Time series forecasting of bed occupancy in mental health facilities in India using machine learning

Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensu...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 2686 - 18
Main Authors Avinash, G., Pachori, Hariom, Sharma, Avinash, Mishra, SukhDev
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold–Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India.
AbstractList Abstract Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold–Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India.
Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold-Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India.Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold-Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India.
Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and globally. With increasing demand for mental health services, effective resource management, like bed occupancy forecasting, is crucial to ensure proper patient care and reduce the burden on healthcare facilities. This study applies six machine learning models, namely Support Vector Regression, eXtreme Gradient Boosting, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Decision Tree, to forecast weekly bed occupancy of the second largest mental hospital in India, using data from 2008 to 2024. Accuracy of models were evaluated using Mean Absolute Percentage Error, and Diebold–Mariano test for assessing differences in predictive performance. Further, we forecast the bed occupancy, providing crucial insights for healthcare administrators in capacity planning and resource allocation, supporting data-driven decisions and enhancing the quality of mental health services in India.
ArticleNumber 2686
Author Mishra, SukhDev
Avinash, G.
Sharma, Avinash
Pachori, Hariom
Author_xml – sequence: 1
  givenname: G.
  surname: Avinash
  fullname: Avinash, G.
  organization: Department of Biostatistics, Division of Health Sciences, ICMR-National Institute of Occupational Health
– sequence: 2
  givenname: Hariom
  surname: Pachori
  fullname: Pachori, Hariom
  organization: Department of Computer and Data Management, Central Institute of Psychiatry
– sequence: 3
  givenname: Avinash
  surname: Sharma
  fullname: Sharma, Avinash
  organization: Department of Psychiatry, Central Institute of Psychiatry (CIP)
– sequence: 4
  givenname: SukhDev
  surname: Mishra
  fullname: Mishra, SukhDev
  email: sd.mishra@gov.in, mishra.sukhdev@gmail.com
  organization: Department of Biostatistics, Division of Health Sciences, ICMR-National Institute of Occupational Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39837951$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhiemxn7YP-DCkLhxM8rnACtjGrU3aeKmrgnDHO7lZgauMGPSfy-3U2vrQjaQw_s-HOA9b05iitA0bwj-QDBTHwsnQqsWU9GqjhPV6hfNGcVctJRRevJkfdpclrLHdQiqOdGvmlOmFZNakLNmuA0ToAI5QEE-ZXC2zCFuUfKohwEl55aDje4OhYgmiLMd0Q7sOO-Qty6MYT4a694mDsGipRy9k3W7EAGNYHOshdfNS2_HApcP80Xz4-uX26vr9ub7t83V55vWcU3nlmIrHXfQdz1zwHzHeglOE-rxANQPvRpopyTuae-5JBJL0RPceSakU44TdtFsVu6Q7N4ccphsvjPJBnNfSHlrbJ6DG8F0UnhGpZMYLHcV7XxHFLFMcSoquLI-razD0k8wuHr1bMdn0Oc7MezMNv0yhEiBtcSV8P6BkNPPBcpsplAcjKONkJZiGBEKa6E7WaXv_pHu05JjfaujSsqOca2r6u3Tlh57-fObVUBXgcuplAz-UUKwOabGrKkxNTXmPjXmSGWrqVRx3EL-e_Z_XL8BInPEaw
Cites_doi 10.1016/j.ajem.2021.04.075
10.1038/s41598-022-26167-1
10.1371/journal.pone.0263789
10.1017/ice.2020.464
10.1186/s12913-018-3570-3
10.1038/s41598-023-48601-8
10.1287/inte.2021.1115
10.1145/2939672.293978
10.2307/1403192
10.1016/j.asoc.2024.111557
10.3354/cr030079
10.1007/s11540-024-09789-y
10.1007/BF00116251
10.1186/s12911-019-0776-1
10.1186/s12889-024-18038-3
10.1016/0304-4076(92)90104-Y
10.1016/j.ijforecast.2023.12.002
10.1186/s12911-022-01787-9
10.2196/21990
10.1007/s10729-005-2013-y
10.1016/j.eswa.2023.122147
10.54216/JAIM.080103
10.1038/s41746-022-00649-y
10.1007/s11517-022-02525-z
10.1007/BF00994018
10.1007/978-3-031-20627-6_8
10.2307/2286348
10.12968/bjhc.2011.17.6.242
10.1109/TIT.1967.1053964
10.1093/biomet/52.3-4.591
10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
10.1080/07350015.1995.10524599
10.1023/A:1010933404324
10.1214/aos/1013203451
10.1016/j.orhc.2019.01.002
10.1093/joccuh/uiad017
10.1038/s41598-024-68040-3
10.1016/S2215-0366(19)30475-4
10.1007/s10729-021-09553-5
10.9734/BJMMR/2016/29518
10.1007/s40808-023-01944-7
10.21608/jaiep.2024.386693
10.1186/s12873-020-00395-y
10.1136/jech.44.4.307
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-86418-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_675f327c70ea4cdb8cf6181a38425075
PMC11750970
39837951
10_1038_s41598_025_86418_9
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-20a7c4ceb6b3ce3f63b7ec912f0de2fdb8d26870b2bf4717075b106f357c8c413
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:17:53 EDT 2025
Thu Aug 21 18:41:14 EDT 2025
Fri Jul 11 10:11:10 EDT 2025
Sat Aug 23 14:14:04 EDT 2025
Mon Jul 21 06:03:23 EDT 2025
Tue Jul 01 02:06:49 EDT 2025
Mon Jul 21 06:08:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bed occupancy forecasting
Healthcare resource management
Patient care optimization
Mental health hospital
Time series analysis
Machine learning in healthcare
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-20a7c4ceb6b3ce3f63b7ec912f0de2fdb8d26870b2bf4717075b106f357c8c413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3157763499?pq-origsite=%requestingapplication%
PMID 39837951
PQID 3157763499
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_675f327c70ea4cdb8cf6181a38425075
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11750970
proquest_miscellaneous_3158095967
proquest_journals_3157763499
pubmed_primary_39837951
crossref_primary_10_1038_s41598_025_86418_9
springer_journals_10_1038_s41598_025_86418_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-21
PublicationDateYYYYMMDD 2025-01-21
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References T Donker (86418_CR26) 2021; 42
DA Dickey (86418_CR30) 1979; 74
S Baas (86418_CR25) 2021; 24
C Cortes (86418_CR39) 1995; 20
JH Kim (86418_CR10) 2022; 12
E-SM El-Kenawy (86418_CR6) 2024; 1
K Shah (86418_CR27) 2021; 9
GHH Nayak (86418_CR35) 2024; 14
G Avinash (86418_CR34) 2024; 158
JR Quinlan (86418_CR44) 1986; 1
86418_CR17
GHH Nayak (86418_CR36) 2024; 10
M Tello (86418_CR9) 2022; 22
E Kutafina (86418_CR15) 2019; 19
N Beeknoo (86418_CR20) 2016; 18
S Roy (86418_CR21) 2018; 18
L Breiman (86418_CR41) 2001; 45
86418_CR3
RD Farmer (86418_CR28) 1990; 44
86418_CR2
W Whitt (86418_CR14) 2019; 21
CM Jarque (86418_CR33) 1987; 55
M Mackay (86418_CR19) 2005; 8
R Sagar (86418_CR1) 2020; 7
T Cover (86418_CR42) 1967; 13
E-SM El-Kenawy (86418_CR5) 2024; 238
MA Vollmer (86418_CR8) 2021; 21
MA Begen (86418_CR23) 2024; 24
G Avinash (86418_CR38) 2022; 21
E-SM El-Kenawy (86418_CR4) 2024; 8
D Kwiatkowski (86418_CR31) 1992; 54
R Delli Compagni (86418_CR16) 2022; 17
M Tavakoli (86418_CR22) 2022; 60
R Kociurzynski (86418_CR24) 2023; 13
CJ Willmott (86418_CR46) 2005; 30
IA Shah (86418_CR7) 2024; 66
Q Cheng (86418_CR13) 2021; 48
GHH Nayak (86418_CR37) 2024
JH Friedman (86418_CR43) 2001; 29
R Jones (86418_CR29) 2011; 17
J Heins (86418_CR18) 2022; 52
SS Shapiro (86418_CR32) 1965; 52
86418_CR40
J Tuominen (86418_CR12) 2024; 40
CJ Willmott (86418_CR45) 1982; 63
Z King (86418_CR11) 2022; 5
FX Diebold (86418_CR47) 1995; 13
References_xml – volume: 48
  start-page: 177
  year: 2021
  ident: 86418_CR13
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2021.04.075
– volume: 12
  start-page: 21797
  year: 2022
  ident: 86418_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-26167-1
– volume: 17
  year: 2022
  ident: 86418_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0263789
– volume: 42
  start-page: 653
  year: 2021
  ident: 86418_CR26
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2020.464
– volume: 18
  start-page: 760
  year: 2018
  ident: 86418_CR21
  publication-title: BMC Health Serv. Res.
