Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment
Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that r...
Saved in:
Published in | Animal conservation Vol. 18; no. 5; pp. 397 - 406 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Cambridge University Press
01.10.2015
Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations. |
---|---|
AbstractList | Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations.
Read the Commentaries on this Feature Paper: Using the IUCN Red List criteria to assess reintroduction success; Alternative perspectives on reintroduction success; Developing a standard for evaluating reintroduction success using IUCN Red List indices and the Response from the authors: Reintroducing reintroductions into the conservation arena Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations. Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the I nternation U nion for C onservation of N ature ( IUCN ) R ed L ist criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN ) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN ) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations. Read the Commentaries on this Feature Paper: Using the IUCN Red List criteria to assess reintroduction success ; Alternative perspectives on reintroduction success ; Developing a standard for evaluating reintroduction success using IUCN Red List indices and the Response from the authors: Reintroducing reintroductions into the conservation arena Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations. Read the Commentaries on this Feature Paper: Using the IUCN Red List criteria to assess reintroduction success; Alternative perspectives on reintroduction success; Developing a standard for evaluating reintroduction success using IUCN Red List indices and the Response from the authors: Reintroducing reintroductions into the conservation arena |
Author | Saint‐Jalme, M Mihoub, J‐B Colas, B Sarrazin, F Robert, A Guigon, I Kerbiriou, C |
Author_xml | – sequence: 1 fullname: Robert, A – sequence: 2 fullname: Colas, B – sequence: 3 fullname: Guigon, I – sequence: 4 fullname: Kerbiriou, C – sequence: 5 fullname: Mihoub, J‐B – sequence: 6 fullname: Saint‐Jalme, M – sequence: 7 fullname: Sarrazin, F |
BackLink | https://hal.science/hal-03496918$$DView record in HAL |
BookMark | eNp9kUtv1DAUhSNUJNrCgl9AJDawSOtX4pjdKKUPNCqLMkViY91xbmZcMvZgJ6X993UYKFIluBtb9nfOte85yPacd5hlryk5oqmOwdweUUbr-lm2T0WlCipVuZf2vJKFEpy8yA5ivCGEsprT_aw9wc4661Z5QOuG4NvRDNa7PI7GYIz5GKfLi0VzmZtgBwwW8s6HfFgHhAEdtnncorEYP-SQt7jxqwDbtTU5xJgMNuiGl9nzDvqIr36vh9ni9OOX5ryYfz67aGbzwgjF6oKWAksuK-hqLFXVdop3FZAlX7bccFlX0kgu2g4qw0VXclUSsjS4VMhIK6Dlh9n7ne8aer0NdgPhXnuw-nw219MZ4UJVita3NLHvduw2-B8jxkFvbDTY9-DQj1EzkoqSkrKEvn2C3vgxuPQTTSUTjAlB1N_mJvgYA3aPL6BET9nolI3-lU1ij5-wxg4wzX0IYPv_KX7aHu__ba1nzfUfRbFT2Djg3aMCwnddSS5L_fXyTF-V183pt5NPehrImx3fgdewCjbqxRUjtEpzYFIwzh8AzcW55w |
CitedBy_id | crossref_primary_10_3389_fcosc_2021_681545 crossref_primary_10_1111_cobi_14451 crossref_primary_10_1017_S0959270916000666 crossref_primary_10_1017_S0959270920000593 crossref_primary_10_1111_ibi_12987 crossref_primary_10_1111_acv_12299 crossref_primary_10_1007_s00114_023_01860_x crossref_primary_10_1002_ece3_2378 crossref_primary_10_1017_S0030605322000540 crossref_primary_10_1016_j_biocon_2019_108239 crossref_primary_10_1186_s40657_021_00250_z crossref_primary_10_1071_WR16165 crossref_primary_10_1098_rsos_230707 crossref_primary_10_25225_fozo_072_2019 crossref_primary_10_1007_s10841_021_00354_3 crossref_primary_10_1007_s11258_023_01311_7 crossref_primary_10_1670_20_110 crossref_primary_10_1002_ecs2_3862 crossref_primary_10_3389_fgene_2021_705337 crossref_primary_10_2326_osj_17_135 crossref_primary_10_1071_ZO17046 crossref_primary_10_1016_j_biocon_2017_08_004 crossref_primary_10_1002_jwmg_21144 crossref_primary_10_3389_fcosc_2024_1441980 crossref_primary_10_1002_ece3_2787 crossref_primary_10_1111_ibi_13198 crossref_primary_10_1111_icad_12679 crossref_primary_10_1016_j_biocon_2019_108346 crossref_primary_10_3389_fmars_2023_1100194 crossref_primary_10_1111_acv_12779 crossref_primary_10_3389_fcosc_2022_815506 crossref_primary_10_1111_ibi_13071 crossref_primary_10_1017_S0959270922000089 crossref_primary_10_1038_s41598_020_67942_2 crossref_primary_10_1111_csp2_12674 crossref_primary_10_1111_1365_2435_12723 crossref_primary_10_1016_j_tree_2020_04_005 crossref_primary_10_1111_acv_12738 crossref_primary_10_1007_s10592_017_0958_2 crossref_primary_10_1093_ornithapp_duad037 crossref_primary_10_1111_conl_12217 crossref_primary_10_1071_WR21066 crossref_primary_10_1111_1365_2745_13609 crossref_primary_10_1111_rec_12409 crossref_primary_10_1111_acv_12278 crossref_primary_10_1038_s41598_020_75315_y crossref_primary_10_1007_s10592_020_01307_0 crossref_primary_10_1111_acv_12549 crossref_primary_10_1111_acv_12501 crossref_primary_10_1007_s10531_021_02274_9 crossref_primary_10_1016_j_biocon_2017_11_023 crossref_primary_10_1016_j_pecon_2018_03_003 crossref_primary_10_1007_s11258_023_01310_8 crossref_primary_10_1016_j_biocon_2024_110523 crossref_primary_10_1111_acv_12906 crossref_primary_10_1093_ornithapp_duab065 crossref_primary_10_1111_emr_12402 crossref_primary_10_1002_pan3_10503 crossref_primary_10_1515_mammalia_2016_0121 crossref_primary_10_1080_03036758_2018_1518249 crossref_primary_10_1093_jisesa_iew102 crossref_primary_10_1002_ece3_8187 crossref_primary_10_1111_acv_12244 crossref_primary_10_1038_s41598_021_87436_z crossref_primary_10_1111_acv_12242 crossref_primary_10_1007_s10531_018_1651_6 crossref_primary_10_7717_peerj_15563 crossref_primary_10_1111_acv_12241 crossref_primary_10_1016_j_biocon_2017_08_023 crossref_primary_10_1111_rec_13869 crossref_primary_10_1111_aec_12902 crossref_primary_10_1111_icad_12778 crossref_primary_10_1111_acv_12239 crossref_primary_10_1111_acv_12831 crossref_primary_10_1016_j_biocon_2019_05_008 crossref_primary_10_1111_acv_12994 crossref_primary_10_1016_j_biocon_2022_109576 crossref_primary_10_1111_rec_14286 crossref_primary_10_4000_vertigo_40522 crossref_primary_10_1111_cobi_12743 crossref_primary_10_7717_peerj_1012 crossref_primary_10_1007_s10531_017_1365_1 crossref_primary_10_1111_cobi_13518 crossref_primary_10_1002_ecs2_3038 crossref_primary_10_1111_cobi_14209 |
Cites_doi | 10.1186/1471-2148-11-260 10.1016/S0006-3207(00)00048-3 10.1093/acprof:oso/9780198525257.001.0001 10.1016/j.biocon.2003.10.002 10.1111/j.1365-2664.2008.01585.x 10.1016/j.tree.2011.03.001 10.1111/j.1523-1739.2006.00627.x 10.1016/j.tree.2007.10.003 10.1111/j.1523-1739.1991.tb00119.x 10.1016/j.biocon.2009.07.016 10.1016/0169-5347(96)10026-4 10.1002/9781444355833.ch6 10.1023/A:1008985925162 10.1038/35006050 10.1017/S0030605312000634 10.1111/j.1523-1739.2006.00537.x 10.1016/j.tree.2008.03.011 10.1016/S0169-5347(01)02137-1 10.1016/0169-5347(96)20092-8 10.1890/08-0286.1 10.1371/journal.pone.0027453 10.2980/1195-6860(2007)14[463:IODAGI]2.0.CO;2 10.1098/rspb.2006.3601 10.2307/2684366 10.1086/285580 10.2980/1195-6860(2007)14[iii:RL]2.0.CO;2 10.1017/S1367943004001799 10.1093/biomet/78.3.691 10.1002/9781444355833.ch12 10.1111/j.1365-2664.2006.01179.x 10.1890/07-0854.1 10.1017/S0030605310000281 10.1007/978-94-011-5874-9_8 10.1111/j.1523-1739.2008.01044.x 10.1017/S1367943003003147 10.1111/j.0021-8901.2004.00980.x 10.1111/j.1755-263X.2010.00113.x |
ContentType | Journal Article |
Copyright | 2015 The Zoological Society of London Animal Conservation © 2015 The Zoological Society of London Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 The Zoological Society of London – notice: Animal Conservation © 2015 The Zoological Society of London – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ BSCLL AAYXX CITATION 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H97 L.G P64 RC3 7S9 L.6 1XC |
DOI | 10.1111/acv.12188 |
DatabaseName | AGRIS Istex CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1469-1795 |
EndPage | 406 |
ExternalDocumentID | oai_HAL_hal_03496918v1 3842167641 10_1111_acv_12188 ACV12188 ark_67375_WNG_S5VCFZDJ_1 US201600027423 |
Genre | article |
GrantInformation_xml | – fundername: CNRS |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 23M 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABITZ ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CHEAL COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EYRJQ F00 F01 F04 FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IX1 J0M K48 L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LW7 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ABVKB ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SN 7SS 7ST 7U6 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H97 L.G P64 RC3 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c4928-154e5376af8e596df93f6a0b3bd3c37867c734dfa6c34f539500bceb9e20d4ad3 |
IEDL.DBID | DR2 |
ISSN | 1367-9430 |
IngestDate | Fri May 09 12:23:45 EDT 2025 Fri Jul 11 18:30:24 EDT 2025 Fri Jul 25 10:45:58 EDT 2025 Tue Jul 01 00:25:14 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Wed Jan 22 16:55:35 EST 2025 Wed Oct 30 10:02:10 EDT 2024 Wed Dec 27 19:15:10 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4928-154e5376af8e596df93f6a0b3bd3c37867c734dfa6c34f539500bceb9e20d4ad3 |
Notes | http://dx.doi.org/10.1111/acv.12188 Appendix S1. Methodological details.Appendix S2. Values of theoretical parameters.Appendix S3. Additional scenarios of population regulation.Appendix S4. Interacting effects among ecological variables.Appendix S5. Application to a sample of real life cycles.Appendix S6. Additional results. ark:/67375/WNG-S5VCFZDJ-1 CNRS ArticleID:ACV12188 istex:9D70A42A889B4FDE7C177BFE169DA5CD9E8A831E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6080-4762 0000-0002-5354-850X 0000-0001-5901-4819 |
PQID | 1724224409 |
PQPubID | 866372 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_03496918v1 proquest_miscellaneous_2000010512 proquest_journals_1724224409 crossref_primary_10_1111_acv_12188 crossref_citationtrail_10_1111_acv_12188 wiley_primary_10_1111_acv_12188_ACV12188 istex_primary_ark_67375_WNG_S5VCFZDJ_1 fao_agris_US201600027423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Animal conservation |
PublicationTitleAlternate | Anim Conserv |
PublicationYear | 2015 |
Publisher | Cambridge University Press Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Cambridge University Press – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | Robert, A. (2009). Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915-2922. Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911-927. Hirzel, A.H., Posse, B., Oggier, P.A., Crettenand, Y., Glenz, C. & Arlettaz, R. (2004). Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. J. Appl. Ecol. 41, 1103-1116. Long, S.J. & Freese, J. (2001). Regression models for categorical dependent variables using Stata. College Station: Stata Press. Beissinger, S. & McCullough, D.R. (2002). Population viability analysis. Chicago: University of Chicago Press. Robert, A., Chantepie, S., Pavard, S., Sarrazin, F. & Teplitsky, C. (in press). Actuarial senescence can decrease the viability of mammal populations. Ecol. Appl. Seddon, P.J., Soorae, P.S. & Launay, F. (2005). Taxonomic bias in reintroduction projects. Anim. Conserv. 8, 51-58. Coulson, T., Mace, G.M., Hudson, E. & Possingham, H. (2001). The use and abuse of population viability analysis. Trends Ecol. Evol. 16, 219-221. Robert, A. (2006). Negative environmental perturbations may improve species persistence. Proc. Roy. Soc. Lond. Ser. B. 273, 2501-2506. Dimond, W.J. & Armstrong, D.P. (2007). Adaptive harvesting of source populations for translocation: a case study using New Zealand robins. Conserv. Biol. 21, 114-124. Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. Am. Stat. 45, 90-96. Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. (2009). When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J. Appl. Ecol. 46, 92-100. Balmford, A. (1996). Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193-196. Armstrong, D.P. & Seddon, P.J. (2008). Directions in reintroduction biology. Trends Ecol. Evol. 23, 20-25. Reed, D.H., O'Grady, J.J., Ballou, J.D. & Frankham, R. (2003). The frequency and severity of catastrophic die-offs in vertebrates. Anim. Conserv. 6, 109-114. Mace, G.M. & Lande, R. (1991). Assessing extinction threats: toward a re-evaluation of IUCN threatened species categories. Conserv. Biol. 5, 148-157. Bajomi, B., Pullin, A.S., Stewart, G.B. & Takács-Sánta, A. (2010). Bias and dispersal in the animal reintroduction literature. Oryx 44, 358-365. Robert, A. (2011). Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times. BMC Evol. Biol. 11, 260. Sutherland, W.J., Armstrong, D., Butchart, S.H.M., Earnhardt, J.M., Ewen, J., Jamieson, I., Jones, C.G., Lee, R., Newbery, P., Nichols, J.D., Parker, K.A., Sarrazin, F., Seddon, P., Shah, N. & Tatayah, V. (2010). Standards for documenting and monitoring bird reintroduction projects. Conserv. Lett. 3, 229-235. Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic population dynamics in ecology and conservation. Oxford: Oxford University Press. Mac Nally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiv. Conserv. 9, 655-671. Le Gouar, P., Robert, A., Choisy, J.P., Henriquet, S., Lécuyer, P., Tessier, C. & Sarrazin, F. (2008). Roles of survival and dispersal in reintroduction success of Griffon vulture (Gyps fulvus). Ecol. Appl. 18, 859-872. Caswell, H. (2001). Matrix population models, 2nd edn. Sunderland: Sinauer. Flather, C.H., Hayward, G.D., Beissinger, S.R. & Stephens, P.A. (2011). Minimum viable populations: is there a 'magic number' for conservation practitioners? Trends Ecol. Evol. 26, 307-316. Brook, B.W., Sodhi, N.S. & Bradshaw, C.J.A. (2008). Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453-460. Kirchner, F., Robert, A. & Colas, B. (2006). Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J. Appl. Ecol. 43, 1011-1021. Fischer, J.D. & Lindenmayer, B. (2000). An assessment of the published results of animal relocations. Biol. Conserv. 96, 1-11. Nagelkerke, N. (1991). A note on a general definition of the coefficient of determination. Biometrika 78, 691-692. Sarrazin, F. (2007). Introductory remarks: a demographic frame for reintroduction. Ecoscience 14, iii-v. Sarrazin, F. & Barbault, R. (1996). Re-introductions: challenges and lessons for basic ecology. Trends Ecol. Evol. 11, 474-478. Seddon, P.J., Armstrong, D.P. & Maloney, R.F. (2007). Developing the science of reintroduction biology. Conserv. Biol. 21, 303-312. Brook, B.W., O'Grady, J.J., Chapman, A.P., Burgman, M.A., Akçakaya, H.R. & Frankham, R. (2000). Predictive accuracy of population viability analysis in conservation biology. Nature 404, 385-387. Lynch, H.J. & Fagan, W.F. (2009). Survivorship curves and their impact on the estimation of maximum population growth rates. Ecology 90, 1116-1124. Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, G., Akcakaya, R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008). Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22, 1424-1442. O'Grady, J.J., Reed, D.H., Brook, B.W. & Frankham, R. (2004). What are the best correlates of predicted extinction risk? Biol. Conserv. 118, 513-520. Mihoub, J.-B., Robert, A., Le Gouar, P. & Sarrazin, F. (2011). Post-release dispersal in animal translocations: social attraction and the 'vacuum effect'. PLoS ONE 6, e27453. Robert, A., Couvet, D. & Sarrazin, F. (2007). Integration of demography and genetics in population restorations. Ecoscience 14, 463-471. Mihoub, J.-B., Jiguet, F., Lécuyer, P., Eliotout, B. & Sarrazin, F. (2014). Modelling nesting site suitability in a population of reintroduced Eurasian black vultures Aegypius monachus in the Grands Causses, France. Oryx 48, 116-124. 2004; 41 2009; 46 2012 1991; 78 2011 2008; 18 2000; 9 2006; 273 1997 2014; 48 2011; 11 2005 2003 2002 2011; 6 1993; 142 2007; 14 1996; 11 1991; 5 2010; 44 2001 1991; 45 2000 2006; 43 2003; 6 2000; 404 2005; 8 2000; 96 2009; 90 2008; 23 2001; 16 2008; 22 2011; 26 2013 2009; 142 2010; 3 2007; 21 2004; 118 Caswell H. (e_1_2_6_9_1) 2001 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Robert A. (e_1_2_6_43_1) Long S.J. (e_1_2_6_25_1) 2001 e_1_2_6_19_1 e_1_2_6_13_1 Mace G.M. (e_1_2_6_28_1) 2000 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_45_1 Beissinger S. (e_1_2_6_6_1) 2002 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – reference: Seddon, P.J., Soorae, P.S. & Launay, F. (2005). Taxonomic bias in reintroduction projects. Anim. Conserv. 8, 51-58. – reference: Flather, C.H., Hayward, G.D., Beissinger, S.R. & Stephens, P.A. (2011). Minimum viable populations: is there a 'magic number' for conservation practitioners? Trends Ecol. Evol. 26, 307-316. – reference: Reed, D.H., O'Grady, J.J., Ballou, J.D. & Frankham, R. (2003). The frequency and severity of catastrophic die-offs in vertebrates. Anim. Conserv. 6, 109-114. – reference: Robert, A., Chantepie, S., Pavard, S., Sarrazin, F. & Teplitsky, C. (in press). Actuarial senescence can decrease the viability of mammal populations. Ecol. Appl. – reference: Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911-927. – reference: Nagelkerke, N. (1991). A note on a general definition of the coefficient of determination. Biometrika 78, 691-692. – reference: Robert, A., Couvet, D. & Sarrazin, F. (2007). Integration of demography and genetics in population restorations. Ecoscience 14, 463-471. – reference: Brook, B.W., O'Grady, J.J., Chapman, A.P., Burgman, M.A., Akçakaya, H.R. & Frankham, R. (2000). Predictive accuracy of population viability analysis in conservation biology. Nature 404, 385-387. – reference: Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. (2009). When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J. Appl. Ecol. 46, 92-100. – reference: Sarrazin, F. & Barbault, R. (1996). Re-introductions: challenges and lessons for basic ecology. Trends Ecol. Evol. 11, 474-478. – reference: Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic population dynamics in ecology and conservation. Oxford: Oxford University Press. – reference: Le Gouar, P., Robert, A., Choisy, J.P., Henriquet, S., Lécuyer, P., Tessier, C. & Sarrazin, F. (2008). Roles of survival and dispersal in reintroduction success of Griffon vulture (Gyps fulvus). Ecol. Appl. 18, 859-872. – reference: Dimond, W.J. & Armstrong, D.P. (2007). Adaptive harvesting of source populations for translocation: a case study using New Zealand robins. Conserv. Biol. 21, 114-124. – reference: Coulson, T., Mace, G.M., Hudson, E. & Possingham, H. (2001). The use and abuse of population viability analysis. Trends Ecol. Evol. 16, 219-221. – reference: Brook, B.W., Sodhi, N.S. & Bradshaw, C.J.A. (2008). Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453-460. – reference: Sarrazin, F. (2007). Introductory remarks: a demographic frame for reintroduction. Ecoscience 14, iii-v. – reference: Beissinger, S. & McCullough, D.R. (2002). Population viability analysis. Chicago: University of Chicago Press. – reference: Long, S.J. & Freese, J. (2001). Regression models for categorical dependent variables using Stata. College Station: Stata Press. – reference: Mac Nally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiv. Conserv. 9, 655-671. – reference: Robert, A. (2006). Negative environmental perturbations may improve species persistence. Proc. Roy. Soc. Lond. Ser. B. 273, 2501-2506. – reference: Caswell, H. (2001). Matrix population models, 2nd edn. Sunderland: Sinauer. – reference: Seddon, P.J., Armstrong, D.P. & Maloney, R.F. (2007). Developing the science of reintroduction biology. Conserv. Biol. 21, 303-312. – reference: Fischer, J.D. & Lindenmayer, B. (2000). An assessment of the published results of animal relocations. Biol. Conserv. 96, 1-11. – reference: Mihoub, J.-B., Jiguet, F., Lécuyer, P., Eliotout, B. & Sarrazin, F. (2014). Modelling nesting site suitability in a population of reintroduced Eurasian black vultures Aegypius monachus in the Grands Causses, France. Oryx 48, 116-124. – reference: Bajomi, B., Pullin, A.S., Stewart, G.B. & Takács-Sánta, A. (2010). Bias and dispersal in the animal reintroduction literature. Oryx 44, 358-365. – reference: O'Grady, J.J., Reed, D.H., Brook, B.W. & Frankham, R. (2004). What are the best correlates of predicted extinction risk? Biol. Conserv. 118, 513-520. – reference: Robert, A. (2009). Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915-2922. – reference: Hirzel, A.H., Posse, B., Oggier, P.A., Crettenand, Y., Glenz, C. & Arlettaz, R. (2004). Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. J. Appl. Ecol. 41, 1103-1116. – reference: Mace, G.M. & Lande, R. (1991). Assessing extinction threats: toward a re-evaluation of IUCN threatened species categories. Conserv. Biol. 5, 148-157. – reference: Mihoub, J.-B., Robert, A., Le Gouar, P. & Sarrazin, F. (2011). Post-release dispersal in animal translocations: social attraction and the 'vacuum effect'. PLoS ONE 6, e27453. – reference: Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. Am. Stat. 45, 90-96. – reference: Lynch, H.J. & Fagan, W.F. (2009). Survivorship curves and their impact on the estimation of maximum population growth rates. Ecology 90, 1116-1124. – reference: Sutherland, W.J., Armstrong, D., Butchart, S.H.M., Earnhardt, J.M., Ewen, J., Jamieson, I., Jones, C.G., Lee, R., Newbery, P., Nichols, J.D., Parker, K.A., Sarrazin, F., Seddon, P., Shah, N. & Tatayah, V. (2010). Standards for documenting and monitoring bird reintroduction projects. Conserv. Lett. 3, 229-235. – reference: Balmford, A. (1996). Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193-196. – reference: Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, G., Akcakaya, R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008). Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22, 1424-1442. – reference: Armstrong, D.P. & Seddon, P.J. (2008). Directions in reintroduction biology. Trends Ecol. Evol. 23, 20-25. – reference: Kirchner, F., Robert, A. & Colas, B. (2006). Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J. Appl. Ecol. 43, 1011-1021. – reference: Robert, A. (2011). Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times. BMC Evol. Biol. 11, 260. – start-page: 165 year: 2012 end-page: 222 – year: 2011 – start-page: 130 year: 1997 end-page: 149 – volume: 43 start-page: 1011 year: 2006 end-page: 1021 article-title: Modelling the dynamics of introduced populations in the narrow‐endemic : a demo‐genetic integration publication-title: J. Appl. Ecol. – start-page: 27 year: 2000 end-page: 52 – volume: 21 start-page: 303 year: 2007 end-page: 312 article-title: Developing the science of reintroduction biology publication-title: Conserv. Biol. – start-page: 395 year: 2012 end-page: 440 – volume: 11 start-page: 474 year: 1996 end-page: 478 article-title: Re‐introductions: challenges and lessons for basic ecology publication-title: Trends Ecol. Evol. – volume: 46 start-page: 92 year: 2009 end-page: 100 article-title: When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps publication-title: J. Appl. Ecol. – volume: 118 start-page: 513 year: 2004 end-page: 520 article-title: What are the best correlates of predicted extinction risk? publication-title: Biol. Conserv. – year: 2005 – volume: 14 start-page: 463 year: 2007 end-page: 471 article-title: Integration of demography and genetics in population restorations publication-title: Ecoscience – volume: 90 start-page: 1116 year: 2009 end-page: 1124 article-title: Survivorship curves and their impact on the estimation of maximum population growth rates publication-title: Ecology – volume: 6 start-page: e27453 year: 2011 article-title: Post‐release dispersal in animal translocations: social attraction and the ‘vacuum effect’ publication-title: PLoS ONE – year: 2001 – year: 2003 – volume: 5 start-page: 148 year: 1991 end-page: 157 article-title: Assessing extinction threats: toward a re‐evaluation of IUCN threatened species categories publication-title: Conserv. Biol. – volume: 16 start-page: 219 year: 2001 end-page: 221 article-title: The use and abuse of population viability analysis publication-title: Trends Ecol. Evol. – volume: 8 start-page: 51 year: 2005 end-page: 58 article-title: Taxonomic bias in reintroduction projects publication-title: Anim. Conserv. – volume: 23 start-page: 453 year: 2008 end-page: 460 article-title: Synergies among extinction drivers under global change publication-title: Trends Ecol. Evol. – volume: 273 start-page: 2501 year: 2006 end-page: 2506 article-title: Negative environmental perturbations may improve species persistence publication-title: Proc. Roy. Soc. Lond. Ser. B. – volume: 22 start-page: 1424 year: 2008 end-page: 1442 article-title: Quantification of extinction risk: IUCN's system for classifying threatened species publication-title: Conserv. Biol. – volume: 96 start-page: 1 year: 2000 end-page: 11 article-title: An assessment of the published results of animal relocations publication-title: Biol. Conserv. – volume: 142 start-page: 911 year: 1993 end-page: 927 article-title: Risks of population extinction from demographic and environmental stochasticity and random catastrophes publication-title: Am. Nat. – volume: 23 start-page: 20 year: 2008 end-page: 25 article-title: Directions in reintroduction biology publication-title: Trends Ecol. Evol. – volume: 6 start-page: 109 year: 2003 end-page: 114 article-title: The frequency and severity of catastrophic die‐offs in vertebrates publication-title: Anim. Conserv. – volume: 41 start-page: 1103 year: 2004 end-page: 1116 article-title: Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture publication-title: J. Appl. Ecol. – volume: 11 start-page: 193 year: 1996 end-page: 196 article-title: Extinction filters and current resilience: the significance of past selection pressures for conservation biology publication-title: Trends Ecol. Evol. – volume: 44 start-page: 358 year: 2010 end-page: 365 article-title: Bias and dispersal in the animal reintroduction literature publication-title: Oryx – volume: 78 start-page: 691 year: 1991 end-page: 692 article-title: A note on a general definition of the coefficient of determination publication-title: Biometrika – year: 2002 – volume: 21 start-page: 114 year: 2007 end-page: 124 article-title: Adaptive harvesting of source populations for translocation: a case study using New Zealand robins publication-title: Conserv. Biol. – volume: 3 start-page: 229 year: 2010 end-page: 235 article-title: Standards for documenting and monitoring bird reintroduction projects publication-title: Conserv. Lett. – volume: 26 start-page: 307 year: 2011 end-page: 316 article-title: Minimum viable populations: is there a ‘magic number’ for conservation practitioners? publication-title: Trends Ecol. Evol. – volume: 142 start-page: 2915 year: 2009 end-page: 2922 article-title: Captive breeding genetics and reintroduction success publication-title: Biol. Conserv. – volume: 11 start-page: 260 year: 2011 article-title: Find the weakest link. A comparison between demographic, genetic and demo‐genetic metapopulation extinction times publication-title: BMC Evol. Biol. – volume: 9 start-page: 655 year: 2000 end-page: 671 article-title: Regression and model‐building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models publication-title: Biodiv. Conserv. – volume: 48 start-page: 116 year: 2014 end-page: 124 article-title: Modelling nesting site suitability in a population of reintroduced Eurasian black vultures in the Grands Causses, France publication-title: Oryx – article-title: Actuarial senescence can decrease the viability of mammal populations publication-title: Ecol. Appl. – volume: 18 start-page: 859 year: 2008 end-page: 872 article-title: Roles of survival and dispersal in reintroduction success of Griffon vulture ( ) publication-title: Ecol. Appl. – volume: 404 start-page: 385 year: 2000 end-page: 387 article-title: Predictive accuracy of population viability analysis in conservation biology publication-title: Nature – volume: 45 start-page: 90 year: 1991 end-page: 96 article-title: Hierarchical partitioning publication-title: Am. Stat. – volume: 14 start-page: iii year: 2007 end-page: v article-title: Introductory remarks: a demographic frame for reintroduction publication-title: Ecoscience – year: 2013 – ident: e_1_2_6_20_1 – ident: e_1_2_6_41_1 doi: 10.1186/1471-2148-11-260 – ident: e_1_2_6_13_1 doi: 10.1016/S0006-3207(00)00048-3 – ident: e_1_2_6_23_1 doi: 10.1093/acprof:oso/9780198525257.001.0001 – ident: e_1_2_6_36_1 doi: 10.1016/j.biocon.2003.10.002 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-2664.2008.01585.x – ident: e_1_2_6_14_1 doi: 10.1016/j.tree.2011.03.001 – volume-title: Regression models for categorical dependent variables using Stata year: 2001 ident: e_1_2_6_25_1 – ident: e_1_2_6_18_1 – ident: e_1_2_6_48_1 doi: 10.1111/j.1523-1739.2006.00627.x – ident: e_1_2_6_3_1 doi: 10.1016/j.tree.2007.10.003 – ident: e_1_2_6_30_1 doi: 10.1111/j.1523-1739.1991.tb00119.x – ident: e_1_2_6_40_1 doi: 10.1016/j.biocon.2009.07.016 – ident: e_1_2_6_5_1 doi: 10.1016/0169-5347(96)10026-4 – ident: e_1_2_6_37_1 – ident: e_1_2_6_2_1 doi: 10.1002/9781444355833.ch6 – volume-title: Matrix population models year: 2001 ident: e_1_2_6_9_1 – ident: e_1_2_6_27_1 doi: 10.1023/A:1008985925162 – ident: e_1_2_6_7_1 doi: 10.1038/35006050 – ident: e_1_2_6_33_1 doi: 10.1017/S0030605312000634 – ident: e_1_2_6_12_1 doi: 10.1111/j.1523-1739.2006.00537.x – ident: e_1_2_6_8_1 doi: 10.1016/j.tree.2008.03.011 – ident: e_1_2_6_11_1 doi: 10.1016/S0169-5347(01)02137-1 – volume-title: Population viability analysis year: 2002 ident: e_1_2_6_6_1 – ident: e_1_2_6_45_1 doi: 10.1016/0169-5347(96)20092-8 – ident: e_1_2_6_26_1 doi: 10.1890/08-0286.1 – ident: e_1_2_6_32_1 doi: 10.1371/journal.pone.0027453 – ident: e_1_2_6_42_1 doi: 10.2980/1195-6860(2007)14[463:IODAGI]2.0.CO;2 – ident: e_1_2_6_19_1 – ident: e_1_2_6_39_1 doi: 10.1098/rspb.2006.3601 – ident: e_1_2_6_10_1 doi: 10.2307/2684366 – ident: e_1_2_6_43_1 article-title: Actuarial senescence can decrease the viability of mammal populations publication-title: Ecol. Appl. – ident: e_1_2_6_22_1 doi: 10.1086/285580 – ident: e_1_2_6_44_1 doi: 10.2980/1195-6860(2007)14[iii:RL]2.0.CO;2 – ident: e_1_2_6_16_1 – ident: e_1_2_6_47_1 doi: 10.1017/S1367943004001799 – start-page: 27 volume-title: Conservation of mammalian diversity. Has the panda had its day? year: 2000 ident: e_1_2_6_28_1 – ident: e_1_2_6_34_1 doi: 10.1093/biomet/78.3.691 – ident: e_1_2_6_15_1 doi: 10.1002/9781444355833.ch12 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-2664.2006.01179.x – ident: e_1_2_6_35_1 – ident: e_1_2_6_24_1 doi: 10.1890/07-0854.1 – ident: e_1_2_6_4_1 doi: 10.1017/S0030605310000281 – ident: e_1_2_6_29_1 doi: 10.1007/978-94-011-5874-9_8 – ident: e_1_2_6_31_1 doi: 10.1111/j.1523-1739.2008.01044.x – ident: e_1_2_6_38_1 doi: 10.1017/S1367943003003147 – ident: e_1_2_6_17_1 doi: 10.1111/j.0021-8901.2004.00980.x – ident: e_1_2_6_49_1 doi: 10.1111/j.1755-263X.2010.00113.x |
SSID | ssj0012831 |
Score | 2.430096 |
Snippet | Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success.... |
SourceID | hal proquest crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 397 |
SubjectTerms | Carrying capacity conservation translocations Endangered & extinct species extinction IUCN Life history Life Sciences natural resources conservation Nature conservation population population dynamics Population number population size population viability analysis Reintroduction reintroductions risk Species extinction Success Threatened species uncertainty viability Wildlife conservation |
Title | Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment |
URI | https://api.istex.fr/ark:/67375/WNG-S5VCFZDJ-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facv.12188 https://www.proquest.com/docview/1724224409 https://www.proquest.com/docview/2000010512 https://hal.science/hal-03496918 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1IvjiR1V6WksUEV-27G6S3Ys-Hddez1LvwXq1iBDy2ZbqndxHsf3rO5P9oJUK4sux3E5gk8xMfrM78xtC3sg8s660WSJh8xMevE0MYzaBk8UI0BHLHL6H_DQqhmO-dySOVsiHpham4odoX7ihZUR_jQauzfyakWt7jtQIXSz0xVwtBESfW-oocLusrrkqE6QYr1mFMIunHXnjLLoT9BR-TzAf8i4u8e8boPM6dI1nz-Ah-d48dZVycra1XJgte_kHoeN_TusReVBjUtqrlOgxWfGTNXJvJ_JZXzwhbtuH2EaCzvwpJra7inGWzpex2yLF3Plj-nHcH1HwQUj-rClgYbo4QUQKztRRLOiEmPw91dT5nxVN9qmluuUFfUrGg50v_WFSN2dILJc5RJ6Ce6SC0aHrhSxckCwUOjXMOGZZ2S1KWzLugi4s40EwKdLUWG-kz1PHtWPPyOpkOvHrhErNAgCPwntR8CxPNdasANDUhosS4rcOeddsk7I1czk20PihmggGFk3FReuQ163or4qu4zahddhrpY_BjarxQY4ke_U3axgPCtAORe7tYW9f4X-RWl9m3fOsQ95G_WjF9OwM8-NKob6OdtWBOOwPvm3vKRDcaBRI1a5hrgAxcsBNEFd3yKv2Nhg1fqnREz9dzrE3aGxdmuUw96gtf5-N6vUP48Xzfxd9Qe7DrEWVlLhBVhezpX8J4GphNqMVXQGaDhtS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB71EIIXbtSFAgYhxEuqJLZzIF5W2y7bst0H2i1VJWQ5ttNWhV20RwX8emacQy0CCfESRclYiu2Z8TfO-BuAV3kcGZuaKMhx8gNROhMUnJsAV5ZCoo4Ybmkfcn-UDMZi71ger8C75ixMxQ_RbriRZXh_TQZOG9JXrFybS-JGyLJVWKeK3j6g-tiSR6Hj5fWpqzQgkvGaV4jyeNqm11aj1VJP8XpGGZHrNMjfr8HOq-DVrz79O_C5-e4q6eRia7kotszP3ygd_7djd-F2DUtZt9Kje7DiJvfhxo6ntP7xAOy2K30lCTZz55TbbivSWTZf-oKLjNLnT9nuuDdi6IaI_1kzhMNscUagFP2pZXSmE8Pyt0wz675WTNnnhumWGvQhjPs7h71BUNdnCIzIYww-pXDEBqPLzMk8sWXOy0SHBS8sNzzNktSkXNhSJ4aLUvJchmFhXJG7OLRCW_4I1ibTidsAlmteIvZInJOJiOJQ07EVxJq6EDLFEK4Db5p5UqYmL6caGl9UE8TgoCk_aB142Yp-qxg7_iS0gZOt9Cl6UjU-iIlnr_5tje1RA9qmRL896A4VPfPs-nmUXUYdeO0VpBXTswtKkUul-jR6rw7kUa9_sr2nUHCz0SBVe4e5QtAoEDphaN2BF-1rtGv6WaMnbrqcU3lQX700irHvXl3-3hvV7R35m8f_Lvocbg4O94dquDv68ARu4QjIKkdxE9YWs6V7ilhrUTzzJvULROUfbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEA99oPjFt_S0ahQRv2zZ3ST70E_HXc9rrYdYry0ihDzbUr0r9yjqX-9M9kErCuKXZdmdwCaZmfwmO_kNIS_KNDE2N0lUwuRH3DsTacZMBCuLFqAjhlnch3w_yoZjvnskjlbIm-YsTMUP0W64oWUEf40Gfm79JSNX5gKpEYpilazzLC5QpfsfW-4o8LusPnSVR8gxXtMKYRpP2_TKYrTq1RSuJ5gQuY5j_P0K6ryMXcPiM7hFvjSfXeWcnG0tF3rL_PyN0fE_-3Wb3KxBKe1WWnSHrLjJXXJtOxBa_7hHbN_5UEeCztwpZrbbinKWzpeh3CLF5PljujPujSg4IWR_VhTAMF2cICQFb2opnuiEoPw1VdS6bxVP9qmhqiUGvU_Gg-1PvWFUV2eIDC9TCD0Fd8gFo3zhRJlZXzKfqVgzbZlheZHlJmfcepUZxr1gpYhjbZwuXRpbrix7QNYm04nbILRUzAPyyJwTGU_SWOGhFUCaSnORQwDXIa-aaZKmpi7HChpfZRPCwKDJMGgd8rwVPa_4Ov4ktAFzLdUx-FE53k-RZa_-aQ3tQQHapki-PezuSXwWuPXLpLhIOuRl0I9WTM3OMEEuF_Jw9Fbui4Pe4HN_V4LgZqNAsvYNcwmQkQNwgsC6Q561r8Gq8VeNmrjpco7FQUPt0iSFvgdt-XtvZLd3EG4e_rvoU3L9Q38g93ZG7x6RGzAAokpQ3CRri9nSPQagtdBPgkH9AuWIHiU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+reintroduction+success+using+IUCN+criteria+for+threatened+species%3A+a+demographic+assessment&rft.jtitle=Animal+conservation&rft.au=Robert%2C+A.&rft.au=Colas%2C+B.&rft.au=Guigon%2C+I.&rft.au=Kerbiriou%2C+C.&rft.date=2015-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1367-9430&rft.eissn=1469-1795&rft.volume=18&rft.issue=5&rft.spage=397&rft.epage=406&rft_id=info:doi/10.1111%2Facv.12188&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_S5VCFZDJ_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-9430&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-9430&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-9430&client=summon |