Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid

The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied...

Full description

Saved in:
Bibliographic Details
Published inProgress in natural science Vol. 24; no. 5; pp. 516 - 522
Main Authors Li, Ying, Lu, Fang, Li, Honglong, Zhu, Wenjun, Pan, Haobo, Tan, Guoxin, Lao, Yonghua, Ning, Chengyun, Ni, Guoxin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2014
School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation(MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid(SBF) were studied systematically. Scanning electron microscope(SEM) and X-ray diffractometer(XRD)were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2and the calcium phosphate(Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.
AbstractList The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation (MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid (SBF) were studied systematically. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2 and the calcium phosphate (Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.
The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation (MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid (SBF) were studied systematically. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2 and the calcium phosphate (Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.
The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation(MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid(SBF) were studied systematically. Scanning electron microscope(SEM) and X-ray diffractometer(XRD)were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2and the calcium phosphate(Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.
Author Ying Li Fang Lu Honglong Li Wenjun Zhu Haobo Pan Guoxin Tan Yonghua Lao Chengyun Ning Guoxin Ni
AuthorAffiliation School of Materials Science and Engineering, South China University of Technology School of Chinese Materia Medica, Guangzhou University of Chinese Medicine Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science Institute of Chemical Engineering and Light Industry, Guangdong University of Technology Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University
AuthorAffiliation_xml – name: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
Author_xml – sequence: 1
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Fang
  surname: Lu
  fullname: Lu, Fang
  organization: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
– sequence: 3
  givenname: Honglong
  surname: Li
  fullname: Li, Honglong
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Wenjun
  surname: Zhu
  fullname: Zhu, Wenjun
  organization: Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Haobo
  surname: Pan
  fullname: Pan, Haobo
  organization: Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
– sequence: 6
  givenname: Guoxin
  surname: Tan
  fullname: Tan, Guoxin
  email: tanguoxin@126.com
  organization: Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
– sequence: 7
  givenname: Yonghua
  surname: Lao
  fullname: Lao, Yonghua
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 8
  givenname: Chengyun
  surname: Ning
  fullname: Ning, Chengyun
  email: imcyning@scut.edu.cn
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 9
  givenname: Guoxin
  surname: Ni
  fullname: Ni, Guoxin
  email: fgxni@graduate.hku.hk
  organization: Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
BookMark eNp9kDFvHCEUhCkcKbaTP5CKNsVuHrAsrJTGOjmJJUtukiYN4oA9s1ngDHuJz78-rM9pUrhihOZ7o5kLdBZTdAh9INASIP2nqd3HYloKpGtBtgDiDJ0TANpUSd6ii1ImWGUvzlHYpJxT8Sni4My9jr4EnEYcvMmp0dng9OitXlbDkp1enMVbn0wK-_q5nR2--skIDnoXXfGHgPU8pyP2ERcfDvPJn-wRj_PB23fozajn4t6_vJfox5fr75tvze3d15vN1W1juoEuDeXM9b0zRAAbJOVi3I5SEuiskyB6SmU_GKZdJ4UdOBktZ1QA7XsCg5VWskv08XT3j46jjjs1pUOONVE95V-P05Ny6zrA61zVK0_eWriU7EZl_PJceMnaz4qAWmdVk1pnVSuoQKo6YEXpf-g--6Dz8XXo8wlydYDf3mVVjHfROOuzM4uyyb-Os5fM-xR3D76W-xc6gOCikwOHTnYDp53k7Flx9hd97KUW
CitedBy_id crossref_primary_10_1016_j_jma_2022_12_001
crossref_primary_10_1080_01694243_2023_2251759
crossref_primary_10_20964_2020_07_68
crossref_primary_10_1016_j_diamond_2023_110025
crossref_primary_10_1016_j_commatsci_2024_113546
crossref_primary_10_3390_met8090724
crossref_primary_10_1016_j_jma_2022_09_002
crossref_primary_10_1002_adfm_202408869
crossref_primary_10_1016_j_pnsc_2023_10_006
crossref_primary_10_1016_j_polymdegradstab_2023_110370
crossref_primary_10_1016_j_surfcoat_2021_127370
crossref_primary_10_1016_j_jmrt_2023_09_263
crossref_primary_10_1016_j_surfcoat_2023_130115
crossref_primary_10_1007_s11665_015_1645_4
crossref_primary_10_1016_j_corsci_2022_110775
crossref_primary_10_3390_coatings14010084
crossref_primary_10_3390_met14020236
crossref_primary_10_1016_j_heliyon_2024_e30286
crossref_primary_10_1016_j_surfcoat_2019_01_052
crossref_primary_10_1080_02670844_2019_1656371
crossref_primary_10_1002_maco_201810293
crossref_primary_10_1016_j_surfin_2021_101290
crossref_primary_10_1016_j_jallcom_2015_11_169
crossref_primary_10_1016_S1003_6326_18_64819_8
crossref_primary_10_1016_j_surfcoat_2018_11_040
crossref_primary_10_3390_coatings11060667
crossref_primary_10_1016_j_inoche_2023_111470
crossref_primary_10_1142_S0218625X23300058
crossref_primary_10_1142_S0218625X23500750
crossref_primary_10_1016_j_actbio_2019_04_012
crossref_primary_10_1016_j_surfcoat_2018_12_106
crossref_primary_10_3389_fmats_2020_00190
crossref_primary_10_3390_app7010033
crossref_primary_10_1016_j_pnsc_2022_09_016
crossref_primary_10_1016_j_mtcomm_2022_105197
Cites_doi 10.1016/j.actbio.2010.11.034
10.1016/j.biomaterials.2004.09.049
10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
10.1002/adem.200800035
10.1016/j.jmbbm.2011.05.026
10.1016/j.jallcom.2013.06.036
10.1007/s11837-009-0129-0
10.1016/j.actbio.2009.06.028
10.1016/j.apsusc.2011.04.141
10.1007/s11998-011-9382-6
10.1016/j.tsf.2012.05.046
10.1007/s10853-007-1738-z
10.1016/j.actbio.2010.07.026
10.1016/j.biomaterials.2006.01.017
10.1002/ccd.20520
10.1016/j.surfcoat.2008.08.070
10.1016/j.tsf.2007.05.048
10.1016/j.cossms.2009.04.001
10.1016/j.actbio.2009.10.008
10.1016/S0257-8972(03)00634-0
10.1016/j.apsusc.2009.02.082
10.1016/j.apsusc.2008.06.199
10.1016/j.surfcoat.2012.06.056
10.1016/j.actbio.2009.12.009
10.1016/j.biomaterials.2005.10.003
10.1016/j.tsf.2006.02.023
10.1016/j.actbio.2011.02.034
ContentType Journal Article
Copyright 2014 Chinese Materials Research Society
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2014 Chinese Materials Research Society
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.pnsc.2014.08.007
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EndPage 522
ExternalDocumentID zrkxjz_e201405016
10_1016_j_pnsc_2014_08_007
S1002007114001105
90757489504849524853484955
GroupedDBID --K
-01
-0A
-SA
-S~
0R~
0SF
123
1B1
1~5
29P
2B.
2C.
2DF
2RA
3YN
4.4
457
4G.
5VR
5VS
5XA
5XB
5XL
6I.
7-5
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABJNI
ABMAC
ACGFS
ACNNM
ACRLP
ADEZE
ADMUD
AEFWE
AEXQZ
AEZYN
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AWYRJ
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DU5
EBS
EJD
EO9
EP2
FA0
FDB
GROUPED_DOAJ
HH5
HZ~
IHE
IPNFZ
IXB
JUIAU
KQ8
M41
M4Z
NCXOZ
NQ-
O-L
O9-
OK1
Q--
Q-0
R-A
RIG
ROL
RPZ
RT1
S..
SDG
SPC
SSZ
T8Q
TCJ
TFW
TGP
U1F
U1G
U5A
U5K
UNMZH
XFK
~02
~L8
~WA
AIKHN
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
EFJIC
FYGXN
H13
SSH
TDBHL
4A8
PSX
ID FETCH-LOGICAL-c492t-253e66ec170398257fbf88104de807622869c3ae487d951fd53270266109d8d83
IEDL.DBID IXB
ISSN 1002-0071
IngestDate Thu May 29 04:07:36 EDT 2025
Tue Jul 01 04:26:18 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Fri Feb 23 02:29:40 EST 2024
Wed Feb 14 10:29:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Corrosion resistance
Biodegradable
AZ31 magnesium alloy
Mechanism
Micro-arc oxidation
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-253e66ec170398257fbf88104de807622869c3ae487d951fd53270266109d8d83
Notes Ying Li;Fang Lu;Honglong Li;Wenjun Zhu;Haobo Pan;Guoxin Tan;Yonghua Lao;Chengyun Ning;Guoxin Ni;School of Materials Science and Engineering, South China University of Technology;School of Chinese Materia Medica, Guangzhou University of Chinese Medicine;Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University;Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science;Institute of Chemical Engineering and Light Industry, Guangdong University of Technology;Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology;Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University
11-3853/N
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1002007114001105
PageCount 7
ParticipantIDs wanfang_journals_zrkxjz_e201405016
crossref_citationtrail_10_1016_j_pnsc_2014_08_007
crossref_primary_10_1016_j_pnsc_2014_08_007
elsevier_sciencedirect_doi_10_1016_j_pnsc_2014_08_007
chongqing_primary_90757489504849524853484955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Progress in natural science
PublicationTitleAlternate Progress in Natural Science
PublicationTitle_FL Progress in Natural Science Materials International
PublicationYear 2014
Publisher Elsevier B.V
School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
Publisher_xml – name: Elsevier B.V
– name: School of Materials Science and Engineering, South China University of Technology, Guangzhou, China%Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China%Center for Human Tissues and 0rgans Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China%Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China%Department of 0rthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
References Witte, Kaese, Haferkamp, Switzer, Meyer-Lindenberg, Wirth, Windhagen (bib10) 2005; 26
Zhang, Yuan, Mao, Niu (bib12) 2012; 7
Cui, Yang, Liu, Jin (bib17) 2011; 257
Song, Atrens (bib6) 1999; 1
Kokubo, Takadama (bib27) 2006; 27
Zhang, Zhang, Li, Li, Yang (bib24) 2012; 207
Cui, Li, Li, Wang, Jin, Ding (bib16) 2008; 255
Rama Krishna, Poshal, Jyothirmayi, Sundararajan (bib25) 2013; 578
Zartner, Cesnjevar, Singer, Weyand (bib5) 2005; 66
Hoche, Scheerer, Probst, Broszeit, Berger (bib15) 2003; 174
Wang, Guan, Wang, Ren, Wang (bib21) 2010; 6
Zhang, Zhao, Wu, Wang, Wu (bib23) 2007; 42
Brar, Platt, Sarntinoranont, Martin, Manuel (bib1) 2009; 61
Hänzi, Gerber, Schinhammer, Löffler, Uggowitzer (bib9) 2010; 6
Zhao, Wu, Lu, Wu (bib14) 2013; 529
Jamesh, Kumar, Narayanan (bib20) 2012; 9
Yao, Li, Jiang (bib22) 2009; 255
Witte, Hort, Vogt, Cohen (bib2) 2008; 12
Zhang, Zhang, Zhao, Li (bib11) 2010; 6
Hamdy (bib18) 2008; 203
Khramov, Balbyshev, Kasten, Mantz (bib19) 2006; 514
Lee, Leng, Chow, Ren (bib26) 2011; 7
Gu, Li, Zhou, Zheng (bib7) 2011; 7
Liu, Xin, Tian, Chu (bib13) 2007; 516
Staiger, Pietak, Huadmai, Dias (bib3) 2006; 27
Gu, Zhou, Zheng, Cheng (bib8) 2010; 6
Zeng, Dietzel, Witte, Hort, Blawert (bib4) 2008; 10
Witte (10.1016/j.pnsc.2014.08.007_bib2) 2008; 12
Khramov (10.1016/j.pnsc.2014.08.007_bib19) 2006; 514
Jamesh (10.1016/j.pnsc.2014.08.007_bib20) 2012; 9
Lee (10.1016/j.pnsc.2014.08.007_bib26) 2011; 7
Kokubo (10.1016/j.pnsc.2014.08.007_bib27) 2006; 27
Wang (10.1016/j.pnsc.2014.08.007_bib21) 2010; 6
Zeng (10.1016/j.pnsc.2014.08.007_bib4) 2008; 10
Gu (10.1016/j.pnsc.2014.08.007_bib8) 2010; 6
Hamdy (10.1016/j.pnsc.2014.08.007_bib18) 2008; 203
Staiger (10.1016/j.pnsc.2014.08.007_bib3) 2006; 27
Yao (10.1016/j.pnsc.2014.08.007_bib22) 2009; 255
Zhang (10.1016/j.pnsc.2014.08.007_bib12) 2012; 7
Hänzi (10.1016/j.pnsc.2014.08.007_bib9) 2010; 6
Witte (10.1016/j.pnsc.2014.08.007_bib10) 2005; 26
Cui (10.1016/j.pnsc.2014.08.007_bib16) 2008; 255
Zhang (10.1016/j.pnsc.2014.08.007_bib24) 2012; 207
Song (10.1016/j.pnsc.2014.08.007_bib6) 1999; 1
Gu (10.1016/j.pnsc.2014.08.007_bib7) 2011; 7
Liu (10.1016/j.pnsc.2014.08.007_bib13) 2007; 516
Zhang (10.1016/j.pnsc.2014.08.007_bib11) 2010; 6
Hoche (10.1016/j.pnsc.2014.08.007_bib15) 2003; 174
Brar (10.1016/j.pnsc.2014.08.007_bib1) 2009; 61
Zartner (10.1016/j.pnsc.2014.08.007_bib5) 2005; 66
Cui (10.1016/j.pnsc.2014.08.007_bib17) 2011; 257
Zhao (10.1016/j.pnsc.2014.08.007_bib14) 2013; 529
Zhang (10.1016/j.pnsc.2014.08.007_bib23) 2007; 42
Rama Krishna (10.1016/j.pnsc.2014.08.007_bib25) 2013; 578
References_xml – volume: 255
  start-page: 6724
  year: 2009
  end-page: 6728
  ident: bib22
  publication-title: Appl. Surf. Sci.
– volume: 516
  start-page: 422
  year: 2007
  end-page: 427
  ident: bib13
  publication-title: Thin Solid Films
– volume: 255
  start-page: 2098
  year: 2008
  end-page: 2103
  ident: bib16
  publication-title: Appl. Surf. Sci.
– volume: 26
  start-page: 3557
  year: 2005
  end-page: 3563
  ident: bib10
  publication-title: Biomaterials
– volume: 7
  start-page: 2615
  year: 2011
  end-page: 2622
  ident: bib26
  publication-title: Acta Biomater.
– volume: 578
  start-page: 355
  year: 2013
  end-page: 361
  ident: bib25
  publication-title: J. Alloy. Compd.
– volume: 6
  start-page: 1824
  year: 2010
  end-page: 1833
  ident: bib9
  publication-title: Acta Biomater.
– volume: 10
  start-page: B3
  year: 2008
  end-page: B14
  ident: bib4
  publication-title: Adv. Eng. Mater.
– volume: 207
  start-page: 170
  year: 2012
  end-page: 176
  ident: bib24
  publication-title: Surf. Coat. Technol.
– volume: 6
  start-page: 1743
  year: 2010
  end-page: 1748
  ident: bib21
  publication-title: Acta Biomater.
– volume: 6
  start-page: 626
  year: 2010
  end-page: 640
  ident: bib11
  publication-title: Acta Biomater.
– volume: 12
  start-page: 63
  year: 2008
  end-page: 72
  ident: bib2
  publication-title: Curr. Opin. Solid. State. Mater. Sci.
– volume: 514
  start-page: 174
  year: 2006
  end-page: 181
  ident: bib19
  publication-title: Thin Solid Films
– volume: 174
  start-page: 1018
  year: 2003
  end-page: 1023
  ident: bib15
  publication-title: Surf. Coat. Technol.
– volume: 203
  start-page: 240
  year: 2008
  end-page: 249
  ident: bib18
  publication-title: Surf. Coat. Technol.
– volume: 1
  start-page: 11
  year: 1999
  end-page: 33
  ident: bib6
  publication-title: Adv. Eng. Mater.
– volume: 27
  start-page: 2907
  year: 2006
  end-page: 2915
  ident: bib27
  publication-title: Biomaterials
– volume: 27
  start-page: 1728
  year: 2006
  end-page: 1734
  ident: bib3
  publication-title: Biomaterials
– volume: 7
  start-page: 1880
  year: 2011
  end-page: 1889
  ident: bib7
  publication-title: Acta Biomater.
– volume: 61
  start-page: 31
  year: 2009
  end-page: 34
  ident: bib1
  publication-title: Jom-us.
– volume: 6
  start-page: 4605
  year: 2010
  end-page: 4613
  ident: bib8
  publication-title: Acta Biomater.
– volume: 9
  start-page: 495
  year: 2012
  end-page: 502
  ident: bib20
  publication-title: J. Coating. Technol.
– volume: 7
  start-page: 77
  year: 2012
  end-page: 86
  ident: bib12
  publication-title: J. Mech. Behav. Biomed.
– volume: 257
  start-page: 9703
  year: 2011
  end-page: 9709
  ident: bib17
  publication-title: Appl. Surf. Sci.
– volume: 529
  start-page: 407
  year: 2013
  end-page: 411
  ident: bib14
  publication-title: Thin Solid Films
– volume: 42
  start-page: 8523
  year: 2007
  end-page: 8528
  ident: bib23
  publication-title: J. Mater. Sci.
– volume: 66
  start-page: 590
  year: 2005
  end-page: 594
  ident: bib5
  publication-title: Catheter. Cardio. Interv.
– volume: 7
  start-page: 1880
  year: 2011
  ident: 10.1016/j.pnsc.2014.08.007_bib7
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.11.034
– volume: 26
  start-page: 3557
  year: 2005
  ident: 10.1016/j.pnsc.2014.08.007_bib10
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.049
– volume: 1
  start-page: 11
  year: 1999
  ident: 10.1016/j.pnsc.2014.08.007_bib6
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
– volume: 10
  start-page: B3
  year: 2008
  ident: 10.1016/j.pnsc.2014.08.007_bib4
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200800035
– volume: 7
  start-page: 77
  year: 2012
  ident: 10.1016/j.pnsc.2014.08.007_bib12
  publication-title: J. Mech. Behav. Biomed.
  doi: 10.1016/j.jmbbm.2011.05.026
– volume: 578
  start-page: 355
  year: 2013
  ident: 10.1016/j.pnsc.2014.08.007_bib25
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2013.06.036
– volume: 61
  start-page: 31
  year: 2009
  ident: 10.1016/j.pnsc.2014.08.007_bib1
  publication-title: Jom-us.
  doi: 10.1007/s11837-009-0129-0
– volume: 6
  start-page: 626
  year: 2010
  ident: 10.1016/j.pnsc.2014.08.007_bib11
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.06.028
– volume: 257
  start-page: 9703
  year: 2011
  ident: 10.1016/j.pnsc.2014.08.007_bib17
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.04.141
– volume: 9
  start-page: 495
  year: 2012
  ident: 10.1016/j.pnsc.2014.08.007_bib20
  publication-title: J. Coating. Technol.
  doi: 10.1007/s11998-011-9382-6
– volume: 529
  start-page: 407
  year: 2013
  ident: 10.1016/j.pnsc.2014.08.007_bib14
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.05.046
– volume: 42
  start-page: 8523
  year: 2007
  ident: 10.1016/j.pnsc.2014.08.007_bib23
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-1738-z
– volume: 6
  start-page: 4605
  year: 2010
  ident: 10.1016/j.pnsc.2014.08.007_bib8
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.07.026
– volume: 27
  start-page: 2907
  year: 2006
  ident: 10.1016/j.pnsc.2014.08.007_bib27
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
– volume: 66
  start-page: 590
  year: 2005
  ident: 10.1016/j.pnsc.2014.08.007_bib5
  publication-title: Catheter. Cardio. Interv.
  doi: 10.1002/ccd.20520
– volume: 203
  start-page: 240
  year: 2008
  ident: 10.1016/j.pnsc.2014.08.007_bib18
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2008.08.070
– volume: 516
  start-page: 422
  year: 2007
  ident: 10.1016/j.pnsc.2014.08.007_bib13
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.05.048
– volume: 12
  start-page: 63
  year: 2008
  ident: 10.1016/j.pnsc.2014.08.007_bib2
  publication-title: Curr. Opin. Solid. State. Mater. Sci.
  doi: 10.1016/j.cossms.2009.04.001
– volume: 6
  start-page: 1824
  year: 2010
  ident: 10.1016/j.pnsc.2014.08.007_bib9
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.10.008
– volume: 174
  start-page: 1018
  year: 2003
  ident: 10.1016/j.pnsc.2014.08.007_bib15
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(03)00634-0
– volume: 255
  start-page: 6724
  year: 2009
  ident: 10.1016/j.pnsc.2014.08.007_bib22
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.02.082
– volume: 255
  start-page: 2098
  year: 2008
  ident: 10.1016/j.pnsc.2014.08.007_bib16
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.06.199
– volume: 207
  start-page: 170
  year: 2012
  ident: 10.1016/j.pnsc.2014.08.007_bib24
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.06.056
– volume: 6
  start-page: 1743
  year: 2010
  ident: 10.1016/j.pnsc.2014.08.007_bib21
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.12.009
– volume: 27
  start-page: 1728
  year: 2006
  ident: 10.1016/j.pnsc.2014.08.007_bib3
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.003
– volume: 514
  start-page: 174
  year: 2006
  ident: 10.1016/j.pnsc.2014.08.007_bib19
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.02.023
– volume: 7
  start-page: 2615
  year: 2011
  ident: 10.1016/j.pnsc.2014.08.007_bib26
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.02.034
SSID ssj0007167
Score 2.2073808
Snippet The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is...
The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it...
SourceID wanfang
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 516
SubjectTerms alloy
AZ31
AZ31 magnesium alloy
Biodegradable
Corrosion
Corrosion resistance
magnesium
Mechanism
Micro-arc
Micro-arc oxidation
oxidation
resistance
Title Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid
URI http://lib.cqvip.com/qk/85882X/201405/90757489504849524853484955.html
https://dx.doi.org/10.1016/j.pnsc.2014.08.007
https://d.wanfangdata.com.cn/periodical/zrkxjz-e201405016
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaKFsN2Kdpuw7I-IBQ7bNiM-CXFOabBinTDetkKBLsIkiUF6mI7jRP08etL2nKwHdZDb5Yh2QYpkvpg8iMhH6ROuFIxDzBzMUiZtIEKYxnYQcS0DY0Nc6x3_nHJJ1fptymbbpFxVwuDaZXe97c-vfHW_k7fS7O_cK7_E8lDMUICRMAghoXmSZo1RXzTs403BjzQNFhBy8eRL5xpc7wWZY00hlHa0HhiS9mX4HTK2Q2Ejf8Fqhe3srSynP0Vhs73yK4_P9JR-4n7ZMuUB2TfW2hNP3oa6U-vSTGulvBkkDstDNb3urqglaUFpuAFsL9pdefajkq0STc3mipXNUnpK6fmho5-JxEt5Ay8oVsXFH_R31NX0toV2PQL51f6ntr52uk35Or866_xJPDNFYI8HcarIGaJ4dzkEZj8EGDiwCqbZQDOtMlC8JBxxod5Ig0AGg2nMKtZgqVrHOnZdaaz5C3ZLqvSvCNUwbGDc8YMQA8EUNKwPLZ5yKXKUzk0PfJlI1WxaEk0BIByhsw3DFwIgDRkVkuaK9YjUSd4kXuicuyXMRddRtq1QMUJVJzAJprhoEc-b9Z0b3hqNuv0Kf7ZbALiyJPrTr3yhbf0Wjws_9xdPwiD00IG694_8-GH5BWO2kTBI7K9Wq7NMRx4VuqE7Iwuvk8uT5qd_QhF2PzP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEBoXxAZoBQYW2mEIoubLbnocFVMH2y7bpIqLZcd25dEkpWnFtr9-7yVOxQ7bgVs-7CR69vv4Ke_9HiH7UidcqZgHmLkYpEzaQIWxDOwgYtqGxoY51jufnvHxZfpjwiYbZNTVwmBapbf9rU1vrLW_0vfS7M-d658jeSh6SIAI6MTYE_IUooEBaufx5NvaHAMgaDqsoOrjma-caZO85mWNPIZR2vB4Yk_ZLbA65fQP-I2HPNWzv7K0spz-44eOXpIXPoCkh-03bpMNU-6Qba-iNT3wPNKfX5FiVC3gySB4Whgs8HV1QStLC8zBC2CD0-ratS2VaJNvbjRVrmqy0pdOzQw9_JVEtJBTMIduVVD8R39DXUlrV2DXLxxf6RtqZyunX5PLo-8Xo3HguysEeTqMl0HMEsO5ySPQ-SHgxIFVNssAnWmThWAi44wP80QaQDQawjCrWYK1axz52XWms-QN2Syr0uwSqiDu4JwxA9gDEZQ0LI9tHnKp8lQOTY98XUtVzFsWDQGonCH1DQMbAigNqdWS5oj1SNQJXuSeqRwbZsxEl5J2JXDhBC6cwC6a4aBHvqzndG94bDTr1lPc220CHMmj8z75xRde1Wtxu_h9fXUrDA4LGcx7-58P_0i2xhenJ-Lk-OznO_Ic77RZg-_J5nKxMnsQ_SzVh2Z33wEOO_5h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+mechanism+of+micro-arc+oxidation+treated+biocompatible+AZ31+magnesium+alloy+in+simulated+body+fluid&rft.jtitle=%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E8%BF%9B%E5%B1%95%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Ying+Li+Fang+Lu+Honglong+Li+Wenjun+Zhu+Haobo+Pan+Guoxin+Tan+Yonghua+Lao+Chengyun+Ning+Guoxin+Ni&rft.date=2014-10-01&rft.issn=1002-0071&rft.issue=5&rft.spage=516&rft.epage=522&rft_id=info:doi/10.1016%2Fj.pnsc.2014.08.007&rft.externalDocID=90757489504849524853484955
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85882X%2F85882X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzrkxjz-e%2Fzrkxjz-e.jpg