Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment

Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that r...

Full description

Saved in:
Bibliographic Details
Published inAnimal conservation Vol. 18; no. 5; pp. 397 - 406
Main Authors Robert, A, Colas, B, Guigon, I, Kerbiriou, C, Mihoub, J‐B, Saint‐Jalme, M, Sarrazin, F
Format Journal Article
LanguageEnglish
Published London Cambridge University Press 01.10.2015
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations.
AbstractList Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations. Read the Commentaries on this Feature Paper: Using the IUCN Red List criteria to assess reintroduction success; Alternative perspectives on reintroduction success; Developing a standard for evaluating reintroduction success using IUCN Red List indices and the Response from the authors: Reintroducing reintroductions into the conservation arena
Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations.
Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the I nternation U nion for C onservation of N ature ( IUCN ) R ed L ist criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN ) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN ) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations. Read the Commentaries on this Feature Paper: Using the IUCN Red List criteria to assess reintroduction success ; Alternative perspectives on reintroduction success ; Developing a standard for evaluating reintroduction success using IUCN Red List indices and the Response from the authors: Reintroducing reintroductions into the conservation arena
Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success. We investigate this issue based on the postulates (1) that successful reintroduction programs should produce viable populations and (2) that reliable assessments of ultimate success require that populations have reached their regulation phase. We assessed if the viability of these reintroduced populations could be evaluated using the same criteria as for remnant populations, such as the Internation Union for Conservation of Nature (IUCN) Red List criteria. Using modeling, we projected the viabilities of theoretical populations with various life history and environmental characteristics and we tested whether population sizes (criterion D of the IUCN) and other potential predictors are relevant proxies of the risk of extinction (criterion E of the IUCN) in the case of remnant populations with an unknown past history and in the case of reintroduced populations that have reached their carrying capacity. We found that, as for remnant populations, population size can be used as a relevant indicator (although subject to considerable uncertainty) of the viability of reintroduced populations. However, the results demonstrate the importance of the reintroduction failure filter, that is, the fact that the reintroduced populations that have successfully reached their carrying capacity are those with the highest and more stable growth rates, especially if populations have been reintroduced with a few individuals. As a consequence, the general relationship between the current size of a population and its projected viability will, most likely, differ considerably between remnant and reintroduced populations. Overall, our results demonstrate that there are no theoretical limitations on the application of some of the criteria widely used for remnant populations to define reintroduction success, although these criteria are very conservative for reintroduced populations and might be rescaled to account for the demographic filter that early extinction constitutes for these populations. Read the Commentaries on this Feature Paper: Using the IUCN Red List criteria to assess reintroduction success; Alternative perspectives on reintroduction success; Developing a standard for evaluating reintroduction success using IUCN Red List indices and the Response from the authors: Reintroducing reintroductions into the conservation arena
Author Saint‐Jalme, M
Mihoub, J‐B
Colas, B
Sarrazin, F
Robert, A
Guigon, I
Kerbiriou, C
Author_xml – sequence: 1
  fullname: Robert, A
– sequence: 2
  fullname: Colas, B
– sequence: 3
  fullname: Guigon, I
– sequence: 4
  fullname: Kerbiriou, C
– sequence: 5
  fullname: Mihoub, J‐B
– sequence: 6
  fullname: Saint‐Jalme, M
– sequence: 7
  fullname: Sarrazin, F
BackLink https://hal.science/hal-03496918$$DView record in HAL
BookMark eNp9kUtv1DAUhSNUJNrCgl9AJDawSOtX4pjdKKUPNCqLMkViY91xbmZcMvZgJ6X993UYKFIluBtb9nfOte85yPacd5hlryk5oqmOwdweUUbr-lm2T0WlCipVuZf2vJKFEpy8yA5ivCGEsprT_aw9wc4661Z5QOuG4NvRDNa7PI7GYIz5GKfLi0VzmZtgBwwW8s6HfFgHhAEdtnncorEYP-SQt7jxqwDbtTU5xJgMNuiGl9nzDvqIr36vh9ni9OOX5ryYfz67aGbzwgjF6oKWAksuK-hqLFXVdop3FZAlX7bccFlX0kgu2g4qw0VXclUSsjS4VMhIK6Dlh9n7ne8aer0NdgPhXnuw-nw219MZ4UJVita3NLHvduw2-B8jxkFvbDTY9-DQj1EzkoqSkrKEvn2C3vgxuPQTTSUTjAlB1N_mJvgYA3aPL6BET9nolI3-lU1ij5-wxg4wzX0IYPv_KX7aHu__ba1nzfUfRbFT2Djg3aMCwnddSS5L_fXyTF-V183pt5NPehrImx3fgdewCjbqxRUjtEpzYFIwzh8AzcW55w
CitedBy_id crossref_primary_10_3389_fcosc_2021_681545
crossref_primary_10_1111_cobi_14451
crossref_primary_10_1017_S0959270916000666
crossref_primary_10_1017_S0959270920000593
crossref_primary_10_1111_ibi_12987
crossref_primary_10_1111_acv_12299
crossref_primary_10_1007_s00114_023_01860_x
crossref_primary_10_1002_ece3_2378
crossref_primary_10_1017_S0030605322000540
crossref_primary_10_1016_j_biocon_2019_108239
crossref_primary_10_1186_s40657_021_00250_z
crossref_primary_10_1071_WR16165
crossref_primary_10_1098_rsos_230707
crossref_primary_10_25225_fozo_072_2019
crossref_primary_10_1007_s10841_021_00354_3
crossref_primary_10_1007_s11258_023_01311_7
crossref_primary_10_1670_20_110
crossref_primary_10_1002_ecs2_3862
crossref_primary_10_3389_fgene_2021_705337
crossref_primary_10_2326_osj_17_135
crossref_primary_10_1071_ZO17046
crossref_primary_10_1016_j_biocon_2017_08_004
crossref_primary_10_1002_jwmg_21144
crossref_primary_10_3389_fcosc_2024_1441980
crossref_primary_10_1002_ece3_2787
crossref_primary_10_1111_ibi_13198
crossref_primary_10_1111_icad_12679
crossref_primary_10_1016_j_biocon_2019_108346
crossref_primary_10_3389_fmars_2023_1100194
crossref_primary_10_1111_acv_12779
crossref_primary_10_3389_fcosc_2022_815506
crossref_primary_10_1111_ibi_13071
crossref_primary_10_1017_S0959270922000089
crossref_primary_10_1038_s41598_020_67942_2
crossref_primary_10_1111_csp2_12674
crossref_primary_10_1111_1365_2435_12723
crossref_primary_10_1016_j_tree_2020_04_005
crossref_primary_10_1111_acv_12738
crossref_primary_10_1007_s10592_017_0958_2
crossref_primary_10_1093_ornithapp_duad037
crossref_primary_10_1111_conl_12217
crossref_primary_10_1071_WR21066
crossref_primary_10_1111_1365_2745_13609
crossref_primary_10_1111_rec_12409
crossref_primary_10_1111_acv_12278
crossref_primary_10_1038_s41598_020_75315_y
crossref_primary_10_1007_s10592_020_01307_0
crossref_primary_10_1111_acv_12549
crossref_primary_10_1111_acv_12501
crossref_primary_10_1007_s10531_021_02274_9
crossref_primary_10_1016_j_biocon_2017_11_023
crossref_primary_10_1016_j_pecon_2018_03_003
crossref_primary_10_1007_s11258_023_01310_8
crossref_primary_10_1016_j_biocon_2024_110523
crossref_primary_10_1111_acv_12906
crossref_primary_10_1093_ornithapp_duab065
crossref_primary_10_1111_emr_12402
crossref_primary_10_1002_pan3_10503
crossref_primary_10_1515_mammalia_2016_0121
crossref_primary_10_1080_03036758_2018_1518249
crossref_primary_10_1093_jisesa_iew102
crossref_primary_10_1002_ece3_8187
crossref_primary_10_1111_acv_12244
crossref_primary_10_1038_s41598_021_87436_z
crossref_primary_10_1111_acv_12242
crossref_primary_10_1007_s10531_018_1651_6
crossref_primary_10_7717_peerj_15563
crossref_primary_10_1111_acv_12241
crossref_primary_10_1016_j_biocon_2017_08_023
crossref_primary_10_1111_rec_13869
crossref_primary_10_1111_aec_12902
crossref_primary_10_1111_icad_12778
crossref_primary_10_1111_acv_12239
crossref_primary_10_1111_acv_12831
crossref_primary_10_1016_j_biocon_2019_05_008
crossref_primary_10_1111_acv_12994
crossref_primary_10_1016_j_biocon_2022_109576
crossref_primary_10_1111_rec_14286
crossref_primary_10_4000_vertigo_40522
crossref_primary_10_1111_cobi_12743
crossref_primary_10_7717_peerj_1012
crossref_primary_10_1007_s10531_017_1365_1
crossref_primary_10_1111_cobi_13518
crossref_primary_10_1002_ecs2_3038
crossref_primary_10_1111_cobi_14209
Cites_doi 10.1186/1471-2148-11-260
10.1016/S0006-3207(00)00048-3
10.1093/acprof:oso/9780198525257.001.0001
10.1016/j.biocon.2003.10.002
10.1111/j.1365-2664.2008.01585.x
10.1016/j.tree.2011.03.001
10.1111/j.1523-1739.2006.00627.x
10.1016/j.tree.2007.10.003
10.1111/j.1523-1739.1991.tb00119.x
10.1016/j.biocon.2009.07.016
10.1016/0169-5347(96)10026-4
10.1002/9781444355833.ch6
10.1023/A:1008985925162
10.1038/35006050
10.1017/S0030605312000634
10.1111/j.1523-1739.2006.00537.x
10.1016/j.tree.2008.03.011
10.1016/S0169-5347(01)02137-1
10.1016/0169-5347(96)20092-8
10.1890/08-0286.1
10.1371/journal.pone.0027453
10.2980/1195-6860(2007)14[463:IODAGI]2.0.CO;2
10.1098/rspb.2006.3601
10.2307/2684366
10.1086/285580
10.2980/1195-6860(2007)14[iii:RL]2.0.CO;2
10.1017/S1367943004001799
10.1093/biomet/78.3.691
10.1002/9781444355833.ch12
10.1111/j.1365-2664.2006.01179.x
10.1890/07-0854.1
10.1017/S0030605310000281
10.1007/978-94-011-5874-9_8
10.1111/j.1523-1739.2008.01044.x
10.1017/S1367943003003147
10.1111/j.0021-8901.2004.00980.x
10.1111/j.1755-263X.2010.00113.x
ContentType Journal Article
Copyright 2015 The Zoological Society of London
Animal Conservation © 2015 The Zoological Society of London
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 The Zoological Society of London
– notice: Animal Conservation © 2015 The Zoological Society of London
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
AAYXX
CITATION
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H97
L.G
P64
RC3
7S9
L.6
1XC
DOI 10.1111/acv.12188
DatabaseName AGRIS
Istex
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

CrossRef
Entomology Abstracts

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1469-1795
EndPage 406
ExternalDocumentID oai_HAL_hal_03496918v1
3842167641
10_1111_acv_12188
ACV12188
ark_67375_WNG_S5VCFZDJ_1
US201600027423
Genre article
GrantInformation_xml – fundername: CNRS
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABITZ
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CHEAL
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
EYRJQ
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IX1
J0M
K48
L98
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ABVKB
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SN
7SS
7ST
7U6
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H97
L.G
P64
RC3
7S9
L.6
1XC
ID FETCH-LOGICAL-c4928-154e5376af8e596df93f6a0b3bd3c37867c734dfa6c34f539500bceb9e20d4ad3
IEDL.DBID DR2
ISSN 1367-9430
IngestDate Fri May 09 12:23:45 EDT 2025
Fri Jul 11 18:30:24 EDT 2025
Fri Jul 25 10:45:58 EDT 2025
Tue Jul 01 00:25:14 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Wed Jan 22 16:55:35 EST 2025
Wed Oct 30 10:02:10 EDT 2024
Wed Dec 27 19:15:10 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4928-154e5376af8e596df93f6a0b3bd3c37867c734dfa6c34f539500bceb9e20d4ad3
Notes http://dx.doi.org/10.1111/acv.12188
Appendix S1. Methodological details.Appendix S2. Values of theoretical parameters.Appendix S3. Additional scenarios of population regulation.Appendix S4. Interacting effects among ecological variables.Appendix S5. Application to a sample of real life cycles.Appendix S6. Additional results.
ark:/67375/WNG-S5VCFZDJ-1
CNRS
ArticleID:ACV12188
istex:9D70A42A889B4FDE7C177BFE169DA5CD9E8A831E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6080-4762
0000-0002-5354-850X
0000-0001-5901-4819
PQID 1724224409
PQPubID 866372
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_03496918v1
proquest_miscellaneous_2000010512
proquest_journals_1724224409
crossref_primary_10_1111_acv_12188
crossref_citationtrail_10_1111_acv_12188
wiley_primary_10_1111_acv_12188_ACV12188
istex_primary_ark_67375_WNG_S5VCFZDJ_1
fao_agris_US201600027423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Animal conservation
PublicationTitleAlternate Anim Conserv
PublicationYear 2015
Publisher Cambridge University Press
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Cambridge University Press
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References Robert, A. (2009). Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915-2922.
Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911-927.
Hirzel, A.H., Posse, B., Oggier, P.A., Crettenand, Y., Glenz, C. & Arlettaz, R. (2004). Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. J. Appl. Ecol. 41, 1103-1116.
Long, S.J. & Freese, J. (2001). Regression models for categorical dependent variables using Stata. College Station: Stata Press.
Beissinger, S. & McCullough, D.R. (2002). Population viability analysis. Chicago: University of Chicago Press.
Robert, A., Chantepie, S., Pavard, S., Sarrazin, F. & Teplitsky, C. (in press). Actuarial senescence can decrease the viability of mammal populations. Ecol. Appl.
Seddon, P.J., Soorae, P.S. & Launay, F. (2005). Taxonomic bias in reintroduction projects. Anim. Conserv. 8, 51-58.
Coulson, T., Mace, G.M., Hudson, E. & Possingham, H. (2001). The use and abuse of population viability analysis. Trends Ecol. Evol. 16, 219-221.
Robert, A. (2006). Negative environmental perturbations may improve species persistence. Proc. Roy. Soc. Lond. Ser. B. 273, 2501-2506.
Dimond, W.J. & Armstrong, D.P. (2007). Adaptive harvesting of source populations for translocation: a case study using New Zealand robins. Conserv. Biol. 21, 114-124.
Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. Am. Stat. 45, 90-96.
Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. (2009). When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J. Appl. Ecol. 46, 92-100.
Balmford, A. (1996). Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193-196.
Armstrong, D.P. & Seddon, P.J. (2008). Directions in reintroduction biology. Trends Ecol. Evol. 23, 20-25.
Reed, D.H., O'Grady, J.J., Ballou, J.D. & Frankham, R. (2003). The frequency and severity of catastrophic die-offs in vertebrates. Anim. Conserv. 6, 109-114.
Mace, G.M. & Lande, R. (1991). Assessing extinction threats: toward a re-evaluation of IUCN threatened species categories. Conserv. Biol. 5, 148-157.
Bajomi, B., Pullin, A.S., Stewart, G.B. & Takács-Sánta, A. (2010). Bias and dispersal in the animal reintroduction literature. Oryx 44, 358-365.
Robert, A. (2011). Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times. BMC Evol. Biol. 11, 260.
Sutherland, W.J., Armstrong, D., Butchart, S.H.M., Earnhardt, J.M., Ewen, J., Jamieson, I., Jones, C.G., Lee, R., Newbery, P., Nichols, J.D., Parker, K.A., Sarrazin, F., Seddon, P., Shah, N. & Tatayah, V. (2010). Standards for documenting and monitoring bird reintroduction projects. Conserv. Lett. 3, 229-235.
Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic population dynamics in ecology and conservation. Oxford: Oxford University Press.
Mac Nally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiv. Conserv. 9, 655-671.
Le Gouar, P., Robert, A., Choisy, J.P., Henriquet, S., Lécuyer, P., Tessier, C. & Sarrazin, F. (2008). Roles of survival and dispersal in reintroduction success of Griffon vulture (Gyps fulvus). Ecol. Appl. 18, 859-872.
Caswell, H. (2001). Matrix population models, 2nd edn. Sunderland: Sinauer.
Flather, C.H., Hayward, G.D., Beissinger, S.R. & Stephens, P.A. (2011). Minimum viable populations: is there a 'magic number' for conservation practitioners? Trends Ecol. Evol. 26, 307-316.
Brook, B.W., Sodhi, N.S. & Bradshaw, C.J.A. (2008). Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453-460.
Kirchner, F., Robert, A. & Colas, B. (2006). Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J. Appl. Ecol. 43, 1011-1021.
Fischer, J.D. & Lindenmayer, B. (2000). An assessment of the published results of animal relocations. Biol. Conserv. 96, 1-11.
Nagelkerke, N. (1991). A note on a general definition of the coefficient of determination. Biometrika 78, 691-692.
Sarrazin, F. (2007). Introductory remarks: a demographic frame for reintroduction. Ecoscience 14, iii-v.
Sarrazin, F. & Barbault, R. (1996). Re-introductions: challenges and lessons for basic ecology. Trends Ecol. Evol. 11, 474-478.
Seddon, P.J., Armstrong, D.P. & Maloney, R.F. (2007). Developing the science of reintroduction biology. Conserv. Biol. 21, 303-312.
Brook, B.W., O'Grady, J.J., Chapman, A.P., Burgman, M.A., Akçakaya, H.R. & Frankham, R. (2000). Predictive accuracy of population viability analysis in conservation biology. Nature 404, 385-387.
Lynch, H.J. & Fagan, W.F. (2009). Survivorship curves and their impact on the estimation of maximum population growth rates. Ecology 90, 1116-1124.
Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, G., Akcakaya, R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008). Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22, 1424-1442.
O'Grady, J.J., Reed, D.H., Brook, B.W. & Frankham, R. (2004). What are the best correlates of predicted extinction risk? Biol. Conserv. 118, 513-520.
Mihoub, J.-B., Robert, A., Le Gouar, P. & Sarrazin, F. (2011). Post-release dispersal in animal translocations: social attraction and the 'vacuum effect'. PLoS ONE 6, e27453.
Robert, A., Couvet, D. & Sarrazin, F. (2007). Integration of demography and genetics in population restorations. Ecoscience 14, 463-471.
Mihoub, J.-B., Jiguet, F., Lécuyer, P., Eliotout, B. & Sarrazin, F. (2014). Modelling nesting site suitability in a population of reintroduced Eurasian black vultures Aegypius monachus in the Grands Causses, France. Oryx 48, 116-124.
2004; 41
2009; 46
2012
1991; 78
2011
2008; 18
2000; 9
2006; 273
1997
2014; 48
2011; 11
2005
2003
2002
2011; 6
1993; 142
2007; 14
1996; 11
1991; 5
2010; 44
2001
1991; 45
2000
2006; 43
2003; 6
2000; 404
2005; 8
2000; 96
2009; 90
2008; 23
2001; 16
2008; 22
2011; 26
2013
2009; 142
2010; 3
2007; 21
2004; 118
Caswell H. (e_1_2_6_9_1) 2001
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Robert A. (e_1_2_6_43_1)
Long S.J. (e_1_2_6_25_1) 2001
e_1_2_6_19_1
e_1_2_6_13_1
Mace G.M. (e_1_2_6_28_1) 2000
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_45_1
Beissinger S. (e_1_2_6_6_1) 2002
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – reference: Seddon, P.J., Soorae, P.S. & Launay, F. (2005). Taxonomic bias in reintroduction projects. Anim. Conserv. 8, 51-58.
– reference: Flather, C.H., Hayward, G.D., Beissinger, S.R. & Stephens, P.A. (2011). Minimum viable populations: is there a 'magic number' for conservation practitioners? Trends Ecol. Evol. 26, 307-316.
– reference: Reed, D.H., O'Grady