Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications
Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic sur...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 38; pp. e1802128 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA‐coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high‐throughput chemical and biological screening and analysis.
Hydrophobic surfaces are patterned with hydrophilic molecules by negative microcontact printing. Complex patterns in micrometer resolution are created in a simple contact transfer approach. The fabricated hydrophilic arrays on the hydrophobic surface facilitate producing droplet arrays by discontinuous dewetting and creating single cell arrays by exploiting the different cell adhesion properties on the hydrophilic and hydrophobic surfaces. |
---|---|
AbstractList | Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA‐coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high‐throughput chemical and biological screening and analysis. Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA‐coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high‐throughput chemical and biological screening and analysis. Hydrophobic surfaces are patterned with hydrophilic molecules by negative microcontact printing. Complex patterns in micrometer resolution are created in a simple contact transfer approach. The fabricated hydrophilic arrays on the hydrophobic surface facilitate producing droplet arrays by discontinuous dewetting and creating single cell arrays by exploiting the different cell adhesion properties on the hydrophilic and hydrophobic surfaces. Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA-coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high-throughput chemical and biological screening and analysis.Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA-coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high-throughput chemical and biological screening and analysis. |
Author | Zhou, Xiaohu Zheng, Bo Wu, Han Wu, Liang Liu, Baishu |
Author_xml | – sequence: 1 givenname: Han surname: Wu fullname: Wu, Han organization: The Chinese University of Hong Kong – sequence: 2 givenname: Liang surname: Wu fullname: Wu, Liang organization: The Chinese University of Hong Kong – sequence: 3 givenname: Xiaohu surname: Zhou fullname: Zhou, Xiaohu organization: The Chinese University of Hong Kong – sequence: 4 givenname: Baishu surname: Liu fullname: Liu, Baishu organization: The Chinese University of Hong Kong – sequence: 5 givenname: Bo orcidid: 0000-0002-2044-2848 surname: Zheng fullname: Zheng, Bo email: bozheng@cuhk.edu.hk organization: The Chinese University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30133159$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPGzEURq0KVEhgy7IaqRs2CdePie0lQqVBCg8pwNbyeDxgNLGntqdV_n0nDQQJqWLluzjnXuv7RmjPB28ROsEwxQDkLK3adkoACyCYiC_oEM8wncwEkXu7GcMBGqX0AkAxYfwrOqCAKcWlPESPdzpnG73zT8V8XcfQPYfKmWLZx0Ybm4pqXdzYJ53db1tcOxODCT5rk4u76HzeaNrXxVVOxXnXtc4MZPDpCO03uk32-PUdo4fLH_cX88ni9ufVxfliYpgkYiK0BMnr0hBGLGN2VmqCDadgdF3JSjBtTNNQqnnJeSO5BM25qEwlmWVQWjpGp9u9XQy_epuyWrlkbNtqb0OfFAGJBWYS6IB-_4C-hD764XeKYAykHCIUA_Xtleqrla1VF91Kx7V6S2wApltgiCKlaJsdgkFtKlGbStSukkFgHwTj8r-UctSu_b8mt9of19r1J0fU8nqxeHf_ApuRoEU |
CitedBy_id | crossref_primary_10_1088_2058_8585_ac0c67 crossref_primary_10_1002_admi_202201736 crossref_primary_10_1002_adfm_202107716 crossref_primary_10_1002_mabi_202300267 crossref_primary_10_1002_smll_202303053 crossref_primary_10_1021_acsami_9b22574 crossref_primary_10_25077_jif_15_1_30_38_2023 crossref_primary_10_1002_adfm_202100447 crossref_primary_10_1038_s41467_024_49807_8 crossref_primary_10_1002_smll_201905726 crossref_primary_10_1021_acsapm_4c03577 crossref_primary_10_1016_j_addr_2022_114169 crossref_primary_10_1557_adv_2019_237 crossref_primary_10_1021_acsabm_0c00369 crossref_primary_10_1002_admt_202200404 crossref_primary_10_1016_j_snb_2024_136893 crossref_primary_10_1002_adem_202100696 crossref_primary_10_1016_j_msec_2020_111457 crossref_primary_10_3390_mi13010080 crossref_primary_10_1016_j_stem_2024_03_008 crossref_primary_10_1002_adfm_202316357 crossref_primary_10_1021_acsami_0c16862 crossref_primary_10_1021_acsami_9b20222 crossref_primary_10_1021_acs_langmuir_0c01769 crossref_primary_10_1002_smll_201902819 crossref_primary_10_1016_j_mtchem_2022_101021 crossref_primary_10_1021_acsami_4c00460 crossref_primary_10_1089_ten_tec_2024_0141 crossref_primary_10_1021_acs_analchem_2c01424 crossref_primary_10_1063_1_5123518 crossref_primary_10_1126_scitranslmed_aaz1723 crossref_primary_10_1002_adfm_202008821 crossref_primary_10_1021_acsapm_3c03214 crossref_primary_10_1021_acs_langmuir_3c03689 crossref_primary_10_1039_D2LC00811D crossref_primary_10_1088_2631_7990_ace863 crossref_primary_10_1016_j_mattod_2021_10_008 crossref_primary_10_1016_j_snb_2021_130341 crossref_primary_10_1016_j_sna_2021_113229 crossref_primary_10_1021_acsaenm_4c00381 crossref_primary_10_1039_D4LC00601A crossref_primary_10_1016_j_progpolymsci_2023_101688 |
Cites_doi | 10.1021/am507964k 10.1016/S0021-9258(18)34609-X 10.1038/35102108 10.1021/acs.analchem.5b04077 10.1002/anie.201102545 10.1021/la904447c 10.1002/smll.201403640 10.1002/anie.201004693 10.1021/la000382m 10.1126/science.1147241 10.1016/S0006-291X(03)01165-3 10.1039/c1sm05169e 10.1002/adma.201505972 10.1021/ac971295a 10.1002/adfm.201502174 10.1021/acs.analchem.6b03712 10.1021/acsami.7b08116 10.1016/0021-9797(91)90258-A 10.1523/JNEUROSCI.23-09-03607.2003 10.1021/la980037l 10.1002/adma.201502115 10.1146/annurev.bioeng.3.1.335 10.1021/ac102577n 10.1021/ac070306p 10.1021/la2041967 10.1016/S0032-3861(00)00039-2 10.1021/ar010110q 10.1021/la2012099 10.1021/la300147p 10.1039/C4NR04656K 10.1016/j.biomaterials.2009.12.020 10.1039/c2lc40921f 10.1002/smll.201500647 10.1002/adma.201400262 10.1039/C5AN00852B 10.1073/pnas.0605552103 10.1021/bp980031m 10.1038/ncomms9686 10.1146/annurev.bioeng.2.1.227 10.1088/0957-4484/22/18/185303 10.1002/anie.201202823 10.1146/annurev.matsci.28.1.153 10.1021/la011351 10.1002/anie.201105925 10.1021/acs.analchem.7b03225 10.1002/adma.201600247 10.1007/s10856-006-0444-8 10.1021/la3010932 10.1021/ac980656z 10.1021/ma980268z 10.1002/1097-4636(200011)52:2<346::AID-JBM14>3.0.CO;2-H 10.1039/b718643f 10.1021/am5075216 10.1038/srep19801 10.1073/pnas.040562297 10.1039/C4TB00570H 10.1021/la025529j 10.1002/chem.200501554 10.1126/science.1067172 10.1016/j.bios.2013.09.031 10.1039/c2lc40632b 10.3389/fmicb.2013.00300 10.1021/acs.biomac.5b00852 10.1039/b602486f 10.1039/C4RA09010A 10.1038/35075114 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201802128 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30133159 10_1002_smll_201802128 SMLL201802128 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Research Grants Council of Hong Kong funderid: GRF 14302315 – fundername: Research Grants Council – fundername: Chinese University of Hong Kong funderid: 4053204 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4928-8a9097d5c242e44e65a21c730cadb9b84accff33a7577f9790a778bcb94e405e3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 05:47:21 EDT 2025 Fri Jul 25 12:16:38 EDT 2025 Mon Jul 21 06:00:04 EDT 2025 Tue Jul 01 02:10:37 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Wed Jan 22 16:51:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | single cell array microlens array surface patterning |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4928-8a9097d5c242e44e65a21c730cadb9b84accff33a7577f9790a778bcb94e405e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2044-2848 |
PMID | 30133159 |
PQID | 2110258028 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2091814903 proquest_journals_2110258028 pubmed_primary_30133159 crossref_primary_10_1002_smll_201802128 crossref_citationtrail_10_1002_smll_201802128 wiley_primary_10_1002_smll_201802128_SMLL201802128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-00 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 140 2013; 4 2002; 18 2000; 41 2014; 26 2000; 2 2012; 12 2017; 9 2007; 79 2007; 36 2012; 51 2010; 26 2014; 4 2000; 16 2014; 2 1991; 144 2000; 52 2000; 97 2011; 22 2012; 28 1982; 257 2011; 27 2001; 411 1998; 14 2001; 414 2014; 53 2016; 88 1998; 28 2010; 31 2015; 6 2015; 16 2006; 12 2002; 295 2008; 18 2006; 17 2002; 35 2015; 11 2011; 83 2015; 7 2011; 7 2016; 6 2015; 25 2003; 307 2010; 49 2015; 27 2011; 50 2018; 90 2001; 3 1998; 70 2009; 4 2016; 28 2007; 318 1998; 31 2006; 103 2003; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Lin L. I. (e_1_2_7_7_1) 2009; 4 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 11 start-page: 4379 year: 2015 publication-title: Small – volume: 2 start-page: 227 year: 2000 publication-title: Annu. Rev. Biomed. Eng. – volume: 12 start-page: 5218 year: 2012 publication-title: Lab Chip – volume: 28 start-page: 8286 year: 2012 publication-title: Langmuir – volume: 51 start-page: 1558 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 5217 year: 2015 publication-title: Adv. Mater. – volume: 53 start-page: 58 year: 2014 publication-title: Biosens. Bioelectron. – volume: 12 start-page: 4986 year: 2012 publication-title: Lab Chip – volume: 70 start-page: 4974 year: 1998 publication-title: Anal. Chem. – volume: 4 start-page: 6 year: 2009 publication-title: PLoS One – volume: 90 start-page: 777 year: 2018 publication-title: Anal. Chem. – volume: 88 start-page: 10357 year: 2016 publication-title: Anal. Chem. – volume: 2 start-page: 6917 year: 2014 publication-title: J. Mater. Chem. B – volume: 295 start-page: 1702 year: 2002 publication-title: Science – volume: 18 start-page: 519 year: 2002 publication-title: Langmuir – volume: 26 start-page: 8147 year: 2010 publication-title: Langmuir – volume: 28 start-page: 2131 year: 2012 publication-title: Langmuir – volume: 70 start-page: 2280 year: 1998 publication-title: Anal. Chem. – volume: 27 start-page: 5709 year: 2011 publication-title: Langmuir – volume: 18 start-page: 2660 year: 2008 publication-title: J. Mater. Chem. – volume: 318 start-page: 426 year: 2007 publication-title: Science – volume: 31 start-page: 4739 year: 1998 publication-title: Macromolecules – volume: 28 start-page: 3543 year: 2016 publication-title: Adv. Mater. – volume: 36 start-page: 1350 year: 2007 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 10109 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 3202 year: 2016 publication-title: Adv. Mater. – volume: 79 start-page: 4924 year: 2007 publication-title: Anal. Chem. – volume: 4 start-page: 1 year: 2013 publication-title: Front. Microbiol. – volume: 7 start-page: 4147 year: 2011 publication-title: Soft Matter – volume: 3 start-page: 335 year: 2001 publication-title: Annu. Rev. Biomed. Eng. – volume: 7 start-page: 935 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 6671 year: 2002 publication-title: Langmuir – volume: 22 start-page: 185303 year: 2011 publication-title: Nanotechnology – volume: 35 start-page: 491 year: 2002 publication-title: Acc. Chem. Res. – volume: 12 start-page: 6290 year: 2006 publication-title: Chem. ‐ Eur. J. – volume: 11 start-page: 2738 year: 2015 publication-title: Small – volume: 307 start-page: 355 year: 2003 publication-title: Biochem. Biophys. Res. Commun. – volume: 16 start-page: 2541 year: 2015 publication-title: Biomacromolecules – volume: 50 start-page: 8424 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 153 year: 1998 publication-title: Annu. Rev. Mater. Sci. – volume: 103 start-page: 12999 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 140 start-page: 5627 year: 2015 publication-title: Analyst – volume: 4 start-page: 60002 year: 2014 publication-title: RSC Adv. – volume: 14 start-page: 356 year: 1998 publication-title: Biotechnol. Prog. – volume: 144 start-page: 271 year: 1991 publication-title: J. Colloid Interface Sci. – volume: 28 start-page: 5775 year: 2012 publication-title: Langmuir – volume: 7 start-page: 421 year: 2015 publication-title: Nanoscale – volume: 17 start-page: 1057 year: 2006 publication-title: J. Mater. Sci.: Mater. Med. – volume: 414 start-page: 33 year: 2001 publication-title: Nature – volume: 23 start-page: 3607 year: 2003 publication-title: J. Neurosci. – volume: 41 start-page: 6851 year: 2000 publication-title: Polymer – volume: 411 start-page: 107 year: 2001 publication-title: Nature – volume: 25 start-page: 5520 year: 2015 publication-title: Adv. Funct. Mater. – volume: 83 start-page: 1830 year: 2011 publication-title: Anal. Chem. – volume: 14 start-page: 2225 year: 1998 publication-title: Langmuir – volume: 97 start-page: 2408 year: 2000 publication-title: Proc. Natl. Acad. Sci. USA – volume: 49 start-page: 9401 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 31 start-page: 2535 year: 2010 publication-title: Biomaterials – volume: 26 start-page: 5025 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 8686 year: 2015 publication-title: Nat. Commun. – volume: 257 start-page: 4888 year: 1982 publication-title: J. Biol. Chem. – volume: 9 start-page: 29248 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 346 year: 2000 publication-title: J. Biomed. Mater. Res. – volume: 6 start-page: 19801 year: 2016 publication-title: Sci. Rep. – volume: 16 start-page: 7811 year: 2000 publication-title: Langmuir – volume: 7 start-page: 4075 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 88 start-page: 354 year: 2016 publication-title: Anal. Chem. – ident: e_1_2_7_14_1 doi: 10.1021/am507964k – ident: e_1_2_7_60_1 doi: 10.1016/S0021-9258(18)34609-X – ident: e_1_2_7_40_1 doi: 10.1038/35102108 – ident: e_1_2_7_64_1 doi: 10.1021/acs.analchem.5b04077 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201102545 – ident: e_1_2_7_5_1 doi: 10.1021/la904447c – ident: e_1_2_7_11_1 doi: 10.1002/smll.201403640 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201004693 – ident: e_1_2_7_54_1 doi: 10.1021/la000382m – ident: e_1_2_7_23_1 doi: 10.1126/science.1147241 – ident: e_1_2_7_48_1 doi: 10.1016/S0006-291X(03)01165-3 – ident: e_1_2_7_4_1 doi: 10.1039/c1sm05169e – ident: e_1_2_7_12_1 doi: 10.1002/adma.201505972 – volume: 4 start-page: 6 year: 2009 ident: e_1_2_7_7_1 publication-title: PLoS One – ident: e_1_2_7_35_1 doi: 10.1021/ac971295a – ident: e_1_2_7_41_1 doi: 10.1002/adfm.201502174 – ident: e_1_2_7_28_1 doi: 10.1021/acs.analchem.6b03712 – ident: e_1_2_7_37_1 doi: 10.1021/acsami.7b08116 – ident: e_1_2_7_58_1 doi: 10.1016/0021-9797(91)90258-A – ident: e_1_2_7_63_1 doi: 10.1523/JNEUROSCI.23-09-03607.2003 – ident: e_1_2_7_25_1 doi: 10.1021/la980037l – ident: e_1_2_7_13_1 doi: 10.1002/adma.201502115 – ident: e_1_2_7_27_1 doi: 10.1146/annurev.bioeng.3.1.335 – ident: e_1_2_7_17_1 doi: 10.1021/ac102577n – ident: e_1_2_7_67_1 doi: 10.1021/ac070306p – ident: e_1_2_7_30_1 doi: 10.1021/la2041967 – ident: e_1_2_7_31_1 doi: 10.1016/S0032-3861(00)00039-2 – ident: e_1_2_7_65_1 doi: 10.1021/ar010110q – ident: e_1_2_7_62_1 doi: 10.1021/la2012099 – ident: e_1_2_7_61_1 doi: 10.1021/la300147p – ident: e_1_2_7_18_1 doi: 10.1039/C4NR04656K – ident: e_1_2_7_56_1 doi: 10.1016/j.biomaterials.2009.12.020 – ident: e_1_2_7_1_1 doi: 10.1039/c2lc40921f – ident: e_1_2_7_39_1 doi: 10.1002/smll.201500647 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201400262 – ident: e_1_2_7_10_1 doi: 10.1039/C5AN00852B – ident: e_1_2_7_32_1 doi: 10.1073/pnas.0605552103 – ident: e_1_2_7_49_1 doi: 10.1021/bp980031m – ident: e_1_2_7_53_1 doi: 10.1038/ncomms9686 – ident: e_1_2_7_51_1 doi: 10.1146/annurev.bioeng.2.1.227 – ident: e_1_2_7_24_1 doi: 10.1088/0957-4484/22/18/185303 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201202823 – ident: e_1_2_7_26_1 doi: 10.1146/annurev.matsci.28.1.153 – ident: e_1_2_7_29_1 doi: 10.1021/la011351 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201105925 – ident: e_1_2_7_44_1 doi: 10.1021/acs.analchem.7b03225 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201600247 – ident: e_1_2_7_59_1 doi: 10.1007/s10856-006-0444-8 – ident: e_1_2_7_19_1 doi: 10.1021/la3010932 – ident: e_1_2_7_66_1 doi: 10.1021/ac980656z – ident: e_1_2_7_34_1 doi: 10.1021/ma980268z – ident: e_1_2_7_55_1 doi: 10.1002/1097-4636(200011)52:2<346::AID-JBM14>3.0.CO;2-H – ident: e_1_2_7_16_1 doi: 10.1039/b718643f – ident: e_1_2_7_8_1 doi: 10.1021/am5075216 – ident: e_1_2_7_43_1 doi: 10.1038/srep19801 – ident: e_1_2_7_52_1 doi: 10.1073/pnas.040562297 – ident: e_1_2_7_57_1 doi: 10.1039/C4TB00570H – ident: e_1_2_7_47_1 doi: 10.1021/la025529j – ident: e_1_2_7_50_1 doi: 10.1002/chem.200501554 – ident: e_1_2_7_46_1 doi: 10.1126/science.1067172 – ident: e_1_2_7_15_1 doi: 10.1016/j.bios.2013.09.031 – ident: e_1_2_7_9_1 doi: 10.1039/c2lc40632b – ident: e_1_2_7_2_1 doi: 10.3389/fmicb.2013.00300 – ident: e_1_2_7_33_1 doi: 10.1021/acs.biomac.5b00852 – ident: e_1_2_7_20_1 doi: 10.1039/b602486f – ident: e_1_2_7_21_1 doi: 10.1039/C4RA09010A – ident: e_1_2_7_45_1 doi: 10.1038/35075114 |
SSID | ssj0031247 |
Score | 2.445853 |
Snippet | Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1802128 |
SubjectTerms | Arrays Droplets Fog Hydrophobic surfaces microlens array Nanotechnology Organic chemistry Patterning Polydimethylsiloxane Printing Silicone resins single cell array Surface energy surface patterning Thin films |
Title | Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201802128 https://www.ncbi.nlm.nih.gov/pubmed/30133159 https://www.proquest.com/docview/2110258028 https://www.proquest.com/docview/2091814903 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ikz74_TGdEkHwqRqbdkkehyhTnIhf-FaSNFFxdrJ1D_rXe9dudVNE0LeWXto0yd39Lrn8QsguN57LUEGQo6SDAIWzwIiGC2IdI_-XkrbYKNy-aLRuo7P7-H5sF3_JD1FNuKFmFPYaFVyb_sEnaWj_pYNLB8hgBjYWjDAmbCEquqr4ozg4r-J0FfBZARJvjVgbWXgwWXzSK32DmpPItXA9J_NEjypdZpw87w9ys2_fv_A5_uevFsjcEJfSZjmQFsmUy5bI7Bhb4TK5uyy4OHEihbbe0l739bFrniy9HvQ8JnZR80Yv3EPBJE7bmOiHefDa5vQSXoDp1VRnKT3N-7Q5tmy-Qm5Pjm-OWsHwWIbARiqUgdSKKZHGFry7iyLXiHV4aMFSWJ0aZWSkrfWecy1iIbwSimkhpLFGRQ7goeOrZDrrZm6dUKZCw7xiPjUiigAbxZx57zSAKMukbtRIMOqWxA45y_HojE5Ssi2HCbZXUrVXjexV8q8lW8ePkvVRLydDre0nGAyHMQjA453qMegbLqLozHUHIAMAS0JYyXiNrJWjo_oUGEvOAR_WSFj08S91SK7b5-fV3cZfCm2SGbwuk97qZDrvDdwWoKTcbBea8AEkughB |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHoDwXSutKSD2ldeNkbR-rimpLd1dVX-IW2Y5NESVb7WYP5dcz42zSLgghwTHJOHFsj-cbe_wNwAdhg1CpRidHK48OiuCJlX2f5CYn_i-tXDwoPBr3B-fZp895G01IZ2EafohuwY00I87XpOC0IL1zyxo6-35FewdEYYaT7H14QGm9o1d10jFICTRfMb8KWq2EqLda3kae7iyXX7ZLv4HNZewajc_BU7BttZuYk2_b89puux-_MDr-1389gycLaMr2mrG0Cvd89Rwe3yEsfAEXx5GOk9ZS2OCmnE6uLyf2q2On82mg2C5mb9jYf4lk4mxEsX4UCm9czY7xBRRhzUxVssN6xvbu7Jy_hPODj2f7g2SRmSFxmU5VoozmWpa5QwPvs8z3c5PuOpwsnCmttiozzoUghJG5lEFLzY2UyjqrM48I0YtXsFJNKv8GGNep5UHzUFqZZQiPcsFD8AZxlOPK9HuQtP1SuAVtOWXPuCoawuW0oPYquvbqwVYnf90QdvxRcq3t5mKhuLOC_OE0RwF8vNk9RpWjfRRT-ckcZRBjKfQsuejB62Z4dJ_C-VIIhIg9SGMn_6UOxeloOOyu3v5LoQ14ODgbDYvh4fjoHTyi-00M3Bqs1NO5f4-gqbbrUS1-AqgpDFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BkBA88JtRGGAkJJ6ymdiJ7ceJUXXQVhVjaG-R7dgwMdKqTR_GX89d0oYWhJDgMck5cWzf3Xf2-TPAS-Gi0KnBIMfogAGK4IlTeUgymxH_l9G-2Sg8GueDU_nuLDvb2MXf8kN0E26kGY29JgWflfHgJ2no4tsFLR0Qgxna2KtwTeZc07g--tARSAn0Xs3xKui0EmLeWtM28vRgu_y2W_oNa25D18b39G-DXde6TTn5ur-s3b7__guh4__81h24tQKm7LAdSXfhSqjuwc0NusL78GnSkHHSTAobXJbz6ezL1J17drKcR8rsYu6SjcPnhkqcjSjTjxLhra_ZBF9A-dXMViU7rhfscGPd_AGc9t9-fDNIVucyJF6aVCfaGm5UmXl070HKkGc2fe3RVHhbOuO0tN7HKIRVmVLRKMOtUtp5Z2RAfBjEQ9ipplV4BIyb1PFoeCydkhLBUSZ4jMEiivJc27wHybpbCr8iLaezMy6Klm45Lai9iq69evCqk5-1dB1_lNxb93KxUttFQdFwmqEAPn7RPUaFo1UUW4XpEmUQYWmMK7nowW47OrpPobUUAgFiD9Kmj_9Sh-JkNBx2V4__pdBzuD456hfD4_H7J3CDbrcJcHuwU8-X4Skipto9a5TiB460CxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+Hydrophobic+Surfaces+by+Negative+Microcontact+Printing+and+Its+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Han&rft.au=Wu%2C+Liang&rft.au=Zhou%2C+Xiaohu&rft.au=Liu%2C+Baishu&rft.date=2018-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201802128&rft.externalDBID=10.1002%252Fsmll.201802128&rft.externalDocID=SMLL201802128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |