Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction
This paper reports the robust hydrothermal synthesis of N-CDs using the unripe fruit of peach as the carbon precursor and aqueous ammonia as the nitrogen source. The synthesized N-CDs exhibits a good catalytic activity in an alkaline medium (0.1M KOH) with remarkable ORR and highly biocompatible thu...
Saved in:
Published in | Journal of colloid and interface science Vol. 482; pp. 8 - 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports the robust hydrothermal synthesis of N-CDs using the unripe fruit of peach as the carbon precursor and aqueous ammonia as the nitrogen source. The synthesized N-CDs exhibits a good catalytic activity in an alkaline medium (0.1M KOH) with remarkable ORR and highly biocompatible thus it can be used as fluorescence imaging probes. [Display omitted]
This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV–Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production. |
---|---|
AbstractList | This paper reports the robust hydrothermal synthesis of N-CDs using the unripe fruit of peach as the carbon precursor and aqueous ammonia as the nitrogen source. The synthesized N-CDs exhibits a good catalytic activity in an alkaline medium (0.1M KOH) with remarkable ORR and highly biocompatible thus it can be used as fluorescence imaging probes. [Display omitted]
This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV–Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production. This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV-Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production.This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV-Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production. This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon precursor and aqueous ammonia as the nitrogen source. The optical properties of synthesized N-CDs were characterized by ultraviolet visible (UV–Vis) and fluorescence spectroscopy techniques. The synthesized N-CDs were emitted blue light when excitated with a portable UV lamp. The materials with the optical properties were characterized further by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The mean size of the N-CDs was approximately 8nm, as calculated from the HRTEM image. The d-spacing of N-CDs, calculated using Bragg law, was approximately 0.21nm, which was consistent with the interlayer distance calculated from the HRTEM image. FT-IR spectroscopy and XPS revealed the presence of the phytoconstituents functionalities of peach fruit over the N-CDs surface and a high level of nitrogen doping on carbon dots (CDs) was confirmed by XPS studies. These results suggest that the unripe fruit extract of peach is an ideal candidate for the preparation of N-CDs. The resulting N-CDs showed excellent optical properties in water. The synthesized N-CDs exhibited a high fluorescence quantum yield and low cytotoxicity, and can be used as fluorescence imaging probes. In addition, the N-CDs were catalytically activite towards the oxygen reduction reaction (ORR). The N-CDs exhibited good catalytic activity in an alkaline medium (0.1M KOH) with a remarkable ORR of approximately 0.72V vs reversible hydrogen electrode (RHE), and O2 reduction follows mainly a 2 electron pathway by being reduced to hydrogen peroxide. The 2-electron reduction pathway is used in industry for H2O2 production. |
Author | Lee, Yong Rok Edison, Thomas Nesakumar Jebakumar Immanuel Atchudan, Raji |
Author_xml | – sequence: 1 givenname: Raji surname: Atchudan fullname: Atchudan, Raji – sequence: 2 givenname: Thomas Nesakumar Jebakumar Immanuel surname: Edison fullname: Edison, Thomas Nesakumar Jebakumar Immanuel – sequence: 3 givenname: Yong Rok surname: Lee fullname: Lee, Yong Rok email: yrlee@yu.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27479911$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT9vFDEQxS0URC6BL0CBXNLsYu_Z67VEgyL-SRE0UFve8ezh05592F6Ua_nkeLmkoQiVX_F7bzzzrshFiAEJeclZyxnv3-zbPfjcdlW3TLVMDk_IhjMtG8XZ9oJsGOt4o5VWl-Qq5z1jnEupn5HLTgmlNecb8vuLLynuMDQuHtFRsGmMgbpYMo3J73ywxYcdnVI80CUkf0R6RAs_6BQTneYlJsyAodDRR3-wuxW2wVGcEWoy2GLnU_FA492pjqEJ3QLFx1XZv-I5eTrZOeOL-_eafP_w_tvNp-b268fPN-9uGxC6Kw1Xk0OtGR-YFKMQUBdgvbUdStA9jh0XTMBW2kFL4QarJoU4SgQJAzhpt9fk9Tn3mOLPBXMxB1-_Ps82YFyy6Tjv9VZ3g_wvygcu-4EJLSr66h5dxgM6c0z1CulkHk5cgeEMQIo5J5wM-GLXxUuyfjacmbVNszdrm2Zt0zBlapvV2v1jfUh_1PT2bMJ6y18ek8ngMQA6n2olxkX_mP0PCwG7qg |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2017_11_034 crossref_primary_10_1016_j_bios_2017_07_076 crossref_primary_10_1021_acs_energyfuels_3c03743 crossref_primary_10_1021_acsabm_3c00462 crossref_primary_10_1080_21691401_2020_1862134 crossref_primary_10_1007_s12274_024_6966_x crossref_primary_10_1039_D0GC00734J crossref_primary_10_1016_j_jphotochem_2017_09_038 crossref_primary_10_1016_j_nanoen_2023_108718 crossref_primary_10_1016_j_dyepig_2021_109176 crossref_primary_10_1016_j_ccr_2021_214209 crossref_primary_10_1142_S1793292021501563 crossref_primary_10_1016_j_ceramint_2022_10_253 crossref_primary_10_1016_j_microc_2024_110144 crossref_primary_10_1016_j_matchemphys_2024_130164 crossref_primary_10_1021_acssensors_6b00607 crossref_primary_10_1016_j_jphotochem_2019_112336 crossref_primary_10_1039_D0TB01027H crossref_primary_10_1016_j_jphotochem_2022_114097 crossref_primary_10_1016_j_colsurfa_2021_128073 crossref_primary_10_1016_j_jphotochem_2022_114531 crossref_primary_10_1002_app_53250 crossref_primary_10_1002_smll_202405928 crossref_primary_10_1021_acsomega_3c07544 crossref_primary_10_1016_j_carbon_2022_01_001 crossref_primary_10_1016_j_optmat_2020_110796 crossref_primary_10_1016_j_fuel_2021_120558 crossref_primary_10_1016_j_cis_2024_103182 crossref_primary_10_2139_ssrn_4064800 crossref_primary_10_1016_j_jelechem_2018_12_007 crossref_primary_10_1021_acs_langmuir_0c02477 crossref_primary_10_1039_C9NR01224A crossref_primary_10_1016_j_bej_2018_08_012 crossref_primary_10_3390_molecules27155021 crossref_primary_10_1016_j_mattod_2023_02_004 crossref_primary_10_1016_j_snb_2023_133957 crossref_primary_10_1016_j_microc_2024_111488 crossref_primary_10_1039_D4MA00037D crossref_primary_10_1186_s12951_021_00847_y crossref_primary_10_1016_j_aca_2022_339672 crossref_primary_10_1016_j_saa_2024_124752 crossref_primary_10_1080_03067319_2020_1789612 crossref_primary_10_1039_D0FO01350A crossref_primary_10_1016_j_mtcomm_2022_104918 crossref_primary_10_1016_j_talanta_2022_124101 crossref_primary_10_2174_1573411017999210120180236 crossref_primary_10_1016_j_ijhydene_2020_05_056 crossref_primary_10_1002_slct_202104524 crossref_primary_10_1039_D0AN01599G crossref_primary_10_1016_j_nantod_2020_100879 crossref_primary_10_1016_j_microc_2022_108287 crossref_primary_10_3390_chemosensors11070390 crossref_primary_10_1016_j_jlumin_2018_12_017 crossref_primary_10_1016_j_saa_2021_120346 crossref_primary_10_1016_j_molstruc_2024_140504 crossref_primary_10_2139_ssrn_4093000 crossref_primary_10_1039_D4NA00860J crossref_primary_10_1016_j_saa_2020_119285 crossref_primary_10_1016_j_jcis_2016_11_101 crossref_primary_10_1016_j_jcis_2021_08_188 crossref_primary_10_1016_j_nanoso_2024_101104 crossref_primary_10_1080_00387010_2022_2082483 crossref_primary_10_1021_acsomega_0c01527 crossref_primary_10_1016_j_saa_2022_122024 crossref_primary_10_1021_acsami_4c11417 crossref_primary_10_1039_C7RA09785A crossref_primary_10_1149_1945_7111_ab9b9c crossref_primary_10_1016_j_coco_2025_102277 crossref_primary_10_1016_j_envres_2018_12_023 crossref_primary_10_1016_j_jphotochem_2022_114060 crossref_primary_10_1016_j_molliq_2019_111817 crossref_primary_10_1016_j_inoche_2025_113910 crossref_primary_10_1016_j_mtchem_2023_101769 crossref_primary_10_1016_j_jallcom_2018_06_272 crossref_primary_10_1016_j_ceramint_2022_09_321 crossref_primary_10_1016_j_cis_2019_102046 crossref_primary_10_1016_j_microc_2020_105787 crossref_primary_10_1021_acsnano_1c03886 crossref_primary_10_1039_D2NR03321F crossref_primary_10_1088_1757_899X_381_1_012152 crossref_primary_10_1002_aesr_202200062 crossref_primary_10_1016_j_carbon_2024_119202 crossref_primary_10_1007_s13369_020_04904_w crossref_primary_10_1039_D1NJ04479F crossref_primary_10_1016_j_dyepig_2020_109090 crossref_primary_10_1021_acsanm_3c01633 crossref_primary_10_1016_j_nanoso_2023_101074 crossref_primary_10_1002_jhet_3053 crossref_primary_10_1016_j_jphotochem_2018_12_011 crossref_primary_10_1016_j_indcrop_2022_116006 crossref_primary_10_1016_j_dyepig_2022_110886 crossref_primary_10_1016_j_molliq_2020_114711 crossref_primary_10_1039_D0RA06133F crossref_primary_10_1088_1361_6528_aaabea crossref_primary_10_1007_s40242_020_0015_4 crossref_primary_10_1016_j_jphotochem_2020_112438 crossref_primary_10_1016_j_cplett_2020_137646 crossref_primary_10_1149_1945_7111_adb4a6 crossref_primary_10_1016_j_saa_2021_119541 crossref_primary_10_1039_D1NJ03284D crossref_primary_10_1016_j_diamond_2022_109394 crossref_primary_10_1016_j_ijbiomac_2024_131919 crossref_primary_10_1039_D2RA01236G crossref_primary_10_1557_s43580_024_01024_7 crossref_primary_10_1016_j_snb_2024_135630 crossref_primary_10_1016_j_jphotochem_2023_114625 crossref_primary_10_1098_rsos_220609 crossref_primary_10_1016_j_talanta_2022_123706 crossref_primary_10_1002_bio_4867 crossref_primary_10_1039_D1RA04351J crossref_primary_10_1002_ppsc_201700387 crossref_primary_10_1080_03067319_2021_1934463 crossref_primary_10_1002_smll_202102091 crossref_primary_10_3390_jfb14010027 crossref_primary_10_1016_j_colsurfb_2023_113173 crossref_primary_10_1007_s11696_022_02563_9 crossref_primary_10_1002_cctc_202301760 crossref_primary_10_1007_s10311_024_01779_3 crossref_primary_10_1007_s11705_022_2239_y crossref_primary_10_1016_j_jphotochem_2019_02_023 crossref_primary_10_1016_j_jaap_2024_106688 crossref_primary_10_1002_bio_70089 crossref_primary_10_1016_j_carbon_2023_118653 crossref_primary_10_1016_j_microc_2022_107742 crossref_primary_10_1039_C8DT02445F crossref_primary_10_1016_j_ijhydene_2020_07_262 crossref_primary_10_1002_admi_202101633 crossref_primary_10_1002_bio_3794 crossref_primary_10_1016_j_apsusc_2022_152649 crossref_primary_10_1016_j_jiec_2018_06_005 crossref_primary_10_54644_jte_74_2023_1336 crossref_primary_10_1007_s10854_023_09929_z crossref_primary_10_1002_aoc_7696 crossref_primary_10_1002_bio_4084 crossref_primary_10_1016_j_chemosphere_2021_131760 crossref_primary_10_1007_s10854_022_08226_5 crossref_primary_10_1016_j_talanta_2020_122050 crossref_primary_10_1007_s10904_024_03141_0 crossref_primary_10_1016_j_apsusc_2024_159999 crossref_primary_10_1016_j_fuel_2020_117821 crossref_primary_10_1039_D2NJ03915J crossref_primary_10_1002_slct_202102135 crossref_primary_10_1016_j_cej_2023_145559 crossref_primary_10_1016_j_trac_2020_116109 crossref_primary_10_1016_j_jcis_2019_04_058 crossref_primary_10_1007_s10895_019_02474_1 crossref_primary_10_1007_s11051_020_04917_4 crossref_primary_10_1016_j_jcis_2020_10_138 crossref_primary_10_1016_j_diamond_2022_108874 crossref_primary_10_1016_j_indcrop_2021_114439 crossref_primary_10_1039_C8NJ04754E crossref_primary_10_1016_j_arabjc_2023_104789 crossref_primary_10_1016_j_snb_2017_07_051 crossref_primary_10_1016_j_fuel_2020_118235 crossref_primary_10_1016_j_aca_2023_341533 crossref_primary_10_1016_j_cej_2021_130603 crossref_primary_10_1002_bit_28148 crossref_primary_10_1186_s11671_016_1750_9 crossref_primary_10_1016_j_surfin_2025_105784 crossref_primary_10_1002_slct_202100468 crossref_primary_10_1016_j_saa_2021_120295 crossref_primary_10_1002_admi_202002091 crossref_primary_10_1016_j_inoche_2022_109317 crossref_primary_10_1016_j_physe_2020_114417 crossref_primary_10_1039_D3NR04893D crossref_primary_10_1007_s10570_020_03637_1 crossref_primary_10_1016_j_molliq_2022_120809 crossref_primary_10_1080_10826076_2017_1280681 crossref_primary_10_1142_S1793292022500618 crossref_primary_10_1016_j_electacta_2021_139816 crossref_primary_10_1002_aelm_202400834 crossref_primary_10_1007_s42823_023_00666_1 crossref_primary_10_1016_j_microc_2019_104528 crossref_primary_10_3390_foods10092043 crossref_primary_10_1002_cssc_202102486 crossref_primary_10_1016_j_jece_2021_105802 crossref_primary_10_1039_D0NJ04014B crossref_primary_10_3390_w14091456 crossref_primary_10_1016_j_optmat_2021_110892 crossref_primary_10_2147_IJN_S334012 crossref_primary_10_1016_j_apsusc_2016_10_030 crossref_primary_10_1021_acsabm_4c00148 crossref_primary_10_1007_s11051_017_3888_5 crossref_primary_10_1016_j_dyepig_2019_02_029 crossref_primary_10_1016_j_cej_2024_158213 crossref_primary_10_1016_j_jece_2024_113932 crossref_primary_10_1016_j_diamond_2021_108437 crossref_primary_10_33961_jecst_2020_00934 crossref_primary_10_1007_s00604_017_2493_8 crossref_primary_10_1016_j_aca_2018_06_003 crossref_primary_10_1016_j_indcrop_2023_117243 crossref_primary_10_1039_C9QM00415G crossref_primary_10_1016_j_microc_2020_105604 crossref_primary_10_3390_catal12090937 crossref_primary_10_1088_1748_605X_acdeb8 crossref_primary_10_1016_j_saa_2019_117485 crossref_primary_10_1021_acsomega_2c00092 crossref_primary_10_3390_chemosensors9110301 crossref_primary_10_1016_j_matchemphys_2021_125277 crossref_primary_10_1080_10408347_2021_1977608 crossref_primary_10_1007_s40097_022_00483_4 crossref_primary_10_3389_fenrg_2022_871617 crossref_primary_10_1021_acsami_8b13545 crossref_primary_10_1016_j_cej_2021_133101 crossref_primary_10_1016_j_apsusc_2017_06_225 crossref_primary_10_1007_s12649_020_01132_z crossref_primary_10_1016_j_apsusc_2021_152006 crossref_primary_10_1016_j_msec_2019_110429 crossref_primary_10_1016_j_jallcom_2018_04_034 crossref_primary_10_1021_acsomega_8b03674 crossref_primary_10_1039_D3SU00456B crossref_primary_10_1002_advs_202206386 crossref_primary_10_1007_s11051_018_4141_6 crossref_primary_10_1039_D2AY01182D crossref_primary_10_1142_S1793292022500862 crossref_primary_10_3390_catal10121472 crossref_primary_10_1002_adma_202201031 crossref_primary_10_1007_s40243_018_0116_x crossref_primary_10_1016_j_jhazmat_2018_04_038 crossref_primary_10_1016_j_snb_2017_02_119 crossref_primary_10_1016_j_ijhydene_2025_01_137 crossref_primary_10_1016_j_molstruc_2025_141966 crossref_primary_10_1021_acsanm_2c01170 crossref_primary_10_1016_j_ijbiomac_2022_09_276 crossref_primary_10_3390_polym17030365 crossref_primary_10_1039_C8NJ05421E crossref_primary_10_1016_j_matpr_2020_04_195 crossref_primary_10_1016_j_chemosphere_2024_142432 crossref_primary_10_1039_D5RA00501A crossref_primary_10_1016_j_micromeso_2024_113230 crossref_primary_10_1016_j_colsurfa_2021_128149 crossref_primary_10_1039_C8RA08088G crossref_primary_10_1016_j_aca_2024_343236 crossref_primary_10_3390_ma13010067 crossref_primary_10_55713_jmmm_v34i2_1957 crossref_primary_10_1002_bio_4459 crossref_primary_10_3390_molecules26061534 crossref_primary_10_1007_s42823_024_00791_5 crossref_primary_10_1007_s00604_022_05481_5 crossref_primary_10_1021_acssuschemeng_0c06260 crossref_primary_10_1039_D0TB01334J crossref_primary_10_1016_j_mtcomm_2023_106991 crossref_primary_10_1016_j_snb_2018_11_024 crossref_primary_10_1021_acsomega_3c04596 crossref_primary_10_1016_j_apsusc_2018_10_116 crossref_primary_10_1016_j_ijhydene_2018_05_108 crossref_primary_10_1016_j_mtsust_2022_100273 crossref_primary_10_1021_acsanm_4c05811 crossref_primary_10_2217_nnm_2019_0369 crossref_primary_10_1002_cbdv_202401350 crossref_primary_10_1021_acsnano_2c00758 crossref_primary_10_1016_j_colsurfa_2019_04_067 crossref_primary_10_1016_j_ceramint_2025_01_117 crossref_primary_10_1016_j_snb_2017_03_123 crossref_primary_10_1021_acsanm_3c02792 crossref_primary_10_1002_slct_202201641 crossref_primary_10_1016_j_indcrop_2022_115568 crossref_primary_10_1016_j_saa_2022_122039 crossref_primary_10_1039_D2RA05623B crossref_primary_10_1016_j_colsurfb_2018_05_032 crossref_primary_10_3390_nano12213905 crossref_primary_10_1039_C8RA10051A crossref_primary_10_1016_j_jtice_2022_104462 crossref_primary_10_1016_j_apsusc_2018_10_206 crossref_primary_10_1007_s10895_024_03598_9 crossref_primary_10_3389_fphar_2022_815479 crossref_primary_10_1016_j_jphotochem_2017_01_021 crossref_primary_10_1016_j_jphotochem_2016_10_021 crossref_primary_10_3390_c5020019 crossref_primary_10_3390_chemosensors9070166 crossref_primary_10_1016_j_snb_2021_129943 crossref_primary_10_1016_j_cej_2024_157433 crossref_primary_10_1016_j_susmat_2024_e01004 crossref_primary_10_1007_s11696_025_03961_5 crossref_primary_10_1016_j_cej_2019_122665 crossref_primary_10_1016_j_heliyon_2022_e12396 crossref_primary_10_1016_j_physe_2021_115010 crossref_primary_10_1007_s10876_022_02337_z crossref_primary_10_1007_s00418_018_1753_y crossref_primary_10_1016_j_ensm_2024_103463 crossref_primary_10_1016_j_mtsust_2021_100075 crossref_primary_10_1039_D1AY02105B crossref_primary_10_1039_D2NJ01401G crossref_primary_10_1080_23802693_2017_1421506 crossref_primary_10_1016_j_optmat_2018_02_029 crossref_primary_10_1142_S1793292022500023 crossref_primary_10_1016_j_envres_2021_112365 crossref_primary_10_1016_j_pmatsci_2018_12_002 crossref_primary_10_1007_s10895_023_03483_x crossref_primary_10_1021_acsomega_2c01795 crossref_primary_10_1016_j_jphotochem_2018_10_052 crossref_primary_10_1016_j_jelechem_2018_03_059 crossref_primary_10_1016_j_ijhydene_2017_04_228 crossref_primary_10_1039_C7NJ02163A crossref_primary_10_3390_polym15122660 crossref_primary_10_1016_j_ijhydene_2018_08_183 crossref_primary_10_1016_j_jphotobiol_2017_02_007 crossref_primary_10_1111_jace_19642 crossref_primary_10_1007_s42823_024_00742_0 crossref_primary_10_1016_j_arabjc_2022_104520 crossref_primary_10_1016_j_mtcomm_2024_108689 crossref_primary_10_1007_s10311_020_00984_0 crossref_primary_10_1016_j_chemosphere_2023_140656 crossref_primary_10_1021_acssuschemeng_9b00325 crossref_primary_10_1016_j_desal_2023_116888 |
Cites_doi | 10.1039/C4FD00088A 10.1016/j.carbon.2016.04.003 10.1021/la5031813 10.1016/j.jcis.2015.10.039 10.1002/ange.201408422 10.1016/j.msec.2014.01.038 10.1126/sciadv.1400129 10.1016/j.jlumin.2016.02.035 10.1016/j.matlet.2015.10.004 10.1039/c3ra43330g 10.1021/jp5113894 10.1039/C4TC01139B 10.1039/C4CC01841A 10.1016/j.msec.2015.09.066 10.1039/C4NJ00840E 10.1177/1082013205057943 10.1016/j.talanta.2015.12.047 10.1016/j.elecom.2013.05.019 10.1016/j.saa.2014.05.008 10.1016/j.matlet.2015.12.022 10.1016/j.apsusc.2014.11.042 10.1039/C5TB00575B 10.1016/j.apsusc.2015.03.029 10.1016/j.msec.2013.03.018 10.1016/j.micromeso.2015.05.032 10.1007/s11051-014-2646-1 10.1038/nmat3795 10.1016/j.snb.2015.02.104 10.1039/C6SC00139D 10.1016/j.msec.2014.11.035 10.1039/C5CY02270C 10.1021/jacs.5b10669 10.1016/j.saa.2015.07.034 10.1016/j.snb.2015.05.006 10.1039/c4tb00368c 10.1039/C4RA02336F 10.1016/j.apsusc.2016.03.153 10.1039/C4RA06594H 10.1016/j.jphotobiol.2016.05.017 10.1039/C3AN02098C 10.1039/C4AN01869A 10.1016/j.ultsonch.2015.08.005 10.1039/c3tb20418a 10.1039/C5AN00454C 10.1021/ja309270h 10.1016/j.talanta.2015.12.024 10.1039/C5RA24621K 10.1016/j.catcom.2016.01.030 10.1021/jz402090d 10.1016/j.micromeso.2013.03.035 10.1016/S0308-8146(01)00261-8 10.1016/j.apsusc.2016.05.054 10.1016/j.bios.2016.03.018 10.1039/c3nj01068f 10.1039/c3cs60309a 10.1016/j.talanta.2016.02.018 10.1007/s10895-015-1595-0 10.1021/acsami.5b07255 10.1039/C4CC00440J 10.1039/C5RA15288G 10.1016/j.micromeso.2012.08.031 10.1016/j.bios.2014.12.027 10.1021/am4007897 10.1039/c3ra47577h 10.1039/C4AY02737J 10.1016/j.jphotobiol.2016.03.010 10.1016/j.snb.2015.09.081 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2016.07.058 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 18 |
ExternalDocumentID | 27479911 10_1016_j_jcis_2016_07_058 S0021979716305173 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c492t-17fde99018054b44c99106aa2e5c96eb21404c35a8954d8a7f7eeb5ec5c8cd5a3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Jul 10 23:36:32 EDT 2025 Thu Jul 10 23:46:43 EDT 2025 Wed Feb 19 01:59:38 EST 2025 Tue Jul 01 01:18:17 EDT 2025 Thu Apr 24 23:06:57 EDT 2025 Fri Feb 23 02:33:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluorescence Carbon dot Bioimaging Hydrothermal-carbonization Oxygen reduction reaction Peach |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-17fde99018054b44c99106aa2e5c96eb21404c35a8954d8a7f7eeb5ec5c8cd5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27479911 |
PQID | 1815680494 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2116939285 proquest_miscellaneous_1815680494 pubmed_primary_27479911 crossref_citationtrail_10_1016_j_jcis_2016_07_058 crossref_primary_10_1016_j_jcis_2016_07_058 elsevier_sciencedirect_doi_10_1016_j_jcis_2016_07_058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-15 |
PublicationDateYYYYMMDD | 2016-11-15 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cascales, Costell, Romojaro (b0090) 2005; 11 Liu, Liu, Luo, Gao (b0025) 2014; 4 Chen, Zhao, Li, Fan, Ding, Liang, Chen (b0010) 2016; 376 Mehta, Jha, Singhal, Kailasa (b0340) 2014; 38 Atchudan, Edison, Sethuraman, Lee (b0075) 2016; 384 Yuan, Li, Liu, Xu, Xiong (b0255) 2015; 140 Dong, Pang, Yang, Jiang, Chi, Yu (b0130) 2014; 4 Hu, An, Li (b0220) 2016; 58 Wang, Wang, Wang, Dou, Ma, Wu, Tao, Shen, Ouyang, Liu, Wang (b0295) 2014; 50 Barati, Shamsipur, Arkan, Hosseinzadeh, Abdollahi (b0055) 2015; 47 D’souza, Deshmukh, Bhamore, Rawat, Lenka, Kailasa (b0285) 2016; 6 Cao, Ma, Lin, Yao, Li, Weng, Lin (b0250) 2015; 151 Li, Zhang, Dai, Li (b0120) 2012; 134 Atchudan, Perumal, Edison, Lee (b0190) 2015; 5 Mewada, Pandey, Shinde, Mishra, Oza, Thakur, Sharon, Sharon (b0060) 2013; 33 Li, Yue, Wang, Zhang, Liu (b0050) 2013; 3 Dhingra, Sharma, Kar (b0085) 2014; 132 Bikkarolla, Cumpson, Joseph, Papakonstantinou (b0300) 2014; 173 Gong, Lu, Liu, Li, Shuang, Dong, Choi (b0245) 2015; 3 Kumar, Porat, Gedanken (b0265) 2016; 28 Qaseem, Chen, Wu, Johnston (b0310) 2016; 6 Choi, Kwon, Yook, Shin, Kim, Choi (b0325) 2014; 118 Jiang, Sun, Zhang, Wang, Cai, Lin (b0335) 2015; 7 Jana, Ganguly, Das, Dhara, Negishi, Pal (b0035) 2016; 150 Kasibabu, D’souza, Jha, Kailasa (b0065) 2015; 25 Zhang, Cui, Zhang, Feng, Wang, Yang, Liu (b0215) 2016; 152 Kim, Lee, Song, Bae, Yi (b0315) 2016; 78 Chen, Wu, Weng, Wang, Lia (b0030) 2016; 223 Prasad, Ofomaja, Naidoo (b0235) 2015; 327 Kasibabu, D’souza, Jha, Singhal, Basuc, Kailasa (b0110) 2015; 7 Yan, Wu, Zheng, Wang, Huang, Ding, Guo, Wang (b0330) 2014; 4 Edison, Atchudan, Shim, Kalimuthu, Ahn, Lee (b0230) 2016; 158 Atchudan, Perumal, Karthikeyan, Pandurangan, Lee (b0205) 2015; 215 Wilson, Flaherty (b0140) 2016; 138 Dong, Su, Geng, Li, Yang, Li, Zhang (b0175) 2014; 2 Gupta, Verma, Khan, Nandi (b0200) 2016; 81 Stefanakis, Philippidis, Sygellou, Filippidis, Ghanotakis, Anglos (b0260) 2014; 16 Che, Zhu, Wang, Duan, Zhang, Li (b0020) 2016; 463 Shimizu, Sepunaru, Compton (b0320) 2016; 7 Mehta, Jha, Kailasa (b0160) 2014; 38 Xu, Li, Wang, He, Shi, Tang, Fan (b0100) 2014; 43 Niu, Gao, Wang, Xin, Zhang, Wang, Guo, Liu, Gao, Wang (b0225) 2014; 38 Wang, Zhang, Bai, Han, Dong (b0125) 2013; 34 Atchudan, Perumal, Edison, Lee (b0180) 2016; 166 Liu, Jin, Zhang (b0290) 2013; 5 Edison, Atchudan, Shim, Sethuraman, Lee (b0270) 2016; 161 Sachdev, Gopinath (b0070) 2015; 140 Atchudan, Pandurangan, Joo (b0195) 2013; 175 Atchudan, Pandurangan (b0210) 2013; 167 Wang, Lu, Huang, Feng, Chen, Wang (b0040) 2014; 139 Xue, Zhang, Zhan, Zou, Huang, Zhao (b0170) 2016; 150 Lakowicz (b0150) 1999 Wang, Yin, Jain, Zhou (b0155) 2014; 30 Lu, Jiang, Gao, Chen (b0135) 2014; 50 Song, Quan, Xu, Liu, Cuia, Liu (b0185) 2016; 104 Mehta, Jha, Basu, Singhal, Kailasa (b0095) 2015; 213 Saidi (b0115) 2013; 4 Yakoubi, Chaabane, Aboulaich, Mahiou, Balan, Medjahdi, Schneider (b0005) 2016; 175 Siahrostami, Casadevall, Karamad, Deiana, Malacrida, Wickman, Escribano, Paoli, Frydendal, Hansen, Chorkendorff, Stephens, Rossmeisl (b0145) 2013; 12 Teng, Ma, Ge, Yan, Yang, Zhang, Morais, Bi (b0165) 2014; 2 Shui, Wang, Du, Dai (b0305) 2015; 1 Gu, Hu, Wang, Zhang, Meng, Jia, Xi (b0240) 2015; 68 Zeng, Ma, Wang, Chen, Zhou, Zheng, Yu, Huang (b0280) 2015; 342 Bae, Paik, Yi (b0015) 2016; 162 Wu, Zhang, Gao, Liu, Wang, Leng, Huang (b0045) 2013; 1 Versari, Castellari, Parpinello, Riponi, Galassi (b0080) 2002; 76 Niu, Li, Zhu, Shan, Fan, Zhang (b0105) 2015; 218 Chen, Jin, Wu, Tung, Tang (b0275) 2014; 126 Wu (10.1016/j.jcis.2016.07.058_b0045) 2013; 1 Liu (10.1016/j.jcis.2016.07.058_b0290) 2013; 5 Teng (10.1016/j.jcis.2016.07.058_b0165) 2014; 2 Atchudan (10.1016/j.jcis.2016.07.058_b0210) 2013; 167 Jana (10.1016/j.jcis.2016.07.058_b0035) 2016; 150 Qaseem (10.1016/j.jcis.2016.07.058_b0310) 2016; 6 Mehta (10.1016/j.jcis.2016.07.058_b0095) 2015; 213 Atchudan (10.1016/j.jcis.2016.07.058_b0180) 2016; 166 Prasad (10.1016/j.jcis.2016.07.058_b0235) 2015; 327 Niu (10.1016/j.jcis.2016.07.058_b0225) 2014; 38 Kasibabu (10.1016/j.jcis.2016.07.058_b0065) 2015; 25 Kumar (10.1016/j.jcis.2016.07.058_b0265) 2016; 28 Che (10.1016/j.jcis.2016.07.058_b0020) 2016; 463 Yuan (10.1016/j.jcis.2016.07.058_b0255) 2015; 140 Dhingra (10.1016/j.jcis.2016.07.058_b0085) 2014; 132 Cao (10.1016/j.jcis.2016.07.058_b0250) 2015; 151 Cascales (10.1016/j.jcis.2016.07.058_b0090) 2005; 11 Song (10.1016/j.jcis.2016.07.058_b0185) 2016; 104 Kim (10.1016/j.jcis.2016.07.058_b0315) 2016; 78 Atchudan (10.1016/j.jcis.2016.07.058_b0205) 2015; 215 Barati (10.1016/j.jcis.2016.07.058_b0055) 2015; 47 Sachdev (10.1016/j.jcis.2016.07.058_b0070) 2015; 140 Versari (10.1016/j.jcis.2016.07.058_b0080) 2002; 76 Li (10.1016/j.jcis.2016.07.058_b0120) 2012; 134 Xue (10.1016/j.jcis.2016.07.058_b0170) 2016; 150 Shimizu (10.1016/j.jcis.2016.07.058_b0320) 2016; 7 Gu (10.1016/j.jcis.2016.07.058_b0240) 2015; 68 Wang (10.1016/j.jcis.2016.07.058_b0295) 2014; 50 Atchudan (10.1016/j.jcis.2016.07.058_b0075) 2016; 384 Edison (10.1016/j.jcis.2016.07.058_b0230) 2016; 158 Yan (10.1016/j.jcis.2016.07.058_b0330) 2014; 4 Mehta (10.1016/j.jcis.2016.07.058_b0340) 2014; 38 Stefanakis (10.1016/j.jcis.2016.07.058_b0260) 2014; 16 Yakoubi (10.1016/j.jcis.2016.07.058_b0005) 2016; 175 Shui (10.1016/j.jcis.2016.07.058_b0305) 2015; 1 Saidi (10.1016/j.jcis.2016.07.058_b0115) 2013; 4 Gong (10.1016/j.jcis.2016.07.058_b0245) 2015; 3 Jiang (10.1016/j.jcis.2016.07.058_b0335) 2015; 7 Wang (10.1016/j.jcis.2016.07.058_b0125) 2013; 34 Zhang (10.1016/j.jcis.2016.07.058_b0215) 2016; 152 Zeng (10.1016/j.jcis.2016.07.058_b0280) 2015; 342 Wang (10.1016/j.jcis.2016.07.058_b0155) 2014; 30 Wilson (10.1016/j.jcis.2016.07.058_b0140) 2016; 138 Choi (10.1016/j.jcis.2016.07.058_b0325) 2014; 118 Hu (10.1016/j.jcis.2016.07.058_b0220) 2016; 58 Bae (10.1016/j.jcis.2016.07.058_b0015) 2016; 162 Dong (10.1016/j.jcis.2016.07.058_b0130) 2014; 4 Xu (10.1016/j.jcis.2016.07.058_b0100) 2014; 43 Chen (10.1016/j.jcis.2016.07.058_b0010) 2016; 376 Mehta (10.1016/j.jcis.2016.07.058_b0160) 2014; 38 Li (10.1016/j.jcis.2016.07.058_b0050) 2013; 3 Atchudan (10.1016/j.jcis.2016.07.058_b0190) 2015; 5 Atchudan (10.1016/j.jcis.2016.07.058_b0195) 2013; 175 Edison (10.1016/j.jcis.2016.07.058_b0270) 2016; 161 Lu (10.1016/j.jcis.2016.07.058_b0135) 2014; 50 Bikkarolla (10.1016/j.jcis.2016.07.058_b0300) 2014; 173 Niu (10.1016/j.jcis.2016.07.058_b0105) 2015; 218 Gupta (10.1016/j.jcis.2016.07.058_b0200) 2016; 81 Liu (10.1016/j.jcis.2016.07.058_b0025) 2014; 4 Kasibabu (10.1016/j.jcis.2016.07.058_b0110) 2015; 7 Chen (10.1016/j.jcis.2016.07.058_b0030) 2016; 223 Wang (10.1016/j.jcis.2016.07.058_b0040) 2014; 139 D’souza (10.1016/j.jcis.2016.07.058_b0285) 2016; 6 Dong (10.1016/j.jcis.2016.07.058_b0175) 2014; 2 Lakowicz (10.1016/j.jcis.2016.07.058_b0150) 1999 Mewada (10.1016/j.jcis.2016.07.058_b0060) 2013; 33 Chen (10.1016/j.jcis.2016.07.058_b0275) 2014; 126 Siahrostami (10.1016/j.jcis.2016.07.058_b0145) 2013; 12 |
References_xml | – volume: 140 start-page: 1428 year: 2015 end-page: 1431 ident: b0255 article-title: Nitrogen-doped carbon dots from plant cytoplasm as selective and sensitive fluorescent probes for detecting P-nitroaniline in both aqueous and soil systems publication-title: Analyst – volume: 342 start-page: 136 year: 2015 end-page: 143 ident: b0280 article-title: N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids publication-title: Appl. Surf. Sci. – volume: 28 start-page: 367 year: 2016 end-page: 375 ident: b0265 article-title: Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots publication-title: Ultrason. Sonochem. – volume: 4 start-page: 7648 year: 2014 end-page: 7654 ident: b0025 article-title: One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties publication-title: RSC Adv. – volume: 38 start-page: 1522 year: 2014 end-page: 1527 ident: b0225 article-title: Facile synthesis and optical properties of nitrogen-doped carbon dots publication-title: New J. Chem. – volume: 34 start-page: 68 year: 2013 end-page: 72 ident: b0125 article-title: Nitrogen, cobalt-codoped carbon electrocatalyst for oxygen reduction reaction using soy milk and cobalt salts as precursors publication-title: Electrochem. Commun. – volume: 58 start-page: 730 year: 2016 end-page: 736 ident: b0220 article-title: Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications publication-title: Mater., Sci. Eng. C – volume: 173 start-page: 415 year: 2014 end-page: 428 ident: b0300 article-title: Oxygen reduction reaction by electrochemically reduced graphene oxide publication-title: Faraday Discuss. – volume: 4 start-page: 4160 year: 2013 end-page: 4165 ident: b0115 article-title: Oxygen reduction electrocatalysis using N-doped graphene quantum-dots publication-title: J. Phys. Chem. Lett. – volume: 76 start-page: 181 year: 2002 end-page: 185 ident: b0080 article-title: Characterisation of peach juices obtained from cultivars Redhaven, Suncrest and Maria Marta grown in Italy publication-title: Food Chem. – volume: 213 start-page: 434 year: 2015 end-page: 443 ident: b0095 article-title: One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells publication-title: Sens. Actuat. B – volume: 5 start-page: 5002 year: 2013 end-page: 5008 ident: b0290 article-title: NiCo publication-title: ACS Appl. Mater. Interf. – volume: 223 start-page: 689 year: 2016 end-page: 696 ident: b0030 article-title: Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging publication-title: Sens. Actuat. B – volume: 16 start-page: 2646 year: 2014 end-page: 2655 ident: b0260 article-title: Synthesis of fluorescent carbon dots by a microwave heating process, structural characterization and cell imaging applications publication-title: J. Nanopart. Res. – volume: 3 start-page: 6813 year: 2015 end-page: 6819 ident: b0245 article-title: Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging publication-title: J. Mater. Chem. B – volume: 30 start-page: 14270 year: 2014 end-page: 14275 ident: b0155 article-title: Aqueous phase synthesis of highly luminescent, nitrogen-doped carbon dots and their application as bioimaging agents publication-title: Langmuir – volume: 134 start-page: 18932 year: 2012 end-page: 18935 ident: b0120 article-title: Nitrogen-doped colloidal graphene quantum dots and their size dependent electrocatalytic activity for the oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 6152 year: 2014 end-page: 6160 ident: b0340 article-title: Preparation of multicolor emitting carbon dots for HeLa cell imaging publication-title: New J. Chem. – volume: 150 start-page: 253 year: 2016 end-page: 264 ident: b0035 article-title: One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging publication-title: Talanta – volume: 38 start-page: 20 year: 2014 end-page: 27 ident: b0160 article-title: One-pot green synthesis of carbon dots by using publication-title: Mater. Sci. Eng., C – volume: 139 start-page: 1692 year: 2014 end-page: 1696 ident: b0040 article-title: Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging publication-title: Analyst – volume: 1 start-page: e1400129 year: 2015 ident: b0305 article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells publication-title: Sci. Adv. – volume: 25 start-page: 803 year: 2015 end-page: 810 ident: b0065 article-title: Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice publication-title: J. Fluoresc. – volume: 158 start-page: 235 year: 2016 end-page: 242 ident: b0230 article-title: Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging publication-title: J. Photoch. Photobio. B – volume: 126 start-page: 12750 year: 2014 end-page: 12755 ident: b0275 article-title: Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications publication-title: Angew. Chem. – volume: 12 start-page: 1137 year: 2013 end-page: 1143 ident: b0145 article-title: Enabling direct H publication-title: Nat. Mater. – volume: 3 start-page: 20662 year: 2013 end-page: 20665 ident: b0050 article-title: An absolutely green approach to fabricate carbon nanodots from soya bean grounds publication-title: RSC Adv. – volume: 140 start-page: 4260 year: 2015 end-page: 4269 ident: b0070 article-title: Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents publication-title: Analyst – volume: 4 start-page: 23097 year: 2014 end-page: 23106 ident: b0330 article-title: Graphene quantum dots cut from graphene flakes: high electrocatalytic activity for oxygen reduction and low cytotoxicity publication-title: RSC Adv. – volume: 11 start-page: 345 year: 2005 end-page: 352 ident: b0090 article-title: Effects of the degree of maturity on the chemical composition, physical characteristics and sensory attributes of peach ( publication-title: Food Sci. Tech. Int. – volume: 376 start-page: 133 year: 2016 end-page: 137 ident: b0010 article-title: Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection publication-title: Appl. Sur. Sci. – volume: 50 start-page: 8464 year: 2014 end-page: 8467 ident: b0135 article-title: Charge state-dependent catalytic activity of [Au publication-title: Chem. Commun. – volume: 175 start-page: 161 year: 2013 end-page: 169 ident: b0195 article-title: Synthesis of multilayer graphene balls on mesoporous Co-MCM-41 molecular sieves by chemical vapour deposition method publication-title: Micropor. Mesopor. Mater. – volume: 43 start-page: 2650 year: 2014 end-page: 2661 ident: b0100 article-title: Nanoscale optical probes for cellular imaging publication-title: Chem. Soc. Rev. – volume: 218 start-page: 229 year: 2015 end-page: 236 ident: b0105 article-title: Ethylenediamine-assisted hydrothermal synthesis of nitrogen-dopedcarbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging publication-title: Sens. Actuat. B – volume: 4 start-page: 32791 year: 2014 end-page: 32795 ident: b0130 article-title: Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their electrocatalysis for oxygen reduction reaction publication-title: RSC Adv. – volume: 6 start-page: 12169 year: 2016 end-page: 12179 ident: b0285 article-title: Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system publication-title: RSC Adv. – volume: 50 start-page: 4839 year: 2014 end-page: 4842 ident: b0295 article-title: One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction publication-title: Chem. Commun. – volume: 152 start-page: 288 year: 2016 end-page: 300 ident: b0215 article-title: Fluorescent probes for “off–on” highly sensitive detection of Hg publication-title: Talanta – volume: 138 start-page: 574 year: 2016 end-page: 586 ident: b0140 article-title: Mechanism for the direct synthesis of H publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 3364 year: 2016 end-page: 3369 ident: b0320 article-title: Innovative catalyst design for the oxygen reduction reaction for fuel cells publication-title: Chem. Sci. – volume: 7 start-page: 2373 year: 2015 end-page: 2378 ident: b0110 article-title: One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells publication-title: Anal. Methods – volume: 162 start-page: 230 year: 2016 end-page: 234 ident: b0015 article-title: Novel semiconducting CdSe quantum dot based electrochemical capacitors publication-title: Mater. Lett. – volume: 150 start-page: 324 year: 2016 end-page: 330 ident: b0170 article-title: Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging publication-title: Talanta – year: 1999 ident: b0150 article-title: Principles of Fluorescence Spectroscopy – volume: 151 start-page: 875 year: 2015 end-page: 880 ident: b0250 article-title: A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions publication-title: Spectrochim. Acta A – volume: 47 start-page: 325 year: 2015 end-page: 332 ident: b0055 article-title: Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology publication-title: Mater. Sci. Eng., C – volume: 2 start-page: 4631 year: 2014 end-page: 4639 ident: b0165 article-title: Green synthesis of nitrogen-doped carbon dots from konjac flour with “off–on” fluorescence by Fe publication-title: J. Mater. Chem. B – volume: 7 start-page: 23231 year: 2015 end-page: 23238 ident: b0335 article-title: Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing publication-title: ACS Appl. Mater. Interf. – volume: 384 start-page: 432 year: 2016 end-page: 441 ident: b0075 article-title: Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of publication-title: Appl. Surf. Sci. – volume: 2 start-page: 7477 year: 2014 end-page: 7481 ident: b0175 article-title: Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine publication-title: J. Mater. Chem. C – volume: 1 start-page: 2868 year: 2013 end-page: 2873 ident: b0045 article-title: One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins publication-title: J. Mater. Chem. B – volume: 33 start-page: 2914 year: 2013 end-page: 2917 ident: b0060 article-title: Green synthesis of biocompatible carbon dots using aqueous extract of publication-title: Mater. Sci. Eng., C – volume: 78 start-page: 1 year: 2016 end-page: 6 ident: b0315 article-title: Highly efficient supporting material derived from used cigarette filter for oxygen reduction reaction publication-title: Catal. Commun. – volume: 81 start-page: 465 year: 2016 end-page: 472 ident: b0200 article-title: Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection publication-title: Biosens. Bioelectron. – volume: 166 start-page: 145 year: 2016 end-page: 149 ident: b0180 article-title: Facile synthesis of monodisperse hollow carbon nanospheres using Sucrose by carbonization route publication-title: Mater. Lett. – volume: 327 start-page: 13 year: 2015 end-page: 21 ident: b0235 article-title: Preparation of CN-dots/F-NiO nanocomposite for enhanced photocatalytic degradation of selected organic pollutants publication-title: Appl. Surf. Sci. – volume: 463 start-page: 1 year: 2016 end-page: 7 ident: b0020 article-title: Aqueous synthesis of high bright and tunable near-infrared AgInSe publication-title: J. Colloid Interf. Sci. – volume: 104 start-page: 169 year: 2016 end-page: 178 ident: b0185 article-title: Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione publication-title: Carbon – volume: 68 start-page: 27 year: 2015 end-page: 33 ident: b0240 article-title: Carbon dot cluster as an efficient “off–on” fluorescent probe to detect Au (III) and glutathione publication-title: Biosens. Bioelectron. – volume: 5 start-page: 93364 year: 2015 end-page: 93373 ident: b0190 article-title: Highly graphitic carbon nanosheets synthesized over tailored mesoporous molecular sieves using acetylene by chemical vapor deposition method publication-title: RSC Adv. – volume: 215 start-page: 123 year: 2015 end-page: 132 ident: b0205 article-title: Synthesis and characterization of graphitic mesoporous carbon using metal–metal oxide by chemical vapor deposition method publication-title: Micropor. Mesopor. Mater. – volume: 132 start-page: 582 year: 2014 end-page: 587 ident: b0085 article-title: Towards further understanding on the antioxidative activities of publication-title: Spectrochim. Acta A – volume: 167 start-page: 162 year: 2013 end-page: 175 ident: b0210 article-title: Growth of ordered multi-walled carbon nanotubes over mesoporous 3D cubic Zn/Fe-KIT-6 molecular sieves and its use in the fabrication of epoxy nanocomposites publication-title: Micropor. Mesopor. Mater. – volume: 118 start-page: 30063 year: 2014 end-page: 30070 ident: b0325 article-title: Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface publication-title: J. Phys. Chem. C – volume: 6 start-page: 3317 year: 2016 end-page: 3340 ident: b0310 article-title: Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media publication-title: Catal. Sci. Technol. – volume: 175 start-page: 193 year: 2016 end-page: 202 ident: b0005 article-title: Aqueous synthesis of Cu-doped CdZnS quantum dots with controlled and efficient photoluminescence publication-title: J. Lumin. – volume: 161 start-page: 154 year: 2016 end-page: 161 ident: b0270 article-title: Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications publication-title: J. Photoch. Photobio. B – volume: 173 start-page: 415 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0300 article-title: Oxygen reduction reaction by electrochemically reduced graphene oxide publication-title: Faraday Discuss. doi: 10.1039/C4FD00088A – volume: 104 start-page: 169 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0185 article-title: Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione publication-title: Carbon doi: 10.1016/j.carbon.2016.04.003 – volume: 30 start-page: 14270 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0155 article-title: Aqueous phase synthesis of highly luminescent, nitrogen-doped carbon dots and their application as bioimaging agents publication-title: Langmuir doi: 10.1021/la5031813 – volume: 463 start-page: 1 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0020 article-title: Aqueous synthesis of high bright and tunable near-infrared AgInSe2–ZnSe quantum dots for bioimaging publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2015.10.039 – volume: 126 start-page: 12750 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0275 article-title: Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications publication-title: Angew. Chem. doi: 10.1002/ange.201408422 – volume: 38 start-page: 20 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0160 article-title: One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2014.01.038 – volume: 1 start-page: e1400129 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0305 article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells publication-title: Sci. Adv. doi: 10.1126/sciadv.1400129 – volume: 175 start-page: 193 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0005 article-title: Aqueous synthesis of Cu-doped CdZnS quantum dots with controlled and efficient photoluminescence publication-title: J. Lumin. doi: 10.1016/j.jlumin.2016.02.035 – volume: 162 start-page: 230 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0015 article-title: Novel semiconducting CdSe quantum dot based electrochemical capacitors publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.10.004 – volume: 3 start-page: 20662 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0050 article-title: An absolutely green approach to fabricate carbon nanodots from soya bean grounds publication-title: RSC Adv. doi: 10.1039/c3ra43330g – volume: 118 start-page: 30063 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0325 article-title: Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface publication-title: J. Phys. Chem. C doi: 10.1021/jp5113894 – volume: 2 start-page: 7477 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0175 article-title: Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01139B – volume: 50 start-page: 8464 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0135 article-title: Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide publication-title: Chem. Commun. doi: 10.1039/C4CC01841A – volume: 58 start-page: 730 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0220 article-title: Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications publication-title: Mater., Sci. Eng. C doi: 10.1016/j.msec.2015.09.066 – volume: 38 start-page: 6152 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0340 article-title: Preparation of multicolor emitting carbon dots for HeLa cell imaging publication-title: New J. Chem. doi: 10.1039/C4NJ00840E – volume: 11 start-page: 345 year: 2005 ident: 10.1016/j.jcis.2016.07.058_b0090 article-title: Effects of the degree of maturity on the chemical composition, physical characteristics and sensory attributes of peach (Prunus persica) cv. caterin publication-title: Food Sci. Tech. Int. doi: 10.1177/1082013205057943 – volume: 150 start-page: 253 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0035 article-title: One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging publication-title: Talanta doi: 10.1016/j.talanta.2015.12.047 – volume: 34 start-page: 68 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0125 article-title: Nitrogen, cobalt-codoped carbon electrocatalyst for oxygen reduction reaction using soy milk and cobalt salts as precursors publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.05.019 – year: 1999 ident: 10.1016/j.jcis.2016.07.058_b0150 – volume: 132 start-page: 582 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0085 article-title: Towards further understanding on the antioxidative activities of Prunus persica fruit: a comparative study with four different fractions publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2014.05.008 – volume: 166 start-page: 145 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0180 article-title: Facile synthesis of monodisperse hollow carbon nanospheres using Sucrose by carbonization route publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.12.022 – volume: 327 start-page: 13 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0235 article-title: Preparation of CN-dots/F-NiO nanocomposite for enhanced photocatalytic degradation of selected organic pollutants publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.11.042 – volume: 3 start-page: 6813 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0245 article-title: Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00575B – volume: 342 start-page: 136 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0280 article-title: N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.029 – volume: 33 start-page: 2914 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0060 article-title: Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2013.03.018 – volume: 215 start-page: 123 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0205 article-title: Synthesis and characterization of graphitic mesoporous carbon using metal–metal oxide by chemical vapor deposition method publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2015.05.032 – volume: 16 start-page: 2646 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0260 article-title: Synthesis of fluorescent carbon dots by a microwave heating process, structural characterization and cell imaging applications publication-title: J. Nanopart. Res. doi: 10.1007/s11051-014-2646-1 – volume: 12 start-page: 1137 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0145 article-title: Enabling direct H2O2 production through rational electrocatalyst design publication-title: Nat. Mater. doi: 10.1038/nmat3795 – volume: 213 start-page: 434 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0095 article-title: One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2015.02.104 – volume: 7 start-page: 3364 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0320 article-title: Innovative catalyst design for the oxygen reduction reaction for fuel cells publication-title: Chem. Sci. doi: 10.1039/C6SC00139D – volume: 47 start-page: 325 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0055 article-title: Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2014.11.035 – volume: 6 start-page: 3317 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0310 article-title: Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02270C – volume: 138 start-page: 574 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0140 article-title: Mechanism for the direct synthesis of H2O2 on Pd clusters: heterolytic reaction pathways at the liquid–solid interface publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10669 – volume: 151 start-page: 875 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0250 article-title: A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2015.07.034 – volume: 218 start-page: 229 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0105 article-title: Ethylenediamine-assisted hydrothermal synthesis of nitrogen-dopedcarbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2015.05.006 – volume: 2 start-page: 4631 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0165 article-title: Green synthesis of nitrogen-doped carbon dots from konjac flour with “off–on” fluorescence by Fe3+ and l-lysine for bioimaging publication-title: J. Mater. Chem. B doi: 10.1039/c4tb00368c – volume: 4 start-page: 23097 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0330 article-title: Graphene quantum dots cut from graphene flakes: high electrocatalytic activity for oxygen reduction and low cytotoxicity publication-title: RSC Adv. doi: 10.1039/C4RA02336F – volume: 376 start-page: 133 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0010 article-title: Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection publication-title: Appl. Sur. Sci. doi: 10.1016/j.apsusc.2016.03.153 – volume: 4 start-page: 32791 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0130 article-title: Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their electrocatalysis for oxygen reduction reaction publication-title: RSC Adv. doi: 10.1039/C4RA06594H – volume: 161 start-page: 154 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0270 article-title: Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications publication-title: J. Photoch. Photobio. B doi: 10.1016/j.jphotobiol.2016.05.017 – volume: 139 start-page: 1692 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0040 article-title: Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging publication-title: Analyst doi: 10.1039/C3AN02098C – volume: 140 start-page: 1428 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0255 article-title: Nitrogen-doped carbon dots from plant cytoplasm as selective and sensitive fluorescent probes for detecting P-nitroaniline in both aqueous and soil systems publication-title: Analyst doi: 10.1039/C4AN01869A – volume: 28 start-page: 367 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0265 article-title: Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.08.005 – volume: 1 start-page: 2868 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0045 article-title: One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20418a – volume: 140 start-page: 4260 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0070 article-title: Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents publication-title: Analyst doi: 10.1039/C5AN00454C – volume: 134 start-page: 18932 year: 2012 ident: 10.1016/j.jcis.2016.07.058_b0120 article-title: Nitrogen-doped colloidal graphene quantum dots and their size dependent electrocatalytic activity for the oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309270h – volume: 150 start-page: 324 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0170 article-title: Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging publication-title: Talanta doi: 10.1016/j.talanta.2015.12.024 – volume: 6 start-page: 12169 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0285 article-title: Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system publication-title: RSC Adv. doi: 10.1039/C5RA24621K – volume: 78 start-page: 1 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0315 article-title: Highly efficient supporting material derived from used cigarette filter for oxygen reduction reaction publication-title: Catal. Commun. doi: 10.1016/j.catcom.2016.01.030 – volume: 4 start-page: 4160 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0115 article-title: Oxygen reduction electrocatalysis using N-doped graphene quantum-dots publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402090d – volume: 175 start-page: 161 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0195 article-title: Synthesis of multilayer graphene balls on mesoporous Co-MCM-41 molecular sieves by chemical vapour deposition method publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2013.03.035 – volume: 76 start-page: 181 year: 2002 ident: 10.1016/j.jcis.2016.07.058_b0080 article-title: Characterisation of peach juices obtained from cultivars Redhaven, Suncrest and Maria Marta grown in Italy publication-title: Food Chem. doi: 10.1016/S0308-8146(01)00261-8 – volume: 384 start-page: 432 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0075 article-title: Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.05.054 – volume: 81 start-page: 465 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0200 article-title: Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.03.018 – volume: 38 start-page: 1522 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0225 article-title: Facile synthesis and optical properties of nitrogen-doped carbon dots publication-title: New J. Chem. doi: 10.1039/c3nj01068f – volume: 43 start-page: 2650 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0100 article-title: Nanoscale optical probes for cellular imaging publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60309a – volume: 152 start-page: 288 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0215 article-title: Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots publication-title: Talanta doi: 10.1016/j.talanta.2016.02.018 – volume: 25 start-page: 803 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0065 article-title: Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice publication-title: J. Fluoresc. doi: 10.1007/s10895-015-1595-0 – volume: 7 start-page: 23231 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0335 article-title: Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.5b07255 – volume: 50 start-page: 4839 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0295 article-title: One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction publication-title: Chem. Commun. doi: 10.1039/C4CC00440J – volume: 5 start-page: 93364 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0190 article-title: Highly graphitic carbon nanosheets synthesized over tailored mesoporous molecular sieves using acetylene by chemical vapor deposition method publication-title: RSC Adv. doi: 10.1039/C5RA15288G – volume: 167 start-page: 162 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0210 article-title: Growth of ordered multi-walled carbon nanotubes over mesoporous 3D cubic Zn/Fe-KIT-6 molecular sieves and its use in the fabrication of epoxy nanocomposites publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2012.08.031 – volume: 68 start-page: 27 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0240 article-title: Carbon dot cluster as an efficient “off–on” fluorescent probe to detect Au (III) and glutathione publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.12.027 – volume: 5 start-page: 5002 year: 2013 ident: 10.1016/j.jcis.2016.07.058_b0290 article-title: NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions publication-title: ACS Appl. Mater. Interf. doi: 10.1021/am4007897 – volume: 4 start-page: 7648 year: 2014 ident: 10.1016/j.jcis.2016.07.058_b0025 article-title: One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties publication-title: RSC Adv. doi: 10.1039/c3ra47577h – volume: 7 start-page: 2373 year: 2015 ident: 10.1016/j.jcis.2016.07.058_b0110 article-title: One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells publication-title: Anal. Methods doi: 10.1039/C4AY02737J – volume: 158 start-page: 235 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0230 article-title: Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging publication-title: J. Photoch. Photobio. B doi: 10.1016/j.jphotobiol.2016.03.010 – volume: 223 start-page: 689 year: 2016 ident: 10.1016/j.jcis.2016.07.058_b0030 article-title: Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2015.09.081 |
SSID | ssj0011559 |
Score | 2.6266205 |
Snippet | This paper reports the robust hydrothermal synthesis of N-CDs using the unripe fruit of peach as the carbon precursor and aqueous ammonia as the nitrogen... This paper reports the robust hydrothermal synthesis of nitrogen doped carbon dots (N-CDs) using the unripe fruit of Prunus persica (peach) as the carbon... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | ammonia Ammonia - chemistry Bioimaging blue light Carbon - chemistry Carbon dot carbon quantum dots Catalysis catalytic activity chemical constituents of plants cytotoxicity electrochemistry electrodes Fluorescence fluorescence emission spectroscopy Fluorescent Dyes - chemistry Fourier transform infrared spectroscopy Fruit - chemistry fruit extracts fruits hydrogen Hydrogen - chemistry hydrogen peroxide Hydrogen Peroxide - chemical synthesis Hydrothermal-carbonization Hydroxides - chemistry image analysis nitrogen Nitrogen - chemistry Optical Imaging - methods optical properties Oxidation-Reduction oxygen Oxygen - chemistry Oxygen reduction reaction Particle Size Peach peaches Photoelectron Spectroscopy Plant Extracts - chemistry Potassium Compounds - chemistry potassium hydroxide Prunus persica Prunus persica - chemistry Quantum Dots - chemistry Quantum Dots - ultrastructure Raman spectroscopy transmission electron microscopes transmission electron microscopy Ultraviolet Rays X-ray diffraction X-ray photoelectron spectroscopy |
Title | Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction |
URI | https://dx.doi.org/10.1016/j.jcis.2016.07.058 https://www.ncbi.nlm.nih.gov/pubmed/27479911 https://www.proquest.com/docview/1815680494 https://www.proquest.com/docview/2116939285 |
Volume | 482 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C7MB2QAPGVhiVJ3FDGXVqx8mxqkDd0HoCiZvl2I4UBEkVWmlcOPCX817iVNuhHLglka1Y_l7ej_i97wGcopyo2DkepbnFAMXyODLSZxF6yoro20cyp-LkP_NkdiN-38rbLZj2tTCUVhl0f6fTW20dnpyH3TxflCXV-OLXpogCaUxEU8T4KYQiKf_5vE7z4HTs1qV58IhGh8KZLsfrzpZE2c0DgWe6yThtcj5bI3T5GXaD98gm3QL3YMtX-7Az7Zu27cOnf_gFD-BlXi6bGkUkcvXCO2ZNk9cVw0D0kYWOWJT1zKjGhK0q1B-eLSi9kqEry4r7Vd10bE8sL-vyoW1oxEzlWGie0_77ecK1sPrvE76GNUQES1DjVVcx8QVuLi-up7MoNF2IrMjiZcRV4TwdliFMIhfCogM5SoyJvbRZgnE48fHYsTRpJoVLjSqU97n0VtrUOmnGh7Bd1ZX_Bsyh7S8kThcmFrmSZsR9kqpCFNY6k_gB8H63tQ2M5NQY4173qWd3mhDShJAeKY0IDeBsPWfR8XG8OVr2IOr_pEqjwXhz3o8ecY0A0hmKqXy9etSc2HVSItXZPAZj6iRDvzOVA_jaict6rfQTAHeUH71zZcfwke6oGpLL77C9bFb-BN2iZT5s5X4IHya_rmbzVxV7DpA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VcigcUClQFgoYCU4odJ214-TQQ1WotrTdUyv1ZhzbkVKVZJXdFeyFA7_EDzKTOCs4bA9IvUVJnIxmxuMZe-YNwDvUExU7x6M0txigWB5HRvosQk9ZEXz7UOZUnHw-ScaX4suVvNqA330tDKVVBtvf2fTWWoc7-4Gb-9OypBpfnG2KIJBGBDTVd7A-9cvvGLfNDk4-oZDfx_Hx54ujcRRaC0RWZPE84qpwno6EkBiRC2HRTRomxsRe2izBaJNQZ-xImjSTwqVGFcr7XHorbWqdNCP87j24L9BcUNuEjz9XeSWczvm6vBIeEXmhUqdLKru2JWGE84AYmq5bDdd5u-2qd7wNj4K7yg47jjyGDV_twNZR3yVuBx7-BWj4BH5NynlTo05Grp56x6xp8rpiGPnOWGjBRWnWjIpa2KJCg-XZlPI5GfrOrLhZ1E0HL8Xysi6_tR2UmKkcC9162s2mJdLC6h9L_A1rCHmWdAuvuhKNp3B5J6J4BptVXfnnwBw6G4XE4cLEIlfSDLlPUlWIwlpnEj8A3nNb2wCBTp04bnSf63atSUKaJKSHSqOEBvBhNWbaAYDc-rbshaj_UWONK9St4972EtcoQDq0MZWvFzPNCc4nJRSf9e9gEJ9k6OimcgC7nbqsaKVdB-Qof_GflL2BrfHF-Zk-O5mcvoQH9IRKMbncg815s_Cv0Ceb56_bOcDg611Puj-PzEpy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen-doped+carbon+dots+originating+from+unripe+peach+for+fluorescent+bioimaging+and+electrocatalytic+oxygen+reduction+reaction&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Atchudan%2C+Raji&rft.au=Edison%2C+Thomas+Nesakumar+Jebakumar+Immanuel&rft.au=Lee%2C+Yong+Rok&rft.date=2016-11-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=482&rft.spage=8&rft.epage=18&rft_id=info:doi/10.1016%2Fj.jcis.2016.07.058&rft.externalDocID=S0021979716305173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |