On the Recording Reference Contribution to EEG Correlation, Phase Synchorony, and Coherence

The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 40; no. 5; pp. 1294 - 1304
Main Authors Sanqing Hu, Stead, Matt, Qionghai Dai, Worrell, Gregory A
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text
ISSN1083-4419
1941-0492
DOI10.1109/TSMCB.2009.2037237

Cover

Abstract The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are confounded by the recording reference signal and that this problem is not mitigated by the use of other EEG montages, such as bipolar and average reference. In this paper, we analyze the impact of reference signal amplitude and power on EEG signal correlation, phase synchrony, and MSC. We show that, first, when two nonreferential signals have negative correlation, the phase synchrony and the absolute value of the correlation of the two referential signals may have two regions of behavior characterized by a monotonic decrease to zero and then a monotonic increase to one as the amplitude of the reference signal varies in [0, +∞). It is notable that even a small change of the amplitude may lead to significant impact on these two measures. Second, when two nonreferential signals have positive correlation, the correlation and phase-synchrony values of the two referential signals can monotonically increase to one (or monotonically decrease to some positive value and then monotonically increase to one) as the amplitude of the reference signal varies in [0, + ∞). Third, when two nonreferential signals have negative cross-power, the MSC of the two referential signals can monotonically decrease to zero and then monotonically increase to one as reference signal power varies in [0, + ∞). Fourth, when two nonreferential signals have positive cross-power, the MSC of the two referential signals can monotonically increase to one as the reference signal power varies in [0, + ∞). In general, the reference signal with small amplitude or power relative to the signals of interest may decrease or increase the values of correlation, phase synchrony, and MSC. However, the reference signal with high relative amplitude or power will always increase each of the three measures. In our previous paper, we developed a method to identify and extract the reference signal contribution to intracranial EEG (iEEG) recordings. In this paper, we apply this approach to referential iEEG recorded from human subjects and directly investigate the contribution of recording reference on correlation, phase synchrony, and MSC. The experimental results demonstrate the significant impact that the recording reference may have on these bivariate measures.
AbstractList The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are confounded by the recording reference signal and that this problem is not mitigated by the use of other EEG montages, such as bipolar and average reference. In this paper, we analyze the impact of reference signal amplitude and power on EEG signal correlation, phase synchrony, and MSC. We show that, first, when two nonreferential signals have negative correlation, the phase synchrony and the absolute value of the correlation of the two referential signals may have two regions of behavior characterized by a monotonic decrease to zero and then a monotonic increase to one as the amplitude of the reference signal varies in [ 0 , + infinity ) . It is notable that even a small change of the amplitude may lead to significant impact on these two measures. Second, when two nonreferential signals have positive correlation, the correlation and phase-synchrony values of the two referential signals can monotonically increase to one (or monotonically decrease to some positive value and then monotonically increase to one) as the amplitude of the reference signal varies in [ 0 , + infinity ) . Third, when two nonreferential signals have negative cross-power, the MSC of the two referential signals can monotonically decrease to zero and then monotonically increase to one as reference signal power varies in [ 0 , + infinity ) . Fourth, when two nonreferential signals have positive cross-power, the MSC of the two referential signals can monotonically increase to one as the reference signal power varies in [ 0 , + infinity ) . In general, the reference signal with small amplitude or power relative to the signals of interest may decrease or increase the values of correlation, phase synchrony, and MSC. However, the reference signal with high relative amplitude or power will always increase each of the three measures. In our previous paper, we developed a method to identify and extract the reference signal contribution to intracranial EEG (iEEG) recordings. In this paper, we apply this approach to referential iEEG recorded from human subjects and directly investigate the contribution of recording reference on correlation, phase synchrony, and MSC. The experimental results demonstrate the significant impact that the recording reference may have on these bivariate measures.
The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase synchrony, and magnitude squared coherence (MSC). However, it is now well established that the interpretation of the results from these measures are confounded by the recording reference signal and that this problem is not mitigated by the use of other EEG montages, such as bipolar and average reference. In this paper, we analyze the impact of reference signal amplitude and power on EEG signal correlation, phase synchrony, and MSC. We show that, first, when two nonreferential signals have negative correlation, the phase synchrony and the absolute value of the correlation of the two referential signals may have two regions of behavior characterized by a monotonic decrease to zero and then a monotonic increase to one as the amplitude of the reference signal varies in [0, +∞). It is notable that even a small change of the amplitude may lead to significant impact on these two measures. Second, when two nonreferential signals have positive correlation, the correlation and phase-synchrony values of the two referential signals can monotonically increase to one (or monotonically decrease to some positive value and then monotonically increase to one) as the amplitude of the reference signal varies in [0, + ∞). Third, when two nonreferential signals have negative cross-power, the MSC of the two referential signals can monotonically decrease to zero and then monotonically increase to one as reference signal power varies in [0, + ∞). Fourth, when two nonreferential signals have positive cross-power, the MSC of the two referential signals can monotonically increase to one as the reference signal power varies in [0, + ∞). In general, the reference signal with small amplitude or power relative to the signals of interest may decrease or increase the values of correlation, phase synchrony, and MSC. However, the reference signal with high relative amplitude or power will always increase each of the three measures. In our previous paper, we developed a method to identify and extract the reference signal contribution to intracranial EEG (iEEG) recordings. In this paper, we apply this approach to referential iEEG recorded from human subjects and directly investigate the contribution of recording reference on correlation, phase synchrony, and MSC. The experimental results demonstrate the significant impact that the recording reference may have on these bivariate measures.
Author Qionghai Dai
Sanqing Hu
Stead, Matt
Worrell, Gregory A
Author_xml – sequence: 1
  surname: Sanqing Hu
  fullname: Sanqing Hu
  email: Sanqing.Hu@drexel.edu
  organization: Dept. of Neurology, Mayo Clinic, Rochester, MN, USA
– sequence: 2
  givenname: Matt
  surname: Stead
  fullname: Stead, Matt
  email: Stead.Squire@mayo.edu
  organization: Dept. of Neurology, Mayo Clinic, Rochester, MN, USA
– sequence: 3
  surname: Qionghai Dai
  fullname: Qionghai Dai
  email: qhdai@tsinghua.edu.cn
  organization: Dept. of Autom., Tsinghua Univ., Beijing, China
– sequence: 4
  givenname: Gregory A
  surname: Worrell
  fullname: Worrell, Gregory A
  email: Worrell.Gregory@mayo.edu
  organization: Dept. of Neurology, Mayo Clinic, Rochester, MN, USA
BookMark eNp9UU1PGzEQtSqqBkL_QLnsjQtL_bG7ti-VaJQCUhBVgVMPlteezRptbLA3lfLv65AUiR642KOZ9948zTtCBz54QOgLweeEYPn1_u5m9v2cYizzwzhl_AM6JLIiJa4kPcg1FqysKiIn6CilR5yRWPJPaEIxwQ2vmkP0-9YXYw_FLzAhWueXueoggjdQzIIfo2vXowsZFIr5_DL3YoRBb1tnxc9eJyjuNt70IQa_OSu0txnS7wSO0cdODwk-7_8pevgxv59dlYvby-vZxaI02eZYUmI14caCqaxlQpKuI0C5rTEwUrfAoRUcQ6UxaWwrGwyNJqwGaztMK2PZFH3b6T6t2xVYA9m2HtRTdCsdNypop95OvOvVMvxRNC-reZ0FTvcCMTyvIY1q5ZKBYdAewjopQYRgtZAiI8UOaWJIKUKnjBtfrpGF3aAIVtto1Es0ahuN2keTqfQ_6j-D75JOdiQHAK-EmkkhmWR_AfkUnL0
CODEN ITSCFI
CitedBy_id crossref_primary_10_1063_1_4890568
crossref_primary_10_1080_17470919_2023_2228545
crossref_primary_10_1016_j_clinph_2014_11_018
crossref_primary_10_1063_1_4729185
crossref_primary_10_1016_j_compbiomed_2019_103510
crossref_primary_10_1038_s41598_021_81884_3
crossref_primary_10_1016_j_knosys_2019_105367
crossref_primary_10_3389_fnins_2019_00941
crossref_primary_10_1155_2012_239210
crossref_primary_10_1016_j_neuroimage_2020_117344
crossref_primary_10_1088_1741_2552_aa5688
crossref_primary_10_3390_electronics13112017
crossref_primary_10_1111_jora_12527
crossref_primary_10_1109_TSMC_2015_2450680
crossref_primary_10_3390_brainsci11020162
crossref_primary_10_1007_s13246_015_0409_7
crossref_primary_10_1088_0967_3334_32_11_R01
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1152_jn_00089_2016
crossref_primary_10_1063_1_4996980
crossref_primary_10_1109_ACCESS_2018_2827023
crossref_primary_10_1142_S0129065715500069
crossref_primary_10_1016_j_jad_2019_03_077
crossref_primary_10_1016_j_crneur_2022_100061
crossref_primary_10_1152_jn_00368_2010
crossref_primary_10_1109_TNN_2011_2123917
crossref_primary_10_1007_s11517_012_0946_0
crossref_primary_10_1088_1361_6579_aace94
crossref_primary_10_3389_fnsys_2018_00030
crossref_primary_10_1111_epi_17067
crossref_primary_10_1016_j_neulet_2012_04_035
crossref_primary_10_1016_j_neuroimage_2011_12_080
crossref_primary_10_1016_j_neuroimage_2022_119508
crossref_primary_10_1016_j_pscychresns_2014_02_010
crossref_primary_10_1142_S0129065716500337
crossref_primary_10_1016_j_neuroimage_2015_02_031
crossref_primary_10_1016_j_physd_2013_06_009
crossref_primary_10_1016_j_jneumeth_2021_109269
crossref_primary_10_1080_10874208_2011_623093
crossref_primary_10_1111_ejn_13840
crossref_primary_10_1016_j_jchemneu_2017_08_003
crossref_primary_10_1007_s00406_020_01172_5
crossref_primary_10_1371_journal_pcbi_1006769
crossref_primary_10_1016_j_bspc_2022_103689
crossref_primary_10_1093_scan_nsu049
crossref_primary_10_1016_j_jneumeth_2014_05_008
crossref_primary_10_1162_NECO_a_00827
crossref_primary_10_1109_TIM_2024_3418093
crossref_primary_10_1016_j_neuroimage_2011_12_039
crossref_primary_10_1109_TBME_2012_2199490
Cites_doi 10.1016/j.ijpsycho.2005.01.004
10.1016/0013-4694(88)90171-X
10.1109/TSMCA.2007.897589
10.1016/j.psychres.2005.05.010
10.1016/j.clinph.2006.05.032
10.1016/j.eplepsyres.2007.09.011
10.1016/S0893-6080(00)00026-5
10.1016/j.neulet.2008.09.055
10.1016/S0165-0173(98)00056-3
10.1016/j.psychres.2005.07.016
10.1142/S0218127400001481
10.1109/TSMCB.2008.918072
10.1016/j.neuron.2006.09.020
10.1109/3477.915346
10.1385/NI:3:4:315
10.1016/j.neuroimage.2005.10.036
10.1016/j.clinph.2004.08.025
10.1016/S0167-8760(00)00145-8
10.1126/science.252.5009.1177
10.1109/TSMCA.2002.807036
10.1109/TSMCB.2008.922060
10.1152/jn.1999.82.6.3095
10.1016/j.neurobiolaging.2008.07.019
10.1016/j.ijpsycho.2005.03.025
10.1523/JNEUROSCI.21-20-j0008.2001
10.1111/j.1528-1167.2005.11404.x
10.1523/JNEUROSCI.4250-04.2005
10.1016/S1388-2457(00)00321-7
10.1385/NI:3:4:301
10.1016/j.clinph.2004.07.025
10.1016/j.neulet.2006.06.039
10.1038/17120
10.1523/JNEUROSCI.21-11-03942.2001
10.1016/j.clinph.2004.12.002
10.1109/TBME.2007.892929
10.1109/5326.740670
10.1038/17126
ContentType Journal Article
Copyright 2010 IEEE 2010
Copyright_xml – notice: 2010 IEEE 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
5PM
DOI 10.1109/TSMCB.2009.2037237
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1941-0492
EndPage 1304
ExternalDocumentID PMC2891575
10_1109_TSMCB_2009_2037237
5398939
Genre orig-research
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VH1
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c492t-21da17cdec4dd3891ff1e27d50e315be7eb870e4a016db960e6a135eddf024cd3
IEDL.DBID RIE
ISSN 1083-4419
IngestDate Thu Aug 21 14:10:12 EDT 2025
Fri Jul 11 16:23:55 EDT 2025
Tue Jul 01 02:00:42 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Tue Aug 26 16:59:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-21da17cdec4dd3891ff1e27d50e315be7eb870e4a016db960e6a135eddf024cd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1109/TSMCB.2009.2037237
PMID 20106746
PQID 818835898
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_818835898
ieee_primary_5398939
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2891575
crossref_citationtrail_10_1109_TSMCB_2009_2037237
crossref_primary_10_1109_TSMCB_2009_2037237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
PublicationTitleAbbrev TSMCB
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref11
ref32
ref10
knyazeva (ref30) 1999; 82
ref1
ref38
ref16
mima (ref31) 2001; 21
ref18
tallon-baudry (ref19) 2001; 21
funato (ref9) 2008; 38
speckmann (ref2) 2004
ref24
ref23
ref26
nunez (ref33) 1981
ref25
ref20
ref41
ref22
ref21
fuentemilla (ref12) 2006; 30
ref28
ref27
steriade (ref6) 2004
ref29
ref8
ref7
rodriguez (ref17) 1999; 397
ref4
ref3
ref5
ref40
makeig (ref39) 1996; 8
References_xml – ident: ref14
  doi: 10.1016/j.ijpsycho.2005.01.004
– ident: ref34
  doi: 10.1016/0013-4694(88)90171-X
– ident: ref3
  doi: 10.1109/TSMCA.2007.897589
– ident: ref18
  doi: 10.1016/j.psychres.2005.05.010
– ident: ref37
  doi: 10.1016/j.clinph.2006.05.032
– ident: ref27
  doi: 10.1016/j.eplepsyres.2007.09.011
– volume: 8
  start-page: 145
  year: 1996
  ident: ref39
  article-title: independent component analysis of electroencephalographic data
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref38
  doi: 10.1016/S0893-6080(00)00026-5
– ident: ref28
  doi: 10.1016/j.neulet.2008.09.055
– ident: ref13
  doi: 10.1016/S0165-0173(98)00056-3
– ident: ref20
  doi: 10.1016/j.psychres.2005.07.016
– ident: ref24
  doi: 10.1142/S0218127400001481
– ident: ref8
  doi: 10.1109/TSMCB.2008.918072
– ident: ref7
  doi: 10.1016/j.neuron.2006.09.020
– ident: ref21
  doi: 10.1109/3477.915346
– ident: ref32
  doi: 10.1385/NI:3:4:315
– volume: 30
  start-page: 909
  year: 2006
  ident: ref12
  article-title: Modulation of spectral power and of phase resetting of EEG contributes differentially to the generation of auditory event-related potentials
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.10.036
– ident: ref40
  doi: 10.1016/j.clinph.2004.08.025
– ident: ref10
  doi: 10.1016/S0167-8760(00)00145-8
– ident: ref11
  doi: 10.1126/science.252.5009.1177
– ident: ref4
  doi: 10.1109/TSMCA.2002.807036
– volume: 38
  start-page: 764
  year: 2008
  ident: ref9
  article-title: Switching mechanism of sensor-motor coordination through an oscillator network model
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.922060
– volume: 82
  start-page: 3095
  year: 1999
  ident: ref30
  article-title: visual stimulus-dependent changes in interhemispheric eeg coherence in humans
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.6.3095
– year: 2004
  ident: ref2
  publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields
– ident: ref26
  doi: 10.1016/j.neurobiolaging.2008.07.019
– ident: ref15
  doi: 10.1016/j.ijpsycho.2005.03.025
– year: 2004
  ident: ref6
  publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields
– volume: 21
  start-page: rc177:1
  year: 2001
  ident: ref19
  article-title: Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-20-j0008.2001
– ident: ref41
  doi: 10.1111/j.1528-1167.2005.11404.x
– ident: ref23
  doi: 10.1523/JNEUROSCI.4250-04.2005
– ident: ref36
  doi: 10.1016/S1388-2457(00)00321-7
– ident: ref35
  doi: 10.1385/NI:3:4:301
– ident: ref22
  doi: 10.1016/j.clinph.2004.07.025
– ident: ref25
  doi: 10.1016/j.neulet.2006.06.039
– volume: 397
  start-page: 430
  year: 1999
  ident: ref17
  article-title: perception's shadow: long-distance synchronization of human brain activity
  publication-title: Nature
  doi: 10.1038/17120
– volume: 21
  start-page: 3942
  year: 2001
  ident: ref31
  article-title: transient interhemispheric neuronal synchrony correlates with object recognition
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-11-03942.2001
– ident: ref29
  doi: 10.1016/j.clinph.2004.12.002
– ident: ref1
  doi: 10.1109/TBME.2007.892929
– ident: ref5
  doi: 10.1109/5326.740670
– year: 1981
  ident: ref33
  publication-title: Electric Fields of the Brain The Neurophysics of EEG
– ident: ref16
  doi: 10.1038/17126
SSID ssj0009097
Score 2.142941
Snippet The degree of synchronization in electroencephalography (EEG) signals is commonly characterized by the time-series measures, namely, correlation, phase...
SourceID pubmedcentral
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1294
SubjectTerms Amplitudes
Assembly
Biomedical measurements
Bipolar electroencephalography (EEG)
Coherence
corrected EEG
Correlation
Correlation analysis
Cybernetics
Electroencephalography
Epilepsy
Frequency synchronization
Nervous system
Phase measurement
phase synchrony
Power measurement
Recording
Reference signals
referential EEG
scalp reference signal
Signal analysis
Signal processing
spectral power
Synchronization
Title On the Recording Reference Contribution to EEG Correlation, Phase Synchorony, and Coherence
URI https://ieeexplore.ieee.org/document/5398939
https://www.proquest.com/docview/818835898
https://pubmed.ncbi.nlm.nih.gov/PMC2891575
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQXkVdHpUPPYC6WeK8fQS0FFVaqARISBwix55oqyIHLdkD_HrGzqO7CFW9RYnjJJqx53M8830A3yhsKKsz5WVSJR4h4sSThZ_RZKgx9ZVMpCsfm1wmF7fRz7v4bgWGfS0MIrrkMxzZQ7eXrys1t7_KjuNQUHgVq7BKbtbUav0l2PUbIRWCFB6FeNEVyPji-OZ6cnbaUFMGfpgGoVXeCxx5msW9C_HICawsYc3lTMmF0HO-DpPupZuMkz-jeV2M1MsbPsf__aoN-NRiUHbSOM0mrKDZgo8LzIRbsNmO-Sd22BJTH23D_ZVhhBdZs2SldqynqWWW5arTzmJ1xcbjH3RuNmtz7Ybs15TiJbt-NjTfzirzPGTSaGarQ1wHn-H2fHxzduG14gyeikRQewHXkqdKo4q0tpudZckxSHXsY8jjAlMsaCrASBKm1AWtkzCRPIxR65JggdLhDqyZyuAXYDIoRCmRoAxXUYyZIDeRimtRqDAsy2AAvDNRrlrmciug8ZC7FYwvcmdhq6gp8tbCA_je3_PY8Hb8s_W2tUvfsjXJAFjnCTmNOruVIg1W86ecYA5B10xkA0iXPKTvwtJ2L18xv6eOvpuWuJxA8u77z9yDDy5BweUL7sNaPZvjAeGeuvjqHP4VTt__zA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOQFsqFgr40AOIzTbO20eotmwfW5C6lSpxiBx7oiIqp9pmD-XXd-w8ulshxC1KHCfRjD2f45nvA9ilsKGszpSXSZV4hIgTTxZ-RpOhxtRXMpGufGx6mkzOo6OL-GINhn0tDCK65DMc2UO3l68rtbC_yvbiUFB4FY_gMcX9KG6qte4pdv1GSoVAhUdBXnQlMr7Ym51N97825JSBH6ZBaLX3AkefZpHvUkRyEisraHM1V3Ip-By8gGn32k3Oye_Roi5G6s8DRsf__a6X8LxFoexL4zYbsIZmE54tcRNuwkY76m_Yx5aa-tMW_PxuGCFG1ixaqR3riWqZ5bnq1LNYXbHx-Budm8_bbLsh-3FJEZOd3RqaceeVuR0yaTSz9SGug1dwfjCe7U-8Vp7BU5EIai_gWvJUaVSR1na7syw5BqmOfQx5XGCKBU0GGElClbqglRImkocxal0SMFA63IZ1Uxl8DUwGhSglEpjhKooxE-QoUnEtChWGZRkMgHcmylXLXW4lNK5yt4bxRe4sbDU1Rd5aeACf-3uuG-aOf7besnbpW7YmGQDrPCGncWc3U6TBanGTE9Ah8JqJbADpiof0XVji7tUr5telI_CmRS4nmPzm78_8AE8ms-lJfnJ4evwWnrp0BZc9uAPr9XyB7wgF1cV75_x30tIDKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Recording+Reference+Contribution+to+EEG+Correlation%2C+Phase+Synchorony%2C+and+Coherence&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Sanqing+Hu&rft.au=Stead%2C+Matt&rft.au=Qionghai+Dai&rft.au=Worrell%2C+Gregory+A&rft.date=2010-10-01&rft.issn=1083-4419&rft.eissn=1941-0492&rft.volume=40&rft.issue=5&rft.spage=1294&rft.epage=1304&rft_id=info:doi/10.1109%2FTSMCB.2009.2037237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCB_2009_2037237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon