A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carri...
Saved in:
Published in | Animals (Basel) Vol. 14; no. 4; p. 568 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-2615 2076-2615 |
DOI | 10.3390/ani14040568 |
Cover
Loading…
Abstract | Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application. |
---|---|
AbstractList | Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate,
(AN),
(ASP),
(LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH
. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH
mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application. Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application. Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application. Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH₄. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH₄ mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application. Simple SummaryIntroducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions and opportunity for improved ruminant productivity. This review investigates garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP) feed additives for methane (CH4) mitigation in large ruminants that have been investigated in in vitro or in vivo trials with the aim of improved rumen fermentation characteristics. Optimum dose ranges were determined from the literature and studies for each feed additive and were compared via meta-analysis. Feed additives were grouped based on in vitro or in vivo available studies, and conclusions were determined based on their effectiveness in live subjects or their potential efficacy in live animal trials. Standard mean differences of feed additives compared to the relative controls on both individual and summarised levels were used to determine rumen feed additive potential. 3-Nitrooxypropanal resulted in the greatest methane mitigating efficacy in vivo compared to nitrate and essential oil blends supported by promising VFA ratios and increased presence of hydrogen in favour of reduced enteric methane output. Furthermore, garlic oil, chitosan, and Lactobacillus plantarum displayed the potential for promising rumen fermentation alterations at their investigated in vitro levels. The active ingredient in Asparagopsis red seaweed, bromoform, elicits a more pronounced, dose-dependent methane mitigation effect compared to the primary compound found in brown seaweed Ascophyllum nodosum.AbstractEight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application. Introducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions and opportunity for improved ruminant productivity. This review investigates garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP) feed additives for methane (CH[sub.4]) mitigation in large ruminants that have been investigated in in vitro or in vivo trials with the aim of improved rumen fermentation characteristics. Optimum dose ranges were determined from the literature and studies for each feed additive and were compared via meta-analysis. Feed additives were grouped based on in vitro or in vivo available studies, and conclusions were determined based on their effectiveness in live subjects or their potential efficacy in live animal trials. Standard mean differences of feed additives compared to the relative controls on both individual and summarised levels were used to determine rumen feed additive potential. 3-Nitrooxypropanal resulted in the greatest methane mitigating efficacy in vivo compared to nitrate and essential oil blends supported by promising VFA ratios and increased presence of hydrogen in favour of reduced enteric methane output. Furthermore, garlic oil, chitosan, and Lactobacillus plantarum displayed the potential for promising rumen fermentation alterations at their investigated in vitro levels. The active ingredient in Asparagopsis red seaweed, bromoform, elicits a more pronounced, dose-dependent methane mitigation effect compared to the primary compound found in brown seaweed Ascophyllum nodosum. Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH[sub.4]. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH[sub.4] mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application. |
Audience | Academic |
Author | O’Connell, Shane Quille, Patrick Hodge, Ian |
Author_xml | – sequence: 1 givenname: Ian surname: Hodge fullname: Hodge, Ian – sequence: 2 givenname: Patrick orcidid: 0009-0004-8842-3549 surname: Quille fullname: Quille, Patrick – sequence: 3 givenname: Shane surname: O’Connell fullname: O’Connell, Shane |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38396536$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9rFDEQxxep2Fr75LsEfBHK1fzczT4ep6cHFUX0eZlNZu9y7G1qNnvS_75zXiulCCYPCZPP95tJZl4WJ0McsCheC36lVM3fwxCE5pqb0j4rziSvypkshTl5tD8tLsZxy2lURgkjXhSnyqq6NKo8K_Zz9h33AX-z2LFvMeOQA_RsiejZ3PuQwx5HthrowFOoi4ktILVxYMsY800KQyYDP7kcKJY3KU7rDfuCeQMDsnkLGXfkycLAPkBIt6TOucdXxfMO-hEv7tfz4ufy44_F59n110-rxfx65nQt80wAlggICrw1vpUcNSqjvag7A-h5J6V2BkTJXWslguucMG0ltIZSa-nUebE6-voI24bS3UG6bSKE5k8gpnUDKQfXYyNtZRArZaxptYXSekBetXRlKS0ikte7o9dNir8mHHOzC6PDvqeXxmlsFJVBVZWuzX9RWSuplRS8JvTtE3QbpzTQpxworqu6lIqoqyO1Bko1DF3MCRxNj7vgqCW6QPF5ZSkFo7klwZt726ndof_79IfKEyCOgEtxHBN2jQsZDlUk59A3gjeHBmseNRhpLp9oHmz_Rd8BHpPPFQ |
CitedBy_id | crossref_primary_10_3390_ani15060781 crossref_primary_10_1016_j_aninu_2025_02_001 crossref_primary_10_1098_rspa_2024_0390 crossref_primary_10_1016_j_animal_2024_101293 crossref_primary_10_3389_fanim_2025_1489212 crossref_primary_10_3390_w17060800 crossref_primary_10_1021_acsmeasuresciau_4c00059 crossref_primary_10_3390_atmos15080926 |
Cites_doi | 10.2527/1995.7382483x 10.1128/AEM.69.8.5011-5014.2003 10.1016/j.phytochem.2010.05.010 10.1017/S0007114510005684 10.3168/jds.S0022-0302(07)71568-0 10.1128/aem.55.1.1-6.1989 10.2527/jas.2014-8726 10.1016/j.anifeedsci.2011.07.004 10.1016/j.anifeedsci.2009.04.005 10.3168/jds.S0022-0302(98)75886-2 10.1016/j.aninu.2021.03.002 10.4141/A03-079 10.4315/0362-028X-56.5.406 10.3168/jds.2016-12033 10.1016/j.anifeedsci.2010.02.004 10.3390/microorganisms10122345 10.1079/BJN19890125 10.1016/S0742-8413(00)00106-7 10.4315/0362-028X-61.3.307 10.3168/jds.2022-22838 10.1136/bmj.n71 10.1016/j.jclepro.2020.120836 10.1071/AN14339 10.4141/cjas-2014-069 10.1515/BOT.2004.057 10.1016/j.anifeedsci.2020.114460 10.4141/cjas72-083 10.1007/s40726-020-00151-7 10.3168/jds.2010-3281 10.1186/s40781-018-0175-7 10.1016/j.anifeedsci.2011.04.091 10.1007/s10661-011-2090-y 10.3168/jds.2018-14534 10.1016/j.anifeedsci.2008.11.004 10.1016/0169-5347(94)90151-1 10.3389/fmicb.2023.1103222 10.4141/CJAS07061 10.3390/ani10040620 10.1016/j.anifeedsci.2019.114294 10.3168/jds.2012-6480 10.1002/jsfa.7481 10.3390/su122410347 10.1093/femsec/fiv160 10.1186/s40104-015-0057-5 10.3168/jds.2017-12675 10.3168/jds.2015-10214 10.1093/tas/txz187 10.1016/j.anifeedsci.2010.07.002 10.1139/m72-279 10.1139/m83-110 10.1016/j.anifeedsci.2008.04.007 10.1152/physrev.1990.70.2.567 10.1016/j.anifeedsci.2015.01.012 10.1016/j.procbio.2011.09.015 10.3168/jds.2015-10766 10.3168/jds.2019-17085 10.1111/gfs.12540 10.3168/jds.S0022-0302(71)85947-7 10.1016/j.ijfoodmicro.2010.09.012 10.4141/cjas85-099 10.1016/j.anifeedsci.2009.01.016 10.1128/AEM.00309-12 10.1038/ncomms2432 10.1007/s00248-007-9340-0 10.3168/jds.2013-7397 10.3168/jds.2010-3623 10.1016/j.jclepro.2019.06.193 10.1016/S0377-8401(01)00234-6 10.3168/jds.2011-4236 10.3389/fmicb.2019.02207 10.3390/app11167730 10.1073/pnas.1600298113 10.1007/978-1-4615-8279-3_2 10.1016/j.livsci.2015.08.010 10.3389/fmicb.2015.01434 10.1038/344529a0 10.4236/ojas.2019.93022 10.4141/cjas96-035 10.3168/jds.S0022-0302(05)73126-X 10.3168/jds.2015-10832 10.1016/S2095-3119(20)63174-4 10.1016/j.anifeedsci.2015.10.016 10.1071/AN15576 10.1155/2010/945785 10.3354/meps306087 10.5713/ajas.15.0091 10.2527/jas.2011-3966 10.3168/jds.2019-17840 10.1007/BF02587912 10.1016/S1286-4579(99)80003-3 10.1071/AR99006 10.3168/jds.2020-18908 10.3168/jds.S0022-0302(05)72928-3 10.3389/fgene.2022.885932 10.18637/jss.v049.i05 10.3389/fmars.2020.00561 10.1021/jf050536+ 10.1079/BJN19770102 10.3390/ani12212998 10.1071/AN15219 10.1016/j.aninu.2021.09.005 10.1073/pnas.1504124112 10.1016/j.anifeedsci.2014.08.013 10.1016/j.anifeedsci.2018.08.005 10.1017/S1751731113000116 10.1071/AN15324 10.3390/ani9100725 10.1016/j.anifeedsci.2007.03.013 10.1016/j.animal.2023.100825 10.1128/mr.50.1.70-80.1986 10.1016/S2095-3119(19)62707-3 10.1007/978-94-009-0751-5 10.1071/AN15705 10.1111/j.1574-6941.2007.00394.x 10.1016/j.anifeedsci.2023.115579 10.3168/jds.2013-7834 10.1007/s11250-011-9966-2 10.1016/j.anaerobe.2013.06.003 10.3390/microorganisms10020397 10.3168/jds.2022-22211 10.1080/08905439209549838 10.1017/S1751731116002019 10.3168/jds.S0022-0302(06)72137-3 10.1093/jas/skac139 10.1039/b600518g 10.1016/j.tim.2021.12.005 10.1371/journal.pone.0247820 10.1038/s41598-020-72145-w 10.1093/tas/txz133 10.3390/agronomy10101482 10.3389/fmicb.2016.00299 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI 7X8 7S9 L.6 DOA |
DOI | 10.3390/ani14040568 |
DatabaseName | CrossRef PubMed ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 2076-2615 |
ExternalDocumentID | oai_doaj_org_article_2875ee73585b48a68dae07b0e4628eee A784035408 38396536 10_3390_ani14040568 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Marigot (Ireland) grantid: N/A |
GroupedDBID | 5VS 7XC 8FE 8FH AAFWJ AAHBH AAYXX ABDBF ACUHS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS APEBS BENPR CCPQU CITATION DIK EAD EAP EPL ESX GROUPED_DOAJ HYE IAO ITC LK8 M48 MODMG M~E OK1 OZF PGMZT PHGZM PHGZT PIMPY PROAC RPM TUS ZBA NPM PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c492t-1ae6eaea3ad85db20e4e354d19f5aed0f224c5a160cb82eacfc15b7144a6442c3 |
IEDL.DBID | BENPR |
ISSN | 2076-2615 |
IngestDate | Wed Aug 27 01:15:00 EDT 2025 Fri Jul 11 00:23:29 EDT 2025 Fri Jul 11 15:45:11 EDT 2025 Mon Jun 30 15:05:17 EDT 2025 Tue Jun 10 21:15:27 EDT 2025 Mon Jul 21 06:04:13 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Tue Jul 01 01:56:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | meta-analysis rumen fermentation mitigation enteric methane feed supplementation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-1ae6eaea3ad85db20e4e354d19f5aed0f224c5a160cb82eacfc15b7144a6442c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0004-8842-3549 |
OpenAccessLink | https://www.proquest.com/docview/2930479623?pq-origsite=%requestingapplication% |
PMID | 38396536 |
PQID | 2930479623 |
PQPubID | 2032438 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2875ee73585b48a68dae07b0e4628eee proquest_miscellaneous_3040377495 proquest_miscellaneous_2932432109 proquest_journals_2930479623 gale_infotracacademiconefile_A784035408 pubmed_primary_38396536 crossref_citationtrail_10_3390_ani14040568 crossref_primary_10_3390_ani14040568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb-08 |
PublicationDateYYYYMMDD | 2024-02-08 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Animals (Basel) |
PublicationTitleAlternate | Animals (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_136 Vyas (ref_95) 2018; 58 ref_90 Belanche (ref_61) 2016; 96 Gambacorta (ref_38) 1986; 50 Goiri (ref_80) 2009; 148 ref_13 Ellis (ref_120) 2016; 211 ref_131 Guo (ref_76) 2020; 19 Hashimoto (ref_122) 2013; 22 ref_134 Seo (ref_133) 2007; 90 Zhao (ref_56) 2015; 28 ref_15 Hatew (ref_32) 2015; 202 Okine (ref_25) 1989; 61 Cao (ref_70) 2011; 94 ref_129 Klop (ref_88) 2017; 11 Cao (ref_75) 2010; 157 ref_23 ref_21 Stephansen (ref_128) 2022; 13 Russell (ref_82) 1998; 81 Okine (ref_132) 2015; 93 Cho (ref_39) 2000; 126 ref_27 Seradj (ref_84) 2014; 197 Lund (ref_50) 2014; 54 Boland (ref_74) 2011; 168 Wallace (ref_104) 2012; 49 Roque (ref_107) 2019; 3 Wijesekara (ref_57) 2011; 46 ref_71 Bikker (ref_114) 2020; 263 Duin (ref_7) 2016; 113 Patra (ref_137) 2010; 71 Brul (ref_20) 1994; 9 Chaves (ref_41) 2008; 56 McAllister (ref_14) 1996; 76 ref_73 Patra (ref_127) 2012; 184 Hassanat (ref_29) 2013; 96 Bitsie (ref_106) 2022; 100 Page (ref_105) 2021; 372 Lin (ref_53) 2013; 7 Eason (ref_62) 2023; 66 Ellis (ref_35) 2012; 90 Gebhardt (ref_40) 1996; 31 Hart (ref_89) 2019; 09 Patra (ref_6) 2012; 78 Russel (ref_34) 1989; 55 Peiren (ref_86) 2015; 180 Goel (ref_116) 2012; 44 Bergman (ref_24) 1990; 70 ref_85 McCauley (ref_123) 2020; 6 Soliva (ref_9) 2011; 106 Monteiro (ref_121) 2020; 4 Haque (ref_124) 2018; 60 Busquet (ref_46) 2005; 88 Hao (ref_92) 1998; 61 Goiri (ref_79) 2009; 151 Boadi (ref_28) 2004; 84 Klumpp (ref_26) 2021; 76 Connan (ref_59) 2004; 47 Homolka (ref_72) 2009; 151 Vandaele (ref_8) 2019; 102 Johnson (ref_64) 1972; 52 Haisan (ref_97) 2014; 97 Czerkawski (ref_130) 1977; 38 Jones (ref_49) 1972; 18 Ankri (ref_37) 1999; 1 Johnson (ref_30) 1995; 73 Kong (ref_78) 2010; 144 Almeida (ref_126) 2021; 7 Tan (ref_117) 2011; 169 Bauman (ref_140) 1971; 54 Melgar (ref_102) 2020; 103 Nolan (ref_54) 2016; 56 Janssen (ref_16) 2010; 160 Bach (ref_91) 2023; 17 Kebreab (ref_125) 2023; 106 Lee (ref_55) 2014; 94 ref_67 Villar (ref_10) 2020; 259 Melgar (ref_112) 2021; 104 Xie (ref_141) 2021; 7 Poulsen (ref_22) 2013; 4 Haisan (ref_96) 2017; 57 Yanibada (ref_113) 2020; 10 ref_115 Leahy (ref_17) 2022; 30 Khurana (ref_139) 2023; 106 McIntosh (ref_138) 2003; 69 Brooke (ref_66) 2020; 7 Denman (ref_68) 2007; 62 Aydin (ref_77) 2009; 4 ref_36 Alaboudi (ref_52) 1985; 65 Paul (ref_63) 2006; 306 Tong (ref_111) 2020; 19 Busquet (ref_83) 2005; 88 Lashof (ref_1) 1990; 344 ref_33 Busquet (ref_94) 2006; 89 ref_110 Krumholz (ref_18) 1983; 29 Melgar (ref_99) 2020; 103 Lopes (ref_100) 2016; 99 Kinley (ref_119) 2016; Volume 56 Jacobs (ref_118) 2023; 297 Meeske (ref_109) 2018; 244 Wang (ref_60) 2008; 145 Lawson (ref_45) 2005; 53 Gerrits (ref_51) 2010; 93 Ogunade (ref_69) 2016; 99 ref_103 Chaves (ref_43) 2008; 88 Hook (ref_12) 2010; 2010 ref_47 Reynolds (ref_98) 2014; 97 Klop (ref_108) 2016; 99 Klieve (ref_19) 1999; 50 ref_44 ref_42 Bharate (ref_58) 2006; 23 Sudarshan (ref_135) 1992; 6 Danielsson (ref_31) 2017; 100 Goiri (ref_81) 2009; 152 ref_3 ref_2 Stecchini (ref_93) 1993; 56 Klop (ref_87) 2017; 100 Hristov (ref_101) 2015; 112 Roque (ref_65) 2019; 234 ref_5 Gerrits (ref_48) 2011; 94 ref_4 Kinley (ref_11) 2020; 259 Silanikove (ref_142) 2001; 91 |
References_xml | – volume: 73 start-page: 2483 year: 1995 ident: ref_30 article-title: Methane Emissions from Cattle publication-title: J. Anim. Sci. doi: 10.2527/1995.7382483x – volume: 69 start-page: 5011 year: 2003 ident: ref_138 article-title: Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.8.5011-5014.2003 – volume: 66 start-page: 1 year: 2023 ident: ref_62 article-title: Methane Reduction, Health and Regulatory Considerations Regarding Asparagopsis and Bromoform for Ruminants publication-title: N. Zeal. J. Agric. Res. – volume: 71 start-page: 1198 year: 2010 ident: ref_137 article-title: A New Perspective on the Use of Plant Secondary Metabolites to Inhibit Methanogenesis in the Rumen publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.05.010 – volume: 106 start-page: 114 year: 2011 ident: ref_9 article-title: Ruminal Methane Inhibition Potential of Various Pure Compounds in Comparison with Garlic Oil as Determined with a Rumen Simulation Technique (Rusitec) publication-title: Br. J. Nutr. doi: 10.1017/S0007114510005684 – volume: 90 start-page: 840 year: 2007 ident: ref_133 article-title: Development of a Mechanistic Model to Represent the Dynamics of Liquid Flow out of the Rumen and to Predict the Rate of Passage of Liquid in Dairy Cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(07)71568-0 – volume: 55 start-page: 1 year: 1989 ident: ref_34 article-title: Effect of Lonophores on Ruminal Fermentation publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.55.1.1-6.1989 – volume: 93 start-page: 1780 year: 2015 ident: ref_132 article-title: Sustained Reduction in Methane Production from Long-Term Addition of 3-Nitrooxypropanol to a Beef Cattle Diet publication-title: J. Anim. Sci. doi: 10.2527/jas.2014-8726 – volume: 169 start-page: 185 year: 2011 ident: ref_117 article-title: Effects of Condensed Tannins from Leucaena on Methane Production, Rumen Fermentation and Populations of Methanogens and Protozoa in Vitro publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2011.07.004 – volume: 152 start-page: 92 year: 2009 ident: ref_81 article-title: Effect of Chitosan on Mixed Ruminal Microorganism Fermentation Using the Rumen Simulation Technique (Rusitec) publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2009.04.005 – volume: 81 start-page: 3222 year: 1998 ident: ref_82 article-title: The Importance of PH in the Regulation of Ruminal Acetate to Propionate Ratio and Methane Production in Vitro publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(98)75886-2 – volume: 7 start-page: 779 year: 2021 ident: ref_141 article-title: Adding Polyethylene Glycol to Steer Ration Containing Sorghum Tannins Increases Crude Protein Digestibility and Shifts Nitrogen Excretion from Feces to Urine publication-title: Anim. Nutr. doi: 10.1016/j.aninu.2021.03.002 – volume: 84 start-page: 445 year: 2004 ident: ref_28 article-title: Effect of Low and High Forage Diet on Enteric and Manure Pack Greenhouse Gas Emissions from a Feedlot publication-title: Can. J. Anim. Sci. doi: 10.4141/A03-079 – volume: 56 start-page: 406 year: 1993 ident: ref_93 article-title: Effect of Essential Oils on Aeromonas Hydrophila in a Culture Medium and in Cooked Pork publication-title: J. Food Prot. doi: 10.4315/0362-028X-56.5.406 – volume: 100 start-page: 3563 year: 2017 ident: ref_87 article-title: Enteric Methane Production in Lactating Dairy Cows with Continuous Feeding of Essential Oils or Rotational Feeding of Essential Oils and Lauric Acid publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-12033 – volume: 157 start-page: 72 year: 2010 ident: ref_75 article-title: Methane Emissions from Sheep Fed Fermented or Non-Fermented Total Mixed Ration Containing Whole-Crop Rice and Rice Bran publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2010.02.004 – ident: ref_129 doi: 10.3390/microorganisms10122345 – volume: 61 start-page: 387 year: 1989 ident: ref_25 article-title: Relations between Passage Rates of Rumen Fluid and Particulate Matter and Foam Production in Rumen Contents of Cattle Fed on Different Diets Ad Lib publication-title: Br. J. Nutr. doi: 10.1079/BJN19890125 – volume: 126 start-page: 195 year: 2000 ident: ref_39 article-title: Effects of Allyl Mercaptan and Various Allium-Derived Compounds on Cholesterol Synthesis and Secretion in Hep-G2 Cells publication-title: Comp. Biochem. Physiol.—C Pharmacol. Toxicol. Endocrinol. doi: 10.1016/S0742-8413(00)00106-7 – volume: 61 start-page: 307 year: 1998 ident: ref_92 article-title: Inhibition of Listeria Monocytogenes and Aeromonas Hydrophila by Plant Extracts in Refrigerated Cooked Beef publication-title: J. Food Prot. doi: 10.4315/0362-028X-61.3.307 – volume: 106 start-page: 4608 year: 2023 ident: ref_139 article-title: Effect of a Garlic and Citrus Extract Supplement on Performance, Rumen Fermentation, Methane Production, and Rumen Microbiome of Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2022-22838 – volume: 372 start-page: n71 year: 2021 ident: ref_105 article-title: The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews publication-title: BMJ doi: 10.1136/bmj.n71 – volume: 259 start-page: 120836 year: 2020 ident: ref_11 article-title: Mitigating the Carbon Footprint and Improving Productivity of Ruminant Livestock Agriculture Using a Red Seaweed publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120836 – volume: 54 start-page: 1432 year: 2014 ident: ref_50 article-title: The Acute Effect of Addition of Nitrate on In Vitro and In Vivo Methane Emission in Dairy Cows publication-title: Anim. Prod. Sci. doi: 10.1071/AN14339 – volume: 94 start-page: 557 year: 2014 ident: ref_55 article-title: Une Revue de l’ajout de Nitrate Dans l’alimentation Des Ruminants: Toxicité Aux Nitrates, Émissions de Méthane et Performance de Production publication-title: Can. J. Anim. Sci. doi: 10.4141/cjas-2014-069 – volume: 47 start-page: 410 year: 2004 ident: ref_59 article-title: Interspecific and Temporal Variation in Phlorotannin Levels in an Assemblage of Brown Algae publication-title: Bot. Mar. doi: 10.1515/BOT.2004.057 – volume: 263 start-page: 114460 year: 2020 ident: ref_114 article-title: Evaluation of Seaweeds from Marine Waters in Northwestern Europe for Application in Animal Nutrition publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2020.114460 – ident: ref_4 – volume: 52 start-page: 703 year: 1972 ident: ref_64 article-title: Some Effects of Methane Inhibition in Ruminants (Steers) publication-title: Can. J. Anim. Sci. doi: 10.4141/cjas72-083 – volume: 6 start-page: 188 year: 2020 ident: ref_123 article-title: Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-020-00151-7 – volume: 4 start-page: 548 year: 2009 ident: ref_77 article-title: Effect of Direct-Fed Microbials plus Enzyme Supplementation on the Fattening Performance of Holstein Young Bulls at Two Different Initial Body Weights publication-title: African J. Agric. Res. – volume: 93 start-page: 5856 year: 2010 ident: ref_51 article-title: Nitrate and Sulfate: Effective Alternative Hydrogen Sinks for Mitigation of Ruminal Methane Production in Sheep publication-title: J. Dairy Sci. doi: 10.3168/jds.2010-3281 – volume: 60 start-page: 15 year: 2018 ident: ref_124 article-title: Dietary Manipulation: A Sustainable Way to Mitigate Methane Emissions from Ruminants publication-title: J. Anim. Sci. Technol. doi: 10.1186/s40781-018-0175-7 – ident: ref_103 – volume: 168 start-page: 152 year: 2011 ident: ref_74 article-title: In Vitro Rumen Methane Output of Red Clover and Perennial Ryegrass Assayed Using the Gas Production Technique (GPT) publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2011.04.091 – volume: 184 start-page: 1929 year: 2012 ident: ref_127 article-title: Enteric Methane Mitigation Technologies for Ruminant Livestock: A Synthesis of Current Research and Future Directions publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-011-2090-y – volume: 102 start-page: 1780 year: 2019 ident: ref_8 article-title: Reducing Enteric Methane Emissions from Dairy Cattle: Two Ways to Supplement 3-Nitrooxypropanol publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-14534 – volume: 151 start-page: 55 year: 2009 ident: ref_72 article-title: Effect of Inoculated Grass Silages on Rumen Fermentation and Lipid Metabolism in an Artificial Rumen (RUSITEC) publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2008.11.004 – volume: 9 start-page: 319 year: 1994 ident: ref_20 article-title: Symbionts and Organelles in Ancrobic Protozoa and Fungi publication-title: Trends Ecol. Evol. doi: 10.1016/0169-5347(94)90151-1 – ident: ref_134 doi: 10.3389/fmicb.2023.1103222 – volume: 88 start-page: 117 year: 2008 ident: ref_43 article-title: Effects of Essential Oils on Proteolytic, Deaminative and Methanogenic Activities of Mixed Ruminal Bacteria publication-title: Can. J. Anim. Sci. doi: 10.4141/CJAS07061 – ident: ref_85 doi: 10.3390/ani10040620 – volume: 259 start-page: 114294 year: 2020 ident: ref_10 article-title: The Effect of Dietary Nitrate and Canola Oil Alone or in Combination on Fermentation, Digesta Kinetics and Methane Emissions from Cattle publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2019.114294 – volume: 96 start-page: 4553 year: 2013 ident: ref_29 article-title: Replacing Alfalfa Silage with Corn Silage in Dairy Cow Diets: Effects on Enteric Methane Production, Ruminal Fermentation, Digestion, N Balance, and Milk Production publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-6480 – ident: ref_3 – ident: ref_47 – volume: 96 start-page: 3069 year: 2016 ident: ref_61 article-title: In Vitro Screening of Natural Feed Additives from Crustaceans, Diatoms, Seaweeds and Plant Extracts to Manipulate Rumen Fermentation publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.7481 – ident: ref_90 doi: 10.3390/su122410347 – ident: ref_110 doi: 10.1093/femsec/fiv160 – ident: ref_131 doi: 10.1186/s40104-015-0057-5 – volume: 100 start-page: 8881 year: 2017 ident: ref_31 article-title: Evaluation of a Gas In Vitro System for Predicting Methane Production In Vivo publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-12675 – volume: 99 start-page: 1161 year: 2016 ident: ref_108 article-title: Feeding Nitrate and Docosahexaenoic Acid Affects Enteric Methane Production and Milk Fatty Acid Composition in Lactating Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2015-10214 – volume: 4 start-page: 214 year: 2020 ident: ref_121 article-title: In Vitro Evaluation of Lactobacillus Plantarum as Direct-Fed Microbials in High-Producing Dairy Cows Diets publication-title: Transl. Anim. Sci doi: 10.1093/tas/txz187 – volume: 160 start-page: 1 year: 2010 ident: ref_16 article-title: Influence of Hydrogen on Rumen Methane Formation and Fermentation Balances through Microbial Growth Kinetics and Fermentation Thermodynamics publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2010.07.002 – volume: 18 start-page: 1783 year: 1972 ident: ref_49 article-title: Dissimilatory Metabolism of Nitrate by the Rumen Microbiota publication-title: Can. J. Microbiol. doi: 10.1139/m72-279 – volume: 29 start-page: 676 year: 1983 ident: ref_18 article-title: Association of Methanogenic Bacteria with Rumen Protozoa publication-title: Can. J. Microbiol. doi: 10.1139/m83-110 – volume: 148 start-page: 276 year: 2009 ident: ref_80 article-title: Effect of Chitosans on in Vitro Rumen Digestion and Fermentation of Maize Silage publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2008.04.007 – volume: 70 start-page: 567 year: 1990 ident: ref_24 article-title: Energy Contributions of Volatile Fatty Acids from the Gastrointestinal Tract in Various Species publication-title: Physiol. Rev. doi: 10.1152/physrev.1990.70.2.567 – ident: ref_33 – volume: 202 start-page: 20 year: 2015 ident: ref_32 article-title: Relationship between In Vitro and In Vivo Methane Production Measured Simultaneously with Different Dietary Starch Sources and Starch Levels in Dairy Cattle publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2015.01.012 – volume: 46 start-page: 2219 year: 2011 ident: ref_57 article-title: Phlorotannins as Bioactive Agents from Brown Algae publication-title: Process Biochem. doi: 10.1016/j.procbio.2011.09.015 – volume: 99 start-page: 4427 year: 2016 ident: ref_69 article-title: Control of Escherichia Coli O157:H7 in Contaminated Alfalfa Silage: Effects of Silage Additives publication-title: J. Dairy Sci. doi: 10.3168/jds.2015-10766 – volume: 103 start-page: 410 year: 2020 ident: ref_99 article-title: Effects of 3-Nitrooxypropanol on Rumen Fermentation, Lactational Performance, and Resumption of Ovarian Cyclicity in Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2019-17085 – volume: 76 start-page: 196 year: 2021 ident: ref_26 article-title: Methane Mitigating Options with Forages Fed to Ruminants publication-title: Grass Forage Sci. doi: 10.1111/gfs.12540 – volume: 54 start-page: 928 year: 1971 ident: ref_140 article-title: Evaluation of Polyethylene Glycol Method in Determining Rumen Fluid Volume in Dairy Cows Fed Different Diets publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(71)85947-7 – volume: 144 start-page: 51 year: 2010 ident: ref_78 article-title: Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2010.09.012 – ident: ref_36 – volume: 65 start-page: 841 year: 1985 ident: ref_52 article-title: Effect of Acclimation to High Nitrate Intakes on Some Rumen Fermentation Parameters in Sheep publication-title: Can. J. Anim. Sci. doi: 10.4141/cjas85-099 – volume: 151 start-page: 215 year: 2009 ident: ref_79 article-title: Dose-Response Effects of Chitosans on in Vitro Rumen Digestion and Fermentation of Mixtures Differing in Forage-to-Concentrate Ratios publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2009.01.016 – volume: 78 start-page: 4271 year: 2012 ident: ref_6 article-title: Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00309-12 – volume: 4 start-page: 1428 year: 2013 ident: ref_22 article-title: Methylotrophic Methanogenic Thermoplasmata Implicated in Reduced Methane Emissions from Bovine Rumen publication-title: Nat. Commun. doi: 10.1038/ncomms2432 – volume: 56 start-page: 234 year: 2008 ident: ref_41 article-title: Evidence of Increased Diversity of Methanogenic Archaea with Plant Extract Supplementation publication-title: Microb. Ecol. doi: 10.1007/s00248-007-9340-0 – volume: 97 start-page: 3777 year: 2014 ident: ref_98 article-title: Effects of 3-Nitrooxypropanol on Methane Emission, Digestion, and Energy and Nitrogen Balance of Lactating Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2013-7397 – volume: 94 start-page: 3902 year: 2011 ident: ref_70 article-title: Effect of Lactic Acid Bacteria Inoculant and Beet Pulp Addition on Fermentation Characteristics and in Vitro Ruminal Digestion of Vegetable Residue Silage publication-title: J. Dairy Sci. doi: 10.3168/jds.2010-3623 – volume: 234 start-page: 132 year: 2019 ident: ref_65 article-title: Inclusion of Asparagopsis Armata in Lactating Dairy Cows’ Diet Reduces Enteric Methane Emission by over 50 Percent publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.06.193 – volume: 91 start-page: 69 year: 2001 ident: ref_142 article-title: Use of Tannin-Binding Chemicals to Assay for Tannins and Their Negative Postingestive Effects in Ruminants publication-title: Anim. Feed Sci. Technol. doi: 10.1016/S0377-8401(01)00234-6 – ident: ref_5 – volume: 94 start-page: 4028 year: 2011 ident: ref_48 article-title: Persistency of Methane Mitigation by Dietary Nitrate Supplementation in Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-4236 – ident: ref_73 doi: 10.3389/fmicb.2019.02207 – ident: ref_15 doi: 10.3390/app11167730 – volume: 113 start-page: 6172 year: 2016 ident: ref_7 article-title: Mode of Action Uncovered for the Specific Reduction of Methane Emissions from Ruminants by the Small Molecule 3-Nitrooxypropanol publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1600298113 – ident: ref_136 – ident: ref_23 doi: 10.1007/978-1-4615-8279-3_2 – volume: 180 start-page: 134 year: 2015 ident: ref_86 article-title: In Vivo and In Vitro Effects of a Blend of Essential Oils on Rumen Methane Mitigation publication-title: Livest. Sci. doi: 10.1016/j.livsci.2015.08.010 – ident: ref_44 doi: 10.3389/fmicb.2015.01434 – volume: 344 start-page: 529 year: 1990 ident: ref_1 article-title: Relative Contributions of Greenhouse Gas Emissions to Global Warming publication-title: Nature doi: 10.1038/344529a0 – volume: 09 start-page: 259 year: 2019 ident: ref_89 article-title: An Essential Oil Blend Decreases Methane Emissions and Increases Milk Yield in Dairy Cows publication-title: Open J. Anim. Sci. doi: 10.4236/ojas.2019.93022 – volume: 76 start-page: 231 year: 1996 ident: ref_14 article-title: Dietary, Environmental and Microbiological Aspects of Methane Production in Ruminants publication-title: Can. J. Anim. Sci. doi: 10.4141/cjas96-035 – volume: 88 start-page: 4393 year: 2005 ident: ref_46 article-title: Effect of Garlic Oil and Four of Its Compounds on Rumen Microbial Fermentation publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(05)73126-X – volume: 99 start-page: 5335 year: 2016 ident: ref_100 article-title: Effect of 3-Nitrooxypropanol on Methane and Hydrogen Emissions, Methane Isotopic Signature, and Ruminal Fermentation in Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2015-10832 – volume: 19 start-page: 1644 year: 2020 ident: ref_111 article-title: Effects of Different Molecular Weights of Chitosan on Methane Production and Bacterial Community Structure in Vitro publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(20)63174-4 – volume: 211 start-page: 61 year: 2016 ident: ref_120 article-title: The Effect of Lactic Acid Bacteria Included as a Probiotic or Silage Inoculant on in Vitro Rumen Digestibility, Total Gas and Methane Production publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2015.10.016 – volume: Volume 56 start-page: 282 year: 2016 ident: ref_119 article-title: The Red Macroalgae Asparagopsis Taxiformis Is a Potent Natural Antimethanogenic That Reduces Methane Production during in Vitro Fermentation with Rumen Fluid publication-title: Proceedings of the Animal Production Science doi: 10.1071/AN15576 – volume: 2010 start-page: 11 year: 2010 ident: ref_12 article-title: Methanogens: Methane Producers of the Rumen and Mitigation Strategies publication-title: Archaea doi: 10.1155/2010/945785 – volume: 306 start-page: 87 year: 2006 ident: ref_63 article-title: Chemical Defence against Bacteria in the Red Alga Asparagopsis Armata: Linking Structure with Function publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps306087 – volume: 28 start-page: 1433 year: 2015 ident: ref_56 article-title: Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance publication-title: Asian-Australasian J. Anim. Sci. doi: 10.5713/ajas.15.0091 – volume: 90 start-page: 2717 year: 2012 ident: ref_35 article-title: Quantifying the Effect of Monensin Dose on the Rumen Volatile Fatty Acid Profile in High-Grain-Fed Beef Cattle publication-title: J. Anim. Sci. doi: 10.2527/jas.2011-3966 – volume: 103 start-page: 6145 year: 2020 ident: ref_102 article-title: Dose-Response Effect of 3-Nitrooxypropanol on Enteric Methane Emissions in Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2019-17840 – volume: 31 start-page: 1269 year: 1996 ident: ref_40 article-title: Differential Inhibitory Effects of Garlic-Derived Organosulfur Compounds on Cholesterol Biosynthesis in Primary Rat Hepatocyte Cultures publication-title: Lipids doi: 10.1007/BF02587912 – volume: 1 start-page: 125 year: 1999 ident: ref_37 article-title: Antimicrobial Properties of Allicin from Garlic publication-title: Microbes Infect. doi: 10.1016/S1286-4579(99)80003-3 – volume: 50 start-page: 1315 year: 1999 ident: ref_19 article-title: Opportunities for Biological Control of Ruminal Methanogenesis publication-title: Aust. J. Agric. Res. doi: 10.1071/AR99006 – volume: 104 start-page: 357 year: 2021 ident: ref_112 article-title: Enteric Methane Emission, Milk Production, and Composition of Dairy Cows Fed 3-Nitrooxypropanol publication-title: J. Dairy Sci. doi: 10.3168/jds.2020-18908 – volume: 88 start-page: 2508 year: 2005 ident: ref_83 article-title: Effects of Cinnamaldehyde and Garlic Oil on Rumen Microbial Fermentation in a Dual Flow Continuous Culture publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(05)72928-3 – volume: 13 start-page: 885932 year: 2022 ident: ref_128 article-title: Selecting for Feed Efficient Cows Will Help to Reduce Methane Gas Emissions publication-title: Front. Genet. doi: 10.3389/fgene.2022.885932 – volume: 49 start-page: 1 year: 2012 ident: ref_104 article-title: Closing the Gap between Methodologists and End-Users: R as a Computational Back-End publication-title: J Stat Softw. doi: 10.18637/jss.v049.i05 – volume: 7 start-page: 561 year: 2020 ident: ref_66 article-title: Methane Reduction Potential of Two Pacific Coast Macroalgae During in Vitro Ruminant Fermentation publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2020.00561 – volume: 53 start-page: 6254 year: 2005 ident: ref_45 article-title: Composition, Stability, and Bioavailability of Garlic Products Used in a Clinical Trial publication-title: J. Agric. Food Chem. doi: 10.1021/jf050536+ – volume: 38 start-page: 371 year: 1977 ident: ref_130 article-title: Design and Development of a Long-Term Rumen Simulation Technique (Rusitec) publication-title: Br. J. Nutr. doi: 10.1079/BJN19770102 – ident: ref_42 doi: 10.3390/ani12212998 – volume: 57 start-page: 282 year: 2017 ident: ref_96 article-title: The Effects of Feeding 3-Nitrooxypropanol at Two Doses on Milk Production, Rumen Fermentation, Plasma Metabolites, Nutrient Digestibility, and Methane Emissions in Lactating Holstein Cows publication-title: Anim. Prod. Sci. doi: 10.1071/AN15219 – volume: 7 start-page: 1219 year: 2021 ident: ref_126 article-title: Meta-Analysis Quantifying the Potential of Dietary Additives and Rumen Modifiers for Methane Mitigation in Ruminant Production Systems publication-title: Anim. Nutr. doi: 10.1016/j.aninu.2021.09.005 – volume: 112 start-page: 10663 year: 2015 ident: ref_101 article-title: An Inhibitor Persistently Decreased Enteric Methane Emission from Dairy Cows with No Negative Effect on Milk Production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504124112 – volume: 197 start-page: 85 year: 2014 ident: ref_84 article-title: The Effect of Bioflavex® and Its Pure Flavonoid Components on in Vitro Fermentation Parameters and Methane Production in Rumen Fluid from Steers given High Concentrate Diets publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2014.08.013 – volume: 244 start-page: 76 year: 2018 ident: ref_109 article-title: Effect of Dietary Nitrate on Enteric Methane Emissions, Production Performance and Rumen Fermentation of Dairy Cows Grazing Kikuyu-Dominant Pasture during Summer publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2018.08.005 – volume: 7 start-page: 1099 year: 2013 ident: ref_53 article-title: Effects of Nitrate Adaptation by Rumen Inocula Donors and Substrate Fiber Proportion on in Vitro Nitrate Disappearance, Methanogenesis, and Rumen Fermentation Acid publication-title: Animal doi: 10.1017/S1751731113000116 – volume: 56 start-page: 1317 year: 2016 ident: ref_54 article-title: Managing the Rumen to Limit the Incidence and Severity of Nitrite Poisoning in Nitrate-Supplemented Ruminants publication-title: Anim. Prod. Sci. doi: 10.1071/AN15324 – ident: ref_27 doi: 10.3390/ani9100725 – volume: 145 start-page: 375 year: 2008 ident: ref_60 article-title: Effects of Phlorotannins from Ascophyllum Nodosum (Brown Seaweed) on in Vitro Ruminal Digestion of Mixed Forage or Barley Grain publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2007.03.013 – volume: 17 start-page: 100825 year: 2023 ident: ref_91 article-title: Modulation of Milking Performance, Methane Emissions, and Rumen Microbiome on Dairy Cows by Dietary Supplementation of a Blend of Essential Oils publication-title: Animal doi: 10.1016/j.animal.2023.100825 – volume: 50 start-page: 70 year: 1986 ident: ref_38 article-title: Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids publication-title: Microbiol. Rev. doi: 10.1128/mr.50.1.70-80.1986 – volume: 19 start-page: 838 year: 2020 ident: ref_76 article-title: The Effect of Lactic Acid Bacteria Inoculums on in Vitro Rumen Fermentation, Methane Production, Ruminal Cellulolytic Bacteria Populations and Cellulase Activities of Corn Stover Silage publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(19)62707-3 – ident: ref_13 doi: 10.1007/978-94-009-0751-5 – volume: 58 start-page: 1049 year: 2018 ident: ref_95 article-title: Optimal Dose of 3-Nitrooxypropanol for Decreasing Enteric Methane Emissions from Beef Cattle Fed High-Forage and High-Grain Diets publication-title: Anim. Prod. Sci. doi: 10.1071/AN15705 – volume: 62 start-page: 313 year: 2007 ident: ref_68 article-title: Quantitation and Diversity Analysis of Ruminal Methanogenic Populations in Response to the Antimethanogenic Compound Bromochloromethane publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00394.x – volume: 297 start-page: 115579 year: 2023 ident: ref_118 article-title: Twice Daily Feeding of Canola Oil Steeped with Asparagopsis Armata Reduced Methane Emissions of Lactating Dairy Cows publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2023.115579 – volume: 97 start-page: 3110 year: 2014 ident: ref_97 article-title: The Effects of Feeding 3-Nitrooxypropanol on Methane Emissions and Productivity of Holstein Cows in Mid Lactation publication-title: J. Dairy Sci. doi: 10.3168/jds.2013-7834 – volume: 44 start-page: 729 year: 2012 ident: ref_116 article-title: Methane Mitigation from Ruminants Using Tannins and Saponins publication-title: Trop. Anim. Health Prod. doi: 10.1007/s11250-011-9966-2 – volume: 22 start-page: 137 year: 2013 ident: ref_122 article-title: The Impact of Lactobacillus Plantarum TUA1490L Supernatant Oninvitro Rumen Methanogenesis and Fermentation publication-title: Anaerobe doi: 10.1016/j.anaerobe.2013.06.003 – ident: ref_21 doi: 10.3390/microorganisms10020397 – ident: ref_2 – volume: 106 start-page: 927 year: 2023 ident: ref_125 article-title: A Meta-Analysis of Effects of 3-Nitrooxypropanol on Methane Production, Yield, and Intensity in Dairy Cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.2022-22211 – volume: 6 start-page: 257 year: 1992 ident: ref_135 article-title: Antibacterial Action of Chitosan publication-title: Food Biotechnol. doi: 10.1080/08905439209549838 – volume: 11 start-page: 591 year: 2017 ident: ref_88 article-title: Changes in In Vitro Gas and Methane Production from Rumen Fluid from Dairy Cows during Adaptation to Feed Additives In Vivo publication-title: Animal doi: 10.1017/S1751731116002019 – volume: 89 start-page: 761 year: 2006 ident: ref_94 article-title: Plant Extracts Affect In Vitro Rumen Microbial Fermentation publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(06)72137-3 – volume: 100 start-page: 1 year: 2022 ident: ref_106 article-title: Enteric Methane Emissions, Growth, and Carcass Characteristics of Feedlot Steers Fed a Garlic-and Citrus-Based Feed Additive in Diets with Three Different Forage Concentrations publication-title: J. Anim. Sci. doi: 10.1093/jas/skac139 – volume: 23 start-page: 558 year: 2006 ident: ref_58 article-title: Phloroglucinol Compounds of Natural Origin publication-title: Nat. Prod. Rep. doi: 10.1039/b600518g – volume: 30 start-page: 209 year: 2022 ident: ref_17 article-title: Electron Flow: Key to Mitigating Ruminant Methanogenesis publication-title: Trends Microbiol. doi: 10.1016/j.tim.2021.12.005 – ident: ref_67 doi: 10.1371/journal.pone.0247820 – volume: 10 start-page: 15591 year: 2020 ident: ref_113 article-title: Inhibition of Enteric Methanogenesis in Dairy Cows Induces Changes in Plasma Metabolome Highlighting Metabolic Shifts and Potential Markers of Emission publication-title: Sci. Rep. doi: 10.1038/s41598-020-72145-w – volume: 3 start-page: 1383 year: 2019 ident: ref_107 article-title: Effect of Mootral—A Garlic- And Citrus-Extract-Based Feed Additive—And Enteric Methane Emissions in Feedlot Cattle publication-title: Transl. Anim. Sci. doi: 10.1093/tas/txz133 – ident: ref_71 doi: 10.3390/agronomy10101482 – ident: ref_115 doi: 10.3389/fmicb.2016.00299 |
SSID | ssj0000753151 |
Score | 2.348836 |
SecondaryResourceType | review_article |
Snippet | Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis... Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, (AN), (ASP), (LAB), chitosan (CHI),... Introducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions and opportunity... Simple SummaryIntroducing feed additives to mitigate enteric methane from ruminants demonstrates potential for reduced agricultural greenhouse gas emissions... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 568 |
SubjectTerms | Analysis Animal feeding and feeds Antibiotics Ascophyllum nodosum Asparagopsis Bacteria bacterial communities Carbohydrates Carbon dioxide Carbon footprint Carbon offsets Cattle chitosan Costs (Law) Dairy cattle Diet dose response Ecological footprint Emissions enteric methane enzymes essential oils Fatty acids feed additives feed supplementation Feeds Fermentation garlic Gram-positive bacteria Greenhouse gases Infrared radiation Investigations Lactobacillus plantarum Lipids Livestock Livestock industry meta-analysis Methane methane production mitigation Natural gas nitrates oils Oxidation Productivity propionic acid Rumen fermentation rumen protozoa volatile fatty acids |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23aVAhUCiY2JYl2Uc36RIKKT00EHoReoxgS7HLxgnk33dGcpbti156tccPaSTNN6PRN4wdakXV0RyUjexi2dZRl73qdRmj10I7KUIq2nf2UZ2etx8u5MVOqS_KCcv0wLnjjhDRSwAtENa6trOqCxYq7SqgQ5UAQKsv2rwdZ-pr3p4TaMvygTyBfv2RHdfEJIP2vvvJBCWm_t_X419QZrI2qwfs_gIT-ZB_7yG7A-MjdvfLlILgj9n1wHNQn0-Rf5pmSvlB8RWaIj6EkPKBLnlKTw94CYEpP7YbN418NU0zxfJmfEHIzLF8qdXDz4Di6MAHhwCUooZ8PfITu97c4NPEdfyEna_efz4-LZcKCqVv-2YuawsKLFhhQyeDa7DXQMg21H2UFkIV0YB7aWtVedc1uAZHX0un0cmyiJMaL56yvXEa4TnjDTl6WqAHgi4lqNjjB6x3UIVO296Lgr297VTjF3pxqnLxzaCbQRowOxoo2OFW-Htm1fiz2DvSzlaEqLDTBRwgZhkg5l8DpGBvSLeGJiz-kLfLuQNsFlFfmUGjj0vRL_zc_q36zTKTLw3CIWLhR5RYsNfb2zgHaWMFdTJdJZmmpcNQ_d9l8C2VQKzdy4I9y0Nr2y6BKFVJoV78j_a-ZPcaBF4ps7zbZ3vz5gpeIXCa3UGaIz8AkCcU3A priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA7riuCLeLfrKhEWBKHaNk3SPojU1cMiHPHBA4svJZepHFka7XYX9987k_YcdF19baeXdJLO902Sbxg70Iqqo1lIC1l1aZl3Oq1VrdOuc1poK4WPRfuWH9XRqvxwLI932KYY5_wBT6-kdlRPajWcvPz54-INDvjXxDiRsr8y_ZpEYjCUV9fYdQxJmkbocsb536bZOoGhbdqfd_maPyJSFO7_-_d8CXTG4LO4zW7NqJE3k5vvsB3o77IbX0LMid9j5w2fcvw8dPxTGGkFEJovMDLxxvu4POiUx9XqHg8hTuWHZrCh54sQRkrtjXgDPwnJ8rl0D18CpdWBNxbxKCUR-brn78x6uMCrSfr4Plst3n8-PErnggqpK-tiTHMDCgwYYXwlvS0yKEHI0ud1Jw34rMN47qTJVeZsVeAvuXO5tBo5l0HYVDjxgO32oYdHjBfE-7RAQoIME1RX4wOMs5D5SpvaiYS92HzU1s1q41T04qRF1kEeaH_zQMIOtsbfJ5GNq83ekne2JqSMHQ-E4Ws7D7QWGaAE0AJpkC0roypvINMWm6qKCgAS9px821KPwhdyZt6GgM0iJay20Uh5KRmGj9vfuL_d9MsW0RGJ8iNoTNiz7WkckjTPgj4JZ9GmKGlvVP1vG7xLJhB61zJhD6eutW2XQNCqpFB7_3-Bx-xmgQgrLiGv9tnuOJzBE0RIo30ae_8vR7MOUg priority: 102 providerName: Scholars Portal |
Title | A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38396536 https://www.proquest.com/docview/2930479623 https://www.proquest.com/docview/2932432109 https://www.proquest.com/docview/3040377495 https://doaj.org/article/2875ee73585b48a68dae07b0e4628eee |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF_DZaywoFQQhNstmPPElaexThShELxZewXykHkq13qeB_78xmL377kodkLsne7M5v5pfZGUIOpMDuaMbnFVd9Xpe9zBvRyLzvrWTScOZi077lmTi9qN9f8stEuG1SWuXWJkZD7YJFjvwQYAmroQNav73-kmPXKPy6mlpo3Ca7YIIVBF-7Rydn5x9mlgUAkQGmTRvzGMT3h3pYYUUZwH31CxTFiv1_2uXfvM2IOov75F5yF2k76fcBueWHh-TOpxDJ8Efka0sncp-Gnp6HEVN_QHwBkERb52Je0IbGNHUHp8BBpcd6bcJAFyGMyOmNcAM3VZClqWcPXXrk0z1tDTiiyB7S1UDf6dX6G_waax4_JheLk4_Hp3nqpJDbuqnGvNReeO01005xZ6rC157x2pVNz7V3RQ9AbrkuRWGNqsAW97bkRkKwpcFfqix7QnaGMPhnhFYY8EkGkQiEll70DTxAW-MLp6RuLMvIm-2f2tlUZhy7XXzuINxADXQ_aSAjB7Pw9VRd4-9iR6idWQRLYscTYX3VpRXWgfq595JB_GNqpYVy2hfSwFBFpbz3GXmNuu1w4cILWZ32H8CwsARW10qIdZEFg8ftbdXfpRW96X7Mv4y8mi_DWsQPLKCTcBNlqho3RTX_loG7FAx87oZn5Ok0teZxMfBWBWfi-f9f4AW5W4FrFXPH1R7ZGdc3_iW4RqPZT_N_P1ILcFzW6js3RA9a |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxUhIQUNbHjODkgtH2strS7qlArVVxSv4JWQknZTUH9U_xGZpLs8ubWazJx4ozt-b7xeAZgU6VUHc34kMusDJO4VGGe5iosS6uEMlK4tmjfZJqOT5J3p_J0Db4tz8JQWOVyTWwXaldb8pFvoVmibOhord-efw6pahTtri5LaHTD4sBffkXKtnizv4v6fcn5aO94Zxz2VQVCm-S8CWPtU6-9Ftpl0hke-cQLmbg4L6X2LirRqFmp4zSyJuO4LpU2lkYh8dCIHbgV2O41WE8EUpkBrG_vTY_er7w6aIAF2tDuIKAQebSlqxllsEGckf1i-toKAX_agd_QbWvlRrfhVg9P2bAbT3dgzVd34fqHunW-34MvQ9ZtJrC6ZEd1Q6FGKD5CE8iGzrVxSAvWhsU7vISAmO3ouakrNqrrhnyIDTbguoy1rK8RxCae_PeeDQ0CX_JWslnFdvVsfolPU47l-3ByJf_4AQyquvKPgHEimEog80Eq69Myxxdoa3zkMqVzKwJ4vfyphe3TmlN1jU8F0hvSQPGTBgLYXAmfd9k8_i62TdpZiVAK7vZCPf9Y9DO6QKopvVcC-ZZJMp1mTvtIGexqyjPvfQCvSLcFLRT4QVb35x2wW5Ryqxgq5NbkdcPXbSzVX_QryKL4Md4DeLG6jXOfNnRQJ_VFK8MTOoSV_1sGW4kEYvxcBvCwG1qrfglEx6kU6eP_f8BzuDE-nhwWh_vTgydwkyOsa-PWsw0YNPML_xRhWWOe9XOBwdlVT7_vwsdMJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiDeBAotUhIRkxdn1eu0DQm7TqKU0ihCVKi7uPsYoErJL4oL61_h1zNiOeXPr1ZnYXs_uzPfNzs4wtq1j6o5mIRAqKYJoXOggjVMdFIXTUlslfdO072gW7x9Hb07UyQb7tj4LQ2mVa5vYGGpfOYqRj9AtUTV09NajokuLmE-mr88-B9RBinZa1-002ilyCBdfkb6tXh1MUNfPhZjuvd_dD7oOA4GLUlEHYwMxGDDS-ER5K0KIQKrIj9NCGfBhgQ7OKTOOQ2cTgTaqcGNlNZIQgzhCOIn3vcI2NbKicMA2d_Zm83d9hAedsUR_2h4KlDINR6ZcUDUbxBzJL26w6Rbwp0_4Dek2Hm96k93ooCrP2rl1i21AeZtd_VA1gfg77EvG240FXhV8XtWUdoTiU3SHPPO-yUla8SZF3uMlBMd81yxtVfJpVdUUT6zxBr6tXsu7fkH8CCiWDzyzCIIpcskXJZ-YxfIC_031lu-y40v5xvfYoKxKeMC4ILKpJbIgpLUQFyk-wDgLoU-0SZ0cspfrj5q7rsQ5ddr4lCPVIQ3kP2lgyLZ74bO2ssffxXZIO70IleNuLlTLj3m3unOknQpAS-ReNkpMnHgDobY41FgkADBkL0i3ORkNfCFnurMPOCwqv5VnGnk2ReDwcVtr9eedNVnlP-b-kD3rf0Y7QJs7qJPqvJERER3ISv8tg3cJJeL9VA3Z_XZq9eOSiJRjJeOH_3-Bp-waLrv87cHs8BG7LhDhNSnsyRYb1MtzeIwIrbZPuqXA2ellr77vGHNQWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Potential+Feed+Additives+Intended+for+Carbon+Footprint+Reduction+through+Methane+Abatement+in+Dairy+Cattle&rft.jtitle=Animals+%28Basel%29&rft.au=Hodge%2C+Ian&rft.au=Quille%2C+Patrick&rft.au=Shane+O%E2%80%99Connell&rft.date=2024-02-08&rft.pub=MDPI+AG&rft.eissn=2076-2615&rft.volume=14&rft.issue=4&rft.spage=568&rft_id=info:doi/10.3390%2Fani14040568&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon |