On the Recording Reference Contribution to EEG Correlation, Phase Synchorony, and Coherence
The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are...
Saved in:
Published in | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 40; no. 5; pp. 1294 - 1304 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.10.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1083-4419 1941-0492 |
DOI | 10.1109/TSMCB.2009.2037237 |
Cover
Abstract | The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are confounded by the recording reference signal and that this problem is not mitigated by the use of other EEG montages, such as bipolar and average reference. In this paper, we analyze the impact of reference signal amplitude and power on EEG signal correlation, phase synchrony, and MSC. We show that, first, when two nonreferential signals have negative correlation, the phase synchrony and the absolute value of the correlation of the two referential signals may have two regions of behavior characterized by a monotonic decrease to zero and then a monotonic increase to one as the amplitude of the reference signal varies in [0, +∞). It is notable that even a small change of the amplitude may lead to significant impact on these two measures. Second, when two nonreferential signals have positive correlation, the correlation and phase-synchrony values of the two referential signals can monotonically increase to one (or monotonically decrease to some positive value and then monotonically increase to one) as the amplitude of the reference signal varies in [0, + ∞). Third, when two nonreferential signals have negative cross-power, the MSC of the two referential signals can monotonically decrease to zero and then monotonically increase to one as reference signal power varies in [0, + ∞). Fourth, when two nonreferential signals have positive cross-power, the MSC of the two referential signals can monotonically increase to one as the reference signal power varies in [0, + ∞). In general, the reference signal with small amplitude or power relative to the signals of interest may decrease or increase the values of correlation, phase synchrony, and MSC. However, the reference signal with high relative amplitude or power will always increase each of the three measures. In our previous paper, we developed a method to identify and extract the reference signal contribution to intracranial EEG (iEEG) recordings. In this paper, we apply this approach to referential iEEG recorded from human subjects and directly investigate the contribution of recording reference on correlation, phase synchrony, and MSC. The experimental results demonstrate the significant impact that the recording reference may have on these bivariate measures. |
---|---|
AbstractList | The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are confounded by the recording reference signal and that this problem is not mitigated by the use of other EEG montages, such as bipolar and average reference. In this paper, we analyze the impact of reference signal amplitude and power on EEG signal correlation, phase synchrony, and MSC. We show that, first, when two nonreferential signals have negative correlation, the phase synchrony and the absolute value of the correlation of the two referential signals may have two regions of behavior characterized by a monotonic decrease to zero and then a monotonic increase to one as the amplitude of the reference signal varies in [ 0 , + infinity ) . It is notable that even a small change of the amplitude may lead to significant impact on these two measures. Second, when two nonreferential signals have positive correlation, the correlation and phase-synchrony values of the two referential signals can monotonically increase to one (or monotonically decrease to some positive value and then monotonically increase to one) as the amplitude of the reference signal varies in [ 0 , + infinity ) . Third, when two nonreferential signals have negative cross-power, the MSC of the two referential signals can monotonically decrease to zero and then monotonically increase to one as reference signal power varies in [ 0 , + infinity ) . Fourth, when two nonreferential signals have positive cross-power, the MSC of the two referential signals can monotonically increase to one as the reference signal power varies in [ 0 , + infinity ) . In general, the reference signal with small amplitude or power relative to the signals of interest may decrease or increase the values of correlation, phase synchrony, and MSC. However, the reference signal with high relative amplitude or power will always increase each of the three measures. In our previous paper, we developed a method to identify and extract the reference signal contribution to intracranial EEG (iEEG) recordings. In this paper, we apply this approach to referential iEEG recorded from human subjects and directly investigate the contribution of recording reference on correlation, phase synchrony, and MSC. The experimental results demonstrate the significant impact that the recording reference may have on these bivariate measures. The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are confounded by the recording reference signal and that this problem is not mitigated by the use of other EEG montages, such as bipolar and average reference. In this paper, we analyze the impact of reference signal amplitude and power on EEG signal correlation, phase synchrony, and MSC. We show that, first, when two nonreferential signals have negative correlation, the phase synchrony and the absolute value of the correlation of the two referential signals may have two regions of behavior characterized by a monotonic decrease to zero and then a monotonic increase to one as the amplitude of the reference signal varies in [0, +∞). It is notable that even a small change of the amplitude may lead to significant impact on these two measures. Second, when two nonreferential signals have positive correlation, the correlation and phase-synchrony values of the two referential signals can monotonically increase to one (or monotonically decrease to some positive value and then monotonically increase to one) as the amplitude of the reference signal varies in [0, + ∞). Third, when two nonreferential signals have negative cross-power, the MSC of the two referential signals can monotonically decrease to zero and then monotonically increase to one as reference signal power varies in [0, + ∞). Fourth, when two nonreferential signals have positive cross-power, the MSC of the two referential signals can monotonically increase to one as the reference signal power varies in [0, + ∞). In general, the reference signal with small amplitude or power relative to the signals of interest may decrease or increase the values of correlation, phase synchrony, and MSC. However, the reference signal with high relative amplitude or power will always increase each of the three measures. In our previous paper, we developed a method to identify and extract the reference signal contribution to intracranial EEG (iEEG) recordings. In this paper, we apply this approach to referential iEEG recorded from human subjects and directly investigate the contribution of recording reference on correlation, phase synchrony, and MSC. The experimental results demonstrate the significant impact that the recording reference may have on these bivariate measures. |
Author | Qionghai Dai Sanqing Hu Stead, Matt Worrell, Gregory A |
Author_xml | – sequence: 1 surname: Sanqing Hu fullname: Sanqing Hu email: Sanqing.Hu@drexel.edu organization: Dept. of Neurology, Mayo Clinic, Rochester, MN, USA – sequence: 2 givenname: Matt surname: Stead fullname: Stead, Matt email: Stead.Squire@mayo.edu organization: Dept. of Neurology, Mayo Clinic, Rochester, MN, USA – sequence: 3 surname: Qionghai Dai fullname: Qionghai Dai email: qhdai@tsinghua.edu.cn organization: Dept. of Autom., Tsinghua Univ., Beijing, China – sequence: 4 givenname: Gregory A surname: Worrell fullname: Worrell, Gregory A email: Worrell.Gregory@mayo.edu organization: Dept. of Neurology, Mayo Clinic, Rochester, MN, USA |
BookMark | eNp9UU1PGzEQtSqqBkL_QLnsjQtL_bG7ti-VaJQCUhBVgVMPlteezRptbLA3lfLv65AUiR642KOZ9948zTtCBz54QOgLweeEYPn1_u5m9v2cYizzwzhl_AM6JLIiJa4kPcg1FqysKiIn6CilR5yRWPJPaEIxwQ2vmkP0-9YXYw_FLzAhWueXueoggjdQzIIfo2vXowsZFIr5_DL3YoRBb1tnxc9eJyjuNt70IQa_OSu0txnS7wSO0cdODwk-7_8pevgxv59dlYvby-vZxaI02eZYUmI14caCqaxlQpKuI0C5rTEwUrfAoRUcQ6UxaWwrGwyNJqwGaztMK2PZFH3b6T6t2xVYA9m2HtRTdCsdNypop95OvOvVMvxRNC-reZ0FTvcCMTyvIY1q5ZKBYdAewjopQYRgtZAiI8UOaWJIKUKnjBtfrpGF3aAIVtto1Es0ahuN2keTqfQ_6j-D75JOdiQHAK-EmkkhmWR_AfkUnL0 |
CODEN | ITSCFI |
CitedBy_id | crossref_primary_10_1063_1_4890568 crossref_primary_10_1080_17470919_2023_2228545 crossref_primary_10_1016_j_clinph_2014_11_018 crossref_primary_10_1063_1_4729185 crossref_primary_10_1016_j_compbiomed_2019_103510 crossref_primary_10_1038_s41598_021_81884_3 crossref_primary_10_1016_j_knosys_2019_105367 crossref_primary_10_3389_fnins_2019_00941 crossref_primary_10_1155_2012_239210 crossref_primary_10_1016_j_neuroimage_2020_117344 crossref_primary_10_1088_1741_2552_aa5688 crossref_primary_10_3390_electronics13112017 crossref_primary_10_1111_jora_12527 crossref_primary_10_1109_TSMC_2015_2450680 crossref_primary_10_3390_brainsci11020162 crossref_primary_10_1007_s13246_015_0409_7 crossref_primary_10_1088_0967_3334_32_11_R01 crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_1152_jn_00089_2016 crossref_primary_10_1063_1_4996980 crossref_primary_10_1109_ACCESS_2018_2827023 crossref_primary_10_1142_S0129065715500069 crossref_primary_10_1016_j_jad_2019_03_077 crossref_primary_10_1016_j_crneur_2022_100061 crossref_primary_10_1152_jn_00368_2010 crossref_primary_10_1109_TNN_2011_2123917 crossref_primary_10_1007_s11517_012_0946_0 crossref_primary_10_1088_1361_6579_aace94 crossref_primary_10_3389_fnsys_2018_00030 crossref_primary_10_1111_epi_17067 crossref_primary_10_1016_j_neulet_2012_04_035 crossref_primary_10_1016_j_neuroimage_2011_12_080 crossref_primary_10_1016_j_neuroimage_2022_119508 crossref_primary_10_1016_j_pscychresns_2014_02_010 crossref_primary_10_1142_S0129065716500337 crossref_primary_10_1016_j_neuroimage_2015_02_031 crossref_primary_10_1016_j_physd_2013_06_009 crossref_primary_10_1016_j_jneumeth_2021_109269 crossref_primary_10_1080_10874208_2011_623093 crossref_primary_10_1111_ejn_13840 crossref_primary_10_1016_j_jchemneu_2017_08_003 crossref_primary_10_1007_s00406_020_01172_5 crossref_primary_10_1371_journal_pcbi_1006769 crossref_primary_10_1016_j_bspc_2022_103689 crossref_primary_10_1093_scan_nsu049 crossref_primary_10_1016_j_jneumeth_2014_05_008 crossref_primary_10_1162_NECO_a_00827 crossref_primary_10_1109_TIM_2024_3418093 crossref_primary_10_1016_j_neuroimage_2011_12_039 crossref_primary_10_1109_TBME_2012_2199490 |
Cites_doi | 10.1016/j.ijpsycho.2005.01.004 10.1016/0013-4694(88)90171-X 10.1109/TSMCA.2007.897589 10.1016/j.psychres.2005.05.010 10.1016/j.clinph.2006.05.032 10.1016/j.eplepsyres.2007.09.011 10.1016/S0893-6080(00)00026-5 10.1016/j.neulet.2008.09.055 10.1016/S0165-0173(98)00056-3 10.1016/j.psychres.2005.07.016 10.1142/S0218127400001481 10.1109/TSMCB.2008.918072 10.1016/j.neuron.2006.09.020 10.1109/3477.915346 10.1385/NI:3:4:315 10.1016/j.neuroimage.2005.10.036 10.1016/j.clinph.2004.08.025 10.1016/S0167-8760(00)00145-8 10.1126/science.252.5009.1177 10.1109/TSMCA.2002.807036 10.1109/TSMCB.2008.922060 10.1152/jn.1999.82.6.3095 10.1016/j.neurobiolaging.2008.07.019 10.1016/j.ijpsycho.2005.03.025 10.1523/JNEUROSCI.21-20-j0008.2001 10.1111/j.1528-1167.2005.11404.x 10.1523/JNEUROSCI.4250-04.2005 10.1016/S1388-2457(00)00321-7 10.1385/NI:3:4:301 10.1016/j.clinph.2004.07.025 10.1016/j.neulet.2006.06.039 10.1038/17120 10.1523/JNEUROSCI.21-11-03942.2001 10.1016/j.clinph.2004.12.002 10.1109/TBME.2007.892929 10.1109/5326.740670 10.1038/17126 |
ContentType | Journal Article |
Copyright | 2010 IEEE 2010 |
Copyright_xml | – notice: 2010 IEEE 2010 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D 5PM |
DOI | 10.1109/TSMCB.2009.2037237 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1941-0492 |
EndPage | 1304 |
ExternalDocumentID | PMC2891575 10_1109_TSMCB_2009_2037237 5398939 |
Genre | orig-research |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS RXW TAE TAF VH1 VJK AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c492t-21da17cdec4dd3891ff1e27d50e315be7eb870e4a016db960e6a135eddf024cd3 |
IEDL.DBID | RIE |
ISSN | 1083-4419 |
IngestDate | Thu Aug 21 14:10:12 EDT 2025 Fri Jul 11 16:23:55 EDT 2025 Tue Jul 01 02:00:42 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Tue Aug 26 16:59:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-21da17cdec4dd3891ff1e27d50e315be7eb870e4a016db960e6a135eddf024cd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TSMCB.2009.2037237 |
PMID | 20106746 |
PQID | 818835898 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_818835898 ieee_primary_5398939 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2891575 crossref_citationtrail_10_1109_TSMCB_2009_2037237 crossref_primary_10_1109_TSMCB_2009_2037237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-10-01 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics |
PublicationTitleAbbrev | TSMCB |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 ref11 ref32 ref10 knyazeva (ref30) 1999; 82 ref1 ref38 ref16 mima (ref31) 2001; 21 ref18 tallon-baudry (ref19) 2001; 21 funato (ref9) 2008; 38 speckmann (ref2) 2004 ref24 ref23 ref26 nunez (ref33) 1981 ref25 ref20 ref41 ref22 ref21 fuentemilla (ref12) 2006; 30 ref28 ref27 steriade (ref6) 2004 ref29 ref8 ref7 rodriguez (ref17) 1999; 397 ref4 ref3 ref5 ref40 makeig (ref39) 1996; 8 |
References_xml | – ident: ref14 doi: 10.1016/j.ijpsycho.2005.01.004 – ident: ref34 doi: 10.1016/0013-4694(88)90171-X – ident: ref3 doi: 10.1109/TSMCA.2007.897589 – ident: ref18 doi: 10.1016/j.psychres.2005.05.010 – ident: ref37 doi: 10.1016/j.clinph.2006.05.032 – ident: ref27 doi: 10.1016/j.eplepsyres.2007.09.011 – volume: 8 start-page: 145 year: 1996 ident: ref39 article-title: independent component analysis of electroencephalographic data publication-title: Proc Adv Neural Inf Process Syst – ident: ref38 doi: 10.1016/S0893-6080(00)00026-5 – ident: ref28 doi: 10.1016/j.neulet.2008.09.055 – ident: ref13 doi: 10.1016/S0165-0173(98)00056-3 – ident: ref20 doi: 10.1016/j.psychres.2005.07.016 – ident: ref24 doi: 10.1142/S0218127400001481 – ident: ref8 doi: 10.1109/TSMCB.2008.918072 – ident: ref7 doi: 10.1016/j.neuron.2006.09.020 – ident: ref21 doi: 10.1109/3477.915346 – ident: ref32 doi: 10.1385/NI:3:4:315 – volume: 30 start-page: 909 year: 2006 ident: ref12 article-title: Modulation of spectral power and of phase resetting of EEG contributes differentially to the generation of auditory event-related potentials publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.10.036 – ident: ref40 doi: 10.1016/j.clinph.2004.08.025 – ident: ref10 doi: 10.1016/S0167-8760(00)00145-8 – ident: ref11 doi: 10.1126/science.252.5009.1177 – ident: ref4 doi: 10.1109/TSMCA.2002.807036 – volume: 38 start-page: 764 year: 2008 ident: ref9 article-title: Switching mechanism of sensor-motor coordination through an oscillator network model publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.922060 – volume: 82 start-page: 3095 year: 1999 ident: ref30 article-title: visual stimulus-dependent changes in interhemispheric eeg coherence in humans publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.6.3095 – year: 2004 ident: ref2 publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields – ident: ref26 doi: 10.1016/j.neurobiolaging.2008.07.019 – ident: ref15 doi: 10.1016/j.ijpsycho.2005.03.025 – year: 2004 ident: ref6 publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields – volume: 21 start-page: rc177:1 year: 2001 ident: ref19 article-title: Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-20-j0008.2001 – ident: ref41 doi: 10.1111/j.1528-1167.2005.11404.x – ident: ref23 doi: 10.1523/JNEUROSCI.4250-04.2005 – ident: ref36 doi: 10.1016/S1388-2457(00)00321-7 – ident: ref35 doi: 10.1385/NI:3:4:301 – ident: ref22 doi: 10.1016/j.clinph.2004.07.025 – ident: ref25 doi: 10.1016/j.neulet.2006.06.039 – volume: 397 start-page: 430 year: 1999 ident: ref17 article-title: perception's shadow: long-distance synchronization of human brain activity publication-title: Nature doi: 10.1038/17120 – volume: 21 start-page: 3942 year: 2001 ident: ref31 article-title: transient interhemispheric neuronal synchrony correlates with object recognition publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-11-03942.2001 – ident: ref29 doi: 10.1016/j.clinph.2004.12.002 – ident: ref1 doi: 10.1109/TBME.2007.892929 – ident: ref5 doi: 10.1109/5326.740670 – year: 1981 ident: ref33 publication-title: Electric Fields of the Brain The Neurophysics of EEG – ident: ref16 doi: 10.1038/17126 |
SSID | ssj0009097 |
Score | 2.142941 |
Snippet | The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase... |
SourceID | pubmedcentral proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1294 |
SubjectTerms | Amplitudes Assembly Biomedical measurements Bipolar electroencephalography (EEG) Coherence corrected EEG Correlation Correlation analysis Cybernetics Electroencephalography Epilepsy Frequency synchronization Nervous system Phase measurement phase synchrony Power measurement Recording Reference signals referential EEG scalp reference signal Signal analysis Signal processing spectral power Synchronization |
Title | On the Recording Reference Contribution to EEG Correlation, Phase Synchorony, and Coherence |
URI | https://ieeexplore.ieee.org/document/5398939 https://www.proquest.com/docview/818835898 https://pubmed.ncbi.nlm.nih.gov/PMC2891575 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQXkVdHpUPPYC6WeK8fQS0FFVaqARISBwix55oqyIHLdkD_HrGzqO7CFW9RYnjJJqx53M8830A3yhsKKsz5WVSJR4h4sSThZ_RZKgx9ZVMpCsfm1wmF7fRz7v4bgWGfS0MIrrkMxzZQ7eXrys1t7_KjuNQUHgVq7BKbtbUav0l2PUbIRWCFB6FeNEVyPji-OZ6cnbaUFMGfpgGoVXeCxx5msW9C_HICawsYc3lTMmF0HO-DpPupZuMkz-jeV2M1MsbPsf__aoN-NRiUHbSOM0mrKDZgo8LzIRbsNmO-Sd22BJTH23D_ZVhhBdZs2SldqynqWWW5arTzmJ1xcbjH3RuNmtz7Ybs15TiJbt-NjTfzirzPGTSaGarQ1wHn-H2fHxzduG14gyeikRQewHXkqdKo4q0tpudZckxSHXsY8jjAlMsaCrASBKm1AWtkzCRPIxR65JggdLhDqyZyuAXYDIoRCmRoAxXUYyZIDeRimtRqDAsy2AAvDNRrlrmciug8ZC7FYwvcmdhq6gp8tbCA_je3_PY8Hb8s_W2tUvfsjXJAFjnCTmNOruVIg1W86ecYA5B10xkA0iXPKTvwtJ2L18xv6eOvpuWuJxA8u77z9yDDy5BweUL7sNaPZvjAeGeuvjqHP4VTt__zA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOQFsqFgr40AOIzTbO20eotmwfW5C6lSpxiBx7oiIqp9pmD-XXd-w8ulshxC1KHCfRjD2f45nvA9ilsKGszpSXSZV4hIgTTxZ-RpOhxtRXMpGufGx6mkzOo6OL-GINhn0tDCK65DMc2UO3l68rtbC_yvbiUFB4FY_gMcX9KG6qte4pdv1GSoVAhUdBXnQlMr7Ym51N97825JSBH6ZBaLX3AkefZpHvUkRyEisraHM1V3Ip-By8gGn32k3Oye_Roi5G6s8DRsf__a6X8LxFoexL4zYbsIZmE54tcRNuwkY76m_Yx5aa-tMW_PxuGCFG1ixaqR3riWqZ5bnq1LNYXbHx-Budm8_bbLsh-3FJEZOd3RqaceeVuR0yaTSz9SGug1dwfjCe7U-8Vp7BU5EIai_gWvJUaVSR1na7syw5BqmOfQx5XGCKBU0GGElClbqglRImkocxal0SMFA63IZ1Uxl8DUwGhSglEpjhKooxE-QoUnEtChWGZRkMgHcmylXLXW4lNK5yt4bxRe4sbDU1Rd5aeACf-3uuG-aOf7besnbpW7YmGQDrPCGncWc3U6TBanGTE9Ah8JqJbADpiof0XVji7tUr5telI_CmRS4nmPzm78_8AE8ms-lJfnJ4evwWnrp0BZc9uAPr9XyB7wgF1cV75_x30tIDKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Recording+Reference+Contribution+to+EEG+Correlation%2C+Phase+Synchorony%2C+and+Coherence&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Sanqing+Hu&rft.au=Stead%2C+Matt&rft.au=Qionghai+Dai&rft.au=Worrell%2C+Gregory+A&rft.date=2010-10-01&rft.issn=1083-4419&rft.eissn=1941-0492&rft.volume=40&rft.issue=5&rft.spage=1294&rft.epage=1304&rft_id=info:doi/10.1109%2FTSMCB.2009.2037237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCB_2009_2037237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon |