A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle

Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carri...

Full description

Saved in:
Bibliographic Details
Published inAnimals (Basel) Vol. 14; no. 4; p. 568
Main Authors Hodge, Ian, Quille, Patrick, O’Connell, Shane
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.02.2024
Subjects
Online AccessGet full text
ISSN2076-2615
2076-2615
DOI10.3390/ani14040568

Cover

Loading…
Abstract Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
AbstractList Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, (AN), (ASP), (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH . Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH₄. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH₄ mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Simple SummaryIntroducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions and opportunity for improved ruminant productivity. This review investigates garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP) feed additives for methane (CH4) mitigation in large ruminants that have been investigated in in vitro or in vivo trials with the aim of improved rumen fermentation characteristics. Optimum dose ranges were determined from the literature and studies for each feed additive and were compared via meta-analysis. Feed additives were grouped based on in vitro or in vivo available studies, and conclusions were determined based on their effectiveness in live subjects or their potential efficacy in live animal trials. Standard mean differences of feed additives compared to the relative controls on both individual and summarised levels were used to determine rumen feed additive potential. 3-Nitrooxypropanal resulted in the greatest methane mitigating efficacy in vivo compared to nitrate and essential oil blends supported by promising VFA ratios and increased presence of hydrogen in favour of reduced enteric methane output. Furthermore, garlic oil, chitosan, and Lactobacillus plantarum displayed the potential for promising rumen fermentation alterations at their investigated in vitro levels. The active ingredient in Asparagopsis red seaweed, bromoform, elicits a more pronounced, dose-dependent methane mitigation effect compared to the primary compound found in brown seaweed Ascophyllum nodosum.AbstractEight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Introducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions and opportunity for improved ruminant productivity. This review investigates garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP) feed additives for methane (CH[sub.4]) mitigation in large ruminants that have been investigated in in vitro or in vivo trials with the aim of improved rumen fermentation characteristics. Optimum dose ranges were determined from the literature and studies for each feed additive and were compared via meta-analysis. Feed additives were grouped based on in vitro or in vivo available studies, and conclusions were determined based on their effectiveness in live subjects or their potential efficacy in live animal trials. Standard mean differences of feed additives compared to the relative controls on both individual and summarised levels were used to determine rumen feed additive potential. 3-Nitrooxypropanal resulted in the greatest methane mitigating efficacy in vivo compared to nitrate and essential oil blends supported by promising VFA ratios and increased presence of hydrogen in favour of reduced enteric methane output. Furthermore, garlic oil, chitosan, and Lactobacillus plantarum displayed the potential for promising rumen fermentation alterations at their investigated in vitro levels. The active ingredient in Asparagopsis red seaweed, bromoform, elicits a more pronounced, dose-dependent methane mitigation effect compared to the primary compound found in brown seaweed Ascophyllum nodosum. Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH[sub.4]. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH[sub.4] mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Audience Academic
Author O’Connell, Shane
Quille, Patrick
Hodge, Ian
Author_xml – sequence: 1
  givenname: Ian
  surname: Hodge
  fullname: Hodge, Ian
– sequence: 2
  givenname: Patrick
  orcidid: 0009-0004-8842-3549
  surname: Quille
  fullname: Quille, Patrick
– sequence: 3
  givenname: Shane
  surname: O’Connell
  fullname: O’Connell, Shane
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38396536$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9rFDEQxxep2Fr75LsEfBHK1fzczT4ep6cHFUX0eZlNZu9y7G1qNnvS_75zXiulCCYPCZPP95tJZl4WJ0McsCheC36lVM3fwxCE5pqb0j4rziSvypkshTl5tD8tLsZxy2lURgkjXhSnyqq6NKo8K_Zz9h33AX-z2LFvMeOQA_RsiejZ3PuQwx5HthrowFOoi4ktILVxYMsY800KQyYDP7kcKJY3KU7rDfuCeQMDsnkLGXfkycLAPkBIt6TOucdXxfMO-hEv7tfz4ufy44_F59n110-rxfx65nQt80wAlggICrw1vpUcNSqjvag7A-h5J6V2BkTJXWslguucMG0ltIZSa-nUebE6-voI24bS3UG6bSKE5k8gpnUDKQfXYyNtZRArZaxptYXSekBetXRlKS0ikte7o9dNir8mHHOzC6PDvqeXxmlsFJVBVZWuzX9RWSuplRS8JvTtE3QbpzTQpxworqu6lIqoqyO1Bko1DF3MCRxNj7vgqCW6QPF5ZSkFo7klwZt726ndof_79IfKEyCOgEtxHBN2jQsZDlUk59A3gjeHBmseNRhpLp9oHmz_Rd8BHpPPFQ
CitedBy_id crossref_primary_10_3390_ani15060781
crossref_primary_10_1016_j_aninu_2025_02_001
crossref_primary_10_1098_rspa_2024_0390
crossref_primary_10_1016_j_animal_2024_101293
crossref_primary_10_3389_fanim_2025_1489212
crossref_primary_10_3390_w17060800
crossref_primary_10_1021_acsmeasuresciau_4c00059
crossref_primary_10_3390_atmos15080926
Cites_doi 10.2527/1995.7382483x
10.1128/AEM.69.8.5011-5014.2003
10.1016/j.phytochem.2010.05.010
10.1017/S0007114510005684
10.3168/jds.S0022-0302(07)71568-0
10.1128/aem.55.1.1-6.1989
10.2527/jas.2014-8726
10.1016/j.anifeedsci.2011.07.004
10.1016/j.anifeedsci.2009.04.005
10.3168/jds.S0022-0302(98)75886-2
10.1016/j.aninu.2021.03.002
10.4141/A03-079
10.4315/0362-028X-56.5.406
10.3168/jds.2016-12033
10.1016/j.anifeedsci.2010.02.004
10.3390/microorganisms10122345
10.1079/BJN19890125
10.1016/S0742-8413(00)00106-7
10.4315/0362-028X-61.3.307
10.3168/jds.2022-22838
10.1136/bmj.n71
10.1016/j.jclepro.2020.120836
10.1071/AN14339
10.4141/cjas-2014-069
10.1515/BOT.2004.057
10.1016/j.anifeedsci.2020.114460
10.4141/cjas72-083
10.1007/s40726-020-00151-7
10.3168/jds.2010-3281
10.1186/s40781-018-0175-7
10.1016/j.anifeedsci.2011.04.091
10.1007/s10661-011-2090-y
10.3168/jds.2018-14534
10.1016/j.anifeedsci.2008.11.004
10.1016/0169-5347(94)90151-1
10.3389/fmicb.2023.1103222
10.4141/CJAS07061
10.3390/ani10040620
10.1016/j.anifeedsci.2019.114294
10.3168/jds.2012-6480
10.1002/jsfa.7481
10.3390/su122410347
10.1093/femsec/fiv160
10.1186/s40104-015-0057-5
10.3168/jds.2017-12675
10.3168/jds.2015-10214
10.1093/tas/txz187
10.1016/j.anifeedsci.2010.07.002
10.1139/m72-279
10.1139/m83-110
10.1016/j.anifeedsci.2008.04.007
10.1152/physrev.1990.70.2.567
10.1016/j.anifeedsci.2015.01.012
10.1016/j.procbio.2011.09.015
10.3168/jds.2015-10766
10.3168/jds.2019-17085
10.1111/gfs.12540
10.3168/jds.S0022-0302(71)85947-7
10.1016/j.ijfoodmicro.2010.09.012
10.4141/cjas85-099
10.1016/j.anifeedsci.2009.01.016
10.1128/AEM.00309-12
10.1038/ncomms2432
10.1007/s00248-007-9340-0
10.3168/jds.2013-7397
10.3168/jds.2010-3623
10.1016/j.jclepro.2019.06.193
10.1016/S0377-8401(01)00234-6
10.3168/jds.2011-4236
10.3389/fmicb.2019.02207
10.3390/app11167730
10.1073/pnas.1600298113
10.1007/978-1-4615-8279-3_2
10.1016/j.livsci.2015.08.010
10.3389/fmicb.2015.01434
10.1038/344529a0
10.4236/ojas.2019.93022
10.4141/cjas96-035
10.3168/jds.S0022-0302(05)73126-X
10.3168/jds.2015-10832
10.1016/S2095-3119(20)63174-4
10.1016/j.anifeedsci.2015.10.016
10.1071/AN15576
10.1155/2010/945785
10.3354/meps306087
10.5713/ajas.15.0091
10.2527/jas.2011-3966
10.3168/jds.2019-17840
10.1007/BF02587912
10.1016/S1286-4579(99)80003-3
10.1071/AR99006
10.3168/jds.2020-18908
10.3168/jds.S0022-0302(05)72928-3
10.3389/fgene.2022.885932
10.18637/jss.v049.i05
10.3389/fmars.2020.00561
10.1021/jf050536+
10.1079/BJN19770102
10.3390/ani12212998
10.1071/AN15219
10.1016/j.aninu.2021.09.005
10.1073/pnas.1504124112
10.1016/j.anifeedsci.2014.08.013
10.1016/j.anifeedsci.2018.08.005
10.1017/S1751731113000116
10.1071/AN15324
10.3390/ani9100725
10.1016/j.anifeedsci.2007.03.013
10.1016/j.animal.2023.100825
10.1128/mr.50.1.70-80.1986
10.1016/S2095-3119(19)62707-3
10.1007/978-94-009-0751-5
10.1071/AN15705
10.1111/j.1574-6941.2007.00394.x
10.1016/j.anifeedsci.2023.115579
10.3168/jds.2013-7834
10.1007/s11250-011-9966-2
10.1016/j.anaerobe.2013.06.003
10.3390/microorganisms10020397
10.3168/jds.2022-22211
10.1080/08905439209549838
10.1017/S1751731116002019
10.3168/jds.S0022-0302(06)72137-3
10.1093/jas/skac139
10.1039/b600518g
10.1016/j.tim.2021.12.005
10.1371/journal.pone.0247820
10.1038/s41598-020-72145-w
10.1093/tas/txz133
10.3390/agronomy10101482
10.3389/fmicb.2016.00299
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
7X8
7S9
L.6
DOA
DOI 10.3390/ani14040568
DatabaseName CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2076-2615
ExternalDocumentID oai_doaj_org_article_2875ee73585b48a68dae07b0e4628eee
A784035408
38396536
10_3390_ani14040568
Genre Journal Article
Review
GrantInformation_xml – fundername: Marigot (Ireland)
  grantid: N/A
GroupedDBID 5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
CCPQU
CITATION
DIK
EAD
EAP
EPL
ESX
GROUPED_DOAJ
HYE
IAO
ITC
LK8
M48
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TUS
ZBA
NPM
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c492t-1ae6eaea3ad85db20e4e354d19f5aed0f224c5a160cb82eacfc15b7144a6442c3
IEDL.DBID BENPR
ISSN 2076-2615
IngestDate Wed Aug 27 01:15:00 EDT 2025
Fri Jul 11 00:23:29 EDT 2025
Fri Jul 11 15:45:11 EDT 2025
Mon Jun 30 15:05:17 EDT 2025
Tue Jun 10 21:15:27 EDT 2025
Mon Jul 21 06:04:13 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Tue Jul 01 01:56:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords meta-analysis
rumen fermentation
mitigation
enteric methane
feed supplementation
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-1ae6eaea3ad85db20e4e354d19f5aed0f224c5a160cb82eacfc15b7144a6442c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0004-8842-3549
OpenAccessLink https://www.proquest.com/docview/2930479623?pq-origsite=%requestingapplication%
PMID 38396536
PQID 2930479623
PQPubID 2032438
ParticipantIDs doaj_primary_oai_doaj_org_article_2875ee73585b48a68dae07b0e4628eee
proquest_miscellaneous_3040377495
proquest_miscellaneous_2932432109
proquest_journals_2930479623
gale_infotracacademiconefile_A784035408
pubmed_primary_38396536
crossref_citationtrail_10_3390_ani14040568
crossref_primary_10_3390_ani14040568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Feb-08
PublicationDateYYYYMMDD 2024-02-08
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Animals (Basel)
PublicationTitleAlternate Animals (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_136
Vyas (ref_95) 2018; 58
ref_90
Belanche (ref_61) 2016; 96
Gambacorta (ref_38) 1986; 50
Goiri (ref_80) 2009; 148
ref_13
Ellis (ref_120) 2016; 211
ref_131
Guo (ref_76) 2020; 19
Hashimoto (ref_122) 2013; 22
ref_134
Seo (ref_133) 2007; 90
Zhao (ref_56) 2015; 28
ref_15
Hatew (ref_32) 2015; 202
Okine (ref_25) 1989; 61
Cao (ref_70) 2011; 94
ref_129
Klop (ref_88) 2017; 11
Cao (ref_75) 2010; 157
ref_23
ref_21
Stephansen (ref_128) 2022; 13
Russell (ref_82) 1998; 81
Okine (ref_132) 2015; 93
Cho (ref_39) 2000; 126
ref_27
Seradj (ref_84) 2014; 197
Lund (ref_50) 2014; 54
Boland (ref_74) 2011; 168
Wallace (ref_104) 2012; 49
Roque (ref_107) 2019; 3
Wijesekara (ref_57) 2011; 46
ref_71
Bikker (ref_114) 2020; 263
Duin (ref_7) 2016; 113
Patra (ref_137) 2010; 71
Brul (ref_20) 1994; 9
Chaves (ref_41) 2008; 56
McAllister (ref_14) 1996; 76
ref_73
Patra (ref_127) 2012; 184
Hassanat (ref_29) 2013; 96
Bitsie (ref_106) 2022; 100
Page (ref_105) 2021; 372
Lin (ref_53) 2013; 7
Eason (ref_62) 2023; 66
Ellis (ref_35) 2012; 90
Gebhardt (ref_40) 1996; 31
Hart (ref_89) 2019; 09
Patra (ref_6) 2012; 78
Russel (ref_34) 1989; 55
Peiren (ref_86) 2015; 180
Goel (ref_116) 2012; 44
Bergman (ref_24) 1990; 70
ref_85
McCauley (ref_123) 2020; 6
Soliva (ref_9) 2011; 106
Monteiro (ref_121) 2020; 4
Haque (ref_124) 2018; 60
Busquet (ref_46) 2005; 88
Hao (ref_92) 1998; 61
Goiri (ref_79) 2009; 151
Boadi (ref_28) 2004; 84
Klumpp (ref_26) 2021; 76
Connan (ref_59) 2004; 47
Homolka (ref_72) 2009; 151
Vandaele (ref_8) 2019; 102
Johnson (ref_64) 1972; 52
Haisan (ref_97) 2014; 97
Czerkawski (ref_130) 1977; 38
Jones (ref_49) 1972; 18
Ankri (ref_37) 1999; 1
Johnson (ref_30) 1995; 73
Kong (ref_78) 2010; 144
Almeida (ref_126) 2021; 7
Tan (ref_117) 2011; 169
Bauman (ref_140) 1971; 54
Melgar (ref_102) 2020; 103
Nolan (ref_54) 2016; 56
Janssen (ref_16) 2010; 160
Bach (ref_91) 2023; 17
Kebreab (ref_125) 2023; 106
Lee (ref_55) 2014; 94
ref_67
Villar (ref_10) 2020; 259
Melgar (ref_112) 2021; 104
Xie (ref_141) 2021; 7
Poulsen (ref_22) 2013; 4
Haisan (ref_96) 2017; 57
Yanibada (ref_113) 2020; 10
ref_115
Leahy (ref_17) 2022; 30
Khurana (ref_139) 2023; 106
McIntosh (ref_138) 2003; 69
Brooke (ref_66) 2020; 7
Denman (ref_68) 2007; 62
Aydin (ref_77) 2009; 4
ref_36
Alaboudi (ref_52) 1985; 65
Paul (ref_63) 2006; 306
Tong (ref_111) 2020; 19
Busquet (ref_83) 2005; 88
Lashof (ref_1) 1990; 344
ref_33
Busquet (ref_94) 2006; 89
ref_110
Krumholz (ref_18) 1983; 29
Melgar (ref_99) 2020; 103
Lopes (ref_100) 2016; 99
Kinley (ref_119) 2016; Volume 56
Jacobs (ref_118) 2023; 297
Meeske (ref_109) 2018; 244
Wang (ref_60) 2008; 145
Lawson (ref_45) 2005; 53
Gerrits (ref_51) 2010; 93
Ogunade (ref_69) 2016; 99
ref_103
Chaves (ref_43) 2008; 88
Hook (ref_12) 2010; 2010
ref_47
Reynolds (ref_98) 2014; 97
Klop (ref_108) 2016; 99
Klieve (ref_19) 1999; 50
ref_44
ref_42
Bharate (ref_58) 2006; 23
Sudarshan (ref_135) 1992; 6
Danielsson (ref_31) 2017; 100
Goiri (ref_81) 2009; 152
ref_3
ref_2
Stecchini (ref_93) 1993; 56
Klop (ref_87) 2017; 100
Hristov (ref_101) 2015; 112
Roque (ref_65) 2019; 234
ref_5
Gerrits (ref_48) 2011; 94
ref_4
Kinley (ref_11) 2020; 259
Silanikove (ref_142) 2001; 91
References_xml – volume: 73
  start-page: 2483
  year: 1995
  ident: ref_30
  article-title: Methane Emissions from Cattle
  publication-title: J. Anim. Sci.
  doi: 10.2527/1995.7382483x
– volume: 69
  start-page: 5011
  year: 2003
  ident: ref_138
  article-title: Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.8.5011-5014.2003
– volume: 66
  start-page: 1
  year: 2023
  ident: ref_62
  article-title: Methane Reduction, Health and Regulatory Considerations Regarding Asparagopsis and Bromoform for Ruminants
  publication-title: N. Zeal. J. Agric. Res.
– volume: 71
  start-page: 1198
  year: 2010
  ident: ref_137
  article-title: A New Perspective on the Use of Plant Secondary Metabolites to Inhibit Methanogenesis in the Rumen
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.05.010
– volume: 106
  start-page: 114
  year: 2011
  ident: ref_9
  article-title: Ruminal Methane Inhibition Potential of Various Pure Compounds in Comparison with Garlic Oil as Determined with a Rumen Simulation Technique (Rusitec)
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114510005684
– volume: 90
  start-page: 840
  year: 2007
  ident: ref_133
  article-title: Development of a Mechanistic Model to Represent the Dynamics of Liquid Flow out of the Rumen and to Predict the Rate of Passage of Liquid in Dairy Cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(07)71568-0
– volume: 55
  start-page: 1
  year: 1989
  ident: ref_34
  article-title: Effect of Lonophores on Ruminal Fermentation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.55.1.1-6.1989
– volume: 93
  start-page: 1780
  year: 2015
  ident: ref_132
  article-title: Sustained Reduction in Methane Production from Long-Term Addition of 3-Nitrooxypropanol to a Beef Cattle Diet
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2014-8726
– volume: 169
  start-page: 185
  year: 2011
  ident: ref_117
  article-title: Effects of Condensed Tannins from Leucaena on Methane Production, Rumen Fermentation and Populations of Methanogens and Protozoa in Vitro
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2011.07.004
– volume: 152
  start-page: 92
  year: 2009
  ident: ref_81
  article-title: Effect of Chitosan on Mixed Ruminal Microorganism Fermentation Using the Rumen Simulation Technique (Rusitec)
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2009.04.005
– volume: 81
  start-page: 3222
  year: 1998
  ident: ref_82
  article-title: The Importance of PH in the Regulation of Ruminal Acetate to Propionate Ratio and Methane Production in Vitro
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(98)75886-2
– volume: 7
  start-page: 779
  year: 2021
  ident: ref_141
  article-title: Adding Polyethylene Glycol to Steer Ration Containing Sorghum Tannins Increases Crude Protein Digestibility and Shifts Nitrogen Excretion from Feces to Urine
  publication-title: Anim. Nutr.
  doi: 10.1016/j.aninu.2021.03.002
– volume: 84
  start-page: 445
  year: 2004
  ident: ref_28
  article-title: Effect of Low and High Forage Diet on Enteric and Manure Pack Greenhouse Gas Emissions from a Feedlot
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/A03-079
– volume: 56
  start-page: 406
  year: 1993
  ident: ref_93
  article-title: Effect of Essential Oils on Aeromonas Hydrophila in a Culture Medium and in Cooked Pork
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-56.5.406
– volume: 100
  start-page: 3563
  year: 2017
  ident: ref_87
  article-title: Enteric Methane Production in Lactating Dairy Cows with Continuous Feeding of Essential Oils or Rotational Feeding of Essential Oils and Lauric Acid
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-12033
– volume: 157
  start-page: 72
  year: 2010
  ident: ref_75
  article-title: Methane Emissions from Sheep Fed Fermented or Non-Fermented Total Mixed Ration Containing Whole-Crop Rice and Rice Bran
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2010.02.004
– ident: ref_129
  doi: 10.3390/microorganisms10122345
– volume: 61
  start-page: 387
  year: 1989
  ident: ref_25
  article-title: Relations between Passage Rates of Rumen Fluid and Particulate Matter and Foam Production in Rumen Contents of Cattle Fed on Different Diets Ad Lib
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN19890125
– volume: 126
  start-page: 195
  year: 2000
  ident: ref_39
  article-title: Effects of Allyl Mercaptan and Various Allium-Derived Compounds on Cholesterol Synthesis and Secretion in Hep-G2 Cells
  publication-title: Comp. Biochem. Physiol.—C Pharmacol. Toxicol. Endocrinol.
  doi: 10.1016/S0742-8413(00)00106-7
– volume: 61
  start-page: 307
  year: 1998
  ident: ref_92
  article-title: Inhibition of Listeria Monocytogenes and Aeromonas Hydrophila by Plant Extracts in Refrigerated Cooked Beef
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-61.3.307
– volume: 106
  start-page: 4608
  year: 2023
  ident: ref_139
  article-title: Effect of a Garlic and Citrus Extract Supplement on Performance, Rumen Fermentation, Methane Production, and Rumen Microbiome of Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2022-22838
– volume: 372
  start-page: n71
  year: 2021
  ident: ref_105
  article-title: The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– volume: 259
  start-page: 120836
  year: 2020
  ident: ref_11
  article-title: Mitigating the Carbon Footprint and Improving Productivity of Ruminant Livestock Agriculture Using a Red Seaweed
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120836
– volume: 54
  start-page: 1432
  year: 2014
  ident: ref_50
  article-title: The Acute Effect of Addition of Nitrate on In Vitro and In Vivo Methane Emission in Dairy Cows
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN14339
– volume: 94
  start-page: 557
  year: 2014
  ident: ref_55
  article-title: Une Revue de l’ajout de Nitrate Dans l’alimentation Des Ruminants: Toxicité Aux Nitrates, Émissions de Méthane et Performance de Production
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/cjas-2014-069
– volume: 47
  start-page: 410
  year: 2004
  ident: ref_59
  article-title: Interspecific and Temporal Variation in Phlorotannin Levels in an Assemblage of Brown Algae
  publication-title: Bot. Mar.
  doi: 10.1515/BOT.2004.057
– volume: 263
  start-page: 114460
  year: 2020
  ident: ref_114
  article-title: Evaluation of Seaweeds from Marine Waters in Northwestern Europe for Application in Animal Nutrition
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2020.114460
– ident: ref_4
– volume: 52
  start-page: 703
  year: 1972
  ident: ref_64
  article-title: Some Effects of Methane Inhibition in Ruminants (Steers)
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/cjas72-083
– volume: 6
  start-page: 188
  year: 2020
  ident: ref_123
  article-title: Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives
  publication-title: Curr. Pollut. Rep.
  doi: 10.1007/s40726-020-00151-7
– volume: 4
  start-page: 548
  year: 2009
  ident: ref_77
  article-title: Effect of Direct-Fed Microbials plus Enzyme Supplementation on the Fattening Performance of Holstein Young Bulls at Two Different Initial Body Weights
  publication-title: African J. Agric. Res.
– volume: 93
  start-page: 5856
  year: 2010
  ident: ref_51
  article-title: Nitrate and Sulfate: Effective Alternative Hydrogen Sinks for Mitigation of Ruminal Methane Production in Sheep
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2010-3281
– volume: 60
  start-page: 15
  year: 2018
  ident: ref_124
  article-title: Dietary Manipulation: A Sustainable Way to Mitigate Methane Emissions from Ruminants
  publication-title: J. Anim. Sci. Technol.
  doi: 10.1186/s40781-018-0175-7
– ident: ref_103
– volume: 168
  start-page: 152
  year: 2011
  ident: ref_74
  article-title: In Vitro Rumen Methane Output of Red Clover and Perennial Ryegrass Assayed Using the Gas Production Technique (GPT)
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2011.04.091
– volume: 184
  start-page: 1929
  year: 2012
  ident: ref_127
  article-title: Enteric Methane Mitigation Technologies for Ruminant Livestock: A Synthesis of Current Research and Future Directions
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-011-2090-y
– volume: 102
  start-page: 1780
  year: 2019
  ident: ref_8
  article-title: Reducing Enteric Methane Emissions from Dairy Cattle: Two Ways to Supplement 3-Nitrooxypropanol
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-14534
– volume: 151
  start-page: 55
  year: 2009
  ident: ref_72
  article-title: Effect of Inoculated Grass Silages on Rumen Fermentation and Lipid Metabolism in an Artificial Rumen (RUSITEC)
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2008.11.004
– volume: 9
  start-page: 319
  year: 1994
  ident: ref_20
  article-title: Symbionts and Organelles in Ancrobic Protozoa and Fungi
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/0169-5347(94)90151-1
– ident: ref_134
  doi: 10.3389/fmicb.2023.1103222
– volume: 88
  start-page: 117
  year: 2008
  ident: ref_43
  article-title: Effects of Essential Oils on Proteolytic, Deaminative and Methanogenic Activities of Mixed Ruminal Bacteria
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/CJAS07061
– ident: ref_85
  doi: 10.3390/ani10040620
– volume: 259
  start-page: 114294
  year: 2020
  ident: ref_10
  article-title: The Effect of Dietary Nitrate and Canola Oil Alone or in Combination on Fermentation, Digesta Kinetics and Methane Emissions from Cattle
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2019.114294
– volume: 96
  start-page: 4553
  year: 2013
  ident: ref_29
  article-title: Replacing Alfalfa Silage with Corn Silage in Dairy Cow Diets: Effects on Enteric Methane Production, Ruminal Fermentation, Digestion, N Balance, and Milk Production
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-6480
– ident: ref_3
– ident: ref_47
– volume: 96
  start-page: 3069
  year: 2016
  ident: ref_61
  article-title: In Vitro Screening of Natural Feed Additives from Crustaceans, Diatoms, Seaweeds and Plant Extracts to Manipulate Rumen Fermentation
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.7481
– ident: ref_90
  doi: 10.3390/su122410347
– ident: ref_110
  doi: 10.1093/femsec/fiv160
– ident: ref_131
  doi: 10.1186/s40104-015-0057-5
– volume: 100
  start-page: 8881
  year: 2017
  ident: ref_31
  article-title: Evaluation of a Gas In Vitro System for Predicting Methane Production In Vivo
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-12675
– volume: 99
  start-page: 1161
  year: 2016
  ident: ref_108
  article-title: Feeding Nitrate and Docosahexaenoic Acid Affects Enteric Methane Production and Milk Fatty Acid Composition in Lactating Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2015-10214
– volume: 4
  start-page: 214
  year: 2020
  ident: ref_121
  article-title: In Vitro Evaluation of Lactobacillus Plantarum as Direct-Fed Microbials in High-Producing Dairy Cows Diets
  publication-title: Transl. Anim. Sci
  doi: 10.1093/tas/txz187
– volume: 160
  start-page: 1
  year: 2010
  ident: ref_16
  article-title: Influence of Hydrogen on Rumen Methane Formation and Fermentation Balances through Microbial Growth Kinetics and Fermentation Thermodynamics
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2010.07.002
– volume: 18
  start-page: 1783
  year: 1972
  ident: ref_49
  article-title: Dissimilatory Metabolism of Nitrate by the Rumen Microbiota
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m72-279
– volume: 29
  start-page: 676
  year: 1983
  ident: ref_18
  article-title: Association of Methanogenic Bacteria with Rumen Protozoa
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m83-110
– volume: 148
  start-page: 276
  year: 2009
  ident: ref_80
  article-title: Effect of Chitosans on in Vitro Rumen Digestion and Fermentation of Maize Silage
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2008.04.007
– volume: 70
  start-page: 567
  year: 1990
  ident: ref_24
  article-title: Energy Contributions of Volatile Fatty Acids from the Gastrointestinal Tract in Various Species
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1990.70.2.567
– ident: ref_33
– volume: 202
  start-page: 20
  year: 2015
  ident: ref_32
  article-title: Relationship between In Vitro and In Vivo Methane Production Measured Simultaneously with Different Dietary Starch Sources and Starch Levels in Dairy Cattle
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2015.01.012
– volume: 46
  start-page: 2219
  year: 2011
  ident: ref_57
  article-title: Phlorotannins as Bioactive Agents from Brown Algae
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2011.09.015
– volume: 99
  start-page: 4427
  year: 2016
  ident: ref_69
  article-title: Control of Escherichia Coli O157:H7 in Contaminated Alfalfa Silage: Effects of Silage Additives
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2015-10766
– volume: 103
  start-page: 410
  year: 2020
  ident: ref_99
  article-title: Effects of 3-Nitrooxypropanol on Rumen Fermentation, Lactational Performance, and Resumption of Ovarian Cyclicity in Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-17085
– volume: 76
  start-page: 196
  year: 2021
  ident: ref_26
  article-title: Methane Mitigating Options with Forages Fed to Ruminants
  publication-title: Grass Forage Sci.
  doi: 10.1111/gfs.12540
– volume: 54
  start-page: 928
  year: 1971
  ident: ref_140
  article-title: Evaluation of Polyethylene Glycol Method in Determining Rumen Fluid Volume in Dairy Cows Fed Different Diets
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(71)85947-7
– volume: 144
  start-page: 51
  year: 2010
  ident: ref_78
  article-title: Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2010.09.012
– ident: ref_36
– volume: 65
  start-page: 841
  year: 1985
  ident: ref_52
  article-title: Effect of Acclimation to High Nitrate Intakes on Some Rumen Fermentation Parameters in Sheep
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/cjas85-099
– volume: 151
  start-page: 215
  year: 2009
  ident: ref_79
  article-title: Dose-Response Effects of Chitosans on in Vitro Rumen Digestion and Fermentation of Mixtures Differing in Forage-to-Concentrate Ratios
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2009.01.016
– volume: 78
  start-page: 4271
  year: 2012
  ident: ref_6
  article-title: Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00309-12
– volume: 4
  start-page: 1428
  year: 2013
  ident: ref_22
  article-title: Methylotrophic Methanogenic Thermoplasmata Implicated in Reduced Methane Emissions from Bovine Rumen
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2432
– volume: 56
  start-page: 234
  year: 2008
  ident: ref_41
  article-title: Evidence of Increased Diversity of Methanogenic Archaea with Plant Extract Supplementation
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-007-9340-0
– volume: 97
  start-page: 3777
  year: 2014
  ident: ref_98
  article-title: Effects of 3-Nitrooxypropanol on Methane Emission, Digestion, and Energy and Nitrogen Balance of Lactating Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2013-7397
– volume: 94
  start-page: 3902
  year: 2011
  ident: ref_70
  article-title: Effect of Lactic Acid Bacteria Inoculant and Beet Pulp Addition on Fermentation Characteristics and in Vitro Ruminal Digestion of Vegetable Residue Silage
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2010-3623
– volume: 234
  start-page: 132
  year: 2019
  ident: ref_65
  article-title: Inclusion of Asparagopsis Armata in Lactating Dairy Cows’ Diet Reduces Enteric Methane Emission by over 50 Percent
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.06.193
– volume: 91
  start-page: 69
  year: 2001
  ident: ref_142
  article-title: Use of Tannin-Binding Chemicals to Assay for Tannins and Their Negative Postingestive Effects in Ruminants
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/S0377-8401(01)00234-6
– ident: ref_5
– volume: 94
  start-page: 4028
  year: 2011
  ident: ref_48
  article-title: Persistency of Methane Mitigation by Dietary Nitrate Supplementation in Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2011-4236
– ident: ref_73
  doi: 10.3389/fmicb.2019.02207
– ident: ref_15
  doi: 10.3390/app11167730
– volume: 113
  start-page: 6172
  year: 2016
  ident: ref_7
  article-title: Mode of Action Uncovered for the Specific Reduction of Methane Emissions from Ruminants by the Small Molecule 3-Nitrooxypropanol
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1600298113
– ident: ref_136
– ident: ref_23
  doi: 10.1007/978-1-4615-8279-3_2
– volume: 180
  start-page: 134
  year: 2015
  ident: ref_86
  article-title: In Vivo and In Vitro Effects of a Blend of Essential Oils on Rumen Methane Mitigation
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2015.08.010
– ident: ref_44
  doi: 10.3389/fmicb.2015.01434
– volume: 344
  start-page: 529
  year: 1990
  ident: ref_1
  article-title: Relative Contributions of Greenhouse Gas Emissions to Global Warming
  publication-title: Nature
  doi: 10.1038/344529a0
– volume: 09
  start-page: 259
  year: 2019
  ident: ref_89
  article-title: An Essential Oil Blend Decreases Methane Emissions and Increases Milk Yield in Dairy Cows
  publication-title: Open J. Anim. Sci.
  doi: 10.4236/ojas.2019.93022
– volume: 76
  start-page: 231
  year: 1996
  ident: ref_14
  article-title: Dietary, Environmental and Microbiological Aspects of Methane Production in Ruminants
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/cjas96-035
– volume: 88
  start-page: 4393
  year: 2005
  ident: ref_46
  article-title: Effect of Garlic Oil and Four of Its Compounds on Rumen Microbial Fermentation
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(05)73126-X
– volume: 99
  start-page: 5335
  year: 2016
  ident: ref_100
  article-title: Effect of 3-Nitrooxypropanol on Methane and Hydrogen Emissions, Methane Isotopic Signature, and Ruminal Fermentation in Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2015-10832
– volume: 19
  start-page: 1644
  year: 2020
  ident: ref_111
  article-title: Effects of Different Molecular Weights of Chitosan on Methane Production and Bacterial Community Structure in Vitro
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(20)63174-4
– volume: 211
  start-page: 61
  year: 2016
  ident: ref_120
  article-title: The Effect of Lactic Acid Bacteria Included as a Probiotic or Silage Inoculant on in Vitro Rumen Digestibility, Total Gas and Methane Production
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2015.10.016
– volume: Volume 56
  start-page: 282
  year: 2016
  ident: ref_119
  article-title: The Red Macroalgae Asparagopsis Taxiformis Is a Potent Natural Antimethanogenic That Reduces Methane Production during in Vitro Fermentation with Rumen Fluid
  publication-title: Proceedings of the Animal Production Science
  doi: 10.1071/AN15576
– volume: 2010
  start-page: 11
  year: 2010
  ident: ref_12
  article-title: Methanogens: Methane Producers of the Rumen and Mitigation Strategies
  publication-title: Archaea
  doi: 10.1155/2010/945785
– volume: 306
  start-page: 87
  year: 2006
  ident: ref_63
  article-title: Chemical Defence against Bacteria in the Red Alga Asparagopsis Armata: Linking Structure with Function
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps306087
– volume: 28
  start-page: 1433
  year: 2015
  ident: ref_56
  article-title: Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance
  publication-title: Asian-Australasian J. Anim. Sci.
  doi: 10.5713/ajas.15.0091
– volume: 90
  start-page: 2717
  year: 2012
  ident: ref_35
  article-title: Quantifying the Effect of Monensin Dose on the Rumen Volatile Fatty Acid Profile in High-Grain-Fed Beef Cattle
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2011-3966
– volume: 103
  start-page: 6145
  year: 2020
  ident: ref_102
  article-title: Dose-Response Effect of 3-Nitrooxypropanol on Enteric Methane Emissions in Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-17840
– volume: 31
  start-page: 1269
  year: 1996
  ident: ref_40
  article-title: Differential Inhibitory Effects of Garlic-Derived Organosulfur Compounds on Cholesterol Biosynthesis in Primary Rat Hepatocyte Cultures
  publication-title: Lipids
  doi: 10.1007/BF02587912
– volume: 1
  start-page: 125
  year: 1999
  ident: ref_37
  article-title: Antimicrobial Properties of Allicin from Garlic
  publication-title: Microbes Infect.
  doi: 10.1016/S1286-4579(99)80003-3
– volume: 50
  start-page: 1315
  year: 1999
  ident: ref_19
  article-title: Opportunities for Biological Control of Ruminal Methanogenesis
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR99006
– volume: 104
  start-page: 357
  year: 2021
  ident: ref_112
  article-title: Enteric Methane Emission, Milk Production, and Composition of Dairy Cows Fed 3-Nitrooxypropanol
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2020-18908
– volume: 88
  start-page: 2508
  year: 2005
  ident: ref_83
  article-title: Effects of Cinnamaldehyde and Garlic Oil on Rumen Microbial Fermentation in a Dual Flow Continuous Culture
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(05)72928-3
– volume: 13
  start-page: 885932
  year: 2022
  ident: ref_128
  article-title: Selecting for Feed Efficient Cows Will Help to Reduce Methane Gas Emissions
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.885932
– volume: 49
  start-page: 1
  year: 2012
  ident: ref_104
  article-title: Closing the Gap between Methodologists and End-Users: R as a Computational Back-End
  publication-title: J Stat Softw.
  doi: 10.18637/jss.v049.i05
– volume: 7
  start-page: 561
  year: 2020
  ident: ref_66
  article-title: Methane Reduction Potential of Two Pacific Coast Macroalgae During in Vitro Ruminant Fermentation
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2020.00561
– volume: 53
  start-page: 6254
  year: 2005
  ident: ref_45
  article-title: Composition, Stability, and Bioavailability of Garlic Products Used in a Clinical Trial
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf050536+
– volume: 38
  start-page: 371
  year: 1977
  ident: ref_130
  article-title: Design and Development of a Long-Term Rumen Simulation Technique (Rusitec)
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN19770102
– ident: ref_42
  doi: 10.3390/ani12212998
– volume: 57
  start-page: 282
  year: 2017
  ident: ref_96
  article-title: The Effects of Feeding 3-Nitrooxypropanol at Two Doses on Milk Production, Rumen Fermentation, Plasma Metabolites, Nutrient Digestibility, and Methane Emissions in Lactating Holstein Cows
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN15219
– volume: 7
  start-page: 1219
  year: 2021
  ident: ref_126
  article-title: Meta-Analysis Quantifying the Potential of Dietary Additives and Rumen Modifiers for Methane Mitigation in Ruminant Production Systems
  publication-title: Anim. Nutr.
  doi: 10.1016/j.aninu.2021.09.005
– volume: 112
  start-page: 10663
  year: 2015
  ident: ref_101
  article-title: An Inhibitor Persistently Decreased Enteric Methane Emission from Dairy Cows with No Negative Effect on Milk Production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1504124112
– volume: 197
  start-page: 85
  year: 2014
  ident: ref_84
  article-title: The Effect of Bioflavex® and Its Pure Flavonoid Components on in Vitro Fermentation Parameters and Methane Production in Rumen Fluid from Steers given High Concentrate Diets
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2014.08.013
– volume: 244
  start-page: 76
  year: 2018
  ident: ref_109
  article-title: Effect of Dietary Nitrate on Enteric Methane Emissions, Production Performance and Rumen Fermentation of Dairy Cows Grazing Kikuyu-Dominant Pasture during Summer
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2018.08.005
– volume: 7
  start-page: 1099
  year: 2013
  ident: ref_53
  article-title: Effects of Nitrate Adaptation by Rumen Inocula Donors and Substrate Fiber Proportion on in Vitro Nitrate Disappearance, Methanogenesis, and Rumen Fermentation Acid
  publication-title: Animal
  doi: 10.1017/S1751731113000116
– volume: 56
  start-page: 1317
  year: 2016
  ident: ref_54
  article-title: Managing the Rumen to Limit the Incidence and Severity of Nitrite Poisoning in Nitrate-Supplemented Ruminants
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN15324
– ident: ref_27
  doi: 10.3390/ani9100725
– volume: 145
  start-page: 375
  year: 2008
  ident: ref_60
  article-title: Effects of Phlorotannins from Ascophyllum Nodosum (Brown Seaweed) on in Vitro Ruminal Digestion of Mixed Forage or Barley Grain
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2007.03.013
– volume: 17
  start-page: 100825
  year: 2023
  ident: ref_91
  article-title: Modulation of Milking Performance, Methane Emissions, and Rumen Microbiome on Dairy Cows by Dietary Supplementation of a Blend of Essential Oils
  publication-title: Animal
  doi: 10.1016/j.animal.2023.100825
– volume: 50
  start-page: 70
  year: 1986
  ident: ref_38
  article-title: Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.50.1.70-80.1986
– volume: 19
  start-page: 838
  year: 2020
  ident: ref_76
  article-title: The Effect of Lactic Acid Bacteria Inoculums on in Vitro Rumen Fermentation, Methane Production, Ruminal Cellulolytic Bacteria Populations and Cellulase Activities of Corn Stover Silage
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(19)62707-3
– ident: ref_13
  doi: 10.1007/978-94-009-0751-5
– volume: 58
  start-page: 1049
  year: 2018
  ident: ref_95
  article-title: Optimal Dose of 3-Nitrooxypropanol for Decreasing Enteric Methane Emissions from Beef Cattle Fed High-Forage and High-Grain Diets
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN15705
– volume: 62
  start-page: 313
  year: 2007
  ident: ref_68
  article-title: Quantitation and Diversity Analysis of Ruminal Methanogenic Populations in Response to the Antimethanogenic Compound Bromochloromethane
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2007.00394.x
– volume: 297
  start-page: 115579
  year: 2023
  ident: ref_118
  article-title: Twice Daily Feeding of Canola Oil Steeped with Asparagopsis Armata Reduced Methane Emissions of Lactating Dairy Cows
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2023.115579
– volume: 97
  start-page: 3110
  year: 2014
  ident: ref_97
  article-title: The Effects of Feeding 3-Nitrooxypropanol on Methane Emissions and Productivity of Holstein Cows in Mid Lactation
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2013-7834
– volume: 44
  start-page: 729
  year: 2012
  ident: ref_116
  article-title: Methane Mitigation from Ruminants Using Tannins and Saponins
  publication-title: Trop. Anim. Health Prod.
  doi: 10.1007/s11250-011-9966-2
– volume: 22
  start-page: 137
  year: 2013
  ident: ref_122
  article-title: The Impact of Lactobacillus Plantarum TUA1490L Supernatant Oninvitro Rumen Methanogenesis and Fermentation
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2013.06.003
– ident: ref_21
  doi: 10.3390/microorganisms10020397
– ident: ref_2
– volume: 106
  start-page: 927
  year: 2023
  ident: ref_125
  article-title: A Meta-Analysis of Effects of 3-Nitrooxypropanol on Methane Production, Yield, and Intensity in Dairy Cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2022-22211
– volume: 6
  start-page: 257
  year: 1992
  ident: ref_135
  article-title: Antibacterial Action of Chitosan
  publication-title: Food Biotechnol.
  doi: 10.1080/08905439209549838
– volume: 11
  start-page: 591
  year: 2017
  ident: ref_88
  article-title: Changes in In Vitro Gas and Methane Production from Rumen Fluid from Dairy Cows during Adaptation to Feed Additives In Vivo
  publication-title: Animal
  doi: 10.1017/S1751731116002019
– volume: 89
  start-page: 761
  year: 2006
  ident: ref_94
  article-title: Plant Extracts Affect In Vitro Rumen Microbial Fermentation
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72137-3
– volume: 100
  start-page: 1
  year: 2022
  ident: ref_106
  article-title: Enteric Methane Emissions, Growth, and Carcass Characteristics of Feedlot Steers Fed a Garlic-and Citrus-Based Feed Additive in Diets with Three Different Forage Concentrations
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/skac139
– volume: 23
  start-page: 558
  year: 2006
  ident: ref_58
  article-title: Phloroglucinol Compounds of Natural Origin
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b600518g
– volume: 30
  start-page: 209
  year: 2022
  ident: ref_17
  article-title: Electron Flow: Key to Mitigating Ruminant Methanogenesis
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2021.12.005
– ident: ref_67
  doi: 10.1371/journal.pone.0247820
– volume: 10
  start-page: 15591
  year: 2020
  ident: ref_113
  article-title: Inhibition of Enteric Methanogenesis in Dairy Cows Induces Changes in Plasma Metabolome Highlighting Metabolic Shifts and Potential Markers of Emission
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72145-w
– volume: 3
  start-page: 1383
  year: 2019
  ident: ref_107
  article-title: Effect of Mootral—A Garlic- And Citrus-Extract-Based Feed Additive—And Enteric Methane Emissions in Feedlot Cattle
  publication-title: Transl. Anim. Sci.
  doi: 10.1093/tas/txz133
– ident: ref_71
  doi: 10.3390/agronomy10101482
– ident: ref_115
  doi: 10.3389/fmicb.2016.00299
SSID ssj0000753151
Score 2.348836
SecondaryResourceType review_article
Snippet Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis...
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, (AN), (ASP), (LAB), chitosan (CHI),...
Introducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions and opportunity...
Simple SummaryIntroducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 568
SubjectTerms Analysis
Animal feeding and feeds
Antibiotics
Ascophyllum nodosum
Asparagopsis
Bacteria
bacterial communities
Carbohydrates
Carbon dioxide
Carbon footprint
Carbon offsets
Cattle
chitosan
Costs (Law)
Dairy cattle
Diet
dose response
Ecological footprint
Emissions
enteric methane
enzymes
essential oils
Fatty acids
feed additives
feed supplementation
Feeds
Fermentation
garlic
Gram-positive bacteria
Greenhouse gases
Infrared radiation
Investigations
Lactobacillus plantarum
Lipids
Livestock
Livestock industry
meta-analysis
Methane
methane production
mitigation
Natural gas
nitrates
oils
Oxidation
Productivity
propionic acid
Rumen fermentation
rumen protozoa
volatile fatty acids
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23aVAhUCiY2JYl2Uc36RIKKT00EHoReoxgS7HLxgnk33dGcpbti156tccPaSTNN6PRN4wdakXV0RyUjexi2dZRl73qdRmj10I7KUIq2nf2UZ2etx8u5MVOqS_KCcv0wLnjjhDRSwAtENa6trOqCxYq7SqgQ5UAQKsv2rwdZ-pr3p4TaMvygTyBfv2RHdfEJIP2vvvJBCWm_t_X419QZrI2qwfs_gIT-ZB_7yG7A-MjdvfLlILgj9n1wHNQn0-Rf5pmSvlB8RWaIj6EkPKBLnlKTw94CYEpP7YbN418NU0zxfJmfEHIzLF8qdXDz4Di6MAHhwCUooZ8PfITu97c4NPEdfyEna_efz4-LZcKCqVv-2YuawsKLFhhQyeDa7DXQMg21H2UFkIV0YB7aWtVedc1uAZHX0un0cmyiJMaL56yvXEa4TnjDTl6WqAHgi4lqNjjB6x3UIVO296Lgr297VTjF3pxqnLxzaCbQRowOxoo2OFW-Htm1fiz2DvSzlaEqLDTBRwgZhkg5l8DpGBvSLeGJiz-kLfLuQNsFlFfmUGjj0vRL_zc_q36zTKTLw3CIWLhR5RYsNfb2zgHaWMFdTJdJZmmpcNQ_d9l8C2VQKzdy4I9y0Nr2y6BKFVJoV78j_a-ZPcaBF4ps7zbZ3vz5gpeIXCa3UGaIz8AkCcU3A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA7riuCLeLfrKhEWBKHaNk3SPojU1cMiHPHBA4svJZepHFka7XYX9987k_YcdF19baeXdJLO902Sbxg70Iqqo1lIC1l1aZl3Oq1VrdOuc1poK4WPRfuWH9XRqvxwLI932KYY5_wBT6-kdlRPajWcvPz54-INDvjXxDiRsr8y_ZpEYjCUV9fYdQxJmkbocsb536bZOoGhbdqfd_maPyJSFO7_-_d8CXTG4LO4zW7NqJE3k5vvsB3o77IbX0LMid9j5w2fcvw8dPxTGGkFEJovMDLxxvu4POiUx9XqHg8hTuWHZrCh54sQRkrtjXgDPwnJ8rl0D18CpdWBNxbxKCUR-brn78x6uMCrSfr4Plst3n8-PErnggqpK-tiTHMDCgwYYXwlvS0yKEHI0ud1Jw34rMN47qTJVeZsVeAvuXO5tBo5l0HYVDjxgO32oYdHjBfE-7RAQoIME1RX4wOMs5D5SpvaiYS92HzU1s1q41T04qRF1kEeaH_zQMIOtsbfJ5GNq83ekne2JqSMHQ-E4Ws7D7QWGaAE0AJpkC0roypvINMWm6qKCgAS9px821KPwhdyZt6GgM0iJay20Uh5KRmGj9vfuL_d9MsW0RGJ8iNoTNiz7WkckjTPgj4JZ9GmKGlvVP1vG7xLJhB61zJhD6eutW2XQNCqpFB7_3-Bx-xmgQgrLiGv9tnuOJzBE0RIo30ae_8vR7MOUg
  priority: 102
  providerName: Scholars Portal
Title A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle
URI https://www.ncbi.nlm.nih.gov/pubmed/38396536
https://www.proquest.com/docview/2930479623
https://www.proquest.com/docview/2932432109
https://www.proquest.com/docview/3040377495
https://doaj.org/article/2875ee73585b48a68dae07b0e4628eee
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF_DZaywoFQQhNstmPPElaexThShELxZewXykHkq13qeB_78xmL377kodkLsne7M5v5pfZGUIOpMDuaMbnFVd9Xpe9zBvRyLzvrWTScOZi077lmTi9qN9f8stEuG1SWuXWJkZD7YJFjvwQYAmroQNav73-kmPXKPy6mlpo3Ca7YIIVBF-7Rydn5x9mlgUAkQGmTRvzGMT3h3pYYUUZwH31CxTFiv1_2uXfvM2IOov75F5yF2k76fcBueWHh-TOpxDJ8Efka0sncp-Gnp6HEVN_QHwBkERb52Je0IbGNHUHp8BBpcd6bcJAFyGMyOmNcAM3VZClqWcPXXrk0z1tDTiiyB7S1UDf6dX6G_waax4_JheLk4_Hp3nqpJDbuqnGvNReeO01005xZ6rC157x2pVNz7V3RQ9AbrkuRWGNqsAW97bkRkKwpcFfqix7QnaGMPhnhFYY8EkGkQiEll70DTxAW-MLp6RuLMvIm-2f2tlUZhy7XXzuINxADXQ_aSAjB7Pw9VRd4-9iR6idWQRLYscTYX3VpRXWgfq595JB_GNqpYVy2hfSwFBFpbz3GXmNuu1w4cILWZ32H8CwsARW10qIdZEFg8ftbdXfpRW96X7Mv4y8mi_DWsQPLKCTcBNlqho3RTX_loG7FAx87oZn5Ok0teZxMfBWBWfi-f9f4AW5W4FrFXPH1R7ZGdc3_iW4RqPZT_N_P1ILcFzW6js3RA9a
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxUhIQUNbHjODkgtH2strS7qlArVVxSv4JWQknZTUH9U_xGZpLs8ubWazJx4ozt-b7xeAZgU6VUHc34kMusDJO4VGGe5iosS6uEMlK4tmjfZJqOT5J3p_J0Db4tz8JQWOVyTWwXaldb8pFvoVmibOhord-efw6pahTtri5LaHTD4sBffkXKtnizv4v6fcn5aO94Zxz2VQVCm-S8CWPtU6-9Ftpl0hke-cQLmbg4L6X2LirRqFmp4zSyJuO4LpU2lkYh8dCIHbgV2O41WE8EUpkBrG_vTY_er7w6aIAF2tDuIKAQebSlqxllsEGckf1i-toKAX_agd_QbWvlRrfhVg9P2bAbT3dgzVd34fqHunW-34MvQ9ZtJrC6ZEd1Q6FGKD5CE8iGzrVxSAvWhsU7vISAmO3ouakrNqrrhnyIDTbguoy1rK8RxCae_PeeDQ0CX_JWslnFdvVsfolPU47l-3ByJf_4AQyquvKPgHEimEog80Eq69Myxxdoa3zkMqVzKwJ4vfyphe3TmlN1jU8F0hvSQPGTBgLYXAmfd9k8_i62TdpZiVAK7vZCPf9Y9DO6QKopvVcC-ZZJMp1mTvtIGexqyjPvfQCvSLcFLRT4QVb35x2wW5Ryqxgq5NbkdcPXbSzVX_QryKL4Md4DeLG6jXOfNnRQJ_VFK8MTOoSV_1sGW4kEYvxcBvCwG1qrfglEx6kU6eP_f8BzuDE-nhwWh_vTgydwkyOsa-PWsw0YNPML_xRhWWOe9XOBwdlVT7_vwsdMJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiDeBAotUhIRkxdn1eu0DQm7TqKU0ihCVKi7uPsYoErJL4oL61_h1zNiOeXPr1ZnYXs_uzPfNzs4wtq1j6o5mIRAqKYJoXOggjVMdFIXTUlslfdO072gW7x9Hb07UyQb7tj4LQ2mVa5vYGGpfOYqRj9AtUTV09NajokuLmE-mr88-B9RBinZa1-002ilyCBdfkb6tXh1MUNfPhZjuvd_dD7oOA4GLUlEHYwMxGDDS-ER5K0KIQKrIj9NCGfBhgQ7OKTOOQ2cTgTaqcGNlNZIQgzhCOIn3vcI2NbKicMA2d_Zm83d9hAedsUR_2h4KlDINR6ZcUDUbxBzJL26w6Rbwp0_4Dek2Hm96k93ooCrP2rl1i21AeZtd_VA1gfg77EvG240FXhV8XtWUdoTiU3SHPPO-yUla8SZF3uMlBMd81yxtVfJpVdUUT6zxBr6tXsu7fkH8CCiWDzyzCIIpcskXJZ-YxfIC_031lu-y40v5xvfYoKxKeMC4ILKpJbIgpLUQFyk-wDgLoU-0SZ0cspfrj5q7rsQ5ddr4lCPVIQ3kP2lgyLZ74bO2ssffxXZIO70IleNuLlTLj3m3unOknQpAS-ReNkpMnHgDobY41FgkADBkL0i3ORkNfCFnurMPOCwqv5VnGnk2ReDwcVtr9eedNVnlP-b-kD3rf0Y7QJs7qJPqvJERER3ISv8tg3cJJeL9VA3Z_XZq9eOSiJRjJeOH_3-Bp-waLrv87cHs8BG7LhDhNSnsyRYb1MtzeIwIrbZPuqXA2ellr77vGHNQWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Potential+Feed+Additives+Intended+for+Carbon+Footprint+Reduction+through+Methane+Abatement+in+Dairy+Cattle&rft.jtitle=Animals+%28Basel%29&rft.au=Hodge%2C+Ian&rft.au=Quille%2C+Patrick&rft.au=Shane+O%E2%80%99Connell&rft.date=2024-02-08&rft.pub=MDPI+AG&rft.eissn=2076-2615&rft.volume=14&rft.issue=4&rft.spage=568&rft_id=info:doi/10.3390%2Fani14040568&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon