Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications

Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic sur...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 38; pp. e1802128 - n/a
Main Authors Wu, Han, Wu, Liang, Zhou, Xiaohu, Liu, Baishu, Zheng, Bo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA‐coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high‐throughput chemical and biological screening and analysis. Hydrophobic surfaces are patterned with hydrophilic molecules by negative microcontact printing. Complex patterns in micrometer resolution are created in a simple contact transfer approach. The fabricated hydrophilic arrays on the hydrophobic surface facilitate producing droplet arrays by discontinuous dewetting and creating single cell arrays by exploiting the different cell adhesion properties on the hydrophilic and hydrophobic surfaces.
AbstractList Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA‐coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high‐throughput chemical and biological screening and analysis.
Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA‐coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high‐throughput chemical and biological screening and analysis. Hydrophobic surfaces are patterned with hydrophilic molecules by negative microcontact printing. Complex patterns in micrometer resolution are created in a simple contact transfer approach. The fabricated hydrophilic arrays on the hydrophobic surface facilitate producing droplet arrays by discontinuous dewetting and creating single cell arrays by exploiting the different cell adhesion properties on the hydrophilic and hydrophobic surfaces.
Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA-coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high-throughput chemical and biological screening and analysis.Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA-coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high-throughput chemical and biological screening and analysis.
Author Zhou, Xiaohu
Zheng, Bo
Wu, Han
Wu, Liang
Liu, Baishu
Author_xml – sequence: 1
  givenname: Han
  surname: Wu
  fullname: Wu, Han
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Liang
  surname: Wu
  fullname: Wu, Liang
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Xiaohu
  surname: Zhou
  fullname: Zhou, Xiaohu
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Baishu
  surname: Liu
  fullname: Liu, Baishu
  organization: The Chinese University of Hong Kong
– sequence: 5
  givenname: Bo
  orcidid: 0000-0002-2044-2848
  surname: Zheng
  fullname: Zheng, Bo
  email: bozheng@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30133159$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPGzEURq0KVEhgy7IaqRs2CdePie0lQqVBCg8pwNbyeDxgNLGntqdV_n0nDQQJqWLluzjnXuv7RmjPB28ROsEwxQDkLK3adkoACyCYiC_oEM8wncwEkXu7GcMBGqX0AkAxYfwrOqCAKcWlPESPdzpnG73zT8V8XcfQPYfKmWLZx0Ybm4pqXdzYJ53db1tcOxODCT5rk4u76HzeaNrXxVVOxXnXtc4MZPDpCO03uk32-PUdo4fLH_cX88ni9ufVxfliYpgkYiK0BMnr0hBGLGN2VmqCDadgdF3JSjBtTNNQqnnJeSO5BM25qEwlmWVQWjpGp9u9XQy_epuyWrlkbNtqb0OfFAGJBWYS6IB-_4C-hD764XeKYAykHCIUA_Xtleqrla1VF91Kx7V6S2wApltgiCKlaJsdgkFtKlGbStSukkFgHwTj8r-UctSu_b8mt9of19r1J0fU8nqxeHf_ApuRoEU
CitedBy_id crossref_primary_10_1088_2058_8585_ac0c67
crossref_primary_10_1002_admi_202201736
crossref_primary_10_1002_adfm_202107716
crossref_primary_10_1002_mabi_202300267
crossref_primary_10_1002_smll_202303053
crossref_primary_10_1021_acsami_9b22574
crossref_primary_10_25077_jif_15_1_30_38_2023
crossref_primary_10_1002_adfm_202100447
crossref_primary_10_1038_s41467_024_49807_8
crossref_primary_10_1002_smll_201905726
crossref_primary_10_1021_acsapm_4c03577
crossref_primary_10_1016_j_addr_2022_114169
crossref_primary_10_1557_adv_2019_237
crossref_primary_10_1021_acsabm_0c00369
crossref_primary_10_1002_admt_202200404
crossref_primary_10_1016_j_snb_2024_136893
crossref_primary_10_1002_adem_202100696
crossref_primary_10_1016_j_msec_2020_111457
crossref_primary_10_3390_mi13010080
crossref_primary_10_1016_j_stem_2024_03_008
crossref_primary_10_1002_adfm_202316357
crossref_primary_10_1021_acsami_0c16862
crossref_primary_10_1021_acsami_9b20222
crossref_primary_10_1021_acs_langmuir_0c01769
crossref_primary_10_1002_smll_201902819
crossref_primary_10_1016_j_mtchem_2022_101021
crossref_primary_10_1021_acsami_4c00460
crossref_primary_10_1089_ten_tec_2024_0141
crossref_primary_10_1021_acs_analchem_2c01424
crossref_primary_10_1063_1_5123518
crossref_primary_10_1126_scitranslmed_aaz1723
crossref_primary_10_1002_adfm_202008821
crossref_primary_10_1021_acsapm_3c03214
crossref_primary_10_1021_acs_langmuir_3c03689
crossref_primary_10_1039_D2LC00811D
crossref_primary_10_1088_2631_7990_ace863
crossref_primary_10_1016_j_mattod_2021_10_008
crossref_primary_10_1016_j_snb_2021_130341
crossref_primary_10_1016_j_sna_2021_113229
crossref_primary_10_1021_acsaenm_4c00381
crossref_primary_10_1039_D4LC00601A
crossref_primary_10_1016_j_progpolymsci_2023_101688
Cites_doi 10.1021/am507964k
10.1016/S0021-9258(18)34609-X
10.1038/35102108
10.1021/acs.analchem.5b04077
10.1002/anie.201102545
10.1021/la904447c
10.1002/smll.201403640
10.1002/anie.201004693
10.1021/la000382m
10.1126/science.1147241
10.1016/S0006-291X(03)01165-3
10.1039/c1sm05169e
10.1002/adma.201505972
10.1021/ac971295a
10.1002/adfm.201502174
10.1021/acs.analchem.6b03712
10.1021/acsami.7b08116
10.1016/0021-9797(91)90258-A
10.1523/JNEUROSCI.23-09-03607.2003
10.1021/la980037l
10.1002/adma.201502115
10.1146/annurev.bioeng.3.1.335
10.1021/ac102577n
10.1021/ac070306p
10.1021/la2041967
10.1016/S0032-3861(00)00039-2
10.1021/ar010110q
10.1021/la2012099
10.1021/la300147p
10.1039/C4NR04656K
10.1016/j.biomaterials.2009.12.020
10.1039/c2lc40921f
10.1002/smll.201500647
10.1002/adma.201400262
10.1039/C5AN00852B
10.1073/pnas.0605552103
10.1021/bp980031m
10.1038/ncomms9686
10.1146/annurev.bioeng.2.1.227
10.1088/0957-4484/22/18/185303
10.1002/anie.201202823
10.1146/annurev.matsci.28.1.153
10.1021/la011351
10.1002/anie.201105925
10.1021/acs.analchem.7b03225
10.1002/adma.201600247
10.1007/s10856-006-0444-8
10.1021/la3010932
10.1021/ac980656z
10.1021/ma980268z
10.1002/1097-4636(200011)52:2<346::AID-JBM14>3.0.CO;2-H
10.1039/b718643f
10.1021/am5075216
10.1038/srep19801
10.1073/pnas.040562297
10.1039/C4TB00570H
10.1021/la025529j
10.1002/chem.200501554
10.1126/science.1067172
10.1016/j.bios.2013.09.031
10.1039/c2lc40632b
10.3389/fmicb.2013.00300
10.1021/acs.biomac.5b00852
10.1039/b602486f
10.1039/C4RA09010A
10.1038/35075114
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201802128
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30133159
10_1002_smll_201802128
SMLL201802128
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Grants Council of Hong Kong
  funderid: GRF 14302315
– fundername: Research Grants Council
– fundername: Chinese University of Hong Kong
  funderid: 4053204
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4928-8a9097d5c242e44e65a21c730cadb9b84accff33a7577f9790a778bcb94e405e3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 05:47:21 EDT 2025
Fri Jul 25 12:16:38 EDT 2025
Mon Jul 21 06:00:04 EDT 2025
Tue Jul 01 02:10:37 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jan 22 16:51:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords single cell array
microlens array
surface patterning
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4928-8a9097d5c242e44e65a21c730cadb9b84accff33a7577f9790a778bcb94e405e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2044-2848
PMID 30133159
PQID 2110258028
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2091814903
proquest_journals_2110258028
pubmed_primary_30133159
crossref_primary_10_1002_smll_201802128
crossref_citationtrail_10_1002_smll_201802128
wiley_primary_10_1002_smll_201802128_SMLL201802128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 140
2013; 4
2002; 18
2000; 41
2014; 26
2000; 2
2012; 12
2017; 9
2007; 79
2007; 36
2012; 51
2010; 26
2014; 4
2000; 16
2014; 2
1991; 144
2000; 52
2000; 97
2011; 22
2012; 28
1982; 257
2011; 27
2001; 411
1998; 14
2001; 414
2014; 53
2016; 88
1998; 28
2010; 31
2015; 6
2015; 16
2006; 12
2002; 295
2008; 18
2006; 17
2002; 35
2015; 11
2011; 83
2015; 7
2011; 7
2016; 6
2015; 25
2003; 307
2010; 49
2015; 27
2011; 50
2018; 90
2001; 3
1998; 70
2009; 4
2016; 28
2007; 318
1998; 31
2006; 103
2003; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
Lin L. I. (e_1_2_7_7_1) 2009; 4
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 11
  start-page: 4379
  year: 2015
  publication-title: Small
– volume: 2
  start-page: 227
  year: 2000
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 12
  start-page: 5218
  year: 2012
  publication-title: Lab Chip
– volume: 28
  start-page: 8286
  year: 2012
  publication-title: Langmuir
– volume: 51
  start-page: 1558
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 5217
  year: 2015
  publication-title: Adv. Mater.
– volume: 53
  start-page: 58
  year: 2014
  publication-title: Biosens. Bioelectron.
– volume: 12
  start-page: 4986
  year: 2012
  publication-title: Lab Chip
– volume: 70
  start-page: 4974
  year: 1998
  publication-title: Anal. Chem.
– volume: 4
  start-page: 6
  year: 2009
  publication-title: PLoS One
– volume: 90
  start-page: 777
  year: 2018
  publication-title: Anal. Chem.
– volume: 88
  start-page: 10357
  year: 2016
  publication-title: Anal. Chem.
– volume: 2
  start-page: 6917
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 295
  start-page: 1702
  year: 2002
  publication-title: Science
– volume: 18
  start-page: 519
  year: 2002
  publication-title: Langmuir
– volume: 26
  start-page: 8147
  year: 2010
  publication-title: Langmuir
– volume: 28
  start-page: 2131
  year: 2012
  publication-title: Langmuir
– volume: 70
  start-page: 2280
  year: 1998
  publication-title: Anal. Chem.
– volume: 27
  start-page: 5709
  year: 2011
  publication-title: Langmuir
– volume: 18
  start-page: 2660
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 318
  start-page: 426
  year: 2007
  publication-title: Science
– volume: 31
  start-page: 4739
  year: 1998
  publication-title: Macromolecules
– volume: 28
  start-page: 3543
  year: 2016
  publication-title: Adv. Mater.
– volume: 36
  start-page: 1350
  year: 2007
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 10109
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 3202
  year: 2016
  publication-title: Adv. Mater.
– volume: 79
  start-page: 4924
  year: 2007
  publication-title: Anal. Chem.
– volume: 4
  start-page: 1
  year: 2013
  publication-title: Front. Microbiol.
– volume: 7
  start-page: 4147
  year: 2011
  publication-title: Soft Matter
– volume: 3
  start-page: 335
  year: 2001
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 7
  start-page: 935
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 6671
  year: 2002
  publication-title: Langmuir
– volume: 22
  start-page: 185303
  year: 2011
  publication-title: Nanotechnology
– volume: 35
  start-page: 491
  year: 2002
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 6290
  year: 2006
  publication-title: Chem. ‐ Eur. J.
– volume: 11
  start-page: 2738
  year: 2015
  publication-title: Small
– volume: 307
  start-page: 355
  year: 2003
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 16
  start-page: 2541
  year: 2015
  publication-title: Biomacromolecules
– volume: 50
  start-page: 8424
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 153
  year: 1998
  publication-title: Annu. Rev. Mater. Sci.
– volume: 103
  start-page: 12999
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 140
  start-page: 5627
  year: 2015
  publication-title: Analyst
– volume: 4
  start-page: 60002
  year: 2014
  publication-title: RSC Adv.
– volume: 14
  start-page: 356
  year: 1998
  publication-title: Biotechnol. Prog.
– volume: 144
  start-page: 271
  year: 1991
  publication-title: J. Colloid Interface Sci.
– volume: 28
  start-page: 5775
  year: 2012
  publication-title: Langmuir
– volume: 7
  start-page: 421
  year: 2015
  publication-title: Nanoscale
– volume: 17
  start-page: 1057
  year: 2006
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 414
  start-page: 33
  year: 2001
  publication-title: Nature
– volume: 23
  start-page: 3607
  year: 2003
  publication-title: J. Neurosci.
– volume: 41
  start-page: 6851
  year: 2000
  publication-title: Polymer
– volume: 411
  start-page: 107
  year: 2001
  publication-title: Nature
– volume: 25
  start-page: 5520
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 83
  start-page: 1830
  year: 2011
  publication-title: Anal. Chem.
– volume: 14
  start-page: 2225
  year: 1998
  publication-title: Langmuir
– volume: 97
  start-page: 2408
  year: 2000
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 49
  start-page: 9401
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  start-page: 2535
  year: 2010
  publication-title: Biomaterials
– volume: 26
  start-page: 5025
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8686
  year: 2015
  publication-title: Nat. Commun.
– volume: 257
  start-page: 4888
  year: 1982
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 29248
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 346
  year: 2000
  publication-title: J. Biomed. Mater. Res.
– volume: 6
  start-page: 19801
  year: 2016
  publication-title: Sci. Rep.
– volume: 16
  start-page: 7811
  year: 2000
  publication-title: Langmuir
– volume: 7
  start-page: 4075
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 88
  start-page: 354
  year: 2016
  publication-title: Anal. Chem.
– ident: e_1_2_7_14_1
  doi: 10.1021/am507964k
– ident: e_1_2_7_60_1
  doi: 10.1016/S0021-9258(18)34609-X
– ident: e_1_2_7_40_1
  doi: 10.1038/35102108
– ident: e_1_2_7_64_1
  doi: 10.1021/acs.analchem.5b04077
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201102545
– ident: e_1_2_7_5_1
  doi: 10.1021/la904447c
– ident: e_1_2_7_11_1
  doi: 10.1002/smll.201403640
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201004693
– ident: e_1_2_7_54_1
  doi: 10.1021/la000382m
– ident: e_1_2_7_23_1
  doi: 10.1126/science.1147241
– ident: e_1_2_7_48_1
  doi: 10.1016/S0006-291X(03)01165-3
– ident: e_1_2_7_4_1
  doi: 10.1039/c1sm05169e
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201505972
– volume: 4
  start-page: 6
  year: 2009
  ident: e_1_2_7_7_1
  publication-title: PLoS One
– ident: e_1_2_7_35_1
  doi: 10.1021/ac971295a
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.201502174
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.analchem.6b03712
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.7b08116
– ident: e_1_2_7_58_1
  doi: 10.1016/0021-9797(91)90258-A
– ident: e_1_2_7_63_1
  doi: 10.1523/JNEUROSCI.23-09-03607.2003
– ident: e_1_2_7_25_1
  doi: 10.1021/la980037l
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201502115
– ident: e_1_2_7_27_1
  doi: 10.1146/annurev.bioeng.3.1.335
– ident: e_1_2_7_17_1
  doi: 10.1021/ac102577n
– ident: e_1_2_7_67_1
  doi: 10.1021/ac070306p
– ident: e_1_2_7_30_1
  doi: 10.1021/la2041967
– ident: e_1_2_7_31_1
  doi: 10.1016/S0032-3861(00)00039-2
– ident: e_1_2_7_65_1
  doi: 10.1021/ar010110q
– ident: e_1_2_7_62_1
  doi: 10.1021/la2012099
– ident: e_1_2_7_61_1
  doi: 10.1021/la300147p
– ident: e_1_2_7_18_1
  doi: 10.1039/C4NR04656K
– ident: e_1_2_7_56_1
  doi: 10.1016/j.biomaterials.2009.12.020
– ident: e_1_2_7_1_1
  doi: 10.1039/c2lc40921f
– ident: e_1_2_7_39_1
  doi: 10.1002/smll.201500647
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201400262
– ident: e_1_2_7_10_1
  doi: 10.1039/C5AN00852B
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.0605552103
– ident: e_1_2_7_49_1
  doi: 10.1021/bp980031m
– ident: e_1_2_7_53_1
  doi: 10.1038/ncomms9686
– ident: e_1_2_7_51_1
  doi: 10.1146/annurev.bioeng.2.1.227
– ident: e_1_2_7_24_1
  doi: 10.1088/0957-4484/22/18/185303
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201202823
– ident: e_1_2_7_26_1
  doi: 10.1146/annurev.matsci.28.1.153
– ident: e_1_2_7_29_1
  doi: 10.1021/la011351
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201105925
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.analchem.7b03225
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201600247
– ident: e_1_2_7_59_1
  doi: 10.1007/s10856-006-0444-8
– ident: e_1_2_7_19_1
  doi: 10.1021/la3010932
– ident: e_1_2_7_66_1
  doi: 10.1021/ac980656z
– ident: e_1_2_7_34_1
  doi: 10.1021/ma980268z
– ident: e_1_2_7_55_1
  doi: 10.1002/1097-4636(200011)52:2<346::AID-JBM14>3.0.CO;2-H
– ident: e_1_2_7_16_1
  doi: 10.1039/b718643f
– ident: e_1_2_7_8_1
  doi: 10.1021/am5075216
– ident: e_1_2_7_43_1
  doi: 10.1038/srep19801
– ident: e_1_2_7_52_1
  doi: 10.1073/pnas.040562297
– ident: e_1_2_7_57_1
  doi: 10.1039/C4TB00570H
– ident: e_1_2_7_47_1
  doi: 10.1021/la025529j
– ident: e_1_2_7_50_1
  doi: 10.1002/chem.200501554
– ident: e_1_2_7_46_1
  doi: 10.1126/science.1067172
– ident: e_1_2_7_15_1
  doi: 10.1016/j.bios.2013.09.031
– ident: e_1_2_7_9_1
  doi: 10.1039/c2lc40632b
– ident: e_1_2_7_2_1
  doi: 10.3389/fmicb.2013.00300
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.biomac.5b00852
– ident: e_1_2_7_20_1
  doi: 10.1039/b602486f
– ident: e_1_2_7_21_1
  doi: 10.1039/C4RA09010A
– ident: e_1_2_7_45_1
  doi: 10.1038/35075114
SSID ssj0031247
Score 2.445853
Snippet Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1802128
SubjectTerms Arrays
Droplets
Fog
Hydrophobic surfaces
microlens array
Nanotechnology
Organic chemistry
Patterning
Polydimethylsiloxane
Printing
Silicone resins
single cell array
Surface energy
surface patterning
Thin films
Title Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201802128
https://www.ncbi.nlm.nih.gov/pubmed/30133159
https://www.proquest.com/docview/2110258028
https://www.proquest.com/docview/2091814903
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ikz74_TGdEkHwqRqbdkkehyhTnIhf-FaSNFFxdrJ1D_rXe9dudVNE0LeWXto0yd39Lrn8QsguN57LUEGQo6SDAIWzwIiGC2IdI_-XkrbYKNy-aLRuo7P7-H5sF3_JD1FNuKFmFPYaFVyb_sEnaWj_pYNLB8hgBjYWjDAmbCEquqr4ozg4r-J0FfBZARJvjVgbWXgwWXzSK32DmpPItXA9J_NEjypdZpw87w9ys2_fv_A5_uevFsjcEJfSZjmQFsmUy5bI7Bhb4TK5uyy4OHEihbbe0l739bFrniy9HvQ8JnZR80Yv3EPBJE7bmOiHefDa5vQSXoDp1VRnKT3N-7Q5tmy-Qm5Pjm-OWsHwWIbARiqUgdSKKZHGFry7iyLXiHV4aMFSWJ0aZWSkrfWecy1iIbwSimkhpLFGRQ7goeOrZDrrZm6dUKZCw7xiPjUiigAbxZx57zSAKMukbtRIMOqWxA45y_HojE5Ssi2HCbZXUrVXjexV8q8lW8ePkvVRLydDre0nGAyHMQjA453qMegbLqLozHUHIAMAS0JYyXiNrJWjo_oUGEvOAR_WSFj08S91SK7b5-fV3cZfCm2SGbwuk97qZDrvDdwWoKTcbBea8AEkughB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHoDwXSutKSD2ldeNkbR-rimpLd1dVX-IW2Y5NESVb7WYP5dcz42zSLgghwTHJOHFsj-cbe_wNwAdhg1CpRidHK48OiuCJlX2f5CYn_i-tXDwoPBr3B-fZp895G01IZ2EafohuwY00I87XpOC0IL1zyxo6-35FewdEYYaT7H14QGm9o1d10jFICTRfMb8KWq2EqLda3kae7iyXX7ZLv4HNZewajc_BU7BttZuYk2_b89puux-_MDr-1389gycLaMr2mrG0Cvd89Rwe3yEsfAEXx5GOk9ZS2OCmnE6uLyf2q2On82mg2C5mb9jYf4lk4mxEsX4UCm9czY7xBRRhzUxVssN6xvbu7Jy_hPODj2f7g2SRmSFxmU5VoozmWpa5QwPvs8z3c5PuOpwsnCmttiozzoUghJG5lEFLzY2UyjqrM48I0YtXsFJNKv8GGNep5UHzUFqZZQiPcsFD8AZxlOPK9HuQtP1SuAVtOWXPuCoawuW0oPYquvbqwVYnf90QdvxRcq3t5mKhuLOC_OE0RwF8vNk9RpWjfRRT-ckcZRBjKfQsuejB62Z4dJ_C-VIIhIg9SGMn_6UOxeloOOyu3v5LoQ14ODgbDYvh4fjoHTyi-00M3Bqs1NO5f4-gqbbrUS1-AqgpDFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BkBA88JtRGGAkJJ6ymdiJ7ceJUXXQVhVjaG-R7dgwMdKqTR_GX89d0oYWhJDgMck5cWzf3Xf2-TPAS-Gi0KnBIMfogAGK4IlTeUgymxH_l9G-2Sg8GueDU_nuLDvb2MXf8kN0E26kGY29JgWflfHgJ2no4tsFLR0Qgxna2KtwTeZc07g--tARSAn0Xs3xKui0EmLeWtM28vRgu_y2W_oNa25D18b39G-DXde6TTn5ur-s3b7__guh4__81h24tQKm7LAdSXfhSqjuwc0NusL78GnSkHHSTAobXJbz6ezL1J17drKcR8rsYu6SjcPnhkqcjSjTjxLhra_ZBF9A-dXMViU7rhfscGPd_AGc9t9-fDNIVucyJF6aVCfaGm5UmXl070HKkGc2fe3RVHhbOuO0tN7HKIRVmVLRKMOtUtp5Z2RAfBjEQ9ipplV4BIyb1PFoeCydkhLBUSZ4jMEiivJc27wHybpbCr8iLaezMy6Klm45Lai9iq69evCqk5-1dB1_lNxb93KxUttFQdFwmqEAPn7RPUaFo1UUW4XpEmUQYWmMK7nowW47OrpPobUUAgFiD9Kmj_9Sh-JkNBx2V4__pdBzuD456hfD4_H7J3CDbrcJcHuwU8-X4Skipto9a5TiB460CxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+Hydrophobic+Surfaces+by+Negative+Microcontact+Printing+and+Its+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Han&rft.au=Wu%2C+Liang&rft.au=Zhou%2C+Xiaohu&rft.au=Liu%2C+Baishu&rft.date=2018-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201802128&rft.externalDBID=10.1002%252Fsmll.201802128&rft.externalDocID=SMLL201802128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon