Tightening the Phosphorus Cycle through Phosphorus-Efficient Crop Genotypes

We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still p...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 25; no. 10; pp. 967 - 975
Main Authors Cong, Wen-Feng, Suriyagoda, Lalith D.B., Lambers, Hans
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition. Adopting a multidisciplinary approach is crucial to tighten the P cycle; however, current research still focusses on monodisciplinary approaches.Crop genotypes with high efficiency of P acquisition, photosynthetic P use or P remobilisation, or low seed phytate P concentrations are crucial to reduce P-fertiliser input and P-related environmental impact and to enhance micronutrient availability of food and feed.While native plant species differ substantially in their strategies for P acquisition under low P availability, there is also considerable genotypic variation in P-acquisition strategies in crop species and genotypes.At the leaf level, P is preferentially allocated to photosynthetic cells to enhance photosynthetic P-use efficiency, while, at the cellular level, plants maintain a higher ratio of metabolic P to lipid P, and function at very low levels of ribosomal RNA.
AbstractList We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition.
We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition. Adopting a multidisciplinary approach is crucial to tighten the P cycle; however, current research still focusses on monodisciplinary approaches.Crop genotypes with high efficiency of P acquisition, photosynthetic P use or P remobilisation, or low seed phytate P concentrations are crucial to reduce P-fertiliser input and P-related environmental impact and to enhance micronutrient availability of food and feed.While native plant species differ substantially in their strategies for P acquisition under low P availability, there is also considerable genotypic variation in P-acquisition strategies in crop species and genotypes.At the leaf level, P is preferentially allocated to photosynthetic cells to enhance photosynthetic P-use efficiency, while, at the cellular level, plants maintain a higher ratio of metabolic P to lipid P, and function at very low levels of ribosomal RNA.
We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition.We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition.
Author Cong, Wen-Feng
Lambers, Hans
Suriyagoda, Lalith D.B.
Author_xml – sequence: 1
  givenname: Wen-Feng
  surname: Cong
  fullname: Cong, Wen-Feng
  email: wenfeng.cong@cau.edu.cn
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
– sequence: 2
  givenname: Lalith D.B.
  surname: Suriyagoda
  fullname: Suriyagoda, Lalith D.B.
  organization: Department of Crop Science, Faculty of Agriculture, University of Peradeniya, 20400, Peradeniya, Sri Lanka
– sequence: 3
  givenname: Hans
  orcidid: 0000-0002-4118-2272
  surname: Lambers
  fullname: Lambers, Hans
  email: hans.lambers@uwa.edu.au
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32414603$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9r3DAQxUVJaHa3-Qgthl56saN_lm16KGHZpiWB5JCehVYer7V4JVeSC_vtq2U3IeSSoMOImd8bmPfm6Mw6Cwh9JrggmIirbRHHQdkYCoopLjAvMGEf0IzUVZ1zVtGz9GcC54TV5QWah7DFGFekFh_RBaOccIHZDN0-mk0fwRq7yWIP2UPvwtg7P4VsudcDpKZ306Z_MchXXWe0ARuzpXdjdgPWxf0I4RM679QQ4PJUF-jPz9Xj8ld-d3_ze3l9l2ve0JgT1XSNoHxNm0qQRiuoOqoVEWwtgCrgolW8bBvBat2VHS3XrSCqxbTiChLCFujbce_o3d8JQpQ7EzQMyQ5wU5CUs4anQwV9B4rTo2VdJ_TrK3TrJm_TIYkSuGqIqEWivpyoab2DVo7e7JTfyydHE1AeAe1dCB66Z4RgeUhObuUpOXlITmIuU3JJ9_2VTpuoonE2emWGN9U_jmpIvv8z4GU4JKShNR50lK0zb2z4D9sCt0w
CitedBy_id crossref_primary_10_3389_fpls_2022_914648
crossref_primary_10_1016_j_ecoenv_2023_115388
crossref_primary_10_56093_ijas_v94i6_145572
crossref_primary_10_1016_j_molp_2021_06_008
crossref_primary_10_1016_j_tplants_2021_07_014
crossref_primary_10_18697_ajfand_127_23185
crossref_primary_10_1186_s13059_024_03348_x
crossref_primary_10_3389_fpls_2022_1056028
crossref_primary_10_1016_j_tplants_2022_05_007
crossref_primary_10_1371_journal_pgen_1011135
crossref_primary_10_1016_j_plaphy_2025_109608
crossref_primary_10_3389_fpls_2021_676432
crossref_primary_10_1080_00380768_2023_2283487
crossref_primary_10_3390_agronomy14102300
crossref_primary_10_1016_j_envres_2024_120030
crossref_primary_10_1016_j_eja_2023_127072
crossref_primary_10_1016_j_tree_2021_06_005
crossref_primary_10_3390_plants13233361
crossref_primary_10_1016_j_watres_2023_120851
crossref_primary_10_1038_s41467_022_31555_2
crossref_primary_10_1093_aob_mcab124
crossref_primary_10_1007_s11105_024_01512_y
crossref_primary_10_3389_fpls_2022_1069191
crossref_primary_10_1134_S1064229322020107
crossref_primary_10_1080_00380768_2024_2408307
crossref_primary_10_1007_s11104_022_05809_3
crossref_primary_10_1016_j_still_2023_105700
crossref_primary_10_4236_abb_2023_1412034
crossref_primary_10_1016_j_chemosphere_2022_136361
crossref_primary_10_1007_s42729_023_01604_w
crossref_primary_10_3389_fpls_2022_1051080
crossref_primary_10_1007_s13593_023_00916_6
crossref_primary_10_1016_j_scitotenv_2022_153558
crossref_primary_10_1016_j_envexpbot_2022_104844
crossref_primary_10_1007_s11104_022_05464_8
crossref_primary_10_3390_land13091483
crossref_primary_10_1093_jxb_erac117
crossref_primary_10_1093_jxb_erad448
crossref_primary_10_3389_fpls_2023_1225174
crossref_primary_10_3390_plants11223043
crossref_primary_10_1016_j_agee_2024_109175
crossref_primary_10_3389_fpls_2022_1015652
crossref_primary_10_1016_j_chemosphere_2022_136337
crossref_primary_10_1016_j_scitotenv_2023_167726
crossref_primary_10_1007_s11368_022_03221_z
crossref_primary_10_1111_pce_14895
crossref_primary_10_1093_jxb_erac519
crossref_primary_10_1007_s11104_024_06717_4
crossref_primary_10_1007_s11356_022_21637_5
crossref_primary_10_1093_plphys_kiac030
crossref_primary_10_3390_agronomy15030713
crossref_primary_10_1016_j_apsoil_2024_105632
crossref_primary_10_1016_j_indcrop_2024_120293
crossref_primary_10_1016_j_rhisph_2021_100316
crossref_primary_10_1080_10643389_2022_2120317
crossref_primary_10_1007_s00425_023_04158_4
crossref_primary_10_1021_acs_jafc_4c02761
crossref_primary_10_1016_j_eja_2024_127358
crossref_primary_10_1007_s11104_022_05309_4
crossref_primary_10_3390_plants13182567
crossref_primary_10_1016_j_eesus_2025_02_003
crossref_primary_10_1016_j_jia_2023_09_013
crossref_primary_10_1007_s11104_022_05487_1
crossref_primary_10_3390_agronomy12071700
crossref_primary_10_3389_fgene_2020_574547
crossref_primary_10_1016_j_agee_2025_109618
crossref_primary_10_1016_j_eja_2023_127063
crossref_primary_10_1016_j_agee_2024_108906
crossref_primary_10_3389_fpls_2021_636973
crossref_primary_10_1007_s11104_021_04915_y
crossref_primary_10_3390_app13063898
crossref_primary_10_3389_fpls_2024_1379562
crossref_primary_10_3390_biology10020158
crossref_primary_10_1093_biolinnean_blaa213
crossref_primary_10_3390_ijms24065398
crossref_primary_10_1007_s00425_021_03760_8
crossref_primary_10_1071_FP21116
crossref_primary_10_1016_j_yrtph_2021_104943
crossref_primary_10_1016_j_tplants_2024_04_010
crossref_primary_10_1073_pnas_2404199121
crossref_primary_10_1016_j_fcr_2022_108634
crossref_primary_10_1111_oik_08606
crossref_primary_10_3390_agronomy14010121
crossref_primary_10_1111_pce_14078
crossref_primary_10_1186_s12864_024_10402_2
crossref_primary_10_3390_cells12101397
crossref_primary_10_2139_ssrn_4200123
crossref_primary_10_1111_pbi_14040
crossref_primary_10_1007_s11104_022_05436_y
crossref_primary_10_3389_fpls_2021_700651
crossref_primary_10_1007_s42729_023_01473_3
crossref_primary_10_1002_ece3_8125
crossref_primary_10_3390_cells12030441
crossref_primary_10_1146_annurev_arplant_102720_125738
crossref_primary_10_1111_jipb_13560
crossref_primary_10_1016_j_rhisph_2024_100861
crossref_primary_10_1007_s40626_020_00180_z
crossref_primary_10_1002_jpln_202200124
crossref_primary_10_1016_j_oneear_2024_07_020
crossref_primary_10_1016_j_foreco_2023_121285
crossref_primary_10_1093_hr_uhac107
crossref_primary_10_1371_journal_pone_0292542
crossref_primary_10_1002_jpln_202400299
crossref_primary_10_1016_j_plaphy_2022_05_035
crossref_primary_10_1016_j_plaphy_2023_108172
crossref_primary_10_3389_fpls_2022_807844
crossref_primary_10_1016_j_jhazmat_2021_127224
crossref_primary_10_1515_opag_2022_0328
crossref_primary_10_1039_D0CS01363C
crossref_primary_10_1007_s10705_023_10288_8
crossref_primary_10_1093_plphys_kiac521
crossref_primary_10_1016_j_scitotenv_2023_166395
crossref_primary_10_29050_harranziraat_1357243
crossref_primary_10_1002_csc2_21102
crossref_primary_10_3390_plants11081006
crossref_primary_10_3389_fpls_2020_610591
crossref_primary_10_3389_fpls_2021_719436
crossref_primary_10_1007_s10142_023_00966_9
crossref_primary_10_1186_s12864_024_11151_y
crossref_primary_10_1007_s11104_023_06426_4
crossref_primary_10_1016_j_stress_2025_100763
crossref_primary_10_1186_s12870_023_04677_y
crossref_primary_10_3390_ijms23042353
crossref_primary_10_1016_j_chemosphere_2022_135334
crossref_primary_10_1016_j_scitotenv_2022_159033
crossref_primary_10_1021_aps_4c00009
crossref_primary_10_1111_pce_15038
crossref_primary_10_3389_fpls_2021_704983
crossref_primary_10_1016_j_scienta_2022_111779
crossref_primary_10_1016_j_envexpbot_2024_105897
crossref_primary_10_1080_01904167_2022_2027977
crossref_primary_10_1016_j_apsoil_2021_104094
Cites_doi 10.1007/s10681-019-2443-0
10.2135/cropsci2005.0593
10.1007/s11104-017-3427-2
10.1016/j.jfca.2008.11.022
10.1021/jf60202a038
10.1104/pp.111.175448
10.1007/s10886-017-0921-1
10.1002/ece3.861
10.1007/s11104-006-0052-x
10.1111/nph.15043
10.1111/j.1469-8137.2012.04285.x
10.1007/s13280-014-0614-8
10.1111/j.1365-313X.2010.04142.x
10.1093/jxb/ery267
10.1111/jfbc.12678
10.1111/nph.14403
10.1080/01904167.2018.1458871
10.1080/03650340.2018.1521957
10.1093/aob/mcs285
10.1111/pce.12240
10.1111/pce.13191
10.1104/pp.119.1.331
10.1038/nature20610
10.1038/nature11346
10.1071/FP03078
10.1016/j.fcr.2010.08.005
10.3146/i0095-3679-10-1-3
10.1071/SR02021
10.1038/nature02403
10.2134/jeq1998.00472425002700020002x
10.1111/j.1365-3040.2007.01733.x
10.1007/s11104-018-3663-0
10.4067/S0717-66432003000100011
10.1093/aob/mcs217
10.1111/1365-2745.13158
10.1021/jf9701345
10.1038/nplants.2016.43
10.1016/j.tplants.2014.10.007
10.1104/pp.59.6.1146
10.1007/s11104-009-9990-4
10.2135/cropsci2011.05.0285
10.7554/eLife.37093
10.1105/tpc.17.00738
10.3389/fpls.2016.01776
10.1093/jxb/ery313
10.1007/s00217-011-1495-8
10.1073/pnas.1010808108
10.1371/journal.pone.0205471
10.1007/s12571-011-0144-1
10.1081/PLN-100107601
10.1071/CP17060
10.1111/pce.13124
10.1021/jf051193i
10.1080/01904169909365679
10.1111/j.1469-8137.2007.02345.x
10.1111/nph.13132
10.1111/nph.15200
10.1071/BT99078
10.1016/j.soilbio.2013.05.010
10.1021/jf60181a021
10.1007/s11104-015-2460-2
10.1016/S1360-1385(01)02104-5
10.1007/s13562-015-0348-0
10.3389/fpls.2019.00784
10.1073/pnas.0704591104
10.1016/j.plantsci.2004.06.008
10.1038/s41396-018-0171-4
10.1186/gb-2013-14-6-209
10.1111/nph.14967
10.1104/pp.111.175414
10.1073/pnas.082696499
10.3390/agronomy9030127
10.1002/jsfa.4532
10.1071/FP04046
10.1111/j.1469-8137.2012.04190.x
10.1080/01904167.2019.1676903
10.2135/cropsci2005.0076
10.3389/fpls.2016.01939
10.1002/jsfa.2151
10.1016/j.gloenvcha.2008.10.009
10.3389/fpls.2016.01664
10.1073/pnas.1113675109
10.1016/B978-0-12-420225-2.00005-4
10.1017/S0014479714000362
10.1093/aob/mcq027
10.2134/jeq2019.02.0070
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Oct 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Oct 2020
DBID AAYXX
CITATION
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1016/j.tplants.2020.04.013
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 975
ExternalDocumentID 32414603
10_1016_j_tplants_2020_04_013
S136013852030128X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c492t-1a9f9624b297619cae7f2ca163b6e2ae46da45d9638cf5f25bd61ad0274aeb6e3
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Fri Jul 11 15:02:22 EDT 2025
Fri Jul 11 05:23:19 EDT 2025
Wed Aug 13 08:12:42 EDT 2025
Wed Feb 19 02:31:12 EST 2025
Tue Jul 01 00:57:56 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Fri Feb 23 02:47:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords phosphorus cycle
phytate
sustainable agriculture
crop genotype
phosphorus-use efficiency
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-1a9f9624b297619cae7f2ca163b6e2ae46da45d9638cf5f25bd61ad0274aeb6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4118-2272
PMID 32414603
PQID 2460791686
PQPubID 2045386
PageCount 9
ParticipantIDs proquest_miscellaneous_2439418662
proquest_miscellaneous_2404042588
proquest_journals_2460791686
pubmed_primary_32414603
crossref_primary_10_1016_j_tplants_2020_04_013
crossref_citationtrail_10_1016_j_tplants_2020_04_013
elsevier_sciencedirect_doi_10_1016_j_tplants_2020_04_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Withers (bb0365) 2015; 44
Conn, Gilliham (bb0210) 2010; 105
Wang, Ning (bb0275) 2019; 10
Kafle (bb0060) 2019; 9
Gamuyao (bb0100) 2012; 488
Jing (bb0165) 2010; 119
Lambers (bb0075) 2015; 20
Bariola (bb0250) 1999; 119
Kuga (bb0240) 2008; 178
Hidaka, Kitayama (bb0230) 2013; 3
Mayamulla (bb0290) 2017; 68
Lyu (bb0080) 2016; 7
Lynch (bb0045) 2011; 156
Vetterlein, Tarkka (bb0345) 2018; 69
Kekulandara (bb0270) 2019; 434
Zhu, Lynch (bb0095) 2004; 31
Wright (bb0175) 2004; 428
Israel (bb0415) 2006; 46
Warkentin (bb0320) 2012; 52
De Boland (bb0385) 1975; 23
Guilherme Pereira (bb0220) 2018; 218
Guilherme Pereira (bb0190) 2019; 107
Pame (bb0375) 2015; 51
Denton (bb0285) 2007; 30
Jemo (bb0360) 2006; 284
Pang (bb0055) 2018; 219
Borie, Rubio (bb0135) 2003; 60
Ruan (bb0195) 2018; 30
Hayes (bb0215) 2018; 41
Niu (bb0065) 2013; 112
Veneklaas (bb0180) 2012; 195
Brennan, Bolland (bb0355) 2001; 24
Raboy (bb0305) 2001; 6
Frank (bb0370) 2009; 22
Ockenden (bb0405) 2004; 167
Horner (bb0410) 2005; 53
Raven (bb0105) 2018; 217
Turner (bb0120) 2013; 14
Dissanayaka (bb0255) 2018; 41
Kumar (bb0420) 2005; 85
Rose (bb0300) 2013; 112
Daniel (bb0030) 1998; 27
Lambers (bb0155) 2018; 424
Swamy (bb0295) 2019; 215
Marzo (bb0325) 1997; 45
Johnston (bb0010) 2014; 123
Bertrand (bb0140) 2003; 41
Richardson, Simpson (bb0050) 2011; 156
Schneider (bb0040) 2019; 48
Cordell (bb0005) 2009; 19
Fixen, Johnston (bb0015) 2012; 92
Sawers (bb0070) 2017; 214
Margenot (bb0350) 2016
Roy (bb0145) 2016; 2
Lott (bb0020) 2011; 3
Li (bb0160) 2007; 104
Yu (bb0245) 2002; 99
Liao, Yan (bb0185) 1999; 22
Oltmans (bb0425) 2005; 45
Heldt (bb0200) 1977; 59
Zhou (bb0315) 2016; 7
MacDonald (bb0025) 2011; 108
Bhagyawant (bb0440) 2018; 42
Bueckert (bb0445) 2011; 233
Wang (bb0110) 2013; 65
Lambers (bb0225) 2012; 196
Sattari (bb0170) 2012; 109
Branch, Gaines (bb0435) 1983; 10
Abbas (bb0260) 2018; 41
Lolas (bb0395) 1976; 53
Bilal (bb0400) 2019; 65
Zhang (bb0115) 2018; 12
Bilal (bb0330) 2018; 13
Dobermann, Fairhurst (bb0280) 2000
Julia (bb0340) 2018; 69
Rose (bb0380) 2010; 326
Stitt (bb0205) 2010; 61
Grigg (bb0035) 2000; 48
Wang (bb0085) 2016; 7
Miller (bb0090) 2003; 30
Suriyagoda (bb0265) 2019; 43
Yamaji (bb0310) 2016; 541
Pariasca-Tanaka (bb0335) 2015; 392
Brooker (bb0150) 2015; 206
O'Dell (bb0390) 1972; 20
Hill (bb0125) 2018; 44
Sulpice (bb0235) 2014; 37
Pandey (bb0430) 2016; 25
Wang (bb0130) 2018; 7
Veneklaas (10.1016/j.tplants.2020.04.013_bb0180) 2012; 195
Ruan (10.1016/j.tplants.2020.04.013_bb0195) 2018; 30
Rose (10.1016/j.tplants.2020.04.013_bb0300) 2013; 112
Sattari (10.1016/j.tplants.2020.04.013_bb0170) 2012; 109
Wright (10.1016/j.tplants.2020.04.013_bb0175) 2004; 428
Bariola (10.1016/j.tplants.2020.04.013_bb0250) 1999; 119
Wang (10.1016/j.tplants.2020.04.013_bb0110) 2013; 65
MacDonald (10.1016/j.tplants.2020.04.013_bb0025) 2011; 108
Margenot (10.1016/j.tplants.2020.04.013_bb0350) 2016
Lott (10.1016/j.tplants.2020.04.013_bb0020) 2011; 3
Johnston (10.1016/j.tplants.2020.04.013_bb0010) 2014; 123
Zhu (10.1016/j.tplants.2020.04.013_bb0095) 2004; 31
Wang (10.1016/j.tplants.2020.04.013_bb0275) 2019; 10
Kumar (10.1016/j.tplants.2020.04.013_bb0420) 2005; 85
Bertrand (10.1016/j.tplants.2020.04.013_bb0140) 2003; 41
Bueckert (10.1016/j.tplants.2020.04.013_bb0445) 2011; 233
Bhagyawant (10.1016/j.tplants.2020.04.013_bb0440) 2018; 42
Lolas (10.1016/j.tplants.2020.04.013_bb0395) 1976; 53
Liao (10.1016/j.tplants.2020.04.013_bb0185) 1999; 22
Israel (10.1016/j.tplants.2020.04.013_bb0415) 2006; 46
Ockenden (10.1016/j.tplants.2020.04.013_bb0405) 2004; 167
Julia (10.1016/j.tplants.2020.04.013_bb0340) 2018; 69
Lynch (10.1016/j.tplants.2020.04.013_bb0045) 2011; 156
Pariasca-Tanaka (10.1016/j.tplants.2020.04.013_bb0335) 2015; 392
Schneider (10.1016/j.tplants.2020.04.013_bb0040) 2019; 48
Frank (10.1016/j.tplants.2020.04.013_bb0370) 2009; 22
Lambers (10.1016/j.tplants.2020.04.013_bb0075) 2015; 20
Hayes (10.1016/j.tplants.2020.04.013_bb0215) 2018; 41
Pame (10.1016/j.tplants.2020.04.013_bb0375) 2015; 51
Rose (10.1016/j.tplants.2020.04.013_bb0380) 2010; 326
Vetterlein (10.1016/j.tplants.2020.04.013_bb0345) 2018; 69
Yu (10.1016/j.tplants.2020.04.013_bb0245) 2002; 99
Pandey (10.1016/j.tplants.2020.04.013_bb0430) 2016; 25
Kuga (10.1016/j.tplants.2020.04.013_bb0240) 2008; 178
Lyu (10.1016/j.tplants.2020.04.013_bb0080) 2016; 7
Suriyagoda (10.1016/j.tplants.2020.04.013_bb0265) 2019; 43
Stitt (10.1016/j.tplants.2020.04.013_bb0205) 2010; 61
Cordell (10.1016/j.tplants.2020.04.013_bb0005) 2009; 19
Mayamulla (10.1016/j.tplants.2020.04.013_bb0290) 2017; 68
Zhou (10.1016/j.tplants.2020.04.013_bb0315) 2016; 7
Fixen (10.1016/j.tplants.2020.04.013_bb0015) 2012; 92
Niu (10.1016/j.tplants.2020.04.013_bb0065) 2013; 112
Horner (10.1016/j.tplants.2020.04.013_bb0410) 2005; 53
Oltmans (10.1016/j.tplants.2020.04.013_bb0425) 2005; 45
De Boland (10.1016/j.tplants.2020.04.013_bb0385) 1975; 23
Branch (10.1016/j.tplants.2020.04.013_bb0435) 1983; 10
Withers (10.1016/j.tplants.2020.04.013_bb0365) 2015; 44
Roy (10.1016/j.tplants.2020.04.013_bb0145) 2016; 2
Brooker (10.1016/j.tplants.2020.04.013_bb0150) 2015; 206
Hill (10.1016/j.tplants.2020.04.013_bb0125) 2018; 44
Wang (10.1016/j.tplants.2020.04.013_bb0130) 2018; 7
Yamaji (10.1016/j.tplants.2020.04.013_bb0310) 2016; 541
Marzo (10.1016/j.tplants.2020.04.013_bb0325) 1997; 45
Daniel (10.1016/j.tplants.2020.04.013_bb0030) 1998; 27
Dissanayaka (10.1016/j.tplants.2020.04.013_bb0255) 2018; 41
Swamy (10.1016/j.tplants.2020.04.013_bb0295) 2019; 215
Guilherme Pereira (10.1016/j.tplants.2020.04.013_bb0190) 2019; 107
Richardson (10.1016/j.tplants.2020.04.013_bb0050) 2011; 156
Lambers (10.1016/j.tplants.2020.04.013_bb0225) 2012; 196
Wang (10.1016/j.tplants.2020.04.013_bb0085) 2016; 7
Warkentin (10.1016/j.tplants.2020.04.013_bb0320) 2012; 52
Brennan (10.1016/j.tplants.2020.04.013_bb0355) 2001; 24
Bilal (10.1016/j.tplants.2020.04.013_bb0330) 2018; 13
Dobermann (10.1016/j.tplants.2020.04.013_bb0280) 2000
Borie (10.1016/j.tplants.2020.04.013_bb0135) 2003; 60
O'Dell (10.1016/j.tplants.2020.04.013_bb0390) 1972; 20
Bilal (10.1016/j.tplants.2020.04.013_bb0400) 2019; 65
Grigg (10.1016/j.tplants.2020.04.013_bb0035) 2000; 48
Abbas (10.1016/j.tplants.2020.04.013_bb0260) 2018; 41
Conn (10.1016/j.tplants.2020.04.013_bb0210) 2010; 105
Zhang (10.1016/j.tplants.2020.04.013_bb0115) 2018; 12
Raboy (10.1016/j.tplants.2020.04.013_bb0305) 2001; 6
Sulpice (10.1016/j.tplants.2020.04.013_bb0235) 2014; 37
Raven (10.1016/j.tplants.2020.04.013_bb0105) 2018; 217
Kekulandara (10.1016/j.tplants.2020.04.013_bb0270) 2019; 434
Jemo (10.1016/j.tplants.2020.04.013_bb0360) 2006; 284
Gamuyao (10.1016/j.tplants.2020.04.013_bb0100) 2012; 488
Jing (10.1016/j.tplants.2020.04.013_bb0165) 2010; 119
Heldt (10.1016/j.tplants.2020.04.013_bb0200) 1977; 59
Miller (10.1016/j.tplants.2020.04.013_bb0090) 2003; 30
Kafle (10.1016/j.tplants.2020.04.013_bb0060) 2019; 9
Sawers (10.1016/j.tplants.2020.04.013_bb0070) 2017; 214
Pang (10.1016/j.tplants.2020.04.013_bb0055) 2018; 219
Lambers (10.1016/j.tplants.2020.04.013_bb0155) 2018; 424
Guilherme Pereira (10.1016/j.tplants.2020.04.013_bb0220) 2018; 218
Denton (10.1016/j.tplants.2020.04.013_bb0285) 2007; 30
Turner (10.1016/j.tplants.2020.04.013_bb0120) 2013; 14
Li (10.1016/j.tplants.2020.04.013_bb0160) 2007; 104
Hidaka (10.1016/j.tplants.2020.04.013_bb0230) 2013; 3
References_xml – volume: 488
  start-page: 535
  year: 2012
  end-page: 539
  ident: bb0100
  article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency
  publication-title: Nature
– volume: 23
  start-page: 1186
  year: 1975
  end-page: 1189
  ident: bb0385
  article-title: Identification and properties of phytate in cereal grains and oilseed products
  publication-title: J. Agric. Food Chem.
– volume: 108
  start-page: 3086
  year: 2011
  end-page: 3091
  ident: bb0025
  article-title: Agronomic phosphorus imbalances across the world's croplands
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 424
  start-page: 11
  year: 2018
  end-page: 34
  ident: bb0155
  article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems
  publication-title: Plant Soil
– volume: 215
  start-page: 118
  year: 2019
  ident: bb0295
  article-title: Phenotypic and molecular characterization of rice germplasm lines and identification of novel source for low soil phosphorus tolerance in rice
  publication-title: Euphytica
– volume: 217
  start-page: 1420
  year: 2018
  end-page: 1427
  ident: bb0105
  article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence
  publication-title: New Phytol.
– volume: 30
  start-page: 1557
  year: 2007
  end-page: 1565
  ident: bb0285
  article-title: species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus
  publication-title: Plant Cell Environ.
– volume: 59
  start-page: 1146
  year: 1977
  end-page: 1155
  ident: bb0200
  article-title: Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts
  publication-title: Plant Physiol.
– volume: 326
  start-page: 159
  year: 2010
  end-page: 170
  ident: bb0380
  article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics
  publication-title: Plant Soil
– volume: 7
  start-page: 1776
  year: 2016
  ident: bb0315
  article-title: Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in Southwest of China
  publication-title: Front. Plant Sci.
– volume: 167
  start-page: 1131
  year: 2004
  end-page: 1142
  ident: bb0405
  article-title: Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (
  publication-title: Plant Sci.
– volume: 123
  start-page: 177
  year: 2014
  end-page: 228
  ident: bb0010
  article-title: Phosphorus: its efficient use in agriculture
  publication-title: Adv. Agron.
– volume: 112
  start-page: 391
  year: 2013
  end-page: 408
  ident: bb0065
  article-title: Responses of root architecture development to low phosphorus availability: a review
  publication-title: Ann. Bot.
– volume: 85
  start-page: 1523
  year: 2005
  end-page: 1526
  ident: bb0420
  article-title: Phytic acid in Indian soybean: genotypic variability and influence of growing location
  publication-title: J. Sci. Food Agric.
– volume: 3
  start-page: 451
  year: 2011
  end-page: 462
  ident: bb0020
  article-title: The critical role of phosphorus in world production of cereal grains and legume seeds
  publication-title: Food Secur.
– volume: 7
  start-page: 1939
  year: 2016
  ident: bb0080
  article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply
  publication-title: Front. Plant Sci.
– volume: 105
  start-page: 1081
  year: 2010
  end-page: 1102
  ident: bb0210
  article-title: Comparative physiology of elemental distributions in plants
  publication-title: Ann. Bot.
– volume: 13
  year: 2018
  ident: bb0330
  article-title: Categorization of wheat genotypes for phosphorus efficiency
  publication-title: PLoS ONE
– volume: 7
  year: 2018
  ident: bb0130
  article-title: Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi
  publication-title: eLife
– volume: 65
  start-page: 727
  year: 2019
  end-page: 740
  ident: bb0400
  article-title: Grain phosphorus and phytate contents of wheat genotypes released during last 6 decades and categorization of selected genotypes for phosphorus use efficiency
  publication-title: Arch. Agron. Soil Sci.
– volume: 69
  start-page: 4993
  year: 2018
  end-page: 4996
  ident: bb0345
  article-title: Seeds with low phosphorus content: not so bad after all?
  publication-title: J. Exp. Bot.
– volume: 24
  start-page: 1885
  year: 2001
  end-page: 1900
  ident: bb0355
  article-title: Comparing fertilizer phosphorus requirements of canola, lupin, and wheat
  publication-title: J. Plant Nutr.
– volume: 53
  start-page: 867
  year: 1976
  end-page: 871
  ident: bb0395
  article-title: The phytic acid-total phosphorus relationship in barley, oats, soybeans, and wheat
  publication-title: Cereal Chem.
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  ident: bb0175
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 41
  start-page: 1512
  year: 2018
  end-page: 1523
  ident: bb0255
  article-title: Molecular mechanisms underpinning phosphorus-use efficiency in rice
  publication-title: Plant Cell Environ.
– volume: 41
  start-page: 605
  year: 2018
  end-page: 619
  ident: bb0215
  article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency
  publication-title: Plant Cell Environ.
– volume: 10
  start-page: 784
  year: 2019
  ident: bb0275
  article-title: Post-silking phosphorus recycling and carbon partitioning in maize under low to high phosphorus inputs and their effects on grain yield
  publication-title: Front. Plant Sci.
– volume: 104
  start-page: 11192
  year: 2007
  end-page: 11196
  ident: bb0160
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 119
  start-page: 331
  year: 1999
  end-page: 342
  ident: bb0250
  article-title: Regulation of S-like ribonuclease levels in
  publication-title: Plant Physiol.
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  ident: bb0045
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol.
– volume: 45
  start-page: 1829
  year: 1997
  end-page: 1833
  ident: bb0325
  article-title: Fertilization effects of phosphorus and sulfur on chemical composition of seeds of
  publication-title: J. Agric. Food Chem.
– volume: 22
  start-page: 877
  year: 1999
  end-page: 888
  ident: bb0185
  article-title: Seed size is closely related to phosphorus use efficiency and photosynthetic phosphorus use efficiency in common bean
  publication-title: J. Plant Nutr.
– volume: 48
  start-page: 777
  year: 2000
  end-page: 792
  ident: bb0035
  article-title: Responses of native woody taxa in
  publication-title: Aust. J. Bot.
– volume: 25
  start-page: 367
  year: 2016
  end-page: 374
  ident: bb0430
  article-title: Phytic acid dynamics during seed development and it’s composition in yellow and black Indian soybean (
  publication-title: J. Plant Biochem. Biotechnol.
– volume: 9
  start-page: 127
  year: 2019
  ident: bb0060
  article-title: Harnessing soil microbes to improve plant phosphate efficiency in cropping systems
  publication-title: Agronomy
– volume: 109
  start-page: 6348
  year: 2012
  end-page: 6353
  ident: bb0170
  article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle
  publication-title: Proc. Natl. Acad. Sci.
– volume: 41
  start-page: 61
  year: 2003
  end-page: 76
  ident: bb0140
  article-title: Chemical characteristics of phosphorus in alkaline soils from southern Australia
  publication-title: Soil Res.
– volume: 69
  start-page: 5233
  year: 2018
  end-page: 5240
  ident: bb0340
  article-title: Phosphorus uptake commences at the earliest stages of seedling development in rice
  publication-title: J. Exp. Bot.
– volume: 22
  start-page: 278
  year: 2009
  end-page: 284
  ident: bb0370
  article-title: Assessment of the contents of phytic acid and divalent cations in low phytic acid (
  publication-title: J. Food Compos. Anal.
– volume: 206
  start-page: 107
  year: 2015
  end-page: 117
  ident: bb0150
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytol.
– volume: 60
  start-page: 69
  year: 2003
  end-page: 73
  ident: bb0135
  article-title: Total and organic phosphorus in Chilean volcanic soils
  publication-title: Gayana Bot.
– volume: 41
  start-page: 1522
  year: 2018
  end-page: 1533
  ident: bb0260
  article-title: Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency
  publication-title: J. Plant Nutr.
– volume: 10
  start-page: 5
  year: 1983
  end-page: 8
  ident: bb0435
  article-title: Seed mineral composition of diverse peanut germplasm
  publication-title: Peanut Sci.
– volume: 233
  start-page: 203
  year: 2011
  end-page: 212
  ident: bb0445
  article-title: Phytic acid and mineral micronutrients in field-grown chickpea (
  publication-title: Eur. Food Res. Technol.
– volume: 44
  start-page: 198
  year: 2018
  end-page: 208
  ident: bb0125
  article-title: Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes
  publication-title: J. Chem. Ecol.
– volume: 46
  start-page: 67
  year: 2006
  end-page: 71
  ident: bb0415
  article-title: Genetic variability for phytic acid phosphorus and inorganic phosphorus in seeds of soybeans in maturity groups V, VI, and VII
  publication-title: Crop Sci.
– volume: 61
  start-page: 1067
  year: 2010
  end-page: 1091
  ident: bb0205
  article-title: and primary photosynthetic metabolism - more than the icing on the cake
  publication-title: Plant J.
– volume: 3
  start-page: 4872
  year: 2013
  end-page: 4880
  ident: bb0230
  article-title: Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species
  publication-title: Ecol. Evol.
– volume: 434
  start-page: 107
  year: 2019
  end-page: 123
  ident: bb0270
  article-title: Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils
  publication-title: Plant Soil
– volume: 42
  year: 2018
  ident: bb0440
  article-title: Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of chickpea genotypes
  publication-title: J. Food Biochem.
– volume: 20
  start-page: 83
  year: 2015
  end-page: 90
  ident: bb0075
  article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency
  publication-title: Trends Plant Sci.
– volume: 219
  start-page: 518
  year: 2018
  end-page: 529
  ident: bb0055
  article-title: The carboxylate-releasing phosphorus-mobilising strategy could be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply
  publication-title: New Phytol.
– volume: 12
  start-page: 2339
  year: 2018
  end-page: 2351
  ident: bb0115
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: ISME J.
– volume: 107
  start-page: 2006
  year: 2019
  end-page: 2023
  ident: bb0190
  article-title: Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot
  publication-title: J. Ecol.
– volume: 2
  start-page: 16043
  year: 2016
  ident: bb0145
  article-title: The phosphorus cost of agricultural intensification in the tropics
  publication-title: Nat. Plants
– volume: 27
  start-page: 251
  year: 1998
  end-page: 257
  ident: bb0030
  article-title: Agricultural phosphorus and eutrophication: a symposium overview
  publication-title: J. Environ. Qual.
– start-page: 151
  year: 2016
  end-page: 208
  ident: bb0350
  article-title: Phosphorus fertilization and management in soils of sub-Saharan Africa
  publication-title: Soil Phosphorus
– year: 2000
  ident: bb0280
  article-title: Nutrient Disorders and Nutrient Management
– volume: 195
  start-page: 306
  year: 2012
  end-page: 320
  ident: bb0180
  article-title: Opportunities for improving phosphorus-use efficiency in crop plants
  publication-title: New Phytol.
– volume: 92
  start-page: 1001
  year: 2012
  end-page: 1005
  ident: bb0015
  article-title: World fertilizer nutrient reserves: a view to the future
  publication-title: J. Sci. Food Agric.
– volume: 30
  start-page: 853
  year: 2018
  end-page: 870
  ident: bb0195
  article-title: An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice
  publication-title: Plant Cell
– volume: 284
  start-page: 385
  year: 2006
  end-page: 397
  ident: bb0360
  article-title: Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon
  publication-title: Plant Soil
– volume: 14
  start-page: 209
  year: 2013
  ident: bb0120
  article-title: The plant microbiome
  publication-title: Genome Biol.
– volume: 68
  start-page: 337
  year: 2017
  end-page: 348
  ident: bb0290
  article-title: Variation in seed nutrient content, seedling growth and yield of rice varieties grown in a paddy field without application of fertilisers for forty years
  publication-title: Crop Pasture Sci.
– volume: 20
  start-page: 718
  year: 1972
  end-page: 723
  ident: bb0390
  article-title: Distribution of phytate and nutritionally important elements among the morphological components of cereal grains
  publication-title: J. Agric. Food Chem.
– volume: 119
  start-page: 355
  year: 2010
  end-page: 364
  ident: bb0165
  article-title: Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification
  publication-title: Field Crop Res.
– volume: 99
  start-page: 5732
  year: 2002
  end-page: 5737
  ident: bb0245
  article-title: disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 53
  start-page: 7870
  year: 2005
  end-page: 7877
  ident: bb0410
  article-title: Oxalate and phytate concentrations in seeds of soybean cultivars [
  publication-title: J. Agric. Food Chem.
– volume: 52
  start-page: 74
  year: 2012
  end-page: 78
  ident: bb0320
  article-title: Development and characterization of low-phytate pea
  publication-title: Crop Sci.
– volume: 44
  start-page: 193
  year: 2015
  end-page: 206
  ident: bb0365
  article-title: Stewardship to tackle global phosphorus inefficiency: the case of Europe
  publication-title: AMBIO
– volume: 218
  start-page: 959
  year: 2018
  end-page: 973
  ident: bb0220
  article-title: Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll
  publication-title: New Phytol.
– volume: 43
  start-page: 251
  year: 2019
  end-page: 269
  ident: bb0265
  article-title: Biomass and nutrient accumulation rates of rice cultivars differing in their growth duration when grown in fertile and low-fertile soils
  publication-title: J. Plant Nutr.
– volume: 196
  start-page: 1098
  year: 2012
  end-page: 1108
  ident: bb0225
  article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use efficiency
  publication-title: New Phytol.
– volume: 7
  start-page: 1664
  year: 2016
  ident: bb0085
  article-title: Rhizosphere organic anions play a minor role in improving crop species' ability to take up residual phosphorus (P) in agricultural soils low in P availability
  publication-title: Front. Plant Sci.
– volume: 51
  start-page: 370
  year: 2015
  end-page: 381
  ident: bb0375
  article-title: Effects of genotype, seed P concentration and seed priming on seedling vigor of rice
  publication-title: Exp. Agric.
– volume: 392
  start-page: 253
  year: 2015
  end-page: 266
  ident: bb0335
  article-title: Does reducing seed-P concentrations affect seedling vigor and grain yield of rice?
  publication-title: Plant Soil
– volume: 112
  start-page: 331
  year: 2013
  end-page: 345
  ident: bb0300
  article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding
  publication-title: Ann. Bot.
– volume: 45
  start-page: 593
  year: 2005
  end-page: 598
  ident: bb0425
  article-title: Agronomic and seed traits of soybean lines with low–phytate phosphorus
  publication-title: Crop Sci.
– volume: 156
  start-page: 989
  year: 2011
  end-page: 996
  ident: bb0050
  article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus
  publication-title: Plant Physiol.
– volume: 65
  start-page: 69
  year: 2013
  end-page: 74
  ident: bb0110
  article-title: Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (
  publication-title: Soil Biol. Biochem.
– volume: 30
  start-page: 973
  year: 2003
  end-page: 985
  ident: bb0090
  article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils
  publication-title: Funct. Plant Biol.
– volume: 37
  start-page: 1276
  year: 2014
  end-page: 1298
  ident: bb0235
  article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species
  publication-title: Plant Cell Environ.
– volume: 214
  start-page: 632
  year: 2017
  end-page: 643
  ident: bb0070
  article-title: Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters
  publication-title: New Phytol.
– volume: 31
  start-page: 949
  year: 2004
  end-page: 958
  ident: bb0095
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (
  publication-title: Funct. Plant Biol.
– volume: 48
  start-page: 1247
  year: 2019
  end-page: 1264
  ident: bb0040
  article-title: Options for improved phosphorus cycling and use in agriculture at the field and regional scales
  publication-title: J. Environ. Qual.
– volume: 178
  start-page: 189
  year: 2008
  end-page: 200
  ident: bb0240
  article-title: Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate
  publication-title: New Phytol.
– volume: 541
  start-page: 92
  year: 2016
  end-page: 95
  ident: bb0310
  article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node
  publication-title: Nature
– volume: 6
  start-page: 458
  year: 2001
  end-page: 462
  ident: bb0305
  article-title: Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution
  publication-title: Trends Plant Sci.
– volume: 19
  start-page: 292
  year: 2009
  end-page: 305
  ident: bb0005
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Glob. Environ. Chang.
– volume: 215
  start-page: 118
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0295
  article-title: Phenotypic and molecular characterization of rice germplasm lines and identification of novel source for low soil phosphorus tolerance in rice
  publication-title: Euphytica
  doi: 10.1007/s10681-019-2443-0
– volume: 45
  start-page: 593
  year: 2005
  ident: 10.1016/j.tplants.2020.04.013_bb0425
  article-title: Agronomic and seed traits of soybean lines with low–phytate phosphorus
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2005.0593
– volume: 424
  start-page: 11
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0155
  article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3427-2
– volume: 22
  start-page: 278
  year: 2009
  ident: 10.1016/j.tplants.2020.04.013_bb0370
  article-title: Assessment of the contents of phytic acid and divalent cations in low phytic acid (lpa) mutants of rice and soybean
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2008.11.022
– volume: 23
  start-page: 1186
  year: 1975
  ident: 10.1016/j.tplants.2020.04.013_bb0385
  article-title: Identification and properties of phytate in cereal grains and oilseed products
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60202a038
– volume: 156
  start-page: 989
  year: 2011
  ident: 10.1016/j.tplants.2020.04.013_bb0050
  article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175448
– volume: 44
  start-page: 198
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0125
  article-title: Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-017-0921-1
– volume: 3
  start-page: 4872
  year: 2013
  ident: 10.1016/j.tplants.2020.04.013_bb0230
  article-title: Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.861
– volume: 284
  start-page: 385
  year: 2006
  ident: 10.1016/j.tplants.2020.04.013_bb0360
  article-title: Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0052-x
– volume: 218
  start-page: 959
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0220
  article-title: Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll
  publication-title: New Phytol.
  doi: 10.1111/nph.15043
– volume: 196
  start-page: 1098
  year: 2012
  ident: 10.1016/j.tplants.2020.04.013_bb0225
  article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use efficiency
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04285.x
– volume: 44
  start-page: 193
  year: 2015
  ident: 10.1016/j.tplants.2020.04.013_bb0365
  article-title: Stewardship to tackle global phosphorus inefficiency: the case of Europe
  publication-title: AMBIO
  doi: 10.1007/s13280-014-0614-8
– volume: 61
  start-page: 1067
  year: 2010
  ident: 10.1016/j.tplants.2020.04.013_bb0205
  article-title: Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04142.x
– volume: 69
  start-page: 5233
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0340
  article-title: Phosphorus uptake commences at the earliest stages of seedling development in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery267
– volume: 42
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0440
  article-title: Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of chickpea genotypes
  publication-title: J. Food Biochem.
  doi: 10.1111/jfbc.12678
– volume: 214
  start-page: 632
  year: 2017
  ident: 10.1016/j.tplants.2020.04.013_bb0070
  article-title: Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters
  publication-title: New Phytol.
  doi: 10.1111/nph.14403
– volume: 41
  start-page: 1522
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0260
  article-title: Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2018.1458871
– volume: 65
  start-page: 727
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0400
  article-title: Grain phosphorus and phytate contents of wheat genotypes released during last 6 decades and categorization of selected genotypes for phosphorus use efficiency
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2018.1521957
– volume: 112
  start-page: 391
  year: 2013
  ident: 10.1016/j.tplants.2020.04.013_bb0065
  article-title: Responses of root architecture development to low phosphorus availability: a review
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs285
– volume: 37
  start-page: 1276
  year: 2014
  ident: 10.1016/j.tplants.2020.04.013_bb0235
  article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12240
– volume: 41
  start-page: 1512
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0255
  article-title: Molecular mechanisms underpinning phosphorus-use efficiency in rice
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13191
– volume: 119
  start-page: 331
  year: 1999
  ident: 10.1016/j.tplants.2020.04.013_bb0250
  article-title: Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 orRNS2 elevates anthocyanin accumulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.119.1.331
– volume: 541
  start-page: 92
  year: 2016
  ident: 10.1016/j.tplants.2020.04.013_bb0310
  article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node
  publication-title: Nature
  doi: 10.1038/nature20610
– volume: 488
  start-page: 535
  year: 2012
  ident: 10.1016/j.tplants.2020.04.013_bb0100
  article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency
  publication-title: Nature
  doi: 10.1038/nature11346
– volume: 30
  start-page: 973
  year: 2003
  ident: 10.1016/j.tplants.2020.04.013_bb0090
  article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP03078
– volume: 119
  start-page: 355
  year: 2010
  ident: 10.1016/j.tplants.2020.04.013_bb0165
  article-title: Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2010.08.005
– volume: 10
  start-page: 5
  year: 1983
  ident: 10.1016/j.tplants.2020.04.013_bb0435
  article-title: Seed mineral composition of diverse peanut germplasm
  publication-title: Peanut Sci.
  doi: 10.3146/i0095-3679-10-1-3
– volume: 41
  start-page: 61
  year: 2003
  ident: 10.1016/j.tplants.2020.04.013_bb0140
  article-title: Chemical characteristics of phosphorus in alkaline soils from southern Australia
  publication-title: Soil Res.
  doi: 10.1071/SR02021
– volume: 428
  start-page: 821
  year: 2004
  ident: 10.1016/j.tplants.2020.04.013_bb0175
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
  doi: 10.1038/nature02403
– volume: 27
  start-page: 251
  year: 1998
  ident: 10.1016/j.tplants.2020.04.013_bb0030
  article-title: Agricultural phosphorus and eutrophication: a symposium overview
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1998.00472425002700020002x
– volume: 30
  start-page: 1557
  year: 2007
  ident: 10.1016/j.tplants.2020.04.013_bb0285
  article-title: Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01733.x
– volume: 434
  start-page: 107
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0270
  article-title: Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3663-0
– volume: 60
  start-page: 69
  year: 2003
  ident: 10.1016/j.tplants.2020.04.013_bb0135
  article-title: Total and organic phosphorus in Chilean volcanic soils
  publication-title: Gayana Bot.
  doi: 10.4067/S0717-66432003000100011
– volume: 112
  start-page: 331
  year: 2013
  ident: 10.1016/j.tplants.2020.04.013_bb0300
  article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs217
– volume: 107
  start-page: 2006
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0190
  article-title: Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13158
– volume: 45
  start-page: 1829
  year: 1997
  ident: 10.1016/j.tplants.2020.04.013_bb0325
  article-title: Fertilization effects of phosphorus and sulfur on chemical composition of seeds of Pisum sativum L. and relative infestation by Bruchus pisorum L
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9701345
– volume: 2
  start-page: 16043
  year: 2016
  ident: 10.1016/j.tplants.2020.04.013_bb0145
  article-title: The phosphorus cost of agricultural intensification in the tropics
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.43
– volume: 20
  start-page: 83
  year: 2015
  ident: 10.1016/j.tplants.2020.04.013_bb0075
  article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.10.007
– volume: 59
  start-page: 1146
  year: 1977
  ident: 10.1016/j.tplants.2020.04.013_bb0200
  article-title: Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts
  publication-title: Plant Physiol.
  doi: 10.1104/pp.59.6.1146
– year: 2000
  ident: 10.1016/j.tplants.2020.04.013_bb0280
– volume: 326
  start-page: 159
  year: 2010
  ident: 10.1016/j.tplants.2020.04.013_bb0380
  article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9990-4
– volume: 52
  start-page: 74
  year: 2012
  ident: 10.1016/j.tplants.2020.04.013_bb0320
  article-title: Development and characterization of low-phytate pea
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2011.05.0285
– volume: 7
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0130
  article-title: Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi
  publication-title: eLife
  doi: 10.7554/eLife.37093
– volume: 30
  start-page: 853
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0195
  article-title: An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00738
– volume: 7
  start-page: 1776
  year: 2016
  ident: 10.1016/j.tplants.2020.04.013_bb0315
  article-title: Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in Southwest of China
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01776
– volume: 69
  start-page: 4993
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0345
  article-title: Seeds with low phosphorus content: not so bad after all?
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery313
– volume: 233
  start-page: 203
  year: 2011
  ident: 10.1016/j.tplants.2020.04.013_bb0445
  article-title: Phytic acid and mineral micronutrients in field-grown chickpea (Cicer arietinum L.) cultivars from western Canada
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-011-1495-8
– volume: 108
  start-page: 3086
  year: 2011
  ident: 10.1016/j.tplants.2020.04.013_bb0025
  article-title: Agronomic phosphorus imbalances across the world's croplands
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1010808108
– start-page: 151
  year: 2016
  ident: 10.1016/j.tplants.2020.04.013_bb0350
  article-title: Phosphorus fertilization and management in soils of sub-Saharan Africa
– volume: 13
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0330
  article-title: Categorization of wheat genotypes for phosphorus efficiency
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0205471
– volume: 3
  start-page: 451
  year: 2011
  ident: 10.1016/j.tplants.2020.04.013_bb0020
  article-title: The critical role of phosphorus in world production of cereal grains and legume seeds
  publication-title: Food Secur.
  doi: 10.1007/s12571-011-0144-1
– volume: 24
  start-page: 1885
  year: 2001
  ident: 10.1016/j.tplants.2020.04.013_bb0355
  article-title: Comparing fertilizer phosphorus requirements of canola, lupin, and wheat
  publication-title: J. Plant Nutr.
  doi: 10.1081/PLN-100107601
– volume: 68
  start-page: 337
  year: 2017
  ident: 10.1016/j.tplants.2020.04.013_bb0290
  article-title: Variation in seed nutrient content, seedling growth and yield of rice varieties grown in a paddy field without application of fertilisers for forty years
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP17060
– volume: 41
  start-page: 605
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0215
  article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13124
– volume: 53
  start-page: 7870
  year: 2005
  ident: 10.1016/j.tplants.2020.04.013_bb0410
  article-title: Oxalate and phytate concentrations in seeds of soybean cultivars [Glycine max (L.) Merr.]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf051193i
– volume: 22
  start-page: 877
  year: 1999
  ident: 10.1016/j.tplants.2020.04.013_bb0185
  article-title: Seed size is closely related to phosphorus use efficiency and photosynthetic phosphorus use efficiency in common bean
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904169909365679
– volume: 178
  start-page: 189
  year: 2008
  ident: 10.1016/j.tplants.2020.04.013_bb0240
  article-title: Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02345.x
– volume: 206
  start-page: 107
  year: 2015
  ident: 10.1016/j.tplants.2020.04.013_bb0150
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytol.
  doi: 10.1111/nph.13132
– volume: 219
  start-page: 518
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0055
  article-title: The carboxylate-releasing phosphorus-mobilising strategy could be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply
  publication-title: New Phytol.
  doi: 10.1111/nph.15200
– volume: 48
  start-page: 777
  year: 2000
  ident: 10.1016/j.tplants.2020.04.013_bb0035
  article-title: Responses of native woody taxa in Banksia woodland to incursion of groundwater and nutrients from bordering agricultural land
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT99078
– volume: 53
  start-page: 867
  year: 1976
  ident: 10.1016/j.tplants.2020.04.013_bb0395
  article-title: The phytic acid-total phosphorus relationship in barley, oats, soybeans, and wheat
  publication-title: Cereal Chem.
– volume: 65
  start-page: 69
  year: 2013
  ident: 10.1016/j.tplants.2020.04.013_bb0110
  article-title: Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.)
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.05.010
– volume: 20
  start-page: 718
  year: 1972
  ident: 10.1016/j.tplants.2020.04.013_bb0390
  article-title: Distribution of phytate and nutritionally important elements among the morphological components of cereal grains
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60181a021
– volume: 392
  start-page: 253
  year: 2015
  ident: 10.1016/j.tplants.2020.04.013_bb0335
  article-title: Does reducing seed-P concentrations affect seedling vigor and grain yield of rice?
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2460-2
– volume: 6
  start-page: 458
  year: 2001
  ident: 10.1016/j.tplants.2020.04.013_bb0305
  article-title: Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(01)02104-5
– volume: 25
  start-page: 367
  year: 2016
  ident: 10.1016/j.tplants.2020.04.013_bb0430
  article-title: Phytic acid dynamics during seed development and it’s composition in yellow and black Indian soybean (Glycine max L.) genotypes through a modified extraction and HPLC method
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/s13562-015-0348-0
– volume: 10
  start-page: 784
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0275
  article-title: Post-silking phosphorus recycling and carbon partitioning in maize under low to high phosphorus inputs and their effects on grain yield
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00784
– volume: 104
  start-page: 11192
  year: 2007
  ident: 10.1016/j.tplants.2020.04.013_bb0160
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0704591104
– volume: 167
  start-page: 1131
  year: 2004
  ident: 10.1016/j.tplants.2020.04.013_bb0405
  article-title: Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.06.008
– volume: 12
  start-page: 2339
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0115
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0171-4
– volume: 14
  start-page: 209
  year: 2013
  ident: 10.1016/j.tplants.2020.04.013_bb0120
  article-title: The plant microbiome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-6-209
– volume: 217
  start-page: 1420
  year: 2018
  ident: 10.1016/j.tplants.2020.04.013_bb0105
  article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence
  publication-title: New Phytol.
  doi: 10.1111/nph.14967
– volume: 156
  start-page: 1041
  year: 2011
  ident: 10.1016/j.tplants.2020.04.013_bb0045
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175414
– volume: 99
  start-page: 5732
  year: 2002
  ident: 10.1016/j.tplants.2020.04.013_bb0245
  article-title: Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.082696499
– volume: 9
  start-page: 127
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0060
  article-title: Harnessing soil microbes to improve plant phosphate efficiency in cropping systems
  publication-title: Agronomy
  doi: 10.3390/agronomy9030127
– volume: 92
  start-page: 1001
  year: 2012
  ident: 10.1016/j.tplants.2020.04.013_bb0015
  article-title: World fertilizer nutrient reserves: a view to the future
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.4532
– volume: 31
  start-page: 949
  year: 2004
  ident: 10.1016/j.tplants.2020.04.013_bb0095
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP04046
– volume: 195
  start-page: 306
  year: 2012
  ident: 10.1016/j.tplants.2020.04.013_bb0180
  article-title: Opportunities for improving phosphorus-use efficiency in crop plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04190.x
– volume: 43
  start-page: 251
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0265
  article-title: Biomass and nutrient accumulation rates of rice cultivars differing in their growth duration when grown in fertile and low-fertile soils
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2019.1676903
– volume: 46
  start-page: 67
  year: 2006
  ident: 10.1016/j.tplants.2020.04.013_bb0415
  article-title: Genetic variability for phytic acid phosphorus and inorganic phosphorus in seeds of soybeans in maturity groups V, VI, and VII
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2005.0076
– volume: 7
  start-page: 1939
  year: 2016
  ident: 10.1016/j.tplants.2020.04.013_bb0080
  article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01939
– volume: 85
  start-page: 1523
  year: 2005
  ident: 10.1016/j.tplants.2020.04.013_bb0420
  article-title: Phytic acid in Indian soybean: genotypic variability and influence of growing location
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2151
– volume: 19
  start-page: 292
  year: 2009
  ident: 10.1016/j.tplants.2020.04.013_bb0005
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 7
  start-page: 1664
  year: 2016
  ident: 10.1016/j.tplants.2020.04.013_bb0085
  article-title: Rhizosphere organic anions play a minor role in improving crop species' ability to take up residual phosphorus (P) in agricultural soils low in P availability
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01664
– volume: 109
  start-page: 6348
  year: 2012
  ident: 10.1016/j.tplants.2020.04.013_bb0170
  article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1113675109
– volume: 123
  start-page: 177
  year: 2014
  ident: 10.1016/j.tplants.2020.04.013_bb0010
  article-title: Phosphorus: its efficient use in agriculture
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-420225-2.00005-4
– volume: 51
  start-page: 370
  year: 2015
  ident: 10.1016/j.tplants.2020.04.013_bb0375
  article-title: Effects of genotype, seed P concentration and seed priming on seedling vigor of rice
  publication-title: Exp. Agric.
  doi: 10.1017/S0014479714000362
– volume: 105
  start-page: 1081
  year: 2010
  ident: 10.1016/j.tplants.2020.04.013_bb0210
  article-title: Comparative physiology of elemental distributions in plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcq027
– volume: 48
  start-page: 1247
  year: 2019
  ident: 10.1016/j.tplants.2020.04.013_bb0040
  article-title: Options for improved phosphorus cycling and use in agriculture at the field and regional scales
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2019.02.0070
SSID ssj0007186
Score 2.6414394
SecondaryResourceType review_article
Snippet We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 967
SubjectTerms Agricultural management
crop genotype
Cropping systems
Efficiency
Environmental impact
Eutrophication
Fertilizers
genotype
Genotypes
humans
Livestock
Livestock nutrition
nutrient use efficiency
Nutrition
Phosphorus
Phosphorus cycle
phosphorus fertilizers
phosphorus-use efficiency
Photosynthesis
phytate
phytic acid
seed quality
soil-plant interactions
sustainable agriculture
Title Tightening the Phosphorus Cycle through Phosphorus-Efficient Crop Genotypes
URI https://dx.doi.org/10.1016/j.tplants.2020.04.013
https://www.ncbi.nlm.nih.gov/pubmed/32414603
https://www.proquest.com/docview/2460791686
https://www.proquest.com/docview/2404042588
https://www.proquest.com/docview/2439418662
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4h2kN7qAp9sC1FqdRrdh3bcZIjXQFLUVGlgrQ3y3YcAUJJtI8Dl_72ziTOQg8UiWPiGSkZ2zOf7ZnPAN-4s0RjXsXMmTKWeWljIiqKLTMZc6WRpaBC4Z_nanYpf8zT-RZMh1oYSqsMvr_36Z23Dm8mwZqT9vp68jsRio7ZUk6onudzqmCXGY3y8Z_7NA_0vaqvvWLEt5feV_FMbsar9payTXCZyFnHeJqIx-LTY_izi0PHb-FNAJDRYf-NO7Dl6114-b1BkHe3C68f8Au-g7MLWnp72vqIEOhFv66aZXvVLNbLaHqH2lG4pedBQ3zUcUpgKIqmi6aNTnzd0Dbt8j1cHh9dTGdxuD0hdrLgqzgxRVUoLi0vaKvCGZ9V3BnEX1Z5brxU2BNpSRPQVWnFU1uqxJS0TDUeRcQH2K6b2u9BxIyoaCWrfMZlKow1uU9QykthE5fLEcjBZtoFanG64eJWDzlkNzqYWpOpNZMaTT2C8Uat7bk1nlLIhw7R_wwSjf7_KdX9oQN1mKXYLhXLEB_nagRfN804v-jQxNS-WZMMujl0bHn-PxlRSGIO5CP42A-OzQ8hYMVgxMSn53_7Z3hFT30K4T5srxZr_wWh0MoedGP9AF4cnp7Nzv8CUs4JXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VggQ9ICiPLhQIEhyz6ziONzn00C4tW7atkNhKezN24qitqiTah9Be-FP8wc4kzrYcSiWkXjN2lIzHM9_Y488An3hqiMY891mqM1_EmfGJqMg3TPdZmmmRhXRQ-PhEDk_Ft0k0WYM_7VkYKqt0vr_x6bW3dk96Tpu96vy89yMIJW2zRZxQPY8nrrJyZJe_MG-b7Rx-wUH-zPnB_ngw9N3VAn4qEj73A53kieTC8ITy-FTbfs5TjeDESMu1FRI_M8rIOtM8ynlkMhnojHI4bbFJiO99AA8Fugu6NqH7-7quBJ29bA57MSL4i66PDfUuuvPqkspbMC_lrKZYDcLbAuJtgLcOfAfP4KlDrN5uo5TnsGaLTXi0VyKqXG7Cxg1CwxcwGlOub2mtxUNk6X0_K2fVWTldzLzBEnt77lqgGwJ_vyaxwNjnDaZl5X21RUnrwrOXcHovOn0F60VZ2C3wmA5zSp2l7XPUsTY6tgG2siI0QRqLDohWZyp1XOZ0pcalaovWLpRTtSJVKyYUqroD3VW3qiHzuKtD3A6I-ssqFQacu7putwOonFtAuZCsj4A8lh34uBLjhKZdGl3YckFt0K-iJ43jf7UJE0FUhbwDrxvjWP0QImSMfix88__f_gEeD8fHR-ro8GT0Fp6QpKlf3Ib1-XRh3yEOm5v3td178PO-J9oVFYhF8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tightening+the+Phosphorus+Cycle+through+Phosphorus-Efficient+Crop+Genotypes&rft.jtitle=Trends+in+plant+science&rft.au=Cong%2C+Wen-Feng&rft.au=Suriyagoda%2C+Lalith+D+B&rft.au=Lambers%2C+Hans&rft.date=2020-10-01&rft.issn=1878-4372&rft.eissn=1878-4372&rft.volume=25&rft.issue=10&rft.spage=967&rft_id=info:doi/10.1016%2Fj.tplants.2020.04.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon