Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid
The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied...
Saved in:
Published in | Progress in natural science Vol. 24; no. 5; pp. 516 - 522 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2014
School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation(MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid(SBF) were studied systematically. Scanning electron microscope(SEM) and X-ray diffractometer(XRD)were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2and the calcium phosphate(Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed. |
---|---|
AbstractList | The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation (MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid (SBF) were studied systematically. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2 and the calcium phosphate (Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed. The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation (MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid (SBF) were studied systematically. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2 and the calcium phosphate (Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed. The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation(MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid(SBF) were studied systematically. Scanning electron microscope(SEM) and X-ray diffractometer(XRD)were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2and the calcium phosphate(Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed. |
Author | Ying Li Fang Lu Honglong Li Wenjun Zhu Haobo Pan Guoxin Tan Yonghua Lao Chengyun Ning Guoxin Ni |
AuthorAffiliation | School of Materials Science and Engineering, South China University of Technology School of Chinese Materia Medica, Guangzhou University of Chinese Medicine Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science Institute of Chemical Engineering and Light Industry, Guangdong University of Technology Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China |
Author_xml | – sequence: 1 givenname: Ying surname: Li fullname: Li, Ying organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Fang surname: Lu fullname: Lu, Fang organization: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China – sequence: 3 givenname: Honglong surname: Li fullname: Li, Honglong organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Wenjun surname: Zhu fullname: Zhu, Wenjun organization: Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China – sequence: 5 givenname: Haobo surname: Pan fullname: Pan, Haobo organization: Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China – sequence: 6 givenname: Guoxin surname: Tan fullname: Tan, Guoxin email: tanguoxin@126.com organization: Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China – sequence: 7 givenname: Yonghua surname: Lao fullname: Lao, Yonghua organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 8 givenname: Chengyun surname: Ning fullname: Ning, Chengyun email: imcyning@scut.edu.cn organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 9 givenname: Guoxin surname: Ni fullname: Ni, Guoxin email: fgxni@graduate.hku.hk organization: Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China |
BookMark | eNp9kDFvHCEUhCkcKbaTP5CKNsVuHrAsrJTGOjmJJUtukiYN4oA9s1ngDHuJz78-rM9pUrhihOZ7o5kLdBZTdAh9INASIP2nqd3HYloKpGtBtgDiDJ0TANpUSd6ii1ImWGUvzlHYpJxT8Sni4My9jr4EnEYcvMmp0dng9OitXlbDkp1enMVbn0wK-_q5nR2--skIDnoXXfGHgPU8pyP2ERcfDvPJn-wRj_PB23fozajn4t6_vJfox5fr75tvze3d15vN1W1juoEuDeXM9b0zRAAbJOVi3I5SEuiskyB6SmU_GKZdJ4UdOBktZ1QA7XsCg5VWskv08XT3j46jjjs1pUOONVE95V-P05Ny6zrA61zVK0_eWriU7EZl_PJceMnaz4qAWmdVk1pnVSuoQKo6YEXpf-g--6Dz8XXo8wlydYDf3mVVjHfROOuzM4uyyb-Os5fM-xR3D76W-xc6gOCikwOHTnYDp53k7Flx9hd97KUW |
CitedBy_id | crossref_primary_10_1016_j_jma_2022_12_001 crossref_primary_10_1080_01694243_2023_2251759 crossref_primary_10_20964_2020_07_68 crossref_primary_10_1016_j_diamond_2023_110025 crossref_primary_10_1016_j_commatsci_2024_113546 crossref_primary_10_3390_met8090724 crossref_primary_10_1016_j_jma_2022_09_002 crossref_primary_10_1002_adfm_202408869 crossref_primary_10_1016_j_pnsc_2023_10_006 crossref_primary_10_1016_j_polymdegradstab_2023_110370 crossref_primary_10_1016_j_surfcoat_2021_127370 crossref_primary_10_1016_j_jmrt_2023_09_263 crossref_primary_10_1016_j_surfcoat_2023_130115 crossref_primary_10_1007_s11665_015_1645_4 crossref_primary_10_1016_j_corsci_2022_110775 crossref_primary_10_3390_coatings14010084 crossref_primary_10_3390_met14020236 crossref_primary_10_1016_j_heliyon_2024_e30286 crossref_primary_10_1016_j_surfcoat_2019_01_052 crossref_primary_10_1080_02670844_2019_1656371 crossref_primary_10_1002_maco_201810293 crossref_primary_10_1016_j_surfin_2021_101290 crossref_primary_10_1016_j_jallcom_2015_11_169 crossref_primary_10_1016_S1003_6326_18_64819_8 crossref_primary_10_1016_j_surfcoat_2018_11_040 crossref_primary_10_3390_coatings11060667 crossref_primary_10_1016_j_inoche_2023_111470 crossref_primary_10_1142_S0218625X23300058 crossref_primary_10_1142_S0218625X23500750 crossref_primary_10_1016_j_actbio_2019_04_012 crossref_primary_10_1016_j_surfcoat_2018_12_106 crossref_primary_10_3389_fmats_2020_00190 crossref_primary_10_3390_app7010033 crossref_primary_10_1016_j_pnsc_2022_09_016 crossref_primary_10_1016_j_mtcomm_2022_105197 |
Cites_doi | 10.1016/j.actbio.2010.11.034 10.1016/j.biomaterials.2004.09.049 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N 10.1002/adem.200800035 10.1016/j.jmbbm.2011.05.026 10.1016/j.jallcom.2013.06.036 10.1007/s11837-009-0129-0 10.1016/j.actbio.2009.06.028 10.1016/j.apsusc.2011.04.141 10.1007/s11998-011-9382-6 10.1016/j.tsf.2012.05.046 10.1007/s10853-007-1738-z 10.1016/j.actbio.2010.07.026 10.1016/j.biomaterials.2006.01.017 10.1002/ccd.20520 10.1016/j.surfcoat.2008.08.070 10.1016/j.tsf.2007.05.048 10.1016/j.cossms.2009.04.001 10.1016/j.actbio.2009.10.008 10.1016/S0257-8972(03)00634-0 10.1016/j.apsusc.2009.02.082 10.1016/j.apsusc.2008.06.199 10.1016/j.surfcoat.2012.06.056 10.1016/j.actbio.2009.12.009 10.1016/j.biomaterials.2005.10.003 10.1016/j.tsf.2006.02.023 10.1016/j.actbio.2011.02.034 |
ContentType | Journal Article |
Copyright | 2014 Chinese Materials Research Society Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2014 Chinese Materials Research Society – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.pnsc.2014.08.007 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EndPage | 522 |
ExternalDocumentID | zrkxjz_e201405016 10_1016_j_pnsc_2014_08_007 S1002007114001105 90757489504849524853484955 |
GroupedDBID | --K -01 -0A -SA -S~ 0R~ 0SF 123 1B1 1~5 29P 2B. 2C. 2DF 2RA 3YN 4.4 457 4G. 5VR 5VS 5XA 5XB 5XL 6I. 7-5 92E 92I 92L 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABJNI ABMAC ACGFS ACNNM ACRLP ADEZE ADMUD AEFWE AEXQZ AEZYN AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AWYRJ CAG CAJEA CAJUS CCEZO CCVFK CHBEP COF CQIGP CS3 CW9 DU5 EBS EJD EO9 EP2 FA0 FDB GROUPED_DOAJ HH5 HZ~ IHE IPNFZ IXB JUIAU KQ8 M41 M4Z NCXOZ NQ- O-L O9- OK1 Q-- Q-0 R-A RIG ROL RPZ RT1 S.. SDG SPC SSZ T8Q TCJ TFW TGP U1F U1G U5A U5K UNMZH XFK ~02 ~L8 ~WA AIKHN AATTM AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION EFJIC FYGXN H13 SSH TDBHL 4A8 PSX |
ID | FETCH-LOGICAL-c492t-253e66ec170398257fbf88104de807622869c3ae487d951fd53270266109d8d83 |
IEDL.DBID | IXB |
ISSN | 1002-0071 |
IngestDate | Thu May 29 04:07:36 EDT 2025 Tue Jul 01 04:26:18 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Fri Feb 23 02:29:40 EST 2024 Wed Feb 14 10:29:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Corrosion resistance Biodegradable AZ31 magnesium alloy Mechanism Micro-arc oxidation |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-253e66ec170398257fbf88104de807622869c3ae487d951fd53270266109d8d83 |
Notes | Ying Li;Fang Lu;Honglong Li;Wenjun Zhu;Haobo Pan;Guoxin Tan;Yonghua Lao;Chengyun Ning;Guoxin Ni;School of Materials Science and Engineering, South China University of Technology;School of Chinese Materia Medica, Guangzhou University of Chinese Medicine;Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University;Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science;Institute of Chemical Engineering and Light Industry, Guangdong University of Technology;Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology;Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University 11-3853/N |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1002007114001105 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zrkxjz_e201405016 crossref_citationtrail_10_1016_j_pnsc_2014_08_007 crossref_primary_10_1016_j_pnsc_2014_08_007 elsevier_sciencedirect_doi_10_1016_j_pnsc_2014_08_007 chongqing_primary_90757489504849524853484955 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Progress in natural science |
PublicationTitleAlternate | Progress in Natural Science |
PublicationTitle_FL | Progress in Natural Science Materials International |
PublicationYear | 2014 |
Publisher | Elsevier B.V School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China |
Publisher_xml | – name: Elsevier B.V – name: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China |
References | Witte, Kaese, Haferkamp, Switzer, Meyer-Lindenberg, Wirth, Windhagen (bib10) 2005; 26 Zhang, Yuan, Mao, Niu (bib12) 2012; 7 Cui, Yang, Liu, Jin (bib17) 2011; 257 Song, Atrens (bib6) 1999; 1 Kokubo, Takadama (bib27) 2006; 27 Zhang, Zhang, Li, Li, Yang (bib24) 2012; 207 Cui, Li, Li, Wang, Jin, Ding (bib16) 2008; 255 Rama Krishna, Poshal, Jyothirmayi, Sundararajan (bib25) 2013; 578 Zartner, Cesnjevar, Singer, Weyand (bib5) 2005; 66 Hoche, Scheerer, Probst, Broszeit, Berger (bib15) 2003; 174 Wang, Guan, Wang, Ren, Wang (bib21) 2010; 6 Zhang, Zhao, Wu, Wang, Wu (bib23) 2007; 42 Brar, Platt, Sarntinoranont, Martin, Manuel (bib1) 2009; 61 Hänzi, Gerber, Schinhammer, Löffler, Uggowitzer (bib9) 2010; 6 Zhao, Wu, Lu, Wu (bib14) 2013; 529 Jamesh, Kumar, Narayanan (bib20) 2012; 9 Yao, Li, Jiang (bib22) 2009; 255 Witte, Hort, Vogt, Cohen (bib2) 2008; 12 Zhang, Zhang, Zhao, Li (bib11) 2010; 6 Hamdy (bib18) 2008; 203 Khramov, Balbyshev, Kasten, Mantz (bib19) 2006; 514 Lee, Leng, Chow, Ren (bib26) 2011; 7 Gu, Li, Zhou, Zheng (bib7) 2011; 7 Liu, Xin, Tian, Chu (bib13) 2007; 516 Staiger, Pietak, Huadmai, Dias (bib3) 2006; 27 Gu, Zhou, Zheng, Cheng (bib8) 2010; 6 Zeng, Dietzel, Witte, Hort, Blawert (bib4) 2008; 10 Witte (10.1016/j.pnsc.2014.08.007_bib2) 2008; 12 Khramov (10.1016/j.pnsc.2014.08.007_bib19) 2006; 514 Jamesh (10.1016/j.pnsc.2014.08.007_bib20) 2012; 9 Lee (10.1016/j.pnsc.2014.08.007_bib26) 2011; 7 Kokubo (10.1016/j.pnsc.2014.08.007_bib27) 2006; 27 Wang (10.1016/j.pnsc.2014.08.007_bib21) 2010; 6 Zeng (10.1016/j.pnsc.2014.08.007_bib4) 2008; 10 Gu (10.1016/j.pnsc.2014.08.007_bib8) 2010; 6 Hamdy (10.1016/j.pnsc.2014.08.007_bib18) 2008; 203 Staiger (10.1016/j.pnsc.2014.08.007_bib3) 2006; 27 Yao (10.1016/j.pnsc.2014.08.007_bib22) 2009; 255 Zhang (10.1016/j.pnsc.2014.08.007_bib12) 2012; 7 Hänzi (10.1016/j.pnsc.2014.08.007_bib9) 2010; 6 Witte (10.1016/j.pnsc.2014.08.007_bib10) 2005; 26 Cui (10.1016/j.pnsc.2014.08.007_bib16) 2008; 255 Zhang (10.1016/j.pnsc.2014.08.007_bib24) 2012; 207 Song (10.1016/j.pnsc.2014.08.007_bib6) 1999; 1 Gu (10.1016/j.pnsc.2014.08.007_bib7) 2011; 7 Liu (10.1016/j.pnsc.2014.08.007_bib13) 2007; 516 Zhang (10.1016/j.pnsc.2014.08.007_bib11) 2010; 6 Hoche (10.1016/j.pnsc.2014.08.007_bib15) 2003; 174 Brar (10.1016/j.pnsc.2014.08.007_bib1) 2009; 61 Zartner (10.1016/j.pnsc.2014.08.007_bib5) 2005; 66 Cui (10.1016/j.pnsc.2014.08.007_bib17) 2011; 257 Zhao (10.1016/j.pnsc.2014.08.007_bib14) 2013; 529 Zhang (10.1016/j.pnsc.2014.08.007_bib23) 2007; 42 Rama Krishna (10.1016/j.pnsc.2014.08.007_bib25) 2013; 578 |
References_xml | – volume: 255 start-page: 6724 year: 2009 end-page: 6728 ident: bib22 publication-title: Appl. Surf. Sci. – volume: 516 start-page: 422 year: 2007 end-page: 427 ident: bib13 publication-title: Thin Solid Films – volume: 255 start-page: 2098 year: 2008 end-page: 2103 ident: bib16 publication-title: Appl. Surf. Sci. – volume: 26 start-page: 3557 year: 2005 end-page: 3563 ident: bib10 publication-title: Biomaterials – volume: 7 start-page: 2615 year: 2011 end-page: 2622 ident: bib26 publication-title: Acta Biomater. – volume: 578 start-page: 355 year: 2013 end-page: 361 ident: bib25 publication-title: J. Alloy. Compd. – volume: 6 start-page: 1824 year: 2010 end-page: 1833 ident: bib9 publication-title: Acta Biomater. – volume: 10 start-page: B3 year: 2008 end-page: B14 ident: bib4 publication-title: Adv. Eng. Mater. – volume: 207 start-page: 170 year: 2012 end-page: 176 ident: bib24 publication-title: Surf. Coat. Technol. – volume: 6 start-page: 1743 year: 2010 end-page: 1748 ident: bib21 publication-title: Acta Biomater. – volume: 6 start-page: 626 year: 2010 end-page: 640 ident: bib11 publication-title: Acta Biomater. – volume: 12 start-page: 63 year: 2008 end-page: 72 ident: bib2 publication-title: Curr. Opin. Solid. State. Mater. Sci. – volume: 514 start-page: 174 year: 2006 end-page: 181 ident: bib19 publication-title: Thin Solid Films – volume: 174 start-page: 1018 year: 2003 end-page: 1023 ident: bib15 publication-title: Surf. Coat. Technol. – volume: 203 start-page: 240 year: 2008 end-page: 249 ident: bib18 publication-title: Surf. Coat. Technol. – volume: 1 start-page: 11 year: 1999 end-page: 33 ident: bib6 publication-title: Adv. Eng. Mater. – volume: 27 start-page: 2907 year: 2006 end-page: 2915 ident: bib27 publication-title: Biomaterials – volume: 27 start-page: 1728 year: 2006 end-page: 1734 ident: bib3 publication-title: Biomaterials – volume: 7 start-page: 1880 year: 2011 end-page: 1889 ident: bib7 publication-title: Acta Biomater. – volume: 61 start-page: 31 year: 2009 end-page: 34 ident: bib1 publication-title: Jom-us. – volume: 6 start-page: 4605 year: 2010 end-page: 4613 ident: bib8 publication-title: Acta Biomater. – volume: 9 start-page: 495 year: 2012 end-page: 502 ident: bib20 publication-title: J. Coating. Technol. – volume: 7 start-page: 77 year: 2012 end-page: 86 ident: bib12 publication-title: J. Mech. Behav. Biomed. – volume: 257 start-page: 9703 year: 2011 end-page: 9709 ident: bib17 publication-title: Appl. Surf. Sci. – volume: 529 start-page: 407 year: 2013 end-page: 411 ident: bib14 publication-title: Thin Solid Films – volume: 42 start-page: 8523 year: 2007 end-page: 8528 ident: bib23 publication-title: J. Mater. Sci. – volume: 66 start-page: 590 year: 2005 end-page: 594 ident: bib5 publication-title: Catheter. Cardio. Interv. – volume: 7 start-page: 1880 year: 2011 ident: 10.1016/j.pnsc.2014.08.007_bib7 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.11.034 – volume: 26 start-page: 3557 year: 2005 ident: 10.1016/j.pnsc.2014.08.007_bib10 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.049 – volume: 1 start-page: 11 year: 1999 ident: 10.1016/j.pnsc.2014.08.007_bib6 publication-title: Adv. Eng. Mater. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N – volume: 10 start-page: B3 year: 2008 ident: 10.1016/j.pnsc.2014.08.007_bib4 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200800035 – volume: 7 start-page: 77 year: 2012 ident: 10.1016/j.pnsc.2014.08.007_bib12 publication-title: J. Mech. Behav. Biomed. doi: 10.1016/j.jmbbm.2011.05.026 – volume: 578 start-page: 355 year: 2013 ident: 10.1016/j.pnsc.2014.08.007_bib25 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2013.06.036 – volume: 61 start-page: 31 year: 2009 ident: 10.1016/j.pnsc.2014.08.007_bib1 publication-title: Jom-us. doi: 10.1007/s11837-009-0129-0 – volume: 6 start-page: 626 year: 2010 ident: 10.1016/j.pnsc.2014.08.007_bib11 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.06.028 – volume: 257 start-page: 9703 year: 2011 ident: 10.1016/j.pnsc.2014.08.007_bib17 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.04.141 – volume: 9 start-page: 495 year: 2012 ident: 10.1016/j.pnsc.2014.08.007_bib20 publication-title: J. Coating. Technol. doi: 10.1007/s11998-011-9382-6 – volume: 529 start-page: 407 year: 2013 ident: 10.1016/j.pnsc.2014.08.007_bib14 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.05.046 – volume: 42 start-page: 8523 year: 2007 ident: 10.1016/j.pnsc.2014.08.007_bib23 publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-1738-z – volume: 6 start-page: 4605 year: 2010 ident: 10.1016/j.pnsc.2014.08.007_bib8 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.07.026 – volume: 27 start-page: 2907 year: 2006 ident: 10.1016/j.pnsc.2014.08.007_bib27 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 66 start-page: 590 year: 2005 ident: 10.1016/j.pnsc.2014.08.007_bib5 publication-title: Catheter. Cardio. Interv. doi: 10.1002/ccd.20520 – volume: 203 start-page: 240 year: 2008 ident: 10.1016/j.pnsc.2014.08.007_bib18 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2008.08.070 – volume: 516 start-page: 422 year: 2007 ident: 10.1016/j.pnsc.2014.08.007_bib13 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.05.048 – volume: 12 start-page: 63 year: 2008 ident: 10.1016/j.pnsc.2014.08.007_bib2 publication-title: Curr. Opin. Solid. State. Mater. Sci. doi: 10.1016/j.cossms.2009.04.001 – volume: 6 start-page: 1824 year: 2010 ident: 10.1016/j.pnsc.2014.08.007_bib9 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.10.008 – volume: 174 start-page: 1018 year: 2003 ident: 10.1016/j.pnsc.2014.08.007_bib15 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(03)00634-0 – volume: 255 start-page: 6724 year: 2009 ident: 10.1016/j.pnsc.2014.08.007_bib22 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.02.082 – volume: 255 start-page: 2098 year: 2008 ident: 10.1016/j.pnsc.2014.08.007_bib16 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.06.199 – volume: 207 start-page: 170 year: 2012 ident: 10.1016/j.pnsc.2014.08.007_bib24 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.06.056 – volume: 6 start-page: 1743 year: 2010 ident: 10.1016/j.pnsc.2014.08.007_bib21 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.12.009 – volume: 27 start-page: 1728 year: 2006 ident: 10.1016/j.pnsc.2014.08.007_bib3 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.003 – volume: 514 start-page: 174 year: 2006 ident: 10.1016/j.pnsc.2014.08.007_bib19 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.02.023 – volume: 7 start-page: 2615 year: 2011 ident: 10.1016/j.pnsc.2014.08.007_bib26 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.02.034 |
SSID | ssj0007167 |
Score | 2.2073808 |
Snippet | The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is... The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it... |
SourceID | wanfang crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 516 |
SubjectTerms | alloy AZ31 AZ31 magnesium alloy Biodegradable Corrosion Corrosion resistance magnesium Mechanism Micro-arc Micro-arc oxidation oxidation resistance |
Title | Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid |
URI | http://lib.cqvip.com/qk/85882X/201405/90757489504849524853484955.html https://dx.doi.org/10.1016/j.pnsc.2014.08.007 https://d.wanfangdata.com.cn/periodical/zrkxjz-e201405016 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaKFsN2Kdpuw7I-IBQ7bNiM-CXFOabBinTDetkKBLsIkiUF6mI7jRP08etL2nKwHdZDb5Yh2QYpkvpg8iMhH6ROuFIxDzBzMUiZtIEKYxnYQcS0DY0Nc6x3_nHJJ1fptymbbpFxVwuDaZXe97c-vfHW_k7fS7O_cK7_E8lDMUICRMAghoXmSZo1RXzTs403BjzQNFhBy8eRL5xpc7wWZY00hlHa0HhiS9mX4HTK2Q2Ejf8Fqhe3srSynP0Vhs73yK4_P9JR-4n7ZMuUB2TfW2hNP3oa6U-vSTGulvBkkDstDNb3urqglaUFpuAFsL9pdefajkq0STc3mipXNUnpK6fmho5-JxEt5Ay8oVsXFH_R31NX0toV2PQL51f6ntr52uk35Or866_xJPDNFYI8HcarIGaJ4dzkEZj8EGDiwCqbZQDOtMlC8JBxxod5Ig0AGg2nMKtZgqVrHOnZdaaz5C3ZLqvSvCNUwbGDc8YMQA8EUNKwPLZ5yKXKUzk0PfJlI1WxaEk0BIByhsw3DFwIgDRkVkuaK9YjUSd4kXuicuyXMRddRtq1QMUJVJzAJprhoEc-b9Z0b3hqNuv0Kf7ZbALiyJPrTr3yhbf0Wjws_9xdPwiD00IG694_8-GH5BWO2kTBI7K9Wq7NMRx4VuqE7Iwuvk8uT5qd_QhF2PzP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEBoXxAZoBQYW2mEIoubLbnocFVMH2y7bpIqLZcd25dEkpWnFtr9-7yVOxQ7bgVs-7CR69vv4Ke_9HiH7UidcqZgHmLkYpEzaQIWxDOwgYtqGxoY51jufnvHxZfpjwiYbZNTVwmBapbf9rU1vrLW_0vfS7M-d658jeSh6SIAI6MTYE_IUooEBaufx5NvaHAMgaDqsoOrjma-caZO85mWNPIZR2vB4Yk_ZLbA65fQP-I2HPNWzv7K0spz-44eOXpIXPoCkh-03bpMNU-6Qba-iNT3wPNKfX5FiVC3gySB4Whgs8HV1QStLC8zBC2CD0-ratS2VaJNvbjRVrmqy0pdOzQw9_JVEtJBTMIduVVD8R39DXUlrV2DXLxxf6RtqZyunX5PLo-8Xo3HguysEeTqMl0HMEsO5ySPQ-SHgxIFVNssAnWmThWAi44wP80QaQDQawjCrWYK1axz52XWms-QN2Syr0uwSqiDu4JwxA9gDEZQ0LI9tHnKp8lQOTY98XUtVzFsWDQGonCH1DQMbAigNqdWS5oj1SNQJXuSeqRwbZsxEl5J2JXDhBC6cwC6a4aBHvqzndG94bDTr1lPc220CHMmj8z75xRde1Wtxu_h9fXUrDA4LGcx7-58P_0i2xhenJ-Lk-OznO_Ic77RZg-_J5nKxMnsQ_SzVh2Z33wEOO_5h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+mechanism+of+micro-arc+oxidation+treated+biocompatible+AZ31+magnesium+alloy+in+simulated+body+fluid&rft.jtitle=%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E8%BF%9B%E5%B1%95%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Ying+Li+Fang+Lu+Honglong+Li+Wenjun+Zhu+Haobo+Pan+Guoxin+Tan+Yonghua+Lao+Chengyun+Ning+Guoxin+Ni&rft.date=2014-10-01&rft.issn=1002-0071&rft.issue=5&rft.spage=516&rft.epage=522&rft_id=info:doi/10.1016%2Fj.pnsc.2014.08.007&rft.externalDocID=90757489504849524853484955 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85882X%2F85882X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzrkxjz-e%2Fzrkxjz-e.jpg |