A deep learning model for classifying human facial expressions from infrared thermal images

The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work wel...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 20696 - 17
Main Authors Bhattacharyya, Ankan, Chatterjee, Somnath, Sen, Shibaprasad, Sinitca, Aleksandr, Kaplun, Dmitrii, Sarkar, Ram
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work well in low-light conditions and also infrared spectrum captures thermal distribution that is very useful for building systems like Robot interaction systems, quantifying the cognitive responses from facial expressions, disease control, etc. In this paper, a deep learning model called IRFacExNet ( I nfra R ed Fac ial Ex pression Net work) has been proposed for facial expression recognition (FER) from infrared images. It utilizes two building blocks namely Residual unit and Transformation unit which extract dominant features from the input images specific to the expressions. The extracted features help to detect the emotion of the subjects in consideration accurately. The Snapshot ensemble technique is adopted with a Cosine annealing learning rate scheduler to improve the overall performance. The performance of the proposed model has been evaluated on a publicly available dataset, namely IRDatabase developed by RWTH Aachen University. The facial expressions present in the dataset are Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. The proposed model produces 88.43% recognition accuracy, better than some state-of-the-art methods considered here for comparison. Our model provides a robust framework for the detection of accurate expression in the absence of visible light.
AbstractList The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work well in low-light conditions and also infrared spectrum captures thermal distribution that is very useful for building systems like Robot interaction systems, quantifying the cognitive responses from facial expressions, disease control, etc. In this paper, a deep learning model called IRFacExNet (InfraRed Facial Expression Network) has been proposed for facial expression recognition (FER) from infrared images. It utilizes two building blocks namely Residual unit and Transformation unit which extract dominant features from the input images specific to the expressions. The extracted features help to detect the emotion of the subjects in consideration accurately. The Snapshot ensemble technique is adopted with a Cosine annealing learning rate scheduler to improve the overall performance. The performance of the proposed model has been evaluated on a publicly available dataset, namely IRDatabase developed by RWTH Aachen University. The facial expressions present in the dataset are Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. The proposed model produces 88.43% recognition accuracy, better than some state-of-the-art methods considered here for comparison. Our model provides a robust framework for the detection of accurate expression in the absence of visible light.The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work well in low-light conditions and also infrared spectrum captures thermal distribution that is very useful for building systems like Robot interaction systems, quantifying the cognitive responses from facial expressions, disease control, etc. In this paper, a deep learning model called IRFacExNet (InfraRed Facial Expression Network) has been proposed for facial expression recognition (FER) from infrared images. It utilizes two building blocks namely Residual unit and Transformation unit which extract dominant features from the input images specific to the expressions. The extracted features help to detect the emotion of the subjects in consideration accurately. The Snapshot ensemble technique is adopted with a Cosine annealing learning rate scheduler to improve the overall performance. The performance of the proposed model has been evaluated on a publicly available dataset, namely IRDatabase developed by RWTH Aachen University. The facial expressions present in the dataset are Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. The proposed model produces 88.43% recognition accuracy, better than some state-of-the-art methods considered here for comparison. Our model provides a robust framework for the detection of accurate expression in the absence of visible light.
Abstract The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work well in low-light conditions and also infrared spectrum captures thermal distribution that is very useful for building systems like Robot interaction systems, quantifying the cognitive responses from facial expressions, disease control, etc. In this paper, a deep learning model called IRFacExNet (InfraRed Facial Expression Network) has been proposed for facial expression recognition (FER) from infrared images. It utilizes two building blocks namely Residual unit and Transformation unit which extract dominant features from the input images specific to the expressions. The extracted features help to detect the emotion of the subjects in consideration accurately. The Snapshot ensemble technique is adopted with a Cosine annealing learning rate scheduler to improve the overall performance. The performance of the proposed model has been evaluated on a publicly available dataset, namely IRDatabase developed by RWTH Aachen University. The facial expressions present in the dataset are Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. The proposed model produces 88.43% recognition accuracy, better than some state-of-the-art methods considered here for comparison. Our model provides a robust framework for the detection of accurate expression in the absence of visible light.
The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work well in low-light conditions and also infrared spectrum captures thermal distribution that is very useful for building systems like Robot interaction systems, quantifying the cognitive responses from facial expressions, disease control, etc. In this paper, a deep learning model called IRFacExNet ( I nfra R ed Fac ial Ex pression Net work) has been proposed for facial expression recognition (FER) from infrared images. It utilizes two building blocks namely Residual unit and Transformation unit which extract dominant features from the input images specific to the expressions. The extracted features help to detect the emotion of the subjects in consideration accurately. The Snapshot ensemble technique is adopted with a Cosine annealing learning rate scheduler to improve the overall performance. The performance of the proposed model has been evaluated on a publicly available dataset, namely IRDatabase developed by RWTH Aachen University. The facial expressions present in the dataset are Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. The proposed model produces 88.43% recognition accuracy, better than some state-of-the-art methods considered here for comparison. Our model provides a robust framework for the detection of accurate expression in the absence of visible light.
The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work well in low-light conditions and also infrared spectrum captures thermal distribution that is very useful for building systems like Robot interaction systems, quantifying the cognitive responses from facial expressions, disease control, etc. In this paper, a deep learning model called IRFacExNet (InfraRed Facial Expression Network) has been proposed for facial expression recognition (FER) from infrared images. It utilizes two building blocks namely Residual unit and Transformation unit which extract dominant features from the input images specific to the expressions. The extracted features help to detect the emotion of the subjects in consideration accurately. The Snapshot ensemble technique is adopted with a Cosine annealing learning rate scheduler to improve the overall performance. The performance of the proposed model has been evaluated on a publicly available dataset, namely IRDatabase developed by RWTH Aachen University. The facial expressions present in the dataset are Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. The proposed model produces 88.43% recognition accuracy, better than some state-of-the-art methods considered here for comparison. Our model provides a robust framework for the detection of accurate expression in the absence of visible light.
ArticleNumber 20696
Author Sen, Shibaprasad
Sinitca, Aleksandr
Bhattacharyya, Ankan
Sarkar, Ram
Kaplun, Dmitrii
Chatterjee, Somnath
Author_xml – sequence: 1
  givenname: Ankan
  surname: Bhattacharyya
  fullname: Bhattacharyya, Ankan
  organization: University of Kentucky
– sequence: 2
  givenname: Somnath
  surname: Chatterjee
  fullname: Chatterjee, Somnath
  organization: Computer Science and Engineering Department, Future Institute of Engineering and Management
– sequence: 3
  givenname: Shibaprasad
  surname: Sen
  fullname: Sen, Shibaprasad
  organization: Computer Science and Technology Department, University of Engineering and Management
– sequence: 4
  givenname: Aleksandr
  surname: Sinitca
  fullname: Sinitca, Aleksandr
  organization: Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”
– sequence: 5
  givenname: Dmitrii
  surname: Kaplun
  fullname: Kaplun, Dmitrii
  email: dikaplun@etu.ru
  organization: Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”
– sequence: 6
  givenname: Ram
  surname: Sarkar
  fullname: Sarkar, Ram
  organization: Department of Computer Science and Engineering, Jadavpur University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34667253$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQjVARLaU_wAJFYsMmxc_E3iBVFY9KldjAioVlO-NcXyX2xU4Q7dfj25S-Fp2NrZlzzow953V1EGKAqnqL0SlGVHzMDHMpGkRwI0uI5vpFdUQQ4w2hhBw8uB9WJzlvUQlOJMPyVXVIWdt2hNOj6tdZ3QPs6hF0Cj4M9RR7GGsXU21HnbN3V_vsZpl0qJ22Xo81_N0lKKUYcu1SnGofXNIJ-nreQJoKwk96gPymeun0mOHk9jyufn75_OP8W3P5_evF-dllY5kkc4OtE9JZ7ZDAxFiNLWe9lp1jxkrHGdGYWoN6jDtuTNd2WLaOGKOFLZTe0OPqYtXto96qXSrd05WK2qubREyD0mn2dgQFuCOko9B3bcswprIznMmeCMaNA82K1qdVa7eYCXoLYU56fCT6uBL8Rg3xjxKctC0SReDDrUCKvxfIs5p8tjCOOkBcsiJcMIQpbXGBvn8C3cYlhfJVexQlFImWF9S7hxPdjfJ_hwVAVoBNMecE7g6Ckdp7Ra1eUcUr6sYr6rqQxBOS9bOey07Lq_z4PJWu1Fz6hAHS_djPsP4B99PU9w
CitedBy_id crossref_primary_10_1038_s41598_023_35446_4
crossref_primary_10_2196_58760
crossref_primary_10_1007_s11042_023_15861_5
crossref_primary_10_1142_S0218001424510029
crossref_primary_10_1016_j_apsusc_2023_158672
crossref_primary_10_3390_e24050705
crossref_primary_10_5194_essd_14_4057_2022
crossref_primary_10_1038_s41598_023_36207_z
crossref_primary_10_1109_ACCESS_2022_3217904
crossref_primary_10_1080_13682199_2023_2199504
crossref_primary_10_3390_mti6090078
crossref_primary_10_1109_TIM_2025_3548782
crossref_primary_10_1109_ACCESS_2024_3362247
crossref_primary_10_1109_ACCESS_2024_3383143
crossref_primary_10_1016_j_engappai_2024_109027
crossref_primary_10_32604_cmc_2024_047326
crossref_primary_10_1016_j_engappai_2022_105809
crossref_primary_10_7717_peerj_cs_2676
crossref_primary_10_1016_j_aei_2023_102292
crossref_primary_10_1007_s41870_023_01380_x
crossref_primary_10_1016_j_eswa_2023_122266
crossref_primary_10_3390_machines11020183
crossref_primary_10_1615_CritRevBiomedEng_v51_i1_10
crossref_primary_10_3390_s22218242
Cites_doi 10.1177/1754073914554783
10.3390/s19194135
10.1016/j.cogsys.2020.03.002
10.1016/j.ijar.2007.02.003
10.17485/IJST/v14i12.14
10.1016/S0921-8890(99)00103-7
10.1371/journal.pone.0212928
10.1109/tpami.2018.2884458
10.3390/s19132844
10.9734/jamcs/2020/v35i530279
10.3390/app10082924
10.3390/s19081863
10.1016/j.patcog.2009.07.007
10.1109/ICCV.2017.74
10.1109/ICDAR.2019.00178
10.1109/ROMAN.1997.647015
10.1007/978-3-642-33932-5_31
10.1109/CVPR.2016.90
10.1109/ROMAN.1994.365927
10.1007/s00371-020-02031-z
10.1109/I2MTC.2018.8409768
10.1117/12.2518708
10.1007/978-981-33-6987-0_32
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-99998-z
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_e172273ed766411397b549d2845bfea4
PMC8526608
34667253
10_1038_s41598_021_99998_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  grantid: 19-57-06007; 19-57-06007
  funderid: http://dx.doi.org/10.13039/501100002261
– fundername: ;
  grantid: 19-57-06007; 19-57-06007
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-1cf89fcaf0812bca1c54da97f4bc9f542a13cb0d1175bb767196f2bba8cf08db3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:24:08 EDT 2025
Thu Aug 21 13:49:17 EDT 2025
Wed Jul 30 11:30:03 EDT 2025
Wed Aug 13 10:59:32 EDT 2025
Thu Apr 03 07:05:11 EDT 2025
Tue Jul 01 01:33:33 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Fri Feb 21 02:39:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-1cf89fcaf0812bca1c54da97f4bc9f542a13cb0d1175bb767196f2bba8cf08db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2583230865?pq-origsite=%requestingapplication%
PMID 34667253
PQID 2583230865
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e172273ed766411397b549d2845bfea4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8526608
proquest_miscellaneous_2584013361
proquest_journals_2583230865
pubmed_primary_34667253
crossref_primary_10_1038_s41598_021_99998_z
crossref_citationtrail_10_1038_s41598_021_99998_z
springer_journals_10_1038_s41598_021_99998_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-19
PublicationDateYYYYMMDD 2021-10-19
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Samadiani (CR43) 2019; 19
Filippini, Perpetuini, Cardone, Chiarelli, Merla (CR9) 2020; 10
Ekman, Rosenberg (CR3) 1997
Mase (CR6) 1991; E74
CR19
CR18
CR17
CR39
CR38
CR37
CR36
CR35
CR12
CR34
Khan, Ingleby, Ward (CR27) 2006; 1
CR32
Lien, Kanade, Cohn, Li (CR20) 2000; 31
Reddy, Savarni, Mukherjee (CR31) 2020; 62
Matsuno, Lee, Tsuji (CR7) 1994; I
Ojo, Idowu (CR14) 2020; 35
Hammal, Covreur, Caplier, Rombout (CR13) 2007; 46
Bijalwan, Balodhi, Gusain (CR24) 2015; 5
Goulart, Valadão, Delisle-Rodriguez, Caldeira, Bastos (CR10) 2019; 14
Ali, Zhuang, Ibrahim (CR16) 2017; 9
Kopaczka, Breuer, Schock, Merhof (CR40) 2019; 19
Harsih Kamar, Akash, Gokul, Merhof (CR44) 2020; 1
Mehrabian (CR1) 1968; 2
CR5
CR8
CR29
Kyperountas, Tefas, Pitas (CR15) 2010; 43
CR28
Clay-Warner, Robinson (CR11) 2015; 7
Ekman, Friesen (CR2) 1978
Bodavarapu, Srinivas (CR30) 2021; 14
CR25
CR23
CR45
CR22
CR21
CR42
Panetta (CR41) 2020; 42
Li, Deng (CR33) 2020; 1
Harashima, Choi, Takebe (CR4) 1989; 4
Goulart (CR26) 2019; 19
S Li (99998_CR33) 2020; 1
P Bodavarapu (99998_CR30) 2021; 14
J Clay-Warner (99998_CR11) 2015; 7
H Harashima (99998_CR4) 1989; 4
99998_CR8
J Hammal (99998_CR13) 2007; 46
99998_CR12
99998_CR34
C Goulart (99998_CR26) 2019; 19
99998_CR32
A Mehrabian (99998_CR1) 1968; 2
K Mase (99998_CR6) 1991; E74
P Ekman (99998_CR2) 1978
99998_CR19
99998_CR17
99998_CR39
C Goulart (99998_CR10) 2019; 14
99998_CR18
MM Khan (99998_CR27) 2006; 1
99998_CR37
99998_CR38
99998_CR35
N Samadiani (99998_CR43) 2019; 19
RJ Harsih Kamar (99998_CR44) 2020; 1
99998_CR36
M Kyperountas (99998_CR15) 2010; 43
P Ekman (99998_CR3) 1997
G Reddy (99998_CR31) 2020; 62
V Bijalwan (99998_CR24) 2015; 5
99998_CR22
M Kopaczka (99998_CR40) 2019; 19
C Filippini (99998_CR9) 2020; 10
JJJ Lien (99998_CR20) 2000; 31
99998_CR23
99998_CR45
99998_CR42
99998_CR21
M Ali (99998_CR16) 2017; 9
99998_CR5
A Ojo (99998_CR14) 2020; 35
99998_CR28
99998_CR29
K Matsuno (99998_CR7) 1994; I
99998_CR25
K Panetta (99998_CR41) 2020; 42
References_xml – ident: CR45
– ident: CR22
– ident: CR18
– year: 1997
  ident: CR3
  publication-title: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS)
– volume: 7
  start-page: 157
  year: 2015
  end-page: 162
  ident: CR11
  article-title: Infrared thermography as a measure of emotion response
  publication-title: Emot. Rev.
  doi: 10.1177/1754073914554783
– volume: 9
  start-page: 96
  year: 2017
  ident: CR16
  article-title: An approach for facial expression classification
  publication-title: Int. J. Biom.
– volume: 19
  start-page: 4135
  year: 2019
  ident: CR40
  article-title: A modular system for detection, tracking and analysis of human faces in thermal infrared recordings
  publication-title: Sensors
  doi: 10.3390/s19194135
– ident: CR39
– ident: CR37
– ident: CR12
– volume: 62
  start-page: 23
  year: 2020
  end-page: 34
  ident: CR31
  article-title: Facial expression recognition in the wild, by fusion of deep learnt and hand-crafted features
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2020.03.002
– volume: 46
  start-page: 542
  year: 2007
  end-page: 567
  ident: CR13
  article-title: Facial expression classification: An approach based on the fusion of facial deformations using the transferable belief model
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2007.02.003
– volume: 14
  start-page: 971
  year: 2021
  end-page: 983
  ident: CR30
  article-title: Facial expression recognition for low resolution images using convolutional neural networks and denoising techniques
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/IJST/v14i12.14
– volume: 31
  start-page: 131
  issue: 3
  year: 2000
  end-page: 146
  ident: CR20
  article-title: Detection, tracking, and classification of action units in facial expression
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(99)00103-7
– ident: CR35
– ident: CR29
– year: 1978
  ident: CR2
  publication-title: Facial Action Coding System
– volume: 14
  start-page: e0212928
  year: 2019
  ident: CR10
  article-title: Emotion analysis in children through facial emissivity of infrared thermal imaging
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0212928
– volume: 1
  start-page: 6535
  year: 2020
  end-page: 6548
  ident: CR33
  article-title: Deep facial expression recognition: A survey
  publication-title: IEEE Trans. Affect. Comput.
– ident: CR8
– volume: 1
  start-page: 91
  year: 2006
  end-page: 113
  ident: CR27
  article-title: Automated facial expression classification and affect interpretation using infrared measurement of facial skin temperature variations
  publication-title: Assoc. Comput. Mach.
– volume: 42
  start-page: 509
  year: 2020
  end-page: 520
  ident: CR41
  article-title: A comprehensive database for benchmarking imaging systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2018.2884458
– ident: CR25
– ident: CR42
– ident: CR23
– volume: I
  start-page: 1591
  issue: 8
  year: 1994
  end-page: 1600
  ident: CR7
  article-title: Recognition of facial expressions using potential net and kl expansion
  publication-title: Trans. IEICE J77-D-I
– volume: 2
  start-page: 53
  year: 1968
  end-page: 56
  ident: CR1
  article-title: Communication without words
  publication-title: Psychol. Today
– ident: CR21
– volume: 4
  start-page: 157
  year: 1989
  end-page: 166
  ident: CR4
  article-title: 3-d model-based synthesis of facial expressions and shape deformation
  publication-title: Hum. Interface
– volume: 19
  start-page: 2844
  year: 2019
  ident: CR26
  article-title: Visual and thermal image processing for facial specific landmark detection to infer emotions in a child–robot interaction
  publication-title: MDPI Sens.
  doi: 10.3390/s19132844
– ident: CR19
– volume: 1
  start-page: 30
  year: 2020
  end-page: 35
  ident: CR44
  article-title: Facial expression recognition system using multimodal sensors
  publication-title: Int. J. Multidiscip. Res. Sci., Eng. Technol
– volume: 35
  start-page: 22
  issue: 5
  year: 2020
  end-page: 33
  ident: CR14
  article-title: Improved model for facial expression classification for fear and sadness using local binary pattern histogram
  publication-title: J. Adv. Math. Comput. Sci.
  doi: 10.9734/jamcs/2020/v35i530279
– volume: 10
  start-page: 2924
  year: 2020
  ident: CR9
  article-title: Thermal infrared imaging-based affective computing and its application to facilitate human robot interaction: A review
  publication-title: Appl. Sci.
  doi: 10.3390/app10082924
– ident: CR38
– ident: CR17
– volume: E74
  start-page: 3474
  issue: 10
  year: 1991
  end-page: 3483
  ident: CR6
  article-title: Recognition of facial expression from optical flow
  publication-title: Trans. IEICE
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR5
– volume: 5
  start-page: 34
  issue: 1
  year: 2015
  end-page: 40
  ident: CR24
  article-title: Human emotion recognition using thermal image processing and eigenfaces
  publication-title: IJESR
– ident: CR28
– volume: 19
  start-page: 1863
  year: 2019
  ident: CR43
  article-title: A review on automatic facial expression recognition systems assisted by multimodal sensor data
  publication-title: Sensors
  doi: 10.3390/s19081863
– volume: 43
  start-page: 972
  year: 2010
  end-page: 986
  ident: CR15
  article-title: Salient feature and reliable classifier selection for facial expression classification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.07.007
– volume: 7
  start-page: 157
  year: 2015
  ident: 99998_CR11
  publication-title: Emot. Rev.
  doi: 10.1177/1754073914554783
– volume: 46
  start-page: 542
  year: 2007
  ident: 99998_CR13
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2007.02.003
– volume: 1
  start-page: 6535
  year: 2020
  ident: 99998_CR33
  publication-title: IEEE Trans. Affect. Comput.
– volume: 19
  start-page: 1863
  year: 2019
  ident: 99998_CR43
  publication-title: Sensors
  doi: 10.3390/s19081863
– volume: 14
  start-page: e0212928
  year: 2019
  ident: 99998_CR10
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0212928
– volume: 43
  start-page: 972
  year: 2010
  ident: 99998_CR15
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.07.007
– ident: 99998_CR39
  doi: 10.1109/ICCV.2017.74
– volume: 1
  start-page: 91
  year: 2006
  ident: 99998_CR27
  publication-title: Assoc. Comput. Mach.
– ident: 99998_CR35
– ident: 99998_CR18
  doi: 10.1109/ICDAR.2019.00178
– ident: 99998_CR5
– ident: 99998_CR19
– ident: 99998_CR37
– volume: 1
  start-page: 30
  year: 2020
  ident: 99998_CR44
  publication-title: Int. J. Multidiscip. Res. Sci., Eng. Technol
– ident: 99998_CR17
– ident: 99998_CR21
  doi: 10.1109/ROMAN.1997.647015
– volume: 5
  start-page: 34
  issue: 1
  year: 2015
  ident: 99998_CR24
  publication-title: IJESR
– volume: E74
  start-page: 3474
  issue: 10
  year: 1991
  ident: 99998_CR6
  publication-title: Trans. IEICE
– ident: 99998_CR23
– ident: 99998_CR25
  doi: 10.1007/978-3-642-33932-5_31
– volume-title: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS)
  year: 1997
  ident: 99998_CR3
– volume: 19
  start-page: 4135
  year: 2019
  ident: 99998_CR40
  publication-title: Sensors
  doi: 10.3390/s19194135
– ident: 99998_CR36
  doi: 10.1109/CVPR.2016.90
– volume: 9
  start-page: 96
  year: 2017
  ident: 99998_CR16
  publication-title: Int. J. Biom.
– ident: 99998_CR32
– volume: 31
  start-page: 131
  issue: 3
  year: 2000
  ident: 99998_CR20
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(99)00103-7
– volume: 2
  start-page: 53
  year: 1968
  ident: 99998_CR1
  publication-title: Psychol. Today
– volume: 19
  start-page: 2844
  year: 2019
  ident: 99998_CR26
  publication-title: MDPI Sens.
  doi: 10.3390/s19132844
– volume: 10
  start-page: 2924
  year: 2020
  ident: 99998_CR9
  publication-title: Appl. Sci.
  doi: 10.3390/app10082924
– volume: 35
  start-page: 22
  issue: 5
  year: 2020
  ident: 99998_CR14
  publication-title: J. Adv. Math. Comput. Sci.
  doi: 10.9734/jamcs/2020/v35i530279
– volume: 62
  start-page: 23
  year: 2020
  ident: 99998_CR31
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2020.03.002
– ident: 99998_CR8
  doi: 10.1109/ROMAN.1994.365927
– ident: 99998_CR34
– ident: 99998_CR38
– ident: 99998_CR29
  doi: 10.1007/s00371-020-02031-z
– volume-title: Facial Action Coding System
  year: 1978
  ident: 99998_CR2
– ident: 99998_CR12
  doi: 10.1109/I2MTC.2018.8409768
– volume: 42
  start-page: 509
  year: 2020
  ident: 99998_CR41
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2018.2884458
– volume: 4
  start-page: 157
  year: 1989
  ident: 99998_CR4
  publication-title: Hum. Interface
– volume: 14
  start-page: 971
  year: 2021
  ident: 99998_CR30
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/IJST/v14i12.14
– ident: 99998_CR22
– ident: 99998_CR42
  doi: 10.1117/12.2518708
– ident: 99998_CR45
– volume: I
  start-page: 1591
  issue: 8
  year: 1994
  ident: 99998_CR7
  publication-title: Trans. IEICE J77-D-I
– ident: 99998_CR28
  doi: 10.1007/978-981-33-6987-0_32
SSID ssj0000529419
Score 2.4797585
Snippet The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained importance...
Abstract The analysis of human facial expressions from the thermal images captured by the Infrared Thermal Imaging (IRTI) cameras has recently gained...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20696
SubjectTerms 631/1647/245
631/61/185
Cameras
Cognition - physiology
Cognitive ability
Deep Learning
Disease control
Emotions - physiology
Facial Expression
Facial Recognition - physiology
Female
Humanities and Social Sciences
Humans
multidisciplinary
Pattern recognition
Science
Science (multidisciplinary)
Spectrophotometry, Infrared - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SKPgi2npZrRLBN116ck8eq1hKQZ8sFHwIueoBuy09p6D99c5k9xx7vL74uklgyMxkvmxmviHkBTOzaB1zPWM595KnDD4nTV9c0oKFbHPC2uF37_XRiTw-Vac3Wn1hTthIDzxu3H6BCAshtmSjtWSIVyJcaTKcqirWEhoTKMS8G5epkdWbO8ncVCUzE3Z_AZEKq8kwI8FhXdn1RiRqhP2_Q5m_Jkv-9GLaAtHhXXJnQpD0YJT8HrlVhh2yPfaU_LZLPh7QXMoFndpBfKKt1w0FbEoTIuV5K2yirTcfrQH_mNPydUqHHRYU600omN0lZqZThIdnMGN-BufO4j45OXz74c1RP3VQ6JN0fNmzVK2rKVQI_DymwJKSOThTZUyuKskDEynOMvJ1xmi0AX-sPMZgEyzJUTwgW8P5UB4RyoMBKBDxlTFKJJFPtZTktM0QB6tKHWGr3fRpohfHLhdffHvmFtaPGvCgAd804K878nK95mIk1_jr7NeopPVMJMZuH8Bc_GQu_l_m0pG9lYr95K0LzxWcawIud6ojz9fD4Gf4eBKGcn7V5uBVVGjWkYejRawlEVJrw5XoiNmwlQ1RN0eG-efG5W0VIKSZ7cirlVX9EOvPW_H4f2zFE3Kboztgeo7bI1vLy6vyFBDWMj5rzvQdZbAhrQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0IvgifrtaJYJvuvSym91snqSKpQj6ZOHAh5DPetDunbdX0P71zmRzW86Pvm4mkM3MZH7JfAG85nJmO8VVybn3paicR50TsgzKtTU3vvOOcoc_f2mPT8SneTPPD25DDqvcnonpoPZLR2_kB1WDslcjAG_erX6U1DWKvKu5hcZNuEWlyyikS87l9MZCXizBVc6VmdXdwYD2inLKKC5BUXbZ5Y49SmX7_4U1_w6Z_MNvmszR0T24m3EkOxwZfx9uhP4B3B47S_56CN8OmQ9hxXJTiFOWOt4wRKjMEV5epPQmljr0sWjo3ZyFnzkoth8YZZ0wFL41xaczAonnSLE4x9NneAQnRx-_fjgucx-F0glVbUruYqeiMxHNf2Wd4a4R3igZhXUqNqIyvHZ25qlqp7WylaiVsbLWdA6neFs_hr1-2YenwCojERBY8jVaQaXkXQzBqbbzaA1j4wrg293ULhcZp14XZzo5u-tOjxzQyAGdOKAvC3gzzVmNJTaupX5PTJooqTx2-rBcn-qsbTogLENcFrxsW8EJ5Fq8B3s0xY2NwYgC9rcs1llnB30lYQW8moZR28iFYvqwvEg0dCGtW17Ak1EippXUom1l1dQFyB1Z2Vnq7ki_-J4qencN4qRZV8DbrVRdLev_W_Hs-r94DncqEnQKv1H7sLdZX4QXiKA29mVSk9-pMxoi
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBF6vfaKhF808VLNpvdPNbDUgR9slDwIeSzHti9cneFtn-9M9kPOa2Cr7sTCDszmV92Zn4D8IY3M9dqrkvOQyil8AF9TjZl1F5V3IY2eOod_vxFHZ_IT6f16Q6IsRcmF-1nSst8TI_VYe_XGGioGYwKCjS1hd3cgbtE3U5WPVfz6b8KZa4k10N_zKxqb1m6FYMyVf9t-PLPMsnfcqU5BB3twYMBO7LDfrcPYSd2j-BeP03y-jF8O2Qhxgs2DII4Y3nKDUNUyjxh5EVuaWJ5Kh9Llv6Vs3g1FMJ2a0adJgwNbkU16YyA4TlKLM7xxFk_gZOjj1_nx-UwO6H0UotNyX1qdfI2YcgXzlvuaxmsbpJ0XqdaCssr72aBmDqda1SDnpiEc7b1uCS46insdssuPgcmbIMgwFF-0Umij_cpRq9VGzACptoXwMevafxALE7zLX6YnOCuWtNrwKAGTNaAuSng7bTmoqfV-Kf0B1LSJEmU2PnBcnVmBhMxEaEYYrEYGqUkJ2Dr8O4bMPzWLkUrCzgYVWwGP10bUeOJVuG1ri7g9fQaPYzSJraLy8ssQ5fQSvECnvUWMe2kkko1oq4KaLZsZWur22-6xffM4t3WiI1mbQHvRqv6ta2_f4oX_ye-D_cFGT6V4OgD2N2sLuNLRFEb9yq7zU9RyRiq
  priority: 102
  providerName: Springer Nature
Title A deep learning model for classifying human facial expressions from infrared thermal images
URI https://link.springer.com/article/10.1038/s41598-021-99998-z
https://www.ncbi.nlm.nih.gov/pubmed/34667253
https://www.proquest.com/docview/2583230865
https://www.proquest.com/docview/2584013361
https://pubmed.ncbi.nlm.nih.gov/PMC8526608
https://doaj.org/article/e172273ed766411397b549d2845bfea4
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvY99z2wUN9rZ5i2TZsh7GSENLCbSMbYHAHoz14S7QOl2SQtu_fneynZEtG3sK2HIQujvfT9bd7wfwmqu-yTXXMefOxVJYhzEnVey1zRJeutxZ6h0-PctOxnI0SSdb0MkdtQu42Li1Iz2p8fzi3c2P248Y8B-alvH8_QKTEDWKUbGBppaxu23YxcykKFBPW7jfcH0LLYPWB5GwxwgmRNtHs_lv1nJVoPTfhEP_LKf87Uw1pKrjh_CgxZhs0DjFI9jy9WO416hO3j6BbwPmvL9irWDEOQtqOAzRK7OEpaeh9YkF9T5WlfRNnfmbtmC2XjDqSGG4VHOqXWcEIC9xxPQS30yLpzA-Pvo6PIlbjYXYSi2WMbdVritbVggNhLElt6l0pVaVNFZXqRQlT6zpO2L0NEZlCiO2EsaUucVHnEmewU49q_0LYKJUCBYMnUMaSTTztvLe6ix3mCmr1EbAu9UsbEtATjoYF0U4CE_yorFAgRYoggWKuwjerJ65aug3_jn6kIy0GknU2eHCbH5etJFYeIRsiNm8U1kmOQFgg3tkh2k6NZUvZQQHnYmLzh0LkeKbL8HtXxrBq9VtjEQ6XilrP7sOY2izmmQ8gueNR6xmksgsUyJNIlBrvrI21fU79fR7YPvOU8RQ_TyCt51X_ZrW35di7z-muQ_3BXk71efoA9hZzq_9S4RYS9ODbTVRPdgdDEZfRvh7eHT26TNeHWbDXvhs0QuR9RMETidd
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4i6dpyHDwi10Kql7QqhVqrEwY0fKSvR7LK7FbQ_it_IjJNstTx663XjRF7PN57PnhfAS573TaG4ijl3LpbCOtQ5mcde2SzhpSucpdzhvUG2dSA_HqaHS_Cry4WhsMpuTwwbtRtZuiNfFSliL0ECnr4bf4-paxR5V7sWGg0sdvzZDzyyTd9uf0D5vhJic2P__VbcdhWIrVRiFnNbFaqyZYXGUBhbcptKV6q8ksaqKpWi5Ik1fUc1LI3JsxwxWgljysLiK84k-N1rsCwTPMr0YHl9Y_Dp8_xWh_xmkqs2O6efFKtTtJCUxUaREIry2c4XLGBoFPAvdvt3kOYfntpgADdvw62WubK1Bmp3YMnXd-F608vy7B58WWPO-zFr21Acs9BjhyEnZpYY-jAkVLHQE5BVJd3UM_-zDcOtp4zyXBjCfUIR8Yxo6QmOGJ7gfje9DwdXssYPoFePav8ImChzpCCGvJtGUvF6W3lvVVY4tL9VaiPg3Wpq25Y1p-4a33RwryeFbiSgUQI6SECfR_B6_s64Kepx6eh1EtJ8JBXkDj-MJse61W_tkQgiE_QuzzLJiVYbPHk7NP6pqXwpI1jpRKzbXWKqLzAdwYv5Y9RvctqUtR-dhjF0BE4yHsHDBhHzmSQyy3KRJhHkC1hZmOrik3r4NdQQL1JkZv0igjcdqi6m9f-leHz5v3gON7b293b17vZg5wncFAR6Cv5RK9CbTU79U-RvM_OsVRoGR1etp78BWN1aUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNGuHSeODwgVyqqlUHGg0koc3PhVVqLZZbMVtD-NX8eMk2y1PHrrdeNEXs83ns-eFyHPmByaUjGVMuZcKrh1oHNCpl7ZImOVK53F3OGPe8X2vng_zsdr5FefC4Nhlf2eGDdqN7V4Rz7gOWAvAwKeD0IXFvFpa_R69j3FDlLoae3babQQ2fUnP-D41rza2QJZP-d89O7z2-206zCQWqH4ImU2lCrYKoBh5MZWzObCVUoGYawKueAVy6wZOqxnaYwsJOA1cGOq0sIrzmTw3Uvkssxyhjomx3J5v4MeNMFUl6czzMpBA7YS89kwJkJhZtvpii2MLQP-xXP_Dtf8w2cbTeHoBrnecVi62YLuJlnz9S1ype1qeXKbfNmkzvsZ7RpSHNLYbYcCO6YWufokplbR2B2Qhgrv7Kn_2QXk1g3FjBcKwJ9jbDxFgnoEIyZHsPM1d8j-hazwXbJeT2t_n1BeSSAjBv2cRmAZexu8t6ooHVjikNuEsH41te0KnGOfjW86OtqzUrcS0CABHSWgTxPyYvnOrC3vce7oNyik5UgszR1_mM4Pdafp2gMlBE7onSwKwZBgGziDO6ABuQm-EgnZ6EWsu_2i0WfoTsjT5WPQdHTfVLWfHscxeBjOCpaQey0iljPJRFFInmcJkStYWZnq6pN68jVWEy9z4GjDMiEve1SdTev_S_Hg_H_xhFwF7dQfdvZ2H5JrHDGPUUBqg6wv5sf-ERC5hXkcNYaSg4tW0d-BZV0h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+model+for+classifying+human+facial+expressions+from+infrared+thermal+images&rft.jtitle=Scientific+reports&rft.au=Bhattacharyya%2C+Ankan&rft.au=Chatterjee%2C+Somnath&rft.au=Sen%2C+Shibaprasad&rft.au=Sinitca%2C+Aleksandr&rft.date=2021-10-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=20696&rft_id=info:doi/10.1038%2Fs41598-021-99998-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon