Tightening the Phosphorus Cycle through Phosphorus-Efficient Crop Genotypes
We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still p...
Saved in:
Published in | Trends in plant science Vol. 25; no. 10; pp. 967 - 975 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition.
Adopting a multidisciplinary approach is crucial to tighten the P cycle; however, current research still focusses on monodisciplinary approaches.Crop genotypes with high efficiency of P acquisition, photosynthetic P use or P remobilisation, or low seed phytate P concentrations are crucial to reduce P-fertiliser input and P-related environmental impact and to enhance micronutrient availability of food and feed.While native plant species differ substantially in their strategies for P acquisition under low P availability, there is also considerable genotypic variation in P-acquisition strategies in crop species and genotypes.At the leaf level, P is preferentially allocated to photosynthetic cells to enhance photosynthetic P-use efficiency, while, at the cellular level, plants maintain a higher ratio of metabolic P to lipid P, and function at very low levels of ribosomal RNA. |
---|---|
AbstractList | We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition. We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition. Adopting a multidisciplinary approach is crucial to tighten the P cycle; however, current research still focusses on monodisciplinary approaches.Crop genotypes with high efficiency of P acquisition, photosynthetic P use or P remobilisation, or low seed phytate P concentrations are crucial to reduce P-fertiliser input and P-related environmental impact and to enhance micronutrient availability of food and feed.While native plant species differ substantially in their strategies for P acquisition under low P availability, there is also considerable genotypic variation in P-acquisition strategies in crop species and genotypes.At the leaf level, P is preferentially allocated to photosynthetic cells to enhance photosynthetic P-use efficiency, while, at the cellular level, plants maintain a higher ratio of metabolic P to lipid P, and function at very low levels of ribosomal RNA. We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition.We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting in eutrophication. Although we need a multidisciplinary approach to systematically enhance P-use efficiency, monodisciplinary studies still prevail. Here, we propose to tighten the P cycle by identifying P-efficient crop genotypes, integrating four plant strategies: increasing P-acquisition efficiency, photosynthetic P-use efficiency and P-remobilisation efficiency, and decreasing seed phytate P concentrations. We recommend P-efficient genotypes together with diversified cropping systems involving complementary P-acquisition strategies as well as smart P-fertiliser management to enhance P-use efficiency in agriculture dependent on soil P status. These strategies will reduce P-fertiliser requirements and offsite environmental impacts, while enhancing seed quality for human and livestock nutrition. |
Author | Cong, Wen-Feng Lambers, Hans Suriyagoda, Lalith D.B. |
Author_xml | – sequence: 1 givenname: Wen-Feng surname: Cong fullname: Cong, Wen-Feng email: wenfeng.cong@cau.edu.cn organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China – sequence: 2 givenname: Lalith D.B. surname: Suriyagoda fullname: Suriyagoda, Lalith D.B. organization: Department of Crop Science, Faculty of Agriculture, University of Peradeniya, 20400, Peradeniya, Sri Lanka – sequence: 3 givenname: Hans orcidid: 0000-0002-4118-2272 surname: Lambers fullname: Lambers, Hans email: hans.lambers@uwa.edu.au organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32414603$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9r3DAQxUVJaHa3-Qgthl56saN_lm16KGHZpiWB5JCehVYer7V4JVeSC_vtq2U3IeSSoMOImd8bmPfm6Mw6Cwh9JrggmIirbRHHQdkYCoopLjAvMGEf0IzUVZ1zVtGz9GcC54TV5QWah7DFGFekFh_RBaOccIHZDN0-mk0fwRq7yWIP2UPvwtg7P4VsudcDpKZ306Z_MchXXWe0ARuzpXdjdgPWxf0I4RM679QQ4PJUF-jPz9Xj8ld-d3_ze3l9l2ve0JgT1XSNoHxNm0qQRiuoOqoVEWwtgCrgolW8bBvBat2VHS3XrSCqxbTiChLCFujbce_o3d8JQpQ7EzQMyQ5wU5CUs4anQwV9B4rTo2VdJ_TrK3TrJm_TIYkSuGqIqEWivpyoab2DVo7e7JTfyydHE1AeAe1dCB66Z4RgeUhObuUpOXlITmIuU3JJ9_2VTpuoonE2emWGN9U_jmpIvv8z4GU4JKShNR50lK0zb2z4D9sCt0w |
CitedBy_id | crossref_primary_10_3389_fpls_2022_914648 crossref_primary_10_1016_j_ecoenv_2023_115388 crossref_primary_10_56093_ijas_v94i6_145572 crossref_primary_10_1016_j_molp_2021_06_008 crossref_primary_10_1016_j_tplants_2021_07_014 crossref_primary_10_18697_ajfand_127_23185 crossref_primary_10_1186_s13059_024_03348_x crossref_primary_10_3389_fpls_2022_1056028 crossref_primary_10_1016_j_tplants_2022_05_007 crossref_primary_10_1371_journal_pgen_1011135 crossref_primary_10_1016_j_plaphy_2025_109608 crossref_primary_10_3389_fpls_2021_676432 crossref_primary_10_1080_00380768_2023_2283487 crossref_primary_10_3390_agronomy14102300 crossref_primary_10_1016_j_envres_2024_120030 crossref_primary_10_1016_j_eja_2023_127072 crossref_primary_10_1016_j_tree_2021_06_005 crossref_primary_10_3390_plants13233361 crossref_primary_10_1016_j_watres_2023_120851 crossref_primary_10_1038_s41467_022_31555_2 crossref_primary_10_1093_aob_mcab124 crossref_primary_10_1007_s11105_024_01512_y crossref_primary_10_3389_fpls_2022_1069191 crossref_primary_10_1134_S1064229322020107 crossref_primary_10_1080_00380768_2024_2408307 crossref_primary_10_1007_s11104_022_05809_3 crossref_primary_10_1016_j_still_2023_105700 crossref_primary_10_4236_abb_2023_1412034 crossref_primary_10_1016_j_chemosphere_2022_136361 crossref_primary_10_1007_s42729_023_01604_w crossref_primary_10_3389_fpls_2022_1051080 crossref_primary_10_1007_s13593_023_00916_6 crossref_primary_10_1016_j_scitotenv_2022_153558 crossref_primary_10_1016_j_envexpbot_2022_104844 crossref_primary_10_1007_s11104_022_05464_8 crossref_primary_10_3390_land13091483 crossref_primary_10_1093_jxb_erac117 crossref_primary_10_1093_jxb_erad448 crossref_primary_10_3389_fpls_2023_1225174 crossref_primary_10_3390_plants11223043 crossref_primary_10_1016_j_agee_2024_109175 crossref_primary_10_3389_fpls_2022_1015652 crossref_primary_10_1016_j_chemosphere_2022_136337 crossref_primary_10_1016_j_scitotenv_2023_167726 crossref_primary_10_1007_s11368_022_03221_z crossref_primary_10_1111_pce_14895 crossref_primary_10_1093_jxb_erac519 crossref_primary_10_1007_s11104_024_06717_4 crossref_primary_10_1007_s11356_022_21637_5 crossref_primary_10_1093_plphys_kiac030 crossref_primary_10_3390_agronomy15030713 crossref_primary_10_1016_j_apsoil_2024_105632 crossref_primary_10_1016_j_indcrop_2024_120293 crossref_primary_10_1016_j_rhisph_2021_100316 crossref_primary_10_1080_10643389_2022_2120317 crossref_primary_10_1007_s00425_023_04158_4 crossref_primary_10_1021_acs_jafc_4c02761 crossref_primary_10_1016_j_eja_2024_127358 crossref_primary_10_1007_s11104_022_05309_4 crossref_primary_10_3390_plants13182567 crossref_primary_10_1016_j_eesus_2025_02_003 crossref_primary_10_1016_j_jia_2023_09_013 crossref_primary_10_1007_s11104_022_05487_1 crossref_primary_10_3390_agronomy12071700 crossref_primary_10_3389_fgene_2020_574547 crossref_primary_10_1016_j_agee_2025_109618 crossref_primary_10_1016_j_eja_2023_127063 crossref_primary_10_1016_j_agee_2024_108906 crossref_primary_10_3389_fpls_2021_636973 crossref_primary_10_1007_s11104_021_04915_y crossref_primary_10_3390_app13063898 crossref_primary_10_3389_fpls_2024_1379562 crossref_primary_10_3390_biology10020158 crossref_primary_10_1093_biolinnean_blaa213 crossref_primary_10_3390_ijms24065398 crossref_primary_10_1007_s00425_021_03760_8 crossref_primary_10_1071_FP21116 crossref_primary_10_1016_j_yrtph_2021_104943 crossref_primary_10_1016_j_tplants_2024_04_010 crossref_primary_10_1073_pnas_2404199121 crossref_primary_10_1016_j_fcr_2022_108634 crossref_primary_10_1111_oik_08606 crossref_primary_10_3390_agronomy14010121 crossref_primary_10_1111_pce_14078 crossref_primary_10_1186_s12864_024_10402_2 crossref_primary_10_3390_cells12101397 crossref_primary_10_2139_ssrn_4200123 crossref_primary_10_1111_pbi_14040 crossref_primary_10_1007_s11104_022_05436_y crossref_primary_10_3389_fpls_2021_700651 crossref_primary_10_1007_s42729_023_01473_3 crossref_primary_10_1002_ece3_8125 crossref_primary_10_3390_cells12030441 crossref_primary_10_1146_annurev_arplant_102720_125738 crossref_primary_10_1111_jipb_13560 crossref_primary_10_1016_j_rhisph_2024_100861 crossref_primary_10_1007_s40626_020_00180_z crossref_primary_10_1002_jpln_202200124 crossref_primary_10_1016_j_oneear_2024_07_020 crossref_primary_10_1016_j_foreco_2023_121285 crossref_primary_10_1093_hr_uhac107 crossref_primary_10_1371_journal_pone_0292542 crossref_primary_10_1002_jpln_202400299 crossref_primary_10_1016_j_plaphy_2022_05_035 crossref_primary_10_1016_j_plaphy_2023_108172 crossref_primary_10_3389_fpls_2022_807844 crossref_primary_10_1016_j_jhazmat_2021_127224 crossref_primary_10_1515_opag_2022_0328 crossref_primary_10_1039_D0CS01363C crossref_primary_10_1007_s10705_023_10288_8 crossref_primary_10_1093_plphys_kiac521 crossref_primary_10_1016_j_scitotenv_2023_166395 crossref_primary_10_29050_harranziraat_1357243 crossref_primary_10_1002_csc2_21102 crossref_primary_10_3390_plants11081006 crossref_primary_10_3389_fpls_2020_610591 crossref_primary_10_3389_fpls_2021_719436 crossref_primary_10_1007_s10142_023_00966_9 crossref_primary_10_1186_s12864_024_11151_y crossref_primary_10_1007_s11104_023_06426_4 crossref_primary_10_1016_j_stress_2025_100763 crossref_primary_10_1186_s12870_023_04677_y crossref_primary_10_3390_ijms23042353 crossref_primary_10_1016_j_chemosphere_2022_135334 crossref_primary_10_1016_j_scitotenv_2022_159033 crossref_primary_10_1021_aps_4c00009 crossref_primary_10_1111_pce_15038 crossref_primary_10_3389_fpls_2021_704983 crossref_primary_10_1016_j_scienta_2022_111779 crossref_primary_10_1016_j_envexpbot_2024_105897 crossref_primary_10_1080_01904167_2022_2027977 crossref_primary_10_1016_j_apsoil_2021_104094 |
Cites_doi | 10.1007/s10681-019-2443-0 10.2135/cropsci2005.0593 10.1007/s11104-017-3427-2 10.1016/j.jfca.2008.11.022 10.1021/jf60202a038 10.1104/pp.111.175448 10.1007/s10886-017-0921-1 10.1002/ece3.861 10.1007/s11104-006-0052-x 10.1111/nph.15043 10.1111/j.1469-8137.2012.04285.x 10.1007/s13280-014-0614-8 10.1111/j.1365-313X.2010.04142.x 10.1093/jxb/ery267 10.1111/jfbc.12678 10.1111/nph.14403 10.1080/01904167.2018.1458871 10.1080/03650340.2018.1521957 10.1093/aob/mcs285 10.1111/pce.12240 10.1111/pce.13191 10.1104/pp.119.1.331 10.1038/nature20610 10.1038/nature11346 10.1071/FP03078 10.1016/j.fcr.2010.08.005 10.3146/i0095-3679-10-1-3 10.1071/SR02021 10.1038/nature02403 10.2134/jeq1998.00472425002700020002x 10.1111/j.1365-3040.2007.01733.x 10.1007/s11104-018-3663-0 10.4067/S0717-66432003000100011 10.1093/aob/mcs217 10.1111/1365-2745.13158 10.1021/jf9701345 10.1038/nplants.2016.43 10.1016/j.tplants.2014.10.007 10.1104/pp.59.6.1146 10.1007/s11104-009-9990-4 10.2135/cropsci2011.05.0285 10.7554/eLife.37093 10.1105/tpc.17.00738 10.3389/fpls.2016.01776 10.1093/jxb/ery313 10.1007/s00217-011-1495-8 10.1073/pnas.1010808108 10.1371/journal.pone.0205471 10.1007/s12571-011-0144-1 10.1081/PLN-100107601 10.1071/CP17060 10.1111/pce.13124 10.1021/jf051193i 10.1080/01904169909365679 10.1111/j.1469-8137.2007.02345.x 10.1111/nph.13132 10.1111/nph.15200 10.1071/BT99078 10.1016/j.soilbio.2013.05.010 10.1021/jf60181a021 10.1007/s11104-015-2460-2 10.1016/S1360-1385(01)02104-5 10.1007/s13562-015-0348-0 10.3389/fpls.2019.00784 10.1073/pnas.0704591104 10.1016/j.plantsci.2004.06.008 10.1038/s41396-018-0171-4 10.1186/gb-2013-14-6-209 10.1111/nph.14967 10.1104/pp.111.175414 10.1073/pnas.082696499 10.3390/agronomy9030127 10.1002/jsfa.4532 10.1071/FP04046 10.1111/j.1469-8137.2012.04190.x 10.1080/01904167.2019.1676903 10.2135/cropsci2005.0076 10.3389/fpls.2016.01939 10.1002/jsfa.2151 10.1016/j.gloenvcha.2008.10.009 10.3389/fpls.2016.01664 10.1073/pnas.1113675109 10.1016/B978-0-12-420225-2.00005-4 10.1017/S0014479714000362 10.1093/aob/mcq027 10.2134/jeq2019.02.0070 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Oct 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Oct 2020 |
DBID | AAYXX CITATION NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1016/j.tplants.2020.04.013 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 975 |
ExternalDocumentID | 32414603 10_1016_j_tplants_2020_04_013 S136013852030128X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K EFKBS FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c492t-1a9f9624b297619cae7f2ca163b6e2ae46da45d9638cf5f25bd61ad0274aeb6e3 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Fri Jul 11 15:02:22 EDT 2025 Fri Jul 11 05:23:19 EDT 2025 Wed Aug 13 08:12:42 EDT 2025 Wed Feb 19 02:31:12 EST 2025 Tue Jul 01 00:57:56 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Fri Feb 23 02:47:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | phosphorus cycle phytate sustainable agriculture crop genotype phosphorus-use efficiency |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-1a9f9624b297619cae7f2ca163b6e2ae46da45d9638cf5f25bd61ad0274aeb6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4118-2272 |
PMID | 32414603 |
PQID | 2460791686 |
PQPubID | 2045386 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2439418662 proquest_miscellaneous_2404042588 proquest_journals_2460791686 pubmed_primary_32414603 crossref_primary_10_1016_j_tplants_2020_04_013 crossref_citationtrail_10_1016_j_tplants_2020_04_013 elsevier_sciencedirect_doi_10_1016_j_tplants_2020_04_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Withers (bb0365) 2015; 44 Conn, Gilliham (bb0210) 2010; 105 Wang, Ning (bb0275) 2019; 10 Kafle (bb0060) 2019; 9 Gamuyao (bb0100) 2012; 488 Jing (bb0165) 2010; 119 Lambers (bb0075) 2015; 20 Bariola (bb0250) 1999; 119 Kuga (bb0240) 2008; 178 Hidaka, Kitayama (bb0230) 2013; 3 Mayamulla (bb0290) 2017; 68 Lyu (bb0080) 2016; 7 Lynch (bb0045) 2011; 156 Vetterlein, Tarkka (bb0345) 2018; 69 Kekulandara (bb0270) 2019; 434 Zhu, Lynch (bb0095) 2004; 31 Wright (bb0175) 2004; 428 Israel (bb0415) 2006; 46 Warkentin (bb0320) 2012; 52 De Boland (bb0385) 1975; 23 Guilherme Pereira (bb0220) 2018; 218 Guilherme Pereira (bb0190) 2019; 107 Pame (bb0375) 2015; 51 Denton (bb0285) 2007; 30 Jemo (bb0360) 2006; 284 Pang (bb0055) 2018; 219 Borie, Rubio (bb0135) 2003; 60 Ruan (bb0195) 2018; 30 Hayes (bb0215) 2018; 41 Niu (bb0065) 2013; 112 Veneklaas (bb0180) 2012; 195 Brennan, Bolland (bb0355) 2001; 24 Raboy (bb0305) 2001; 6 Frank (bb0370) 2009; 22 Ockenden (bb0405) 2004; 167 Horner (bb0410) 2005; 53 Raven (bb0105) 2018; 217 Turner (bb0120) 2013; 14 Dissanayaka (bb0255) 2018; 41 Kumar (bb0420) 2005; 85 Rose (bb0300) 2013; 112 Daniel (bb0030) 1998; 27 Lambers (bb0155) 2018; 424 Swamy (bb0295) 2019; 215 Marzo (bb0325) 1997; 45 Johnston (bb0010) 2014; 123 Bertrand (bb0140) 2003; 41 Richardson, Simpson (bb0050) 2011; 156 Schneider (bb0040) 2019; 48 Cordell (bb0005) 2009; 19 Fixen, Johnston (bb0015) 2012; 92 Sawers (bb0070) 2017; 214 Margenot (bb0350) 2016 Roy (bb0145) 2016; 2 Lott (bb0020) 2011; 3 Li (bb0160) 2007; 104 Yu (bb0245) 2002; 99 Liao, Yan (bb0185) 1999; 22 Oltmans (bb0425) 2005; 45 Heldt (bb0200) 1977; 59 Zhou (bb0315) 2016; 7 MacDonald (bb0025) 2011; 108 Bhagyawant (bb0440) 2018; 42 Bueckert (bb0445) 2011; 233 Wang (bb0110) 2013; 65 Lambers (bb0225) 2012; 196 Sattari (bb0170) 2012; 109 Branch, Gaines (bb0435) 1983; 10 Abbas (bb0260) 2018; 41 Lolas (bb0395) 1976; 53 Bilal (bb0400) 2019; 65 Zhang (bb0115) 2018; 12 Bilal (bb0330) 2018; 13 Dobermann, Fairhurst (bb0280) 2000 Julia (bb0340) 2018; 69 Rose (bb0380) 2010; 326 Stitt (bb0205) 2010; 61 Grigg (bb0035) 2000; 48 Wang (bb0085) 2016; 7 Miller (bb0090) 2003; 30 Suriyagoda (bb0265) 2019; 43 Yamaji (bb0310) 2016; 541 Pariasca-Tanaka (bb0335) 2015; 392 Brooker (bb0150) 2015; 206 O'Dell (bb0390) 1972; 20 Hill (bb0125) 2018; 44 Sulpice (bb0235) 2014; 37 Pandey (bb0430) 2016; 25 Wang (bb0130) 2018; 7 Veneklaas (10.1016/j.tplants.2020.04.013_bb0180) 2012; 195 Ruan (10.1016/j.tplants.2020.04.013_bb0195) 2018; 30 Rose (10.1016/j.tplants.2020.04.013_bb0300) 2013; 112 Sattari (10.1016/j.tplants.2020.04.013_bb0170) 2012; 109 Wright (10.1016/j.tplants.2020.04.013_bb0175) 2004; 428 Bariola (10.1016/j.tplants.2020.04.013_bb0250) 1999; 119 Wang (10.1016/j.tplants.2020.04.013_bb0110) 2013; 65 MacDonald (10.1016/j.tplants.2020.04.013_bb0025) 2011; 108 Margenot (10.1016/j.tplants.2020.04.013_bb0350) 2016 Lott (10.1016/j.tplants.2020.04.013_bb0020) 2011; 3 Johnston (10.1016/j.tplants.2020.04.013_bb0010) 2014; 123 Zhu (10.1016/j.tplants.2020.04.013_bb0095) 2004; 31 Wang (10.1016/j.tplants.2020.04.013_bb0275) 2019; 10 Kumar (10.1016/j.tplants.2020.04.013_bb0420) 2005; 85 Bertrand (10.1016/j.tplants.2020.04.013_bb0140) 2003; 41 Bueckert (10.1016/j.tplants.2020.04.013_bb0445) 2011; 233 Bhagyawant (10.1016/j.tplants.2020.04.013_bb0440) 2018; 42 Lolas (10.1016/j.tplants.2020.04.013_bb0395) 1976; 53 Liao (10.1016/j.tplants.2020.04.013_bb0185) 1999; 22 Israel (10.1016/j.tplants.2020.04.013_bb0415) 2006; 46 Ockenden (10.1016/j.tplants.2020.04.013_bb0405) 2004; 167 Julia (10.1016/j.tplants.2020.04.013_bb0340) 2018; 69 Lynch (10.1016/j.tplants.2020.04.013_bb0045) 2011; 156 Pariasca-Tanaka (10.1016/j.tplants.2020.04.013_bb0335) 2015; 392 Schneider (10.1016/j.tplants.2020.04.013_bb0040) 2019; 48 Frank (10.1016/j.tplants.2020.04.013_bb0370) 2009; 22 Lambers (10.1016/j.tplants.2020.04.013_bb0075) 2015; 20 Hayes (10.1016/j.tplants.2020.04.013_bb0215) 2018; 41 Pame (10.1016/j.tplants.2020.04.013_bb0375) 2015; 51 Rose (10.1016/j.tplants.2020.04.013_bb0380) 2010; 326 Vetterlein (10.1016/j.tplants.2020.04.013_bb0345) 2018; 69 Yu (10.1016/j.tplants.2020.04.013_bb0245) 2002; 99 Pandey (10.1016/j.tplants.2020.04.013_bb0430) 2016; 25 Kuga (10.1016/j.tplants.2020.04.013_bb0240) 2008; 178 Lyu (10.1016/j.tplants.2020.04.013_bb0080) 2016; 7 Suriyagoda (10.1016/j.tplants.2020.04.013_bb0265) 2019; 43 Stitt (10.1016/j.tplants.2020.04.013_bb0205) 2010; 61 Cordell (10.1016/j.tplants.2020.04.013_bb0005) 2009; 19 Mayamulla (10.1016/j.tplants.2020.04.013_bb0290) 2017; 68 Zhou (10.1016/j.tplants.2020.04.013_bb0315) 2016; 7 Fixen (10.1016/j.tplants.2020.04.013_bb0015) 2012; 92 Niu (10.1016/j.tplants.2020.04.013_bb0065) 2013; 112 Horner (10.1016/j.tplants.2020.04.013_bb0410) 2005; 53 Oltmans (10.1016/j.tplants.2020.04.013_bb0425) 2005; 45 De Boland (10.1016/j.tplants.2020.04.013_bb0385) 1975; 23 Branch (10.1016/j.tplants.2020.04.013_bb0435) 1983; 10 Withers (10.1016/j.tplants.2020.04.013_bb0365) 2015; 44 Roy (10.1016/j.tplants.2020.04.013_bb0145) 2016; 2 Brooker (10.1016/j.tplants.2020.04.013_bb0150) 2015; 206 Hill (10.1016/j.tplants.2020.04.013_bb0125) 2018; 44 Wang (10.1016/j.tplants.2020.04.013_bb0130) 2018; 7 Yamaji (10.1016/j.tplants.2020.04.013_bb0310) 2016; 541 Marzo (10.1016/j.tplants.2020.04.013_bb0325) 1997; 45 Daniel (10.1016/j.tplants.2020.04.013_bb0030) 1998; 27 Dissanayaka (10.1016/j.tplants.2020.04.013_bb0255) 2018; 41 Swamy (10.1016/j.tplants.2020.04.013_bb0295) 2019; 215 Guilherme Pereira (10.1016/j.tplants.2020.04.013_bb0190) 2019; 107 Richardson (10.1016/j.tplants.2020.04.013_bb0050) 2011; 156 Lambers (10.1016/j.tplants.2020.04.013_bb0225) 2012; 196 Wang (10.1016/j.tplants.2020.04.013_bb0085) 2016; 7 Warkentin (10.1016/j.tplants.2020.04.013_bb0320) 2012; 52 Brennan (10.1016/j.tplants.2020.04.013_bb0355) 2001; 24 Bilal (10.1016/j.tplants.2020.04.013_bb0330) 2018; 13 Dobermann (10.1016/j.tplants.2020.04.013_bb0280) 2000 Borie (10.1016/j.tplants.2020.04.013_bb0135) 2003; 60 O'Dell (10.1016/j.tplants.2020.04.013_bb0390) 1972; 20 Bilal (10.1016/j.tplants.2020.04.013_bb0400) 2019; 65 Grigg (10.1016/j.tplants.2020.04.013_bb0035) 2000; 48 Abbas (10.1016/j.tplants.2020.04.013_bb0260) 2018; 41 Conn (10.1016/j.tplants.2020.04.013_bb0210) 2010; 105 Zhang (10.1016/j.tplants.2020.04.013_bb0115) 2018; 12 Raboy (10.1016/j.tplants.2020.04.013_bb0305) 2001; 6 Sulpice (10.1016/j.tplants.2020.04.013_bb0235) 2014; 37 Raven (10.1016/j.tplants.2020.04.013_bb0105) 2018; 217 Kekulandara (10.1016/j.tplants.2020.04.013_bb0270) 2019; 434 Jemo (10.1016/j.tplants.2020.04.013_bb0360) 2006; 284 Gamuyao (10.1016/j.tplants.2020.04.013_bb0100) 2012; 488 Jing (10.1016/j.tplants.2020.04.013_bb0165) 2010; 119 Heldt (10.1016/j.tplants.2020.04.013_bb0200) 1977; 59 Miller (10.1016/j.tplants.2020.04.013_bb0090) 2003; 30 Kafle (10.1016/j.tplants.2020.04.013_bb0060) 2019; 9 Sawers (10.1016/j.tplants.2020.04.013_bb0070) 2017; 214 Pang (10.1016/j.tplants.2020.04.013_bb0055) 2018; 219 Lambers (10.1016/j.tplants.2020.04.013_bb0155) 2018; 424 Guilherme Pereira (10.1016/j.tplants.2020.04.013_bb0220) 2018; 218 Denton (10.1016/j.tplants.2020.04.013_bb0285) 2007; 30 Turner (10.1016/j.tplants.2020.04.013_bb0120) 2013; 14 Li (10.1016/j.tplants.2020.04.013_bb0160) 2007; 104 Hidaka (10.1016/j.tplants.2020.04.013_bb0230) 2013; 3 |
References_xml | – volume: 488 start-page: 535 year: 2012 end-page: 539 ident: bb0100 article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency publication-title: Nature – volume: 23 start-page: 1186 year: 1975 end-page: 1189 ident: bb0385 article-title: Identification and properties of phytate in cereal grains and oilseed products publication-title: J. Agric. Food Chem. – volume: 108 start-page: 3086 year: 2011 end-page: 3091 ident: bb0025 article-title: Agronomic phosphorus imbalances across the world's croplands publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 424 start-page: 11 year: 2018 end-page: 34 ident: bb0155 article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems publication-title: Plant Soil – volume: 215 start-page: 118 year: 2019 ident: bb0295 article-title: Phenotypic and molecular characterization of rice germplasm lines and identification of novel source for low soil phosphorus tolerance in rice publication-title: Euphytica – volume: 217 start-page: 1420 year: 2018 end-page: 1427 ident: bb0105 article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence publication-title: New Phytol. – volume: 30 start-page: 1557 year: 2007 end-page: 1565 ident: bb0285 article-title: species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus publication-title: Plant Cell Environ. – volume: 59 start-page: 1146 year: 1977 end-page: 1155 ident: bb0200 article-title: Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts publication-title: Plant Physiol. – volume: 326 start-page: 159 year: 2010 end-page: 170 ident: bb0380 article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics publication-title: Plant Soil – volume: 7 start-page: 1776 year: 2016 ident: bb0315 article-title: Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in Southwest of China publication-title: Front. Plant Sci. – volume: 167 start-page: 1131 year: 2004 end-page: 1142 ident: bb0405 article-title: Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley ( publication-title: Plant Sci. – volume: 123 start-page: 177 year: 2014 end-page: 228 ident: bb0010 article-title: Phosphorus: its efficient use in agriculture publication-title: Adv. Agron. – volume: 112 start-page: 391 year: 2013 end-page: 408 ident: bb0065 article-title: Responses of root architecture development to low phosphorus availability: a review publication-title: Ann. Bot. – volume: 85 start-page: 1523 year: 2005 end-page: 1526 ident: bb0420 article-title: Phytic acid in Indian soybean: genotypic variability and influence of growing location publication-title: J. Sci. Food Agric. – volume: 3 start-page: 451 year: 2011 end-page: 462 ident: bb0020 article-title: The critical role of phosphorus in world production of cereal grains and legume seeds publication-title: Food Secur. – volume: 7 start-page: 1939 year: 2016 ident: bb0080 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Front. Plant Sci. – volume: 105 start-page: 1081 year: 2010 end-page: 1102 ident: bb0210 article-title: Comparative physiology of elemental distributions in plants publication-title: Ann. Bot. – volume: 13 year: 2018 ident: bb0330 article-title: Categorization of wheat genotypes for phosphorus efficiency publication-title: PLoS ONE – volume: 7 year: 2018 ident: bb0130 article-title: Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi publication-title: eLife – volume: 65 start-page: 727 year: 2019 end-page: 740 ident: bb0400 article-title: Grain phosphorus and phytate contents of wheat genotypes released during last 6 decades and categorization of selected genotypes for phosphorus use efficiency publication-title: Arch. Agron. Soil Sci. – volume: 69 start-page: 4993 year: 2018 end-page: 4996 ident: bb0345 article-title: Seeds with low phosphorus content: not so bad after all? publication-title: J. Exp. Bot. – volume: 24 start-page: 1885 year: 2001 end-page: 1900 ident: bb0355 article-title: Comparing fertilizer phosphorus requirements of canola, lupin, and wheat publication-title: J. Plant Nutr. – volume: 53 start-page: 867 year: 1976 end-page: 871 ident: bb0395 article-title: The phytic acid-total phosphorus relationship in barley, oats, soybeans, and wheat publication-title: Cereal Chem. – volume: 428 start-page: 821 year: 2004 end-page: 827 ident: bb0175 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 41 start-page: 1512 year: 2018 end-page: 1523 ident: bb0255 article-title: Molecular mechanisms underpinning phosphorus-use efficiency in rice publication-title: Plant Cell Environ. – volume: 41 start-page: 605 year: 2018 end-page: 619 ident: bb0215 article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency publication-title: Plant Cell Environ. – volume: 10 start-page: 784 year: 2019 ident: bb0275 article-title: Post-silking phosphorus recycling and carbon partitioning in maize under low to high phosphorus inputs and their effects on grain yield publication-title: Front. Plant Sci. – volume: 104 start-page: 11192 year: 2007 end-page: 11196 ident: bb0160 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 119 start-page: 331 year: 1999 end-page: 342 ident: bb0250 article-title: Regulation of S-like ribonuclease levels in publication-title: Plant Physiol. – volume: 156 start-page: 1041 year: 2011 end-page: 1049 ident: bb0045 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol. – volume: 45 start-page: 1829 year: 1997 end-page: 1833 ident: bb0325 article-title: Fertilization effects of phosphorus and sulfur on chemical composition of seeds of publication-title: J. Agric. Food Chem. – volume: 22 start-page: 877 year: 1999 end-page: 888 ident: bb0185 article-title: Seed size is closely related to phosphorus use efficiency and photosynthetic phosphorus use efficiency in common bean publication-title: J. Plant Nutr. – volume: 48 start-page: 777 year: 2000 end-page: 792 ident: bb0035 article-title: Responses of native woody taxa in publication-title: Aust. J. Bot. – volume: 25 start-page: 367 year: 2016 end-page: 374 ident: bb0430 article-title: Phytic acid dynamics during seed development and it’s composition in yellow and black Indian soybean ( publication-title: J. Plant Biochem. Biotechnol. – volume: 9 start-page: 127 year: 2019 ident: bb0060 article-title: Harnessing soil microbes to improve plant phosphate efficiency in cropping systems publication-title: Agronomy – volume: 109 start-page: 6348 year: 2012 end-page: 6353 ident: bb0170 article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle publication-title: Proc. Natl. Acad. Sci. – volume: 41 start-page: 61 year: 2003 end-page: 76 ident: bb0140 article-title: Chemical characteristics of phosphorus in alkaline soils from southern Australia publication-title: Soil Res. – volume: 69 start-page: 5233 year: 2018 end-page: 5240 ident: bb0340 article-title: Phosphorus uptake commences at the earliest stages of seedling development in rice publication-title: J. Exp. Bot. – volume: 22 start-page: 278 year: 2009 end-page: 284 ident: bb0370 article-title: Assessment of the contents of phytic acid and divalent cations in low phytic acid ( publication-title: J. Food Compos. Anal. – volume: 206 start-page: 107 year: 2015 end-page: 117 ident: bb0150 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytol. – volume: 60 start-page: 69 year: 2003 end-page: 73 ident: bb0135 article-title: Total and organic phosphorus in Chilean volcanic soils publication-title: Gayana Bot. – volume: 41 start-page: 1522 year: 2018 end-page: 1533 ident: bb0260 article-title: Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency publication-title: J. Plant Nutr. – volume: 10 start-page: 5 year: 1983 end-page: 8 ident: bb0435 article-title: Seed mineral composition of diverse peanut germplasm publication-title: Peanut Sci. – volume: 233 start-page: 203 year: 2011 end-page: 212 ident: bb0445 article-title: Phytic acid and mineral micronutrients in field-grown chickpea ( publication-title: Eur. Food Res. Technol. – volume: 44 start-page: 198 year: 2018 end-page: 208 ident: bb0125 article-title: Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes publication-title: J. Chem. Ecol. – volume: 46 start-page: 67 year: 2006 end-page: 71 ident: bb0415 article-title: Genetic variability for phytic acid phosphorus and inorganic phosphorus in seeds of soybeans in maturity groups V, VI, and VII publication-title: Crop Sci. – volume: 61 start-page: 1067 year: 2010 end-page: 1091 ident: bb0205 article-title: and primary photosynthetic metabolism - more than the icing on the cake publication-title: Plant J. – volume: 3 start-page: 4872 year: 2013 end-page: 4880 ident: bb0230 article-title: Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species publication-title: Ecol. Evol. – volume: 434 start-page: 107 year: 2019 end-page: 123 ident: bb0270 article-title: Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils publication-title: Plant Soil – volume: 42 year: 2018 ident: bb0440 article-title: Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of chickpea genotypes publication-title: J. Food Biochem. – volume: 20 start-page: 83 year: 2015 end-page: 90 ident: bb0075 article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency publication-title: Trends Plant Sci. – volume: 219 start-page: 518 year: 2018 end-page: 529 ident: bb0055 article-title: The carboxylate-releasing phosphorus-mobilising strategy could be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply publication-title: New Phytol. – volume: 12 start-page: 2339 year: 2018 end-page: 2351 ident: bb0115 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: ISME J. – volume: 107 start-page: 2006 year: 2019 end-page: 2023 ident: bb0190 article-title: Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot publication-title: J. Ecol. – volume: 2 start-page: 16043 year: 2016 ident: bb0145 article-title: The phosphorus cost of agricultural intensification in the tropics publication-title: Nat. Plants – volume: 27 start-page: 251 year: 1998 end-page: 257 ident: bb0030 article-title: Agricultural phosphorus and eutrophication: a symposium overview publication-title: J. Environ. Qual. – start-page: 151 year: 2016 end-page: 208 ident: bb0350 article-title: Phosphorus fertilization and management in soils of sub-Saharan Africa publication-title: Soil Phosphorus – year: 2000 ident: bb0280 article-title: Nutrient Disorders and Nutrient Management – volume: 195 start-page: 306 year: 2012 end-page: 320 ident: bb0180 article-title: Opportunities for improving phosphorus-use efficiency in crop plants publication-title: New Phytol. – volume: 92 start-page: 1001 year: 2012 end-page: 1005 ident: bb0015 article-title: World fertilizer nutrient reserves: a view to the future publication-title: J. Sci. Food Agric. – volume: 30 start-page: 853 year: 2018 end-page: 870 ident: bb0195 article-title: An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice publication-title: Plant Cell – volume: 284 start-page: 385 year: 2006 end-page: 397 ident: bb0360 article-title: Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon publication-title: Plant Soil – volume: 14 start-page: 209 year: 2013 ident: bb0120 article-title: The plant microbiome publication-title: Genome Biol. – volume: 68 start-page: 337 year: 2017 end-page: 348 ident: bb0290 article-title: Variation in seed nutrient content, seedling growth and yield of rice varieties grown in a paddy field without application of fertilisers for forty years publication-title: Crop Pasture Sci. – volume: 20 start-page: 718 year: 1972 end-page: 723 ident: bb0390 article-title: Distribution of phytate and nutritionally important elements among the morphological components of cereal grains publication-title: J. Agric. Food Chem. – volume: 119 start-page: 355 year: 2010 end-page: 364 ident: bb0165 article-title: Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification publication-title: Field Crop Res. – volume: 99 start-page: 5732 year: 2002 end-page: 5737 ident: bb0245 article-title: disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 53 start-page: 7870 year: 2005 end-page: 7877 ident: bb0410 article-title: Oxalate and phytate concentrations in seeds of soybean cultivars [ publication-title: J. Agric. Food Chem. – volume: 52 start-page: 74 year: 2012 end-page: 78 ident: bb0320 article-title: Development and characterization of low-phytate pea publication-title: Crop Sci. – volume: 44 start-page: 193 year: 2015 end-page: 206 ident: bb0365 article-title: Stewardship to tackle global phosphorus inefficiency: the case of Europe publication-title: AMBIO – volume: 218 start-page: 959 year: 2018 end-page: 973 ident: bb0220 article-title: Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll publication-title: New Phytol. – volume: 43 start-page: 251 year: 2019 end-page: 269 ident: bb0265 article-title: Biomass and nutrient accumulation rates of rice cultivars differing in their growth duration when grown in fertile and low-fertile soils publication-title: J. Plant Nutr. – volume: 196 start-page: 1098 year: 2012 end-page: 1108 ident: bb0225 article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use efficiency publication-title: New Phytol. – volume: 7 start-page: 1664 year: 2016 ident: bb0085 article-title: Rhizosphere organic anions play a minor role in improving crop species' ability to take up residual phosphorus (P) in agricultural soils low in P availability publication-title: Front. Plant Sci. – volume: 51 start-page: 370 year: 2015 end-page: 381 ident: bb0375 article-title: Effects of genotype, seed P concentration and seed priming on seedling vigor of rice publication-title: Exp. Agric. – volume: 392 start-page: 253 year: 2015 end-page: 266 ident: bb0335 article-title: Does reducing seed-P concentrations affect seedling vigor and grain yield of rice? publication-title: Plant Soil – volume: 112 start-page: 331 year: 2013 end-page: 345 ident: bb0300 article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding publication-title: Ann. Bot. – volume: 45 start-page: 593 year: 2005 end-page: 598 ident: bb0425 article-title: Agronomic and seed traits of soybean lines with low–phytate phosphorus publication-title: Crop Sci. – volume: 156 start-page: 989 year: 2011 end-page: 996 ident: bb0050 article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus publication-title: Plant Physiol. – volume: 65 start-page: 69 year: 2013 end-page: 74 ident: bb0110 article-title: Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize ( publication-title: Soil Biol. Biochem. – volume: 30 start-page: 973 year: 2003 end-page: 985 ident: bb0090 article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils publication-title: Funct. Plant Biol. – volume: 37 start-page: 1276 year: 2014 end-page: 1298 ident: bb0235 article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species publication-title: Plant Cell Environ. – volume: 214 start-page: 632 year: 2017 end-page: 643 ident: bb0070 article-title: Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters publication-title: New Phytol. – volume: 31 start-page: 949 year: 2004 end-page: 958 ident: bb0095 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( publication-title: Funct. Plant Biol. – volume: 48 start-page: 1247 year: 2019 end-page: 1264 ident: bb0040 article-title: Options for improved phosphorus cycling and use in agriculture at the field and regional scales publication-title: J. Environ. Qual. – volume: 178 start-page: 189 year: 2008 end-page: 200 ident: bb0240 article-title: Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate publication-title: New Phytol. – volume: 541 start-page: 92 year: 2016 end-page: 95 ident: bb0310 article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node publication-title: Nature – volume: 6 start-page: 458 year: 2001 end-page: 462 ident: bb0305 article-title: Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution publication-title: Trends Plant Sci. – volume: 19 start-page: 292 year: 2009 end-page: 305 ident: bb0005 article-title: The story of phosphorus: global food security and food for thought publication-title: Glob. Environ. Chang. – volume: 215 start-page: 118 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0295 article-title: Phenotypic and molecular characterization of rice germplasm lines and identification of novel source for low soil phosphorus tolerance in rice publication-title: Euphytica doi: 10.1007/s10681-019-2443-0 – volume: 45 start-page: 593 year: 2005 ident: 10.1016/j.tplants.2020.04.013_bb0425 article-title: Agronomic and seed traits of soybean lines with low–phytate phosphorus publication-title: Crop Sci. doi: 10.2135/cropsci2005.0593 – volume: 424 start-page: 11 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0155 article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems publication-title: Plant Soil doi: 10.1007/s11104-017-3427-2 – volume: 22 start-page: 278 year: 2009 ident: 10.1016/j.tplants.2020.04.013_bb0370 article-title: Assessment of the contents of phytic acid and divalent cations in low phytic acid (lpa) mutants of rice and soybean publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2008.11.022 – volume: 23 start-page: 1186 year: 1975 ident: 10.1016/j.tplants.2020.04.013_bb0385 article-title: Identification and properties of phytate in cereal grains and oilseed products publication-title: J. Agric. Food Chem. doi: 10.1021/jf60202a038 – volume: 156 start-page: 989 year: 2011 ident: 10.1016/j.tplants.2020.04.013_bb0050 article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus publication-title: Plant Physiol. doi: 10.1104/pp.111.175448 – volume: 44 start-page: 198 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0125 article-title: Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes publication-title: J. Chem. Ecol. doi: 10.1007/s10886-017-0921-1 – volume: 3 start-page: 4872 year: 2013 ident: 10.1016/j.tplants.2020.04.013_bb0230 article-title: Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species publication-title: Ecol. Evol. doi: 10.1002/ece3.861 – volume: 284 start-page: 385 year: 2006 ident: 10.1016/j.tplants.2020.04.013_bb0360 article-title: Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon publication-title: Plant Soil doi: 10.1007/s11104-006-0052-x – volume: 218 start-page: 959 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0220 article-title: Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll publication-title: New Phytol. doi: 10.1111/nph.15043 – volume: 196 start-page: 1098 year: 2012 ident: 10.1016/j.tplants.2020.04.013_bb0225 article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use efficiency publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04285.x – volume: 44 start-page: 193 year: 2015 ident: 10.1016/j.tplants.2020.04.013_bb0365 article-title: Stewardship to tackle global phosphorus inefficiency: the case of Europe publication-title: AMBIO doi: 10.1007/s13280-014-0614-8 – volume: 61 start-page: 1067 year: 2010 ident: 10.1016/j.tplants.2020.04.013_bb0205 article-title: Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04142.x – volume: 69 start-page: 5233 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0340 article-title: Phosphorus uptake commences at the earliest stages of seedling development in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery267 – volume: 42 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0440 article-title: Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of chickpea genotypes publication-title: J. Food Biochem. doi: 10.1111/jfbc.12678 – volume: 214 start-page: 632 year: 2017 ident: 10.1016/j.tplants.2020.04.013_bb0070 article-title: Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters publication-title: New Phytol. doi: 10.1111/nph.14403 – volume: 41 start-page: 1522 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0260 article-title: Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency publication-title: J. Plant Nutr. doi: 10.1080/01904167.2018.1458871 – volume: 65 start-page: 727 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0400 article-title: Grain phosphorus and phytate contents of wheat genotypes released during last 6 decades and categorization of selected genotypes for phosphorus use efficiency publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2018.1521957 – volume: 112 start-page: 391 year: 2013 ident: 10.1016/j.tplants.2020.04.013_bb0065 article-title: Responses of root architecture development to low phosphorus availability: a review publication-title: Ann. Bot. doi: 10.1093/aob/mcs285 – volume: 37 start-page: 1276 year: 2014 ident: 10.1016/j.tplants.2020.04.013_bb0235 article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species publication-title: Plant Cell Environ. doi: 10.1111/pce.12240 – volume: 41 start-page: 1512 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0255 article-title: Molecular mechanisms underpinning phosphorus-use efficiency in rice publication-title: Plant Cell Environ. doi: 10.1111/pce.13191 – volume: 119 start-page: 331 year: 1999 ident: 10.1016/j.tplants.2020.04.013_bb0250 article-title: Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 orRNS2 elevates anthocyanin accumulation publication-title: Plant Physiol. doi: 10.1104/pp.119.1.331 – volume: 541 start-page: 92 year: 2016 ident: 10.1016/j.tplants.2020.04.013_bb0310 article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node publication-title: Nature doi: 10.1038/nature20610 – volume: 488 start-page: 535 year: 2012 ident: 10.1016/j.tplants.2020.04.013_bb0100 article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency publication-title: Nature doi: 10.1038/nature11346 – volume: 30 start-page: 973 year: 2003 ident: 10.1016/j.tplants.2020.04.013_bb0090 article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils publication-title: Funct. Plant Biol. doi: 10.1071/FP03078 – volume: 119 start-page: 355 year: 2010 ident: 10.1016/j.tplants.2020.04.013_bb0165 article-title: Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification publication-title: Field Crop Res. doi: 10.1016/j.fcr.2010.08.005 – volume: 10 start-page: 5 year: 1983 ident: 10.1016/j.tplants.2020.04.013_bb0435 article-title: Seed mineral composition of diverse peanut germplasm publication-title: Peanut Sci. doi: 10.3146/i0095-3679-10-1-3 – volume: 41 start-page: 61 year: 2003 ident: 10.1016/j.tplants.2020.04.013_bb0140 article-title: Chemical characteristics of phosphorus in alkaline soils from southern Australia publication-title: Soil Res. doi: 10.1071/SR02021 – volume: 428 start-page: 821 year: 2004 ident: 10.1016/j.tplants.2020.04.013_bb0175 article-title: The worldwide leaf economics spectrum publication-title: Nature doi: 10.1038/nature02403 – volume: 27 start-page: 251 year: 1998 ident: 10.1016/j.tplants.2020.04.013_bb0030 article-title: Agricultural phosphorus and eutrophication: a symposium overview publication-title: J. Environ. Qual. doi: 10.2134/jeq1998.00472425002700020002x – volume: 30 start-page: 1557 year: 2007 ident: 10.1016/j.tplants.2020.04.013_bb0285 article-title: Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01733.x – volume: 434 start-page: 107 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0270 article-title: Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils publication-title: Plant Soil doi: 10.1007/s11104-018-3663-0 – volume: 60 start-page: 69 year: 2003 ident: 10.1016/j.tplants.2020.04.013_bb0135 article-title: Total and organic phosphorus in Chilean volcanic soils publication-title: Gayana Bot. doi: 10.4067/S0717-66432003000100011 – volume: 112 start-page: 331 year: 2013 ident: 10.1016/j.tplants.2020.04.013_bb0300 article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding publication-title: Ann. Bot. doi: 10.1093/aob/mcs217 – volume: 107 start-page: 2006 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0190 article-title: Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot publication-title: J. Ecol. doi: 10.1111/1365-2745.13158 – volume: 45 start-page: 1829 year: 1997 ident: 10.1016/j.tplants.2020.04.013_bb0325 article-title: Fertilization effects of phosphorus and sulfur on chemical composition of seeds of Pisum sativum L. and relative infestation by Bruchus pisorum L publication-title: J. Agric. Food Chem. doi: 10.1021/jf9701345 – volume: 2 start-page: 16043 year: 2016 ident: 10.1016/j.tplants.2020.04.013_bb0145 article-title: The phosphorus cost of agricultural intensification in the tropics publication-title: Nat. Plants doi: 10.1038/nplants.2016.43 – volume: 20 start-page: 83 year: 2015 ident: 10.1016/j.tplants.2020.04.013_bb0075 article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.10.007 – volume: 59 start-page: 1146 year: 1977 ident: 10.1016/j.tplants.2020.04.013_bb0200 article-title: Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts publication-title: Plant Physiol. doi: 10.1104/pp.59.6.1146 – year: 2000 ident: 10.1016/j.tplants.2020.04.013_bb0280 – volume: 326 start-page: 159 year: 2010 ident: 10.1016/j.tplants.2020.04.013_bb0380 article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics publication-title: Plant Soil doi: 10.1007/s11104-009-9990-4 – volume: 52 start-page: 74 year: 2012 ident: 10.1016/j.tplants.2020.04.013_bb0320 article-title: Development and characterization of low-phytate pea publication-title: Crop Sci. doi: 10.2135/cropsci2011.05.0285 – volume: 7 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0130 article-title: Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi publication-title: eLife doi: 10.7554/eLife.37093 – volume: 30 start-page: 853 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0195 article-title: An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice publication-title: Plant Cell doi: 10.1105/tpc.17.00738 – volume: 7 start-page: 1776 year: 2016 ident: 10.1016/j.tplants.2020.04.013_bb0315 article-title: Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in Southwest of China publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01776 – volume: 69 start-page: 4993 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0345 article-title: Seeds with low phosphorus content: not so bad after all? publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery313 – volume: 233 start-page: 203 year: 2011 ident: 10.1016/j.tplants.2020.04.013_bb0445 article-title: Phytic acid and mineral micronutrients in field-grown chickpea (Cicer arietinum L.) cultivars from western Canada publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-011-1495-8 – volume: 108 start-page: 3086 year: 2011 ident: 10.1016/j.tplants.2020.04.013_bb0025 article-title: Agronomic phosphorus imbalances across the world's croplands publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1010808108 – start-page: 151 year: 2016 ident: 10.1016/j.tplants.2020.04.013_bb0350 article-title: Phosphorus fertilization and management in soils of sub-Saharan Africa – volume: 13 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0330 article-title: Categorization of wheat genotypes for phosphorus efficiency publication-title: PLoS ONE doi: 10.1371/journal.pone.0205471 – volume: 3 start-page: 451 year: 2011 ident: 10.1016/j.tplants.2020.04.013_bb0020 article-title: The critical role of phosphorus in world production of cereal grains and legume seeds publication-title: Food Secur. doi: 10.1007/s12571-011-0144-1 – volume: 24 start-page: 1885 year: 2001 ident: 10.1016/j.tplants.2020.04.013_bb0355 article-title: Comparing fertilizer phosphorus requirements of canola, lupin, and wheat publication-title: J. Plant Nutr. doi: 10.1081/PLN-100107601 – volume: 68 start-page: 337 year: 2017 ident: 10.1016/j.tplants.2020.04.013_bb0290 article-title: Variation in seed nutrient content, seedling growth and yield of rice varieties grown in a paddy field without application of fertilisers for forty years publication-title: Crop Pasture Sci. doi: 10.1071/CP17060 – volume: 41 start-page: 605 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0215 article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency publication-title: Plant Cell Environ. doi: 10.1111/pce.13124 – volume: 53 start-page: 7870 year: 2005 ident: 10.1016/j.tplants.2020.04.013_bb0410 article-title: Oxalate and phytate concentrations in seeds of soybean cultivars [Glycine max (L.) Merr.] publication-title: J. Agric. Food Chem. doi: 10.1021/jf051193i – volume: 22 start-page: 877 year: 1999 ident: 10.1016/j.tplants.2020.04.013_bb0185 article-title: Seed size is closely related to phosphorus use efficiency and photosynthetic phosphorus use efficiency in common bean publication-title: J. Plant Nutr. doi: 10.1080/01904169909365679 – volume: 178 start-page: 189 year: 2008 ident: 10.1016/j.tplants.2020.04.013_bb0240 article-title: Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02345.x – volume: 206 start-page: 107 year: 2015 ident: 10.1016/j.tplants.2020.04.013_bb0150 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytol. doi: 10.1111/nph.13132 – volume: 219 start-page: 518 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0055 article-title: The carboxylate-releasing phosphorus-mobilising strategy could be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply publication-title: New Phytol. doi: 10.1111/nph.15200 – volume: 48 start-page: 777 year: 2000 ident: 10.1016/j.tplants.2020.04.013_bb0035 article-title: Responses of native woody taxa in Banksia woodland to incursion of groundwater and nutrients from bordering agricultural land publication-title: Aust. J. Bot. doi: 10.1071/BT99078 – volume: 53 start-page: 867 year: 1976 ident: 10.1016/j.tplants.2020.04.013_bb0395 article-title: The phytic acid-total phosphorus relationship in barley, oats, soybeans, and wheat publication-title: Cereal Chem. – volume: 65 start-page: 69 year: 2013 ident: 10.1016/j.tplants.2020.04.013_bb0110 article-title: Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.) publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.05.010 – volume: 20 start-page: 718 year: 1972 ident: 10.1016/j.tplants.2020.04.013_bb0390 article-title: Distribution of phytate and nutritionally important elements among the morphological components of cereal grains publication-title: J. Agric. Food Chem. doi: 10.1021/jf60181a021 – volume: 392 start-page: 253 year: 2015 ident: 10.1016/j.tplants.2020.04.013_bb0335 article-title: Does reducing seed-P concentrations affect seedling vigor and grain yield of rice? publication-title: Plant Soil doi: 10.1007/s11104-015-2460-2 – volume: 6 start-page: 458 year: 2001 ident: 10.1016/j.tplants.2020.04.013_bb0305 article-title: Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(01)02104-5 – volume: 25 start-page: 367 year: 2016 ident: 10.1016/j.tplants.2020.04.013_bb0430 article-title: Phytic acid dynamics during seed development and it’s composition in yellow and black Indian soybean (Glycine max L.) genotypes through a modified extraction and HPLC method publication-title: J. Plant Biochem. Biotechnol. doi: 10.1007/s13562-015-0348-0 – volume: 10 start-page: 784 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0275 article-title: Post-silking phosphorus recycling and carbon partitioning in maize under low to high phosphorus inputs and their effects on grain yield publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00784 – volume: 104 start-page: 11192 year: 2007 ident: 10.1016/j.tplants.2020.04.013_bb0160 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0704591104 – volume: 167 start-page: 1131 year: 2004 ident: 10.1016/j.tplants.2020.04.013_bb0405 article-title: Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.06.008 – volume: 12 start-page: 2339 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0115 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: ISME J. doi: 10.1038/s41396-018-0171-4 – volume: 14 start-page: 209 year: 2013 ident: 10.1016/j.tplants.2020.04.013_bb0120 article-title: The plant microbiome publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-209 – volume: 217 start-page: 1420 year: 2018 ident: 10.1016/j.tplants.2020.04.013_bb0105 article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence publication-title: New Phytol. doi: 10.1111/nph.14967 – volume: 156 start-page: 1041 year: 2011 ident: 10.1016/j.tplants.2020.04.013_bb0045 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol. doi: 10.1104/pp.111.175414 – volume: 99 start-page: 5732 year: 2002 ident: 10.1016/j.tplants.2020.04.013_bb0245 article-title: Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.082696499 – volume: 9 start-page: 127 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0060 article-title: Harnessing soil microbes to improve plant phosphate efficiency in cropping systems publication-title: Agronomy doi: 10.3390/agronomy9030127 – volume: 92 start-page: 1001 year: 2012 ident: 10.1016/j.tplants.2020.04.013_bb0015 article-title: World fertilizer nutrient reserves: a view to the future publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.4532 – volume: 31 start-page: 949 year: 2004 ident: 10.1016/j.tplants.2020.04.013_bb0095 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings publication-title: Funct. Plant Biol. doi: 10.1071/FP04046 – volume: 195 start-page: 306 year: 2012 ident: 10.1016/j.tplants.2020.04.013_bb0180 article-title: Opportunities for improving phosphorus-use efficiency in crop plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04190.x – volume: 43 start-page: 251 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0265 article-title: Biomass and nutrient accumulation rates of rice cultivars differing in their growth duration when grown in fertile and low-fertile soils publication-title: J. Plant Nutr. doi: 10.1080/01904167.2019.1676903 – volume: 46 start-page: 67 year: 2006 ident: 10.1016/j.tplants.2020.04.013_bb0415 article-title: Genetic variability for phytic acid phosphorus and inorganic phosphorus in seeds of soybeans in maturity groups V, VI, and VII publication-title: Crop Sci. doi: 10.2135/cropsci2005.0076 – volume: 7 start-page: 1939 year: 2016 ident: 10.1016/j.tplants.2020.04.013_bb0080 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01939 – volume: 85 start-page: 1523 year: 2005 ident: 10.1016/j.tplants.2020.04.013_bb0420 article-title: Phytic acid in Indian soybean: genotypic variability and influence of growing location publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.2151 – volume: 19 start-page: 292 year: 2009 ident: 10.1016/j.tplants.2020.04.013_bb0005 article-title: The story of phosphorus: global food security and food for thought publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 7 start-page: 1664 year: 2016 ident: 10.1016/j.tplants.2020.04.013_bb0085 article-title: Rhizosphere organic anions play a minor role in improving crop species' ability to take up residual phosphorus (P) in agricultural soils low in P availability publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01664 – volume: 109 start-page: 6348 year: 2012 ident: 10.1016/j.tplants.2020.04.013_bb0170 article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1113675109 – volume: 123 start-page: 177 year: 2014 ident: 10.1016/j.tplants.2020.04.013_bb0010 article-title: Phosphorus: its efficient use in agriculture publication-title: Adv. Agron. doi: 10.1016/B978-0-12-420225-2.00005-4 – volume: 51 start-page: 370 year: 2015 ident: 10.1016/j.tplants.2020.04.013_bb0375 article-title: Effects of genotype, seed P concentration and seed priming on seedling vigor of rice publication-title: Exp. Agric. doi: 10.1017/S0014479714000362 – volume: 105 start-page: 1081 year: 2010 ident: 10.1016/j.tplants.2020.04.013_bb0210 article-title: Comparative physiology of elemental distributions in plants publication-title: Ann. Bot. doi: 10.1093/aob/mcq027 – volume: 48 start-page: 1247 year: 2019 ident: 10.1016/j.tplants.2020.04.013_bb0040 article-title: Options for improved phosphorus cycling and use in agriculture at the field and regional scales publication-title: J. Environ. Qual. doi: 10.2134/jeq2019.02.0070 |
SSID | ssj0007186 |
Score | 2.6414394 |
SecondaryResourceType | review_article |
Snippet | We are facing unprecedented phosphorus (P) challenges, namely P scarcity associated with increasing food demand, and an oversupply of P fertilisers, resulting... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 967 |
SubjectTerms | Agricultural management crop genotype Cropping systems Efficiency Environmental impact Eutrophication Fertilizers genotype Genotypes humans Livestock Livestock nutrition nutrient use efficiency Nutrition Phosphorus Phosphorus cycle phosphorus fertilizers phosphorus-use efficiency Photosynthesis phytate phytic acid seed quality soil-plant interactions sustainable agriculture |
Title | Tightening the Phosphorus Cycle through Phosphorus-Efficient Crop Genotypes |
URI | https://dx.doi.org/10.1016/j.tplants.2020.04.013 https://www.ncbi.nlm.nih.gov/pubmed/32414603 https://www.proquest.com/docview/2460791686 https://www.proquest.com/docview/2404042588 https://www.proquest.com/docview/2439418662 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4h2kN7qAp9sC1FqdRrdh3bcZIjXQFLUVGlgrQ3y3YcAUJJtI8Dl_72ziTOQg8UiWPiGSkZ2zOf7ZnPAN-4s0RjXsXMmTKWeWljIiqKLTMZc6WRpaBC4Z_nanYpf8zT-RZMh1oYSqsMvr_36Z23Dm8mwZqT9vp68jsRio7ZUk6onudzqmCXGY3y8Z_7NA_0vaqvvWLEt5feV_FMbsar9payTXCZyFnHeJqIx-LTY_izi0PHb-FNAJDRYf-NO7Dl6114-b1BkHe3C68f8Au-g7MLWnp72vqIEOhFv66aZXvVLNbLaHqH2lG4pedBQ3zUcUpgKIqmi6aNTnzd0Dbt8j1cHh9dTGdxuD0hdrLgqzgxRVUoLi0vaKvCGZ9V3BnEX1Z5brxU2BNpSRPQVWnFU1uqxJS0TDUeRcQH2K6b2u9BxIyoaCWrfMZlKow1uU9QykthE5fLEcjBZtoFanG64eJWDzlkNzqYWpOpNZMaTT2C8Uat7bk1nlLIhw7R_wwSjf7_KdX9oQN1mKXYLhXLEB_nagRfN804v-jQxNS-WZMMujl0bHn-PxlRSGIO5CP42A-OzQ8hYMVgxMSn53_7Z3hFT30K4T5srxZr_wWh0MoedGP9AF4cnp7Nzv8CUs4JXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VggQ9ICiPLhQIEhyz6ziONzn00C4tW7atkNhKezN24qitqiTah9Be-FP8wc4kzrYcSiWkXjN2lIzHM9_Y488An3hqiMY891mqM1_EmfGJqMg3TPdZmmmRhXRQ-PhEDk_Ft0k0WYM_7VkYKqt0vr_x6bW3dk96Tpu96vy89yMIJW2zRZxQPY8nrrJyZJe_MG-b7Rx-wUH-zPnB_ngw9N3VAn4qEj73A53kieTC8ITy-FTbfs5TjeDESMu1FRI_M8rIOtM8ynlkMhnojHI4bbFJiO99AA8Fugu6NqH7-7quBJ29bA57MSL4i66PDfUuuvPqkspbMC_lrKZYDcLbAuJtgLcOfAfP4KlDrN5uo5TnsGaLTXi0VyKqXG7Cxg1CwxcwGlOub2mtxUNk6X0_K2fVWTldzLzBEnt77lqgGwJ_vyaxwNjnDaZl5X21RUnrwrOXcHovOn0F60VZ2C3wmA5zSp2l7XPUsTY6tgG2siI0QRqLDohWZyp1XOZ0pcalaovWLpRTtSJVKyYUqroD3VW3qiHzuKtD3A6I-ssqFQacu7putwOonFtAuZCsj4A8lh34uBLjhKZdGl3YckFt0K-iJ43jf7UJE0FUhbwDrxvjWP0QImSMfix88__f_gEeD8fHR-ro8GT0Fp6QpKlf3Ib1-XRh3yEOm5v3td178PO-J9oVFYhF8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tightening+the+Phosphorus+Cycle+through+Phosphorus-Efficient+Crop+Genotypes&rft.jtitle=Trends+in+plant+science&rft.au=Cong%2C+Wen-Feng&rft.au=Suriyagoda%2C+Lalith+D+B&rft.au=Lambers%2C+Hans&rft.date=2020-10-01&rft.issn=1878-4372&rft.eissn=1878-4372&rft.volume=25&rft.issue=10&rft.spage=967&rft_id=info:doi/10.1016%2Fj.tplants.2020.04.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |