Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuri...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 787 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by
o
-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.
Developing high-performance and mechanically robust active-layer systems is crucial to commercializing flexible organic solar cells. Here, authors design small molecule acceptors with ethyl ester side chains and achieve certified efficiency of over 19% for mechanically robust devices. |
---|---|
AbstractList | Abstract Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs. Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs. Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs. Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.Developing high-performance and mechanically robust active-layer systems is crucial to commercializing flexible organic solar cells. Here, authors design small molecule acceptors with ethyl ester side chains and achieve certified efficiency of over 19% for mechanically robust devices. Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o -xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs. Developing high-performance and mechanically robust active-layer systems is crucial to commercializing flexible organic solar cells. Here, authors design small molecule acceptors with ethyl ester side chains and achieve certified efficiency of over 19% for mechanically robust devices. Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o -xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs. |
ArticleNumber | 787 |
Author | Song, Bohao Wu, Xiangxi Zhang, Jingyuan Lu, Guanghao Ye, Long Bi, Zhaozhao Gong, Yufei Liang, Tongling Li, Yaowen Wang, Shijie Li, Yongfang Zhou, Kangkang Ma, Wei Meng, Lei Chen, Zekun Zhang, Ben He, Haozhe Li, Xiaojun Li, Yuechen Zhuo, Hongmei |
Author_xml | – sequence: 1 givenname: Haozhe surname: He fullname: He, Haozhe organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences – sequence: 2 givenname: Xiaojun orcidid: 0000-0001-9633-0087 surname: Li fullname: Li, Xiaojun email: lixiaojun@iccas.ac.cn organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences – sequence: 3 givenname: Jingyuan surname: Zhang fullname: Zhang, Jingyuan organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences – sequence: 4 givenname: Zekun surname: Chen fullname: Chen, Zekun organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences – sequence: 5 givenname: Yufei orcidid: 0000-0002-8637-3689 surname: Gong fullname: Gong, Yufei organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences – sequence: 6 givenname: Hongmei surname: Zhuo fullname: Zhuo, Hongmei organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences – sequence: 7 givenname: Xiangxi surname: Wu fullname: Wu, Xiangxi organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences – sequence: 8 givenname: Yuechen orcidid: 0009-0002-7179-6686 surname: Li fullname: Li, Yuechen organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Materials Science and Engineering, Shaanxi Normal University – sequence: 9 givenname: Shijie surname: Wang fullname: Wang, Shijie organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 10 givenname: Zhaozhao orcidid: 0000-0002-2853-355X surname: Bi fullname: Bi, Zhaozhao organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 11 givenname: Bohao surname: Song fullname: Song, Bohao organization: Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University – sequence: 12 givenname: Kangkang surname: Zhou fullname: Zhou, Kangkang organization: School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University – sequence: 13 givenname: Tongling surname: Liang fullname: Liang, Tongling organization: School of Chemical Science, University of Chinese Academy of Sciences, Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences – sequence: 14 givenname: Wei surname: Ma fullname: Ma, Wei organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 15 givenname: Guanghao orcidid: 0000-0001-7829-7308 surname: Lu fullname: Lu, Guanghao organization: Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University – sequence: 16 givenname: Long orcidid: 0000-0002-5884-0083 surname: Ye fullname: Ye, Long organization: School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University – sequence: 17 givenname: Lei orcidid: 0000-0003-2775-362X surname: Meng fullname: Meng, Lei organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences – sequence: 18 givenname: Ben surname: Zhang fullname: Zhang, Ben organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University – sequence: 19 givenname: Yaowen orcidid: 0000-0001-7229-582X surname: Li fullname: Li, Yaowen organization: Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University – sequence: 20 givenname: Yongfang orcidid: 0000-0002-2565-2748 surname: Li fullname: Li, Yongfang email: liyf@iccas.ac.cn organization: CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39824822$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvB3nBNC5atSJS5wtibO5GOV2IudbbV3fjjeTSktB3yxNX7mnRn7fV6c-OCxKF4y-pZRYd4lyaSuSsplqZSoVGmeFGecSlayiouTB-fT4iKlDc1L1MxI-aw4FbXh0nB-Vvz6uPcwj44M-zaGHn3ZBN-OvifooZkwkWHsh3KLsQtxBu-QgG_JjG4APzqYpj2JodmlhYTYH0IkhQkicThNiWxjcJgStuR2XAaSZygHmA51YMnBjN6gX14UTzuYEl7c7efFj8-fvl9-La-_fbm6_HBdOlnzpWSAXWWcNIxVWhlluNBVWyHVnag5p7QSddtoVJRCAxXXjUCukNad1MCME-fF1arbBtjYbRxniHsbYLTHQB7AQlxGN6HVXcWkMHXdgZIcANBldSl4xxopui5rvV-1trtmxtblMSJMj0Qf3_hxsH24sbl5abSSWeHNnUIMP3eYFjuP6fBs4DHskhVM6VoboWhGX_-DbsIu-vxWR0rXNVNVpl49bOm-lz-_nQG-Ai6GlCJ29wij9uAqu7rKZlfZo6usyUliTUoZ9j3Gv7X_k_Ubhg7QwA |
Cites_doi | 10.1002/adma.202312805 10.1002/adfm.202003654 10.1063/1.2335377 10.1002/aelm.201600359 10.1021/acs.chemmater.3c01970 10.1002/aenm.202201087 10.1002/adfm.202315476 10.1002/adma.202207544 10.1021/ja505574a 10.1039/D1MH01127H 10.1039/C7SE00601B 10.1002/admi.202101476 10.1038/s41560-021-00820-x 10.1016/j.nanoen.2023.109023 10.1002/anie.202312357 10.1021/jacs.3c02764 10.1039/D2EE02523J 10.1002/aenm.202401561 10.1002/adma.202307278 10.1002/adfm.202305851 10.1016/j.joule.2021.06.006 10.1016/j.joule.2019.01.004 10.1038/s41467-023-43846-3 10.1021/acs.chemmater.8b05114 10.1038/s41560-022-01138-y 10.1007/s11426-022-1256-8 10.1021/acs.chemmater.1c04055 10.1103/PhysRevApplied.7.044016 10.1016/j.nanoen.2024.109397 10.1016/j.joule.2023.09.001 10.1038/s41563-020-00872-6 10.1039/D3EE00294B 10.1002/adma.202106732 10.1002/adma.202110639 10.1002/anie.202315625 10.1039/D1EE01062J 10.1002/aenm.202202224 10.1021/acsenergylett.3c01124 10.1002/adma.202300400 10.1002/adma.201502110 10.1016/j.esci.2023.100171 10.1038/s41467-023-37526-5 10.1103/PhysRevLett.94.126602 10.1016/j.esci.2022.10.010 10.1021/acsami.1c07254 10.1016/j.cej.2023.146828 10.1038/s41467-022-32964-z 10.1039/D0CC04869K 10.1002/anie.202319635 10.1039/D4EE00400K 10.1103/PhysRevLett.84.4946 10.1038/s41467-023-40423-6 10.1038/s41563-022-01244-y 10.1016/j.joule.2024.01.005 10.1038/s41467-023-39832-4 10.1002/adom.201900152 10.1038/s41528-022-00188-2 10.1002/adma.202300631 10.1002/adma.202309379 10.1039/CS9932200397 10.1038/s41563-019-0324-5 10.1007/s11426-021-1180-6 10.1103/PhysRevB.82.245207 10.1038/s41560-022-01155-x 10.1002/adfm.202200478 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-55375-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials Biological Science Database ProQuest Central (New) (NC LIVE) Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering Chemistry |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_6f7143899fa542aaaec739432f1b43ff PMC11748654 39824822 10_1038_s41467_024_55375_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52103243; 52203248 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52203248 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52103243 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AARCD 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-1aef78c48117658582367d7e06f392200739db6e500aba726b3e25e09f46a18c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:36:05 EDT 2025 Thu Aug 21 18:41:11 EDT 2025 Tue Aug 05 11:24:14 EDT 2025 Sat Aug 23 14:55:18 EDT 2025 Wed Feb 19 02:01:52 EST 2025 Tue Jul 01 02:37:56 EDT 2025 Fri Feb 21 02:37:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-1aef78c48117658582367d7e06f392200739db6e500aba726b3e25e09f46a18c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2565-2748 0000-0001-9633-0087 0000-0002-2853-355X 0000-0001-7829-7308 0009-0002-7179-6686 0000-0003-2775-362X 0000-0002-8637-3689 0000-0001-7229-582X 0000-0002-5884-0083 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-55375-8 |
PMID | 39824822 |
PQID | 3156699157 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f7143899fa542aaaec739432f1b43ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_11748654 proquest_miscellaneous_3156968350 proquest_journals_3156699157 pubmed_primary_39824822 crossref_primary_10_1038_s41467_024_55375_8 springer_journals_10_1038_s41467_024_55375_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-17 |
PublicationDateYYYYMMDD | 2025-01-17 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | S Li (55375_CR10) 2023; 3 L Bu (55375_CR59) 2016; 2 AA Shafe (55375_CR32) 2023; 8 LA Galuska (55375_CR49) 2022; 34 J Lee (55375_CR23) 2022; 12 R Zeng (55375_CR20) 2024; 14 J Fu (55375_CR17) 2023; 14 J Choi (55375_CR63) 2019; 31 K Vandewal (55375_CR50) 2018; 2 KH Hendriks (55375_CR40) 2014; 136 Y Liu (55375_CR12) 2022; 65 C Li (55375_CR4) 2021; 6 C Wang (55375_CR18) 2023; 7 J-W Lee (55375_CR34) 2021; 14 U Rau (55375_CR51) 2017; 7 Z Wang (55375_CR60) 2019; 7 C Yan (55375_CR24) 2022; 12 Q Zhang (55375_CR36) 2022; 34 J Lee (55375_CR35) 2022; 34 B Pang (55375_CR16) 2023; 35 R Ma (55375_CR45) 2023; 16 J Lee (55375_CR57) 2023; 33 J Han (55375_CR28) 2020; 30 J Deng (55375_CR26) 2023; 119 J-W Lee (55375_CR38) 2022; 15 F Cui (55375_CR61) 2022; 32 G Sun (55375_CR5) 2022; 13 CB Aakeroy (55375_CR37) 1993; 22 X Li (55375_CR46) 2022; 53 F Qi (55375_CR47) 2022; 9 H Chen (55375_CR66) 2021; 13 T Chen (55375_CR14) 2023; 35 R Zeng (55375_CR21) 2023; 14 S Li (55375_CR27) 2023; 36 A Hexemer (55375_CR67) 2010; 247 SR Cowan (55375_CR56) 2010; 82 L Zhu (55375_CR13) 2022; 21 Y Liu (55375_CR2) 2022; 65 Z Peng (55375_CR30) 2021; 33 Z Shen (55375_CR58) 2021; 8 T Zhang (55375_CR43) 2024; 17 Y Liang (55375_CR7) 2022; 7 M Gao (55375_CR62) 2020; 56 VD Mihailetchi (55375_CR54) 2005; 94 Y Qin (55375_CR64) 2021; 5 L Zhou (55375_CR44) 2024; 63 K Jiang (55375_CR8) 2022; 7 M Zhang (55375_CR3) 2015; 27 Q Wan (55375_CR22) 2023; 145 X Deng (55375_CR42) 2024; 34 K Liu (55375_CR19) 2024; 8 Q Wan (55375_CR39) 2023; 35 M Ghasemi (55375_CR65) 2021; 20 G Juška (55375_CR55) 2000; 84 C Guan (55375_CR29) 2023; 62 J Yuan (55375_CR1) 2019; 3 H Zhuo (55375_CR6) 2023; 14 Z Xu (55375_CR9) 2022; 6 J Zhang (55375_CR31) 2024; 36 V Shrotriya (55375_CR53) 2006; 89 X Li (55375_CR11) 2023; 3 W Wei (55375_CR48) 2023; 63 X Kang (55375_CR33) 2023; 476 H Liang (55375_CR15) 2023; 14 Y He (55375_CR41) 2024; 123 S Ullbrich (55375_CR52) 2019; 18 J Zhang (55375_CR25) 2023; 36 |
References_xml | – volume: 36 start-page: 2312805 year: 2024 ident: 55375_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.202312805 – volume: 30 start-page: 2003654 year: 2020 ident: 55375_CR28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003654 – volume: 89 start-page: 063505 year: 2006 ident: 55375_CR53 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2335377 – volume: 2 start-page: 1600359 year: 2016 ident: 55375_CR59 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600359 – volume: 35 start-page: 10476 year: 2023 ident: 55375_CR39 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c01970 – volume: 12 start-page: 2201087 year: 2022 ident: 55375_CR24 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201087 – volume: 34 start-page: 2315476 year: 2024 ident: 55375_CR42 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202315476 – volume: 34 start-page: 2207544 year: 2022 ident: 55375_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.202207544 – volume: 136 start-page: 11128 year: 2014 ident: 55375_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505574a – volume: 9 start-page: 403 year: 2022 ident: 55375_CR47 publication-title: Mater. Horiz. doi: 10.1039/D1MH01127H – volume: 2 start-page: 538 year: 2018 ident: 55375_CR50 publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00601B – volume: 8 year: 2021 ident: 55375_CR58 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202101476 – volume: 6 start-page: 605 year: 2021 ident: 55375_CR4 publication-title: Nat. Energy doi: 10.1038/s41560-021-00820-x – volume: 119 year: 2023 ident: 55375_CR26 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109023 – volume: 62 start-page: e202312357 year: 2023 ident: 55375_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202312357 – volume: 145 start-page: 11914 year: 2023 ident: 55375_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02764 – volume: 15 start-page: 4672 year: 2022 ident: 55375_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02523J – volume: 14 start-page: 2401561 year: 2024 ident: 55375_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202401561 – volume: 36 start-page: 2307278 year: 2023 ident: 55375_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.202307278 – volume: 33 start-page: 2305851 year: 2023 ident: 55375_CR57 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305851 – volume: 5 start-page: 2129 year: 2021 ident: 55375_CR64 publication-title: Joule doi: 10.1016/j.joule.2021.06.006 – volume: 3 start-page: 1140 year: 2019 ident: 55375_CR1 publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 14 year: 2023 ident: 55375_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43846-3 – volume: 31 start-page: 3163 year: 2019 ident: 55375_CR63 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b05114 – volume: 7 start-page: 1076 year: 2022 ident: 55375_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-022-01138-y – volume: 65 start-page: 1457 year: 2022 ident: 55375_CR12 publication-title: Sci. China Chem. doi: 10.1007/s11426-022-1256-8 – volume: 34 start-page: 2259 year: 2022 ident: 55375_CR49 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c04055 – volume: 7 start-page: 044016 year: 2017 ident: 55375_CR51 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.044016 – volume: 123 start-page: 109397 year: 2024 ident: 55375_CR41 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109397 – volume: 7 start-page: 2386 year: 2023 ident: 55375_CR18 publication-title: Joule doi: 10.1016/j.joule.2023.09.001 – volume: 20 start-page: 525 year: 2021 ident: 55375_CR65 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00872-6 – volume: 16 start-page: 2316 year: 2023 ident: 55375_CR45 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00294B – volume: 33 start-page: 2106732 year: 2021 ident: 55375_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.202106732 – volume: 34 start-page: 2110639 year: 2022 ident: 55375_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.202110639 – volume: 63 start-page: e202315625 year: 2023 ident: 55375_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202315625 – volume: 14 start-page: 4067 year: 2021 ident: 55375_CR34 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01062J – volume: 12 start-page: 2202224 year: 2022 ident: 55375_CR23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202224 – volume: 8 start-page: 3720 year: 2023 ident: 55375_CR32 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c01124 – volume: 53 start-page: 995 year: 2022 ident: 55375_CR46 publication-title: Acta Polym. Sin. – volume: 35 start-page: 2300400 year: 2023 ident: 55375_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.202300400 – volume: 27 start-page: 4655 year: 2015 ident: 55375_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.201502110 – volume: 3 start-page: 100171 year: 2023 ident: 55375_CR11 publication-title: eScience doi: 10.1016/j.esci.2023.100171 – volume: 14 year: 2023 ident: 55375_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37526-5 – volume: 94 start-page: 126602 year: 2005 ident: 55375_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.126602 – volume: 3 start-page: 100085 year: 2023 ident: 55375_CR10 publication-title: eScience doi: 10.1016/j.esci.2022.10.010 – volume: 13 start-page: 36053 year: 2021 ident: 55375_CR66 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c07254 – volume: 476 start-page: 146828 year: 2023 ident: 55375_CR33 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146828 – volume: 13 year: 2022 ident: 55375_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32964-z – volume: 56 start-page: 12463 year: 2020 ident: 55375_CR62 publication-title: Chem. Commun. doi: 10.1039/D0CC04869K – volume: 247 start-page: 012007 year: 2010 ident: 55375_CR67 publication-title: J. Phys.: Conf. Ser. – volume: 63 start-page: e202319635 year: 2024 ident: 55375_CR44 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202319635 – volume: 17 start-page: 3927 year: 2024 ident: 55375_CR43 publication-title: Energy Environ. Sci. doi: 10.1039/D4EE00400K – volume: 84 start-page: 4946 year: 2000 ident: 55375_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.4946 – volume: 14 year: 2023 ident: 55375_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-023-40423-6 – volume: 21 start-page: 656 year: 2022 ident: 55375_CR13 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01244-y – volume: 8 start-page: 835 year: 2024 ident: 55375_CR19 publication-title: Joule doi: 10.1016/j.joule.2024.01.005 – volume: 14 year: 2023 ident: 55375_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39832-4 – volume: 7 start-page: 1900152 year: 2019 ident: 55375_CR60 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900152 – volume: 6 year: 2022 ident: 55375_CR9 publication-title: npj Flex. Electron. doi: 10.1038/s41528-022-00188-2 – volume: 35 start-page: 2300631 year: 2023 ident: 55375_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.202300631 – volume: 36 start-page: 2309379 year: 2023 ident: 55375_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.202309379 – volume: 22 start-page: 397 year: 1993 ident: 55375_CR37 publication-title: Chem. Soc. Rev. doi: 10.1039/CS9932200397 – volume: 18 start-page: 459 year: 2019 ident: 55375_CR52 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0324-5 – volume: 65 start-page: 224 year: 2022 ident: 55375_CR2 publication-title: Sci. China Chem. doi: 10.1007/s11426-021-1180-6 – volume: 82 start-page: 245207 year: 2010 ident: 55375_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.245207 – volume: 7 start-page: 1180 year: 2022 ident: 55375_CR7 publication-title: Nat. Energy doi: 10.1038/s41560-022-01155-x – volume: 32 start-page: 2200478 year: 2022 ident: 55375_CR61 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200478 |
SSID | ssj0000391844 |
Score | 2.5565286 |
Snippet | Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible... Abstract Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 787 |
SubjectTerms | 639/301/299/946 639/4077/909/4101/4096/946 Charge efficiency Charge transport Chemical bonds Chemistry Clean energy Commercialization Efficiency Energy Energy charge Energy conversion efficiency Energy loss Engineering Ethyl esters Humanities and Social Sciences Hydrogen Hydrogen bonding Laboratories Materials science Molecular structure Morphology multidisciplinary Phase distribution Phase separation Photovoltaic cells Photovoltaics Polymers Robustness Science Science (multidisciplinary) Solar cells Solvents Stretchability Thermal stability Transport properties Vertical distribution Vertical separation Xylene |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmA18SO2j-VRVUhwolJvlp3YWiRIVpvdw9754czY2W2Xh7hwTaxkNN_Y843tmSHkleap62tVM9tHzWTTNSykJJkNWtrW1zYJTHD-9Lm9uJQfr9TVjVZfeCeslAcuijttU-nQbZNXknvvY6eFlYKnJkiREq6-4PNuBFN5DRYWQhc5Z8nUwpxOMq8J4JKYUkIrZg48US7Y_yeW-ftlyV9OTLMjOr9H7s4Mkp4VyY_JrTjcJ7dLT8ntA_LjfekxTxfbfjWCebAw5swVGnOa1ESxQjFbXicMUD_09HvEFGBE7NuWrsawmda0dHzq6IThL8Ut_okuS2JB7Cnu4NJhHNgC93_g48BdcSheoHxILs8_fHl3weZWC6yTlq9Z42PSppOYdgqcRGEbdN3rWLcJCBTP53l9aKOqax-85m0QkasIUMrWN6YTj8gR_DE-IVSLngutfWdEkhrQjtzzpGMwAJflqiKvd2p3y1JRw-WTcGFcAckBSC6D5ExF3iIy-5FYDTs_ABW42Ubcv2ykIic7XN08RScnMHIFdqx0RV7uX8PkQnX6IY6bMsa2QFLrijwuZrCXRFjDJdCripgDAzkQ9fDN8HWRC3iDkqVplazIm50tXcv1d108_R-6eEbucGxhXDes0SfkaL3axOfAq9bhRZ5CPwFthiCX priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIgQcEJRXYEFG4gbWJn7EzgnBQlkhwYmV9mY5ia2uBElp2kPv_HA8dtJSXtfEShx_Y_vLjGc-gBeK-abNZU6r1ikqiqagtfeCVrUSVWnzynNMcP70uTw7Fx8v5MXocBvGY5XTmhgX6rZv0Ed-wvFHI5AZqV4vv1NUjcLo6iihcRWuFWGnwSNdev5h52PB6udaiDFXJuf6ZBBxZQgbE5WSK0n1wX4Uy_b_jWv-eWTyt7hp3I7md-D2yCPJmwT8XbjiuhlcT8qS2xncOJ2E3GZw65eag_fgx7ukQU8W23bVB_OhdR8zW4iLaVQDwQrGdLlPKCC2a8k3hynCiOjXLVn19WZYk6QI1ZABf48JhgAGskyJB64l6OElXd_RBfqHwsMDt8WmeMDyPpzP3385PaOjFANtRMXWtLDOK90ITEsNnEWiTLpqlctLHwgWi_G-ti6dzHNbW8XKmjsmXYBalLbQDX8AR-GN7hEQxVvGlbKN5l6oYA2OWeaVq7XgvmIyg5cTIGaZKm6YGCnn2iT4TIDPRPiMzuAtYrZridWy44UwBGacfKb0SeW98lYKZq11Teiv4MwXdXipz-B4QtyMU3gwe4PL4PnudoAOh9N2rt-kNlUZSGyewcNkILue8EozEehXBvrAdA66eninu1zEAt9hkIUupcjg1WRl-379eywe__8znsBNhuLFeUELdQxH69XGPQ2Mal0_i9PmJx-VIGA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG9SCjISN7BI_Iid4_KoqpXgApV6s-zE1iJBstrsHvbOD-_Yzm61UA5cYycezYzjz2N_MwBvFAttV8qSNp1XVFRtRV0IgjZOiaa2ZRN4JDh_-VpfXIr5lbw6ArbjwqRL-ymlZfpN726HvR9FmtK4olApuZJU34GTmKodfftkNpt_m-8jKzHnuRZiYsiUXN_y8sEqlJL134Yw_74o-cdpaVqEzh_A_Qk9klmW9yEc-f4R3M31JLeP4fenXF-eLLbdakDXoG5IrBXiE0VqJDE7MV3ekAWI7Tvyy0f6b7TWzy1ZDW4zrkmu9tSSMW59SQzvj2SZSQW-IzF6S_qhp4sY-8GPI26NXePlySdwef75-8cLOpVZoK1o2JpW1gelWxEpp4hHZCyBrjrlyzogeGLpLK9ztZdlaZ1VrHbcM-nRjKK2lW75UzjGEf1zIIp3jCtlW82DUGhpzywLyjsteGiYLODtTu1mmbNpmHQKzrXJRjJoJJOMZHQBH6Jl9j1jJuz0AFVgJs8wdcgV3JtgpWDWWt-ivIKzUDkcNBRwtrOrmabnaHjctSIylqqA1_tmnFhRnbb3wyb3aWoEqGUBz7Ib7CXhjWYCoVUB-sBBDkQ9bOl_LFLyblSy0LUUBbzb-dKNXP_Wxen_dX8B91gsVFxWtFJncLxebfxLRE9r92qaLtcF9Bco priority: 102 providerName: Springer Nature |
Title | Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent |
URI | https://link.springer.com/article/10.1038/s41467-024-55375-8 https://www.ncbi.nlm.nih.gov/pubmed/39824822 https://www.proquest.com/docview/3156699157 https://www.proquest.com/docview/3156968350 https://pubmed.ncbi.nlm.nih.gov/PMC11748654 https://doaj.org/article/6f7143899fa542aaaec739432f1b43ff |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB7tQ6C9IN4ElspI3MCQ-BE7B4S6Zcuq0q4QUKm3yElsFWlJS9NK9M4PZ-ykXRW6l0RKnHg0j3hs55sP4LVirqxiGdOssoqKpExo4ZygWaFElpo4c9wDnC-v0ouxGE3k5AA2dEedApu9UzvPJzVeXL_7_Wv9EQP-QwsZ1-8bEcIdRxsqJVeS6kM4xpFJeUaDyy7dD19mnuGERnTYmf2PnsBdnmkmNGM7Q1Wo6L8vDf3_b8p_tlTDSDW8D_e6FJP0W594AAe2fgh3WtLJ9SP486kloSfTdbWYof_QYhagLcQGHFVDfAljOr9BFBBTV-Sn9Rhhb9LrNVnMilWzJC0lVEkar0Ti9wAaMm-RB7YifomX1LOaTv0CEb4ck1vf1P9h-RjGw_PvgwvacTHQUmRsSRNjndKl8LhUTFqk50lXlbJx6jDDYmHDrypSK-PYFEaxtOCWSYu2FqlJdMmfwBH2aJ8BUbxiXClTau6EQnewzDCnbKEFdxmTEbzZqD2ftyU38rBVznXe2itHe-XBXrmO4MxbZtvSl8sOF1AFeRd9eepamvfMGSmYMcaWKK_gzCUFduoiON3YNd-4YM791BbTZ6kieLW9jdHn1WlqO1u1bbIUs9g4gqetG2wl2bhRBHrHQXZE3b1T_5iGCt-oZKFTKSJ4u_GlG7lu18XzW2V4ASfMExfHCU3UKRwtFyv7ErOpZdGDQzVReNTDzz047vdH30Z4Pju_-vIVrw7SQS-sU_RCKP0F6jIhyg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQ4IFhegQJGghNYTfyInQNC0FK29HFqpd5SJ7G1SJAsm12hvfN7-I14nM0uy-vWa2I5E8_YM_b4mw_guWKurGIZ06yyioqkTGjhnKBZoUSWmjhzHAHOxyfp8Ex8PJfnG_Cjx8Lgtcp-TQwLddWUeEa-w3Gj4YMZqd6Mv1JkjcLsak-h0ZnFoZ1_81u29vXBntfvC8b235_uDumCVYCWImNTmhjrlC4FIiy9-5XI-K0qZePU-ViBhdRVVaRWxrEpjGJpwS2T1kstUpPokvt-r8BVwb0nR2T6_oflmQ5WW9dCLLA5Mdc7rQgrkXeEVEquJNVr_i_QBPwttv3ziuZvedrg_vZvwc1F3EredoZ2GzZsPYBrHZPlfABbuz1x3ABu_FLj8A583-s478loXk0ab660aAKShtgA22oJVkym4xWAgZi6Il8sQpLRgj7PyaQpZu2UdAxUJWlxO04w5dCScQd0sBXBE2VSNzUd4XmU79zH0tgUL3TehbNLUdI92PRftA-AKF4xrpQpNXdCeeuzzDCnbKEFdxmTEbzsFZKPuwofecjMc5136su9-vKgvlxH8A51tmyJ1bnDAz8E-WKy56nrWOUzZ6RgxhhbenkFZy4p_EddBNu9xvPFktHmKwOP4NnytVcdDqepbTPr2mSpD5rjCO53BrKUhGeaCR_uRaDXTGdN1PU39adRKCjuB1noVIoIXvVWtpLr32Px8P-_8RS2hqfHR_nRwcnhI7jOkDg5TmiitmFzOpnZxz6amxZPwhQicHHZc_YnBN9bPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXgdECxQAgWMBCdqNbGd2DkgRLtdtRRWFaJSb8FJbG2lNlk2u0J751fx6xjnscvyuvUaW7bj-WzPeDzzAbyUzGa5H_o0zo2kIsgCmloraJxKEUfajy13Ac4fR9HhqXh_Fp5twI8uFsY9q-z2xHqjzsvM3ZHvcmdooDKDBrxtn0WcDIZvJ1-pY5ByntaOTqOByLFZfEPzrXpzNEBZv2JsePB5_5C2DAM0EzGb0UAbK1UmXLQlHsWhY_-WuTR-ZFFvYLUbK08jE_q-TrVkUcoNCw3-gYh0oDKO7V6DTemsoh5s7h2MTj4tb3hc7nUlRBup43O1W4l6X8JjkYYhlyFVa6dhTRrwN033zwebv3lt68NweBfutFosedfA7h5smKIP1xtey0Ufbu53NHJ9uP1LxsP78H2wKPTleUbGi3xaInhpWtZxNcTUQVwVcfmT6WQVzkB0kZNL4wKUHZ4uFmRapvNqRho-qoxUzjgnzgFRkUkT9mBy4u6XSVEWdOxup7Bx1KxdVfe88wGcXomYHkIPezSPgEieMy6lzhS3QiIWDdPMSpMqwW3MQg9edwJJJk2-j6T203OVNOJLUHxJLb5EebDnZLas6XJ11x9wCpJ26SeRbTjmY6tDwbTWJsPxCs5skGKn1oPtTuJJu4FUyQruHrxYFqPo3HTqwpTzpk4coQrte7DVAGQ5Eh4rJlD580CtQWdtqOslxfm4Ti-OkyxUFAoPdjqUrcb177l4_P_feA43cL0mH45Gx0_gFnMsyn5AA7kNvdl0bp6iajdLn7VriMCXq162PwET62DO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+hydrogen-bonding+enables+high-performance+and+mechanically+robust+organic+solar+cells+processed+with+non-halogenated+solvent&rft.jtitle=Nature+communications&rft.au=He%2C+Haozhe&rft.au=Li%2C+Xiaojun&rft.au=Zhang%2C+Jingyuan&rft.au=Chen%2C+Zekun&rft.date=2025-01-17&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=787&rft_id=info:doi/10.1038%2Fs41467-024-55375-8&rft_id=info%3Apmid%2F39824822&rft.externalDocID=39824822 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |