 2010;5(4):e10277
21079657 - Iran Biomed J. 2010 Jul;14(3):77-82
18836486 - Oncogene. 2009 Jan 15;28(2):209-18
24292392 - Nat Med. 2014 Jan;20(1):29-36
17704411 - J Clin Oncol. 2007 Aug 20;25(24):3621-7
20889728 - Mol Cancer Ther. 2010 Dec;9(12):3186-99
22554795 - Semin Cancer Biol. 2012 Oct;22(5-6):396-403
24409314 - PLoS One. 2014;9(1):e84941
19158483 - Cell Cycle. 2009 Jan 1;8(1):158-66
21196176 - Front Biosci (Landmark Ed). 2011;16:368-92
16849428 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11154-9
23536770 - PLoS One. 2013;8(3):e57799
19583859 - BMC Cancer. 2009;9:221
9596274 - Hum Pathol. 1998 May;29(5):498-504
22272227 - PLoS One. 2012;7(1):e29079
20674385 - Crit Rev Oncol Hematol. 2011 Jul;79(1):17-23
24762435 - J Clin Invest. 2014 Jun;124(6):2611-25
21216927 - Mol Cancer Ther. 2011 Feb;10(2):325-35
20597086 - Hematol Oncol. 2011 Mar;29(1):17-21
19816957 - Stem Cells. 2009 Dec;27(12):2875-83
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
21125672 - J Pathol. 2011 Jan;223(2):147-61
21813176 - Leuk Res. 2011 Oct;35(10):1390-4
8656258 - J Clin Oncol. 1996 Jun;14(6):1895-902
14722607 - J Clin Invest. 2004 Jan;113(2):175-9
18519691 - Cancer Res. 2008 Jun 1;68(11):4311-20
21487037 - Cancer Res. 2011 Apr 15;71(8):3132-41
21176222 - J Ovarian Res. 2010 Dec 22;3:28
22403610 - PLoS One. 2012;7(3):e31127
21498635 - Cancer Res. 2011 Jun 1;71(11):3991-4001
22222226 - Am J Pathol. 2012 Mar;180(3):1159-69
23041612 - Am J Pathol. 2012 Dec;181(6):1903-10
19996211 - Clin Cancer Res. 2009 Dec 15;15(24):7593-7601
18160824 - Cells Tissues Organs. 2008;188(1-2):127-38
23771907 - Cancer Res. 2013 Jun 15;73(12):3649-60
16990346 - Cancer Res. 2006 Oct 1;66(19):9339-44
23537295 - Mol Cancer. 2013;12:24
21692061 - Cancer. 2011 Dec 15;117(24):5519-28
22439932 - Cancer Cell. 2012 Mar 20;21(3):348-61
18632618 - Cancer Res. 2008 Jul 15;68(14):5658-68
24379361 - Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):793-8
7494563 - N Engl J Med. 1996 Jan 4;334(1):1-6
e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Rabbani H (e_1_3_3_27_2) 2010; 14
Ricci F (e_1_3_3_44_2) 2013; 3
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_49_2
  doi: 10.1002/cncr.26215
– ident: e_1_3_3_2_2
  doi: 10.1200/JCO.1996.14.6.1895
– ident: e_1_3_3_42_2
  doi: 10.1158/1535-7163.MCT-10-0788
– ident: e_1_3_3_18_2
  doi: 10.1158/0008-5472.CAN-08-0364
– ident: e_1_3_3_3_2
  doi: 10.1016/j.critrevonc.2010.07.004
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pone.0084941
– ident: e_1_3_3_1_2
  doi: 10.1056/NEJM199601043340101
– ident: e_1_3_3_35_2
  doi: 10.1158/1078-0432.CCR-08-0196
– ident: e_1_3_3_9_2
  doi: 10.1158/1535-7163.MCT-10-0563
– ident: e_1_3_3_39_2
  doi: 10.1038/nm.3418
– ident: e_1_3_3_47_2
  doi: 10.1016/S0046-8177(98)90066-1
– ident: e_1_3_3_7_2
  doi: 10.1038/onc.2008.374
– ident: e_1_3_3_13_2
  doi: 10.1002/path.2793
– ident: e_1_3_3_46_2
  doi: 10.1159/000112847
– ident: e_1_3_3_11_2
  doi: 10.1186/1757-2215-3-28
– ident: e_1_3_3_23_2
  doi: 10.1038/ng.127
– ident: e_1_3_3_5_2
  doi: 10.4161/cc.8.1.7533
– ident: e_1_3_3_16_2
  doi: 10.1371/journal.pone.0029079
– ident: e_1_3_3_41_2
  doi: 10.1200/JCO.2006.10.2517
– ident: e_1_3_3_6_2
  doi: 10.2741/3693
– ident: e_1_3_3_34_2
  doi: 10.1038/srep05811
– ident: e_1_3_3_50_2
  doi: 10.1016/j.leukres.2011.06.021
– ident: e_1_3_3_10_2
  doi: 10.1371/journal.pone.0010277
– ident: e_1_3_3_25_2
  doi: 10.1016/j.semcancer.2012.04.001
– ident: e_1_3_3_19_2
  doi: 10.1186/1471-2407-9-221
– ident: e_1_3_3_15_2
  doi: 10.1158/0008-5472.CAN-07-6341
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.0712148105
– volume: 3
  start-page: 221
  year: 2013
  ident: e_1_3_3_44_2
  article-title: ALDH enzymatic activity and CD133 positivity and response to chemotherapy in ovarian cancer patients
  publication-title: Am J Cancer Res
  contributor:
    fullname: Ricci F
– ident: e_1_3_3_38_2
  doi: 10.1172/JCI200420800
– ident: e_1_3_3_17_2
  doi: 10.1016/j.ajpath.2011.11.015
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.0603672103
– ident: e_1_3_3_21_2
  doi: 10.1172/JCI69815
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.0506580102
– ident: e_1_3_3_43_2
  doi: 10.2217/nnm.12.22
– ident: e_1_3_3_32_2
  doi: 10.1016/j.ccr.2012.02.008
– ident: e_1_3_3_24_2
  doi: 10.1371/journal.pone.0057799
– ident: e_1_3_3_8_2
  doi: 10.1002/stem.236
– volume: 14
  start-page: 77
  year: 2010
  ident: e_1_3_3_27_2
  article-title: Expression of ROR1 in patients with renal cancer: A potential diagnostic marker
  publication-title: Iran Biomed J
  contributor:
    fullname: Rabbani H
– ident: e_1_3_3_30_2
  doi: 10.1016/j.ajpath.2012.08.024
– ident: e_1_3_3_45_2
  doi: 10.1158/0008-5472.CAN-10-3175
– ident: e_1_3_3_33_2
  doi: 10.1158/0008-5472.CAN-12-3832
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.1308374111
– ident: e_1_3_3_28_2
  doi: 10.1002/hon.948
– ident: e_1_3_3_12_2
  doi: 10.1046/j.1432-1327.1998.2510549.x
– ident: e_1_3_3_31_2
  doi: 10.1371/journal.pone.0031127
– ident: e_1_3_3_29_2
  doi: 10.1158/0008-5472.CAN-10-2662
– ident: e_1_3_3_20_2
  doi: 10.1186/1476-4598-12-24
– ident: e_1_3_3_36_2
  doi: 10.1158/0008-5472.CAN-07-6595
– ident: e_1_3_3_48_2
  doi: 10.1158/1078-0432.CCR-09-2317
– ident: e_1_3_3_4_2
  doi: 10.1158/0008-5472.CAN-06-3126
SSID ssj0009580
Score 2.547773
Snippet Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which...
Significance This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human...
This study demonstrates that the oncoembryonic surface antigen, receptor tyrosine kinase-like orphan receptor 1 (ROR1), is expressed on human ovarian cancer...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17266
SubjectTerms Animals
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - pharmacology
Biological Sciences
Cancer
Cancer therapies
Cell Line, Tumor
Cell lines
Cellular immunity
Female
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Heterologous transplantation
Humans
Immunoblotting
Kaplan-Meier Estimate
Mice
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Microscopy, Confocal
Molecular Targeted Therapy - methods
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Ovarian cancer
Ovarian Neoplasms - genetics
Ovarian Neoplasms - metabolism
Ovarian Neoplasms - prevention & control
Prognosis
Receptor Tyrosine Kinase-like Orphan Receptors - genetics
Receptor Tyrosine Kinase-like Orphan Receptors - immunology
Receptor Tyrosine Kinase-like Orphan Receptors - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA Interference
Rodents
Signatures
Spheroids
Spheroids, Cellular - drug effects
Spheroids, Cellular - metabolism
Stem cells
Transplantation, Heterologous
Tumors
Title Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy
URI https://www.jstor.org/stable/43278649
http://www.pnas.org/content/111/48/17266.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25411317
https://www.proquest.com/docview/1634873454/abstract/
https://search.proquest.com/docview/1629955948
https://pubmed.ncbi.nlm.nih.gov/PMC4260559
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKFAaaCsjcSgS6e76FedYVVQFVIoKK_UWOY7dXYlmV90t0Bv_of-QX8KM8yhFnDiPPY7mYc_EM58BXvGR5byyKq0MPWFmqjzFoN6lvMy1DMGVPEIKnXzUxxP5_lydr4HqemFi0b4rZ_v118v9ejaNtZWLSzfs6sSGn04OCVUdI-HhAAaZEF2K3iPtmqbvhOP2K7ns8HwyMVzUdolbA-GpkI8TELCS47GIr5XdnUqDYOddeSJhnuKsf8Wff5dR_nEuHT2Ch21AyQ6aD9-ANV8_ho3WZZdsr8WVfv0E7Ok3TIxtzRxp-ooRhDOjH_dL5n_Eelh2dno2fsO-T2duSqNY6VlTKu4rhtEtQzXMfv28bRikxCAlBqzp4rp5CpOjt18Oj9P2hYXUyZyvUtKSDqNgysxq76kLNQQrc-uNRYrlWgSvTBkqGaTl5TinBxRsKJ3UwqHkNmG9ntd-C5gKlfKZd5gBIVEbIz0GIx7TN1Mqa7ME9joJF4sGSKOIF-CZKEjCxZ1eEthCDRT2Are5YvKZEwhevFA1SNqMaulZSMEzo2WeQBK59Kwxr5GmwPBM6wS2O-UVrYficlpgriakkgm87MnoWyQ2W_v5NY3Bw1oRoE0Czxpd9wt0lpNAds8K-gGE232fguYc8btb833-3zNfwAMUSsSbHPFtWF9dXfsdjI1W5S5mBe8-7EaP-A02DQvb
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB615QAXSoG2WwoYiUOR2Dy8ttd7RBVVgKZFpUG9rWyvTSLoJmoSXif-A_-QX8LY-yituMB57LHsmbG_kcefAZ7SnqK0UDwupP_CTBZZjKDexFRngjlnNA2UQsMjMRix12f8bAV48xYmFO0bPemUn8475WQcaitn56bb1Il13w73Pas6IuHuKtzAeKVpk6S3XLuyenlCcQNmlDWMPmnSnZVqjpuDZ1TxUe6pgDnr95PwX9nlubTq1LQpUPSsp9jrbwj0eiHlHyfTwTq8b-ZUFaR87CwXumO-X6N7_OdJ34HbNVYlLyrxBqzY8i5s1LvBnOzVlNXP7oE6_ow5tyqJ8U50QTw7NPF3AnNiv4ZSW3JyfNJ_Tr6MJ2bsWxFtSVWFbguCwJmghSe_fvysFMReQewVkOqB2Lf7MDp4ebo_iOvPG2LDMrqIvQMI13NSp0pY6x-4OqdYpqxUKFFUJM5yqV3BHFNU9zP_N4Ny2jCRGDTJJqyV09JuA-Gu4Da1BpMrFAopmUWcYzEzlJorlUaw15gun1UcHXm4W0-T3JsuvzR4BNto2lx9wB00H72jnl8v3NVKFG0Ge7cqWEJTKVgWQRS0tKoxZWIyR-QnRAS7jVfkdfDjcCLBNDBhnEXwpBVj2PplU6WdLn0bxAHcc-VEsFU5UTtA45IRpFfcq23gKcGvStBpAjV47SQ7_93zMdwcnA4P88NXR28ewC1coEBr2aO7sLa4WNqHCMEW-lEIuN9GCyzZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuQIG2gQJG4lAkstl1nMQ5osKqPPpQYaWKS2Q7NruCZlfdXV4n_gP_kF_CjPPoQ5x6HmcsZ8bjb-TxNwDPeF9xXqokLCW1MJNlHiKoNyHXeSqcM5p7SqG9_XR3JN4eJ8fnWn35on2jJ73q60mvmox9beXsxERtnVh0uLdDrOqIhKNZ6aIVuI57ludtot7x7cr69QnHICy4aFl9sjiaVWqOAYJYVWinEx1wIgaD2PcsOzubVpyatkWKxHyKX_0PhV4upjx3Og1vw6d2XXVRypfecqF75tclyscrLfwO3GowK3tZD1mDa7a6C2tNVJiz7Ya6-vk9UAffMPdWFTPkTKeMWKIZ3Q3Mmf3hS27Z0cHR4AX7Pp6YMY1i2rK6Gt2WDAE0Q0tP_v7-UysISUFIClj9UOznfRgNX3_c2Q2bJg6hETlfhOQIqes7qTOVWksPXZ1TIldWKpQonsbOJlK7UjihuB7k1KNBOW1EGhs0yzqsVtPKbgJLXJnYzBpMslCYSiks4h2LGaLUiVJZANut-YpZzdVR-Dv2LC7IfMWZ0QPYRPMW6jNG0mL0gRPPnr-zlSha9zbvVIiYZzIVeQCB19KpxtRJyAIRYJoGsNV6RtEEAZwujTEdjEUiAnjaiXH70m9TlZ0uaQzigYQ4cwLYqB2pm6B1ywCyCy7WDSBq8IsSdBxPEd44yoMrf_kEbhy-Ghbv3-y_ewg38f94dss-34LVxenSPkIkttCP_Z77B74_L1k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ovarian+cancer+stem+cells+express+ROR1%2C+which+can+be+targeted+for+anti%E2%80%93cancer-stem-cell+therapy&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Suping&rft.au=Cui%2C+Bing&rft.au=Lai%2C+Hsien&rft.au=Liu%2C+Grace&rft.date=2014-12-02&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=48&rft.spage=17266&rft.epage=17271&rft_id=info:doi/10.1073%2Fpnas.1419599111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1419599111
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F48.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F48.cover.gif