  doi: 10.1186/s12913-018-3570-3
– volume: 13
  start-page: 21321
  year: 2023
  ident: 86418_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-48601-8
– volume: 52
  start-page: 508
  year: 2022
  ident: 86418_CR18
  publication-title: INFORMS J. Appl. Anal.
  doi: 10.1287/inte.2021.1115
– ident: 86418_CR40
  doi: 10.1145/2939672.293978
– volume: 55
  start-page: 163
  year: 1987
  ident: 86418_CR33
  publication-title: Int. Stat. Rev./Revue Internationale de Statistique
  doi: 10.2307/1403192
– volume: 158
  year: 2024
  ident: 86418_CR34
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111557
– volume: 30
  start-page: 79
  year: 2005
  ident: 86418_CR46
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– ident: 86418_CR2
– year: 2024
  ident: 86418_CR37
  publication-title: Potato Res.
  doi: 10.1007/s11540-024-09789-y
– volume: 1
  start-page: 81
  year: 1986
  ident: 86418_CR44
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– volume: 19
  start-page: 39
  year: 2019
  ident: 86418_CR15
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-0776-1
– volume: 24
  start-page: 505
  year: 2024
  ident: 86418_CR23
  publication-title: BMC Public Health
  doi: 10.1186/s12889-024-18038-3
– volume: 54
  start-page: 159
  year: 1992
  ident: 86418_CR31
  publication-title: J. Econom.
  doi: 10.1016/0304-4076(92)90104-Y
– volume: 40
  start-page: 1410
  year: 2024
  ident: 86418_CR12
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2023.12.002
– volume: 22
  start-page: 55
  year: 2022
  ident: 86418_CR9
  publication-title: BMC Med. Inform. Decis. Making
  doi: 10.1186/s12911-022-01787-9
– volume: 9
  year: 2021
  ident: 86418_CR27
  publication-title: JMIR Med. Inform.
  doi: 10.2196/21990
– volume: 8
  start-page: 221
  year: 2005
  ident: 86418_CR19
  publication-title: Health Care Manag. Sci.
  doi: 10.1007/s10729-005-2013-y
– volume: 238
  year: 2024
  ident: 86418_CR5
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122147
– volume: 8
  start-page: 21
  year: 2024
  ident: 86418_CR4
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.080103
– volume: 5
  start-page: 104
  year: 2022
  ident: 86418_CR11
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00649-y
– volume: 60
  start-page: 969
  year: 2022
  ident: 86418_CR22
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02525-z
– volume: 20
  start-page: 273
  year: 1995
  ident: 86418_CR39
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: 86418_CR17
  doi: 10.1007/978-3-031-20627-6_8
– volume: 74
  start-page: 427
  year: 1979
  ident: 86418_CR30
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2286348
– volume: 17
  start-page: 242
  year: 2011
  ident: 86418_CR29
  publication-title: Br. J. Healthc. Manag.
  doi: 10.12968/bjhc.2011.17.6.242
– volume: 13
  start-page: 21
  year: 1967
  ident: 86418_CR42
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 52
  start-page: 591
  year: 1965
  ident: 86418_CR32
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 63
  start-page: 1309
  year: 1982
  ident: 86418_CR45
  publication-title: Bull. Am. Meteor. Soc.
  doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
– volume: 13
  start-page: 253
  year: 1995
  ident: 86418_CR47
  publication-title: J. Bus. Econom. Stat.
  doi: 10.1080/07350015.1995.10524599
– volume: 45
  start-page: 5
  year: 2001
  ident: 86418_CR41
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 29
  start-page: 1189
  year: 2001
  ident: 86418_CR43
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 21
  start-page: 1
  year: 2019
  ident: 86418_CR14
  publication-title: Oper. Res. Health Care
  doi: 10.1016/j.orhc.2019.01.002
– volume: 66
  start-page: uiad017
  year: 2024
  ident: 86418_CR7
  publication-title: J. Occup. Health
  doi: 10.1093/joccuh/uiad017
– volume: 14
  start-page: 17203
  year: 2024
  ident: 86418_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-68040-3
– volume: 7
  start-page: 148
  year: 2020
  ident: 86418_CR1
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(19)30475-4
– volume: 24
  start-page: 402
  year: 2021
  ident: 86418_CR25
  publication-title: Health Care Manag. Sci.
  doi: 10.1007/s10729-021-09553-5
– volume: 21
  start-page: 121
  year: 2022
  ident: 86418_CR38
  publication-title: Stat. Appl.
– ident: 86418_CR3
– volume: 18
  start-page: 1
  year: 2016
  ident: 86418_CR20
  publication-title: Br. J. Med. Med. Res.
  doi: 10.9734/BJMMR/2016/29518
– volume: 10
  start-page: 3119
  year: 2024
  ident: 86418_CR36
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-023-01944-7
– volume: 1
  start-page: 17
  year: 2024
  ident: 86418_CR6
  publication-title: J. Artif. Intell. Eng. Pract.
  doi: 10.21608/jaiep.2024.386693
– volume: 21
  start-page: 9
  year: 2021
  ident: 86418_CR8
  publication-title: BMC Emerg. Med.
  doi: 10.1186/s12873-020-00395-y
– volume: 44
  start-page: 307
  year: 1990
  ident: 86418_CR28
  publication-title: J. Epidemiol. Commun. Health
  doi: 10.1136/jech.44.4.307
SSID ssj0000529419
Score 2.44363
Snippet Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in India and...
Abstract Machine learning models are vital for forecasting and optimizing healthcare parameters, especially in the context of rising mental health issues in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2686
SubjectTerms 692/700/1538
692/700/228
692/700/3934
692/700/478
Accuracy
Algorithms
Bed Occupancy - statistics & numerical data
Bed Occupancy - trends
Bed occupancy forecasting
Cognitive ability
COVID-19
Efficiency
Emergency medical care
Forecasting
Forecasting techniques
Health care
Health facilities
Health services
Healthcare resource management
Hospital systems
Hospitals, Psychiatric - statistics & numerical data
Humanities and Social Sciences
Humans
India
Learning algorithms
Machine Learning
Machine learning in healthcare
Mental disorders
Mental health
Mental health care
Mental health hospital
Mental Health Services - statistics & numerical data
Mental institutions
Monte Carlo simulation
multidisciplinary
Neural networks
Optimization techniques
Pandemics
Patient care optimization
Psychiatry
Queuing theory
Regression analysis
Resource allocation
Resource management
Science
Science (multidisciplinary)
Time series
Time series analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaLGdhLHR0BUBQlOVOrN8rP0QBax2wP_nm_s7NLlIS5c40SyvpnxfBPPg7HnIYJDKw3mFrupxSkpWmdibKPwKQqZ_BioOPnDx_HktH9_NpxdGfVFOWG1PXAF7giENiupg-6S60P0U8gjvJJTdH8Ef0enL3zelWCqdvWWphdmqZLp1HS0hqeiajI5tNPYC1j5nicqDfv_xDJ_T5b85ca0OKLjW-zmwiD5q7rz2-xamu-w63Wm5Pe7LFJRByfFSmsORpqCW1NqM19lDmD4qrQVxpHKL2ZeO_vzWgzJswuUKUsfYu3dDNXhlBd_zr-UlMvElxkT5_fY6fHbT29O2mWUQht6IzewBadDHwC9VyGpPCqvUzBC5i4mmQFrlCNM10uf4a40gPUIFrMadJgCRHifHcyrOT1kXGcfjfM6DA5sRAYTEROJCGbWeeP7rmEvtrDar7Vjhi033WqyVQgWQrBFCNY07DUhv3uTul2XB9ABu-iA_ZcONOxwKze7mODaKjFoHJ6I6Br2bLcM46EbETen1WV5Z6IfoaNu2IMq5t1OlEHsDv7ZsGlPAfa2ur8yX3wuDbqp_WlnNKB4udWVn_v6OxaP_gcWj9kNSUreiVaKQ3aw-XaZnoA3bfzTYiI_ALdyE6U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlFjO4njEwJEVZDgRKW9WX4uPZCUZnvg3zPjeLdaXtc4kSbz8mfPC-ClD4ihpULkFpqhRi_Ja6tDqAN3MXARXe-pOPnzl_7ktP206lblwm0uaZVbn5gddZg83ZEfSd4ptAUE6G_Of9Q0NYqiq2WExnW4Qa3LSKvVSu3uWCiK1XJdamUaORzNuF9RTZno6qFvOdr63n6U2_b_DWv-mTL5W9w0b0fHd-B2wZHs7SL4u3Atjvfg5jJZ8ud9CFTawUi94swQl0ZvZ0pwZlNiyB425ebC6FjZ2ciW_v5sKYlkyXrKl6UPce3jiArEKDt-zb7nxMvIyqSJ9QM4Pf7w9f1JXQYq1L7VYoMWYZVvPQrASR9l6qVT0WsuUhOiSMENQfRowE64hJuWQjjh8MiYZKf84FGQD-FgnMb4GJhKLmjrlO8sYhLhdcCTEQ-IzxqnXdtU8GrLVnO-9M0wOd4tB7MIwaAQTBaC0RW8I87v3qSe1_nBdLE2xYQMHm2SFMqrJtrWI7E-9YhPrKRIIpJaweFWbqYY4myu1KaCF7tlNCGKi9gxTpf5nYGuQ3tVwaNFzDtKpMYTPKLQCoY9BdgjdX9lPPuW23RTE9RGK2TF662uXNH1b148-f9vPIVbgtS34bXgh3CwubiMzxAXbdzzrPy_ANVmC-M
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEOUZaCsjcYOI2E7i-LigVmUluECl3iw_lx6aoO72wL9nxkkWLZQD19iWRvPyN5mHAd74gBhaKkRuoepK9JK8tDqEMnAXAxfRtZ6akz9_ac8v6uVlc7kHYu6FyUX7eaRldtNzddj7NV401AwmmrJra45Geg8OaFQ76vbBYrH8utz-WaHcVc311CFTye6Owzu3UB7WfxfC_LtQ8o9sab6Ezh7Bwwk9ssVI7yHsxf4x3B_fk_z5BAI1dDBSqrhmiEajt2sqa2ZDYsgUNuSRwuhO2VXPxqn-bGyEZMl6qpKlg7j2qUe1YVQTv2LXudwysul9idVTuDg7_fbxvJyeUSh9rcUG7cAqX3tku5M-ytRKp6LXXKQqRJGC64Jo0WydcAmvKoUgwmGgmGSjfOdRfM9gvx_6-AKYSi5o65RvLCIR4XXAeIgHRGWV066uCng7s9X8GKdlmJzllp0ZhWBQCCYLwegCPhDntztp0nX-MNyszCR5gwFNkkJ5VUVbeyTWpxZRiZWUP0RSCzia5WYm81sbyRuFjhOjuQJeb5fRcCgbYvs43OY9Hf0EbVUBz0cxbymRGuN2xJ4FdDsKsEPq7kp_9T0P56bRp5VWyIp3s678puvfvHj5f9tfwQNB6lzxUvAj2N_c3MZjREcbdzKZwy_PzQsS
  priority: 102
  providerName: Springer Nature
Title Time series forecasting of bed occupancy in mental health facilities in India using machine learning
URI https://link.springer.com/article/10.1038/s41598-025-86418-9
https://www.ncbi.nlm.nih.gov/pubmed/39837951
https://www.proquest.com/docview/3157763499
https://www.proquest.com/docview/3158095967
https://pubmed.ncbi.nlm.nih.gov/PMC11750970
https://doaj.org/article/675f327c70ea4cdb8cf6181a38425075
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC72geBFfBtdhxa8aTTdnaTTB5HZYZd1YBdRB-bWpF-zC5rozCy4_97qTjIyOh48BdJJKOrR9VW6HgAvjUUMzQUiN5tVKe6SNK2ltaml2lnKnC5NKE4-vyjPZvl0Xsz3YBh31DNwtTO0C_OkZsuvb37-uHmPBv-uKxmv3q7QCYVCMVakVZlTNOB9OETPJMJEg_Me7ne9vpnM46yP0IQ9RTDB-jqa3Z_Z8lWxpf8uHPp3OuUfZ6rRVZ3ehTs9xiTjTinuwZ5r7sOtburkzQOwoeyDBNVzK4KY1Zl6FZKfSesJso60sfEwbrrkqiFd73_SlUsSX5uQSxtexLUPDSoXCZnzC_ItJmU60k-hWDyE2enJl8lZ2g9bSE0u2RqtpRYmNygczY3jvuRaOCMp85l1zFtdWVaicWumPTo0gVBDYzjpeSFMZVDIj-CgaRv3BIjw2spaC1PUiFeYkRajJmqR3ZmWOs8SeDWwVX3vemqoeBbOK9UJQaEQVBSCkgkcB85vngz9sOONdrlQvXkpDHs8Z8KIzNW5QWKNLxG71DycMiKpCRwNclODjilOC4HbK8Z8CbzYLKN5hTOTunHtdXymCr9KS5HA407MG0q4xOgeEWoC1ZYCbJG6vdJcXcYW3qFBaiYFsuL1oCu_6fo3L57-F-eewW0WtDmjKaNHcLBeXrvnCKHWegT7Yi5GcDgeTz9P8Xp8cvHxE96dlJNR_C0xipbzC_h9GpY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaLGdjZODgjxqnbp49RKezPxa-mBpDRbof4pfiMzTrLV8rr1uk5WE8_rG8-MB-CFdYihpULk5rIyRSvJ07pyLnXceMeFN4Wl5uT9g2J6lH-eT-Yb8HPshaGyytEmRkPtWktn5NuSTxTqAgL0tyffU5oaRdnVcYRGLxa7_vwHhmzdm9lH5O9LIXY-HX6YpsNUgdTmlViiWNTK5hapMNJ6GQpplLcVFyFzXgRnSicKlGIjTEDLrdCnGoybgpwoW1r8GvzfK3AVHW9GwZ6aq9WZDmXNcl4NvTmZLLc79I_UwyYmaVnkHG3Lmv-LYwL-hm3_LNH8LU8b3d_OLbg54Fb2rhe027DhmztwrZ9keX4XHLWSMBJn3zHEwd7WHRVUszYwZAdr42XGaMjZccP6eQKsb8FkobZUn0sv4tqsQYFlVI2_YN9ioadnw2SLxT04upStvg-bTdv4h8BUMK6qjbKTGjGQsJXDSIw7xIOZqUyeJfBq3FZ90t_ToWN-XZa6Z4JGJujIBF0l8J52fvUk3bEdf2hPF3pQWY2hVJBCWZX5OrdIrA0F4qFaUuYSSU1ga-SbHhS_0xdimsDz1TKqLOVh6sa3Z_GZko5fC5XAg57NK0pkVUqFqDeBck0A1khdX2mOv8ZrwenS1axSuBWvR1m5oOvfe_Ho_5_xDK5PD_f39N7sYPcx3BAkyhlPBd-CzeXpmX-CmGxpnkZFYPDlsjXvF6H4STA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqUBcEDuGAoMEJ7DimbE99gEhShs1FKIKUam3wbOFHrBLkwr1r_HreM9LqrDdes3Y0fPb5pt5G8Bz6xBDS4XIzSVFjF6Sx1XpXOy48Y4Lb3JLxckfZ_neYfr-KDvagJ9DLQylVQ4-sXXUrrF0Rz6WPFNoCwjQx6FPizjYmbw5-R7TBCmKtA7jNDoV2ffnP_D4tng93UFZvxBisvv53V7cTxiIbVqKJapIpWxqkSIjrZchl0Z5W3IREudFcKZwIkeNNsIE9OIK91eDZ6ggM2ULi1-G_3sFNhWdikawub07O_i0uuGhGFrKy75SJ5HFeIG7JVW0iSwu8pSjp1nbDduhAX9Dun8mbP4WtW03w8lNuNGjWPa2U7tbsOHr23C1m2t5fgccFZYwUm6_YIiKva0WlF7NmsBQOKxpWxujW2fHNeumC7CuIJOFylK2Lr2Ia9Ma1ZdRbv6cfWvTPj3r51zM78LhpTD7HozqpvYPgKlgXFkZZbMKEZGwpcNzGXeIDhNTmjSJ4OXAVn3Sde3QbbRdFroTgkYh6FYIuoxgmzi_epI6brc_NKdz3RuwxoNVkEJZlfgqtUisDTmio0pSHBNJjWBrkJvu3cBCXyhtBM9Wy2jAFJWpat-ctc8UdBmbqwjud2JeUSLLQirEwBEUawqwRur6Sn38tW0STi1Yk1IhK14NunJB17958fD_n_EUrqHV6Q_T2f4juC5IkxMeC74Fo-XpmX-MAG1pnvSWwODLZRvfL5TjTss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+forecasting+of+bed+occupancy+in+mental+health+facilities+in+India+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Avinash%2C+G.&rft.au=Pachori%2C+Hariom&rft.au=Sharma%2C+Avinash&rft.au=Mishra%2C+SukhDev&rft.date=2025-01-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-86418-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_86418_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon