Time series forecasting of bed occupancy in mental health facilities in India using machine learning
Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensu...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 2686 - 18 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold–Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India. |
---|---|
AbstractList | Abstract Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold–Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India. Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold-Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India.Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold-Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India. Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold–Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India. |
ArticleNumber | 2686 |
Author | Mishra, SukhDev Avinash, G. Sharma, Avinash Pachori, Hariom |
Author_xml | – sequence: 1 givenname: G. surname: Avinash fullname: Avinash, G. organization: Department of Biostatistics, Division of Health Sciences, ICMR-National Institute of Occupational Health – sequence: 2 givenname: Hariom surname: Pachori fullname: Pachori, Hariom organization: Department of Computer and Data Management, Central Institute of Psychiatry – sequence: 3 givenname: Avinash surname: Sharma fullname: Sharma, Avinash organization: Department of Psychiatry, Central Institute of Psychiatry (CIP) – sequence: 4 givenname: SukhDev surname: Mishra fullname: Mishra, SukhDev email: sd.mishra@gov.in, mishra.sukhdev@gmail.com organization: Department of Biostatistics, Division of Health Sciences, ICMR-National Institute of Occupational Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39837951$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhiemxn7YP-DCkLhxM8rnACtjGrU3aeKmrgnDHO7lZgauMGPSfy-3U2vrQjaQw_s-HOA9b05iitA0bwj-QDBTHwsnQqsWU9GqjhPV6hfNGcVctJRRevJkfdpclrLHdQiqOdGvmlOmFZNakLNmuA0ToAI5QEE-ZXC2zCFuUfKohwEl55aDje4OhYgmiLMd0Q7sOO-Qty6MYT4a694mDsGipRy9k3W7EAGNYHOshdfNS2_HApcP80Xz4-uX26vr9ub7t83V55vWcU3nlmIrHXfQdz1zwHzHeglOE-rxANQPvRpopyTuae-5JBJL0RPceSakU44TdtFsVu6Q7N4ccphsvjPJBnNfSHlrbJ6DG8F0UnhGpZMYLHcV7XxHFLFMcSoquLI-razD0k8wuHr1bMdn0Oc7MezMNv0yhEiBtcSV8P6BkNPPBcpsplAcjKONkJZiGBEKa6E7WaXv_pHu05JjfaujSsqOca2r6u3Tlh57-fObVUBXgcuplAz-UUKwOabGrKkxNTXmPjXmSGWrqVRx3EL-e_Z_XL8BInPEaw |
Cites_doi | 10.1016/j.ajem.2021.04.075 10.1038/s41598-022-26167-1 10.1371/journal.pone.0263789 10.1017/ice.2020.464 10.1186/s12913-018-3570-3 10.1038/s41598-023-48601-8 10.1287/inte.2021.1115 10.1145/2939672.293978 10.2307/1403192 10.1016/j.asoc.2024.111557 10.3354/cr030079 10.1007/s11540-024-09789-y 10.1007/BF00116251 10.1186/s12911-019-0776-1 10.1186/s12889-024-18038-3 10.1016/0304-4076(92)90104-Y 10.1016/j.ijforecast.2023.12.002 10.1186/s12911-022-01787-9 10.2196/21990 10.1007/s10729-005-2013-y 10.1016/j.eswa.2023.122147 10.54216/JAIM.080103 10.1038/s41746-022-00649-y 10.1007/s11517-022-02525-z 10.1007/BF00994018 10.1007/978-3-031-20627-6_8 10.2307/2286348 10.12968/bjhc.2011.17.6.242 10.1109/TIT.1967.1053964 10.1093/biomet/52.3-4.591 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 10.1080/07350015.1995.10524599 10.1023/A:1010933404324 10.1214/aos/1013203451 10.1016/j.orhc.2019.01.002 10.1093/joccuh/uiad017 10.1038/s41598-024-68040-3 10.1016/S2215-0366(19)30475-4 10.1007/s10729-021-09553-5 10.9734/BJMMR/2016/29518 10.1007/s40808-023-01944-7 10.21608/jaiep.2024.386693 10.1186/s12873-020-00395-y 10.1136/jech.44.4.307 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-86418-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_675f327c70ea4cdb8cf6181a38425075 PMC11750970 39837951 10_1038_s41598_025_86418_9 |
Genre | Journal Article |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-20a7c4ceb6b3ce3f63b7ec912f0de2fdb8d26870b2bf4717075b106f357c8c413 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:17:53 EDT 2025 Thu Aug 21 18:41:14 EDT 2025 Fri Jul 11 10:11:10 EDT 2025 Sat Aug 23 14:14:04 EDT 2025 Mon Jul 21 06:03:23 EDT 2025 Tue Jul 01 02:06:49 EDT 2025 Mon Jul 21 06:08:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bed occupancy forecasting Healthcare resource management Patient care optimization Mental health hospital Time series analysis Machine learning in healthcare |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-20a7c4ceb6b3ce3f63b7ec912f0de2fdb8d26870b2bf4717075b106f357c8c413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3157763499?pq-origsite=%requestingapplication% |
PMID | 39837951 |
PQID | 3157763499 |
PQPubID | 2041939 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_675f327c70ea4cdb8cf6181a38425075 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11750970 proquest_miscellaneous_3158095967 proquest_journals_3157763499 pubmed_primary_39837951 crossref_primary_10_1038_s41598_025_86418_9 springer_journals_10_1038_s41598_025_86418_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-21 |
PublicationDateYYYYMMDD | 2025-01-21 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | T Donker (86418_CR26) 2021; 42 DA Dickey (86418_CR30) 1979; 74 S Baas (86418_CR25) 2021; 24 C Cortes (86418_CR39) 1995; 20 JH Kim (86418_CR10) 2022; 12 E-SM El-Kenawy (86418_CR6) 2024; 1 K Shah (86418_CR27) 2021; 9 GHH Nayak (86418_CR35) 2024; 14 G Avinash (86418_CR34) 2024; 158 JR Quinlan (86418_CR44) 1986; 1 86418_CR17 GHH Nayak (86418_CR36) 2024; 10 M Tello (86418_CR9) 2022; 22 E Kutafina (86418_CR15) 2019; 19 N Beeknoo (86418_CR20) 2016; 18 S Roy (86418_CR21) 2018; 18 L Breiman (86418_CR41) 2001; 45 86418_CR3 RD Farmer (86418_CR28) 1990; 44 86418_CR2 W Whitt (86418_CR14) 2019; 21 CM Jarque (86418_CR33) 1987; 55 M Mackay (86418_CR19) 2005; 8 R Sagar (86418_CR1) 2020; 7 T Cover (86418_CR42) 1967; 13 E-SM El-Kenawy (86418_CR5) 2024; 238 MA Vollmer (86418_CR8) 2021; 21 MA Begen (86418_CR23) 2024; 24 G Avinash (86418_CR38) 2022; 21 E-SM El-Kenawy (86418_CR4) 2024; 8 D Kwiatkowski (86418_CR31) 1992; 54 R Delli Compagni (86418_CR16) 2022; 17 M Tavakoli (86418_CR22) 2022; 60 R Kociurzynski (86418_CR24) 2023; 13 CJ Willmott (86418_CR46) 2005; 30 IA Shah (86418_CR7) 2024; 66 Q Cheng (86418_CR13) 2021; 48 GHH Nayak (86418_CR37) 2024 JH Friedman (86418_CR43) 2001; 29 R Jones (86418_CR29) 2011; 17 J Heins (86418_CR18) 2022; 52 SS Shapiro (86418_CR32) 1965; 52 86418_CR40 J Tuominen (86418_CR12) 2024; 40 CJ Willmott (86418_CR45) 1982; 63 Z King (86418_CR11) 2022; 5 FX Diebold (86418_CR47) 1995; 13 |
References_xml | – volume: 48 start-page: 177 year: 2021 ident: 86418_CR13 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2021.04.075 – volume: 12 start-page: 21797 year: 2022 ident: 86418_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-022-26167-1 – volume: 17 year: 2022 ident: 86418_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0263789 – volume: 42 start-page: 653 year: 2021 ident: 86418_CR26 publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1017/ice.2020.464 – volume: 18 start-page: 760 year: 2018 ident: 86418_CR21 publication-title: BMC Health Serv. Res. doi: 10.1186/s12913-018-3570-3 – volume: 13 start-page: 21321 year: 2023 ident: 86418_CR24 publication-title: Sci. Rep. doi: 10.1038/s41598-023-48601-8 – volume: 52 start-page: 508 year: 2022 ident: 86418_CR18 publication-title: INFORMS J. Appl. Anal. doi: 10.1287/inte.2021.1115 – ident: 86418_CR40 doi: 10.1145/2939672.293978 – volume: 55 start-page: 163 year: 1987 ident: 86418_CR33 publication-title: Int. Stat. Rev./Revue Internationale de Statistique doi: 10.2307/1403192 – volume: 158 year: 2024 ident: 86418_CR34 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111557 – volume: 30 start-page: 79 year: 2005 ident: 86418_CR46 publication-title: Clim. Res. doi: 10.3354/cr030079 – ident: 86418_CR2 – year: 2024 ident: 86418_CR37 publication-title: Potato Res. doi: 10.1007/s11540-024-09789-y – volume: 1 start-page: 81 year: 1986 ident: 86418_CR44 publication-title: Mach. Learn. doi: 10.1007/BF00116251 – volume: 19 start-page: 39 year: 2019 ident: 86418_CR15 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-0776-1 – volume: 24 start-page: 505 year: 2024 ident: 86418_CR23 publication-title: BMC Public Health doi: 10.1186/s12889-024-18038-3 – volume: 54 start-page: 159 year: 1992 ident: 86418_CR31 publication-title: J. Econom. doi: 10.1016/0304-4076(92)90104-Y – volume: 40 start-page: 1410 year: 2024 ident: 86418_CR12 publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2023.12.002 – volume: 22 start-page: 55 year: 2022 ident: 86418_CR9 publication-title: BMC Med. Inform. Decis. Making doi: 10.1186/s12911-022-01787-9 – volume: 9 year: 2021 ident: 86418_CR27 publication-title: JMIR Med. Inform. doi: 10.2196/21990 – volume: 8 start-page: 221 year: 2005 ident: 86418_CR19 publication-title: Health Care Manag. Sci. doi: 10.1007/s10729-005-2013-y – volume: 238 year: 2024 ident: 86418_CR5 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122147 – volume: 8 start-page: 21 year: 2024 ident: 86418_CR4 publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.080103 – volume: 5 start-page: 104 year: 2022 ident: 86418_CR11 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00649-y – volume: 60 start-page: 969 year: 2022 ident: 86418_CR22 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02525-z – volume: 20 start-page: 273 year: 1995 ident: 86418_CR39 publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: 86418_CR17 doi: 10.1007/978-3-031-20627-6_8 – volume: 74 start-page: 427 year: 1979 ident: 86418_CR30 publication-title: J. Am. Stat. Assoc. doi: 10.2307/2286348 – volume: 17 start-page: 242 year: 2011 ident: 86418_CR29 publication-title: Br. J. Healthc. Manag. doi: 10.12968/bjhc.2011.17.6.242 – volume: 13 start-page: 21 year: 1967 ident: 86418_CR42 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 52 start-page: 591 year: 1965 ident: 86418_CR32 publication-title: Biometrika doi: 10.1093/biomet/52.3-4.591 – volume: 63 start-page: 1309 year: 1982 ident: 86418_CR45 publication-title: Bull. Am. Meteor. Soc. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 – volume: 13 start-page: 253 year: 1995 ident: 86418_CR47 publication-title: J. Bus. Econom. Stat. doi: 10.1080/07350015.1995.10524599 – volume: 45 start-page: 5 year: 2001 ident: 86418_CR41 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 29 start-page: 1189 year: 2001 ident: 86418_CR43 publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 21 start-page: 1 year: 2019 ident: 86418_CR14 publication-title: Oper. Res. Health Care doi: 10.1016/j.orhc.2019.01.002 – volume: 66 start-page: uiad017 year: 2024 ident: 86418_CR7 publication-title: J. Occup. Health doi: 10.1093/joccuh/uiad017 – volume: 14 start-page: 17203 year: 2024 ident: 86418_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-024-68040-3 – volume: 7 start-page: 148 year: 2020 ident: 86418_CR1 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(19)30475-4 – volume: 24 start-page: 402 year: 2021 ident: 86418_CR25 publication-title: Health Care Manag. Sci. doi: 10.1007/s10729-021-09553-5 – volume: 21 start-page: 121 year: 2022 ident: 86418_CR38 publication-title: Stat. Appl. – ident: 86418_CR3 – volume: 18 start-page: 1 year: 2016 ident: 86418_CR20 publication-title: Br. J. Med. Med. Res. doi: 10.9734/BJMMR/2016/29518 – volume: 10 start-page: 3119 year: 2024 ident: 86418_CR36 publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-023-01944-7 – volume: 1 start-page: 17 year: 2024 ident: 86418_CR6 publication-title: J. Artif. Intell. Eng. Pract. doi: 10.21608/jaiep.2024.386693 – volume: 21 start-page: 9 year: 2021 ident: 86418_CR8 publication-title: BMC Emerg. Med. doi: 10.1186/s12873-020-00395-y – volume: 44 start-page: 307 year: 1990 ident: 86418_CR28 publication-title: J. Epidemiol. Commun. Health doi: 10.1136/jech.44.4.307 |
SSID | ssj0000529419 |
Score | 2.44363 |
Snippet | Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and... Abstract Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2686 |
SubjectTerms | 692/700/1538 692/700/228 692/700/3934 692/700/478 Accuracy Algorithms Bed Occupancy - statistics & numerical data Bed Occupancy - trends Bed occupancy forecasting Cognitive ability COVID-19 Efficiency Emergency medical care Forecasting Forecasting techniques Health care Health facilities Health services Healthcare resource management Hospital systems Hospitals, Psychiatric - statistics & numerical data Humanities and Social Sciences Humans India Learning algorithms Machine Learning Machine learning in healthcare Mental disorders Mental health Mental health care Mental health hospital Mental Health Services - statistics & numerical data Mental institutions Monte Carlo simulation multidisciplinary Neural networks Optimization techniques Pandemics Patient care optimization Psychiatry Queuing theory Regression analysis Resource allocation Resource management Science Science (multidisciplinary) Time series Time series analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaLGdhLHR0BUBQlOVOrN8rP0QBax2wP_nm_s7NLlIS5c40SyvpnxfBPPg7HnIYJDKw3mFrupxSkpWmdibKPwKQqZ_BioOPnDx_HktH9_NpxdGfVFOWG1PXAF7giENiupg-6S60P0U8gjvJJTdH8Ef0enL3zelWCqdvWWphdmqZLp1HS0hqeiajI5tNPYC1j5nicqDfv_xDJ_T5b85ca0OKLjW-zmwiD5q7rz2-xamu-w63Wm5Pe7LFJRByfFSmsORpqCW1NqM19lDmD4qrQVxpHKL2ZeO_vzWgzJswuUKUsfYu3dDNXhlBd_zr-UlMvElxkT5_fY6fHbT29O2mWUQht6IzewBadDHwC9VyGpPCqvUzBC5i4mmQFrlCNM10uf4a40gPUIFrMadJgCRHifHcyrOT1kXGcfjfM6DA5sRAYTEROJCGbWeeP7rmEvtrDar7Vjhi033WqyVQgWQrBFCNY07DUhv3uTul2XB9ABu-iA_ZcONOxwKze7mODaKjFoHJ6I6Br2bLcM46EbETen1WV5Z6IfoaNu2IMq5t1OlEHsDv7ZsGlPAfa2ur8yX3wuDbqp_WlnNKB4udWVn_v6OxaP_gcWj9kNSUreiVaKQ3aw-XaZnoA3bfzTYiI_ALdyE6U priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlFjO4njEwJEVZDgRKW9WX4uPZCUZnvg3zPjeLdaXtc4kSbz8mfPC-ClD4ihpULkFpqhRi_Ja6tDqAN3MXARXe-pOPnzl_7ktP206lblwm0uaZVbn5gddZg83ZEfSd4ptAUE6G_Of9Q0NYqiq2WExnW4Qa3LSKvVSu3uWCiK1XJdamUaORzNuF9RTZno6qFvOdr63n6U2_b_DWv-mTL5W9w0b0fHd-B2wZHs7SL4u3Atjvfg5jJZ8ud9CFTawUi94swQl0ZvZ0pwZlNiyB425ebC6FjZ2ciW_v5sKYlkyXrKl6UPce3jiArEKDt-zb7nxMvIyqSJ9QM4Pf7w9f1JXQYq1L7VYoMWYZVvPQrASR9l6qVT0WsuUhOiSMENQfRowE64hJuWQjjh8MiYZKf84FGQD-FgnMb4GJhKLmjrlO8sYhLhdcCTEQ-IzxqnXdtU8GrLVnO-9M0wOd4tB7MIwaAQTBaC0RW8I87v3qSe1_nBdLE2xYQMHm2SFMqrJtrWI7E-9YhPrKRIIpJaweFWbqYY4myu1KaCF7tlNCGKi9gxTpf5nYGuQ3tVwaNFzDtKpMYTPKLQCoY9BdgjdX9lPPuW23RTE9RGK2TF662uXNH1b148-f9vPIVbgtS34bXgh3CwubiMzxAXbdzzrPy_ANVmC-M priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEOUZaCsjcYOI2E7i-LigVmUluECl3iw_lx6aoO72wL9nxkkWLZQD19iWRvPyN5mHAd74gBhaKkRuoepK9JK8tDqEMnAXAxfRtZ6akz9_ac8v6uVlc7kHYu6FyUX7eaRldtNzddj7NV401AwmmrJra45Geg8OaFQ76vbBYrH8utz-WaHcVc311CFTye6Owzu3UB7WfxfC_LtQ8o9sab6Ezh7Bwwk9ssVI7yHsxf4x3B_fk_z5BAI1dDBSqrhmiEajt2sqa2ZDYsgUNuSRwuhO2VXPxqn-bGyEZMl6qpKlg7j2qUe1YVQTv2LXudwysul9idVTuDg7_fbxvJyeUSh9rcUG7cAqX3tku5M-ytRKp6LXXKQqRJGC64Jo0WydcAmvKoUgwmGgmGSjfOdRfM9gvx_6-AKYSi5o65RvLCIR4XXAeIgHRGWV066uCng7s9X8GKdlmJzllp0ZhWBQCCYLwegCPhDntztp0nX-MNyszCR5gwFNkkJ5VUVbeyTWpxZRiZWUP0RSCzia5WYm81sbyRuFjhOjuQJeb5fRcCgbYvs43OY9Hf0EbVUBz0cxbymRGuN2xJ4FdDsKsEPq7kp_9T0P56bRp5VWyIp3s678puvfvHj5f9tfwQNB6lzxUvAj2N_c3MZjREcbdzKZwy_PzQsS priority: 102 providerName: Springer Nature |
Title | Time series forecasting of bed occupancy in mental health facilities in India using machine learning |
URI | https://link.springer.com/article/10.1038/s41598-025-86418-9 https://www.ncbi.nlm.nih.gov/pubmed/39837951 https://www.proquest.com/docview/3157763499 https://www.proquest.com/docview/3158095967 https://pubmed.ncbi.nlm.nih.gov/PMC11750970 https://doaj.org/article/675f327c70ea4cdb8cf6181a38425075 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC72geBFfBtdhxa8aTTdnaTTB5HZYZd1YBdRB-bWpF-zC5rozCy4_97qTjIyOh48BdJJKOrR9VW6HgAvjUUMzQUiN5tVKe6SNK2ltaml2lnKnC5NKE4-vyjPZvl0Xsz3YBh31DNwtTO0C_OkZsuvb37-uHmPBv-uKxmv3q7QCYVCMVakVZlTNOB9OETPJMJEg_Me7ne9vpnM46yP0IQ9RTDB-jqa3Z_Z8lWxpf8uHPp3OuUfZ6rRVZ3ehTs9xiTjTinuwZ5r7sOtburkzQOwoeyDBNVzK4KY1Zl6FZKfSesJso60sfEwbrrkqiFd73_SlUsSX5uQSxtexLUPDSoXCZnzC_ItJmU60k-hWDyE2enJl8lZ2g9bSE0u2RqtpRYmNygczY3jvuRaOCMp85l1zFtdWVaicWumPTo0gVBDYzjpeSFMZVDIj-CgaRv3BIjw2spaC1PUiFeYkRajJmqR3ZmWOs8SeDWwVX3vemqoeBbOK9UJQaEQVBSCkgkcB85vngz9sOONdrlQvXkpDHs8Z8KIzNW5QWKNLxG71DycMiKpCRwNclODjilOC4HbK8Z8CbzYLKN5hTOTunHtdXymCr9KS5HA407MG0q4xOgeEWoC1ZYCbJG6vdJcXcYW3qFBaiYFsuL1oCu_6fo3L57-F-eewW0WtDmjKaNHcLBeXrvnCKHWegT7Yi5GcDgeTz9P8Xp8cvHxE96dlJNR_C0xipbzC_h9GpY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaLGdjZODgjxqnbp49RKezPxa-mBpDRbof4pfiMzTrLV8rr1uk5WE8_rG8-MB-CFdYihpULk5rIyRSvJ07pyLnXceMeFN4Wl5uT9g2J6lH-eT-Yb8HPshaGyytEmRkPtWktn5NuSTxTqAgL0tyffU5oaRdnVcYRGLxa7_vwHhmzdm9lH5O9LIXY-HX6YpsNUgdTmlViiWNTK5hapMNJ6GQpplLcVFyFzXgRnSicKlGIjTEDLrdCnGoybgpwoW1r8GvzfK3AVHW9GwZ6aq9WZDmXNcl4NvTmZLLc79I_UwyYmaVnkHG3Lmv-LYwL-hm3_LNH8LU8b3d_OLbg54Fb2rhe027DhmztwrZ9keX4XHLWSMBJn3zHEwd7WHRVUszYwZAdr42XGaMjZccP6eQKsb8FkobZUn0sv4tqsQYFlVI2_YN9ioadnw2SLxT04upStvg-bTdv4h8BUMK6qjbKTGjGQsJXDSIw7xIOZqUyeJfBq3FZ90t_ToWN-XZa6Z4JGJujIBF0l8J52fvUk3bEdf2hPF3pQWY2hVJBCWZX5OrdIrA0F4qFaUuYSSU1ga-SbHhS_0xdimsDz1TKqLOVh6sa3Z_GZko5fC5XAg57NK0pkVUqFqDeBck0A1khdX2mOv8ZrwenS1axSuBWvR1m5oOvfe_Ho_5_xDK5PD_f39N7sYPcx3BAkyhlPBd-CzeXpmX-CmGxpnkZFYPDlsjXvF6H4STA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqUBcEDuGAoMEJ7DimbE99gEhShs1FKIKUam3wbOFHrBLkwr1r_HreM9LqrDdes3Y0fPb5pt5G8Bz6xBDS4XIzSVFjF6Sx1XpXOy48Y4Lb3JLxckfZ_neYfr-KDvagJ9DLQylVQ4-sXXUrrF0Rz6WPFNoCwjQx6FPizjYmbw5-R7TBCmKtA7jNDoV2ffnP_D4tng93UFZvxBisvv53V7cTxiIbVqKJapIpWxqkSIjrZchl0Z5W3IREudFcKZwIkeNNsIE9OIK91eDZ6ggM2ULi1-G_3sFNhWdikawub07O_i0uuGhGFrKy75SJ5HFeIG7JVW0iSwu8pSjp1nbDduhAX9Dun8mbP4WtW03w8lNuNGjWPa2U7tbsOHr23C1m2t5fgccFZYwUm6_YIiKva0WlF7NmsBQOKxpWxujW2fHNeumC7CuIJOFylK2Lr2Ia9Ma1ZdRbv6cfWvTPj3r51zM78LhpTD7HozqpvYPgKlgXFkZZbMKEZGwpcNzGXeIDhNTmjSJ4OXAVn3Sde3QbbRdFroTgkYh6FYIuoxgmzi_epI6brc_NKdz3RuwxoNVkEJZlfgqtUisDTmio0pSHBNJjWBrkJvu3cBCXyhtBM9Wy2jAFJWpat-ctc8UdBmbqwjud2JeUSLLQirEwBEUawqwRur6Sn38tW0STi1Yk1IhK14NunJB17958fD_n_EUrqHV6Q_T2f4juC5IkxMeC74Fo-XpmX-MAG1pnvSWwODLZRvfL5TjTss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+forecasting+of+bed+occupancy+in+mental+health+facilities+in+India+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Avinash%2C+G.&rft.au=Pachori%2C+Hariom&rft.au=Sharma%2C+Avinash&rft.au=Mishra%2C+SukhDev&rft.date=2025-01-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-86418-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_86418_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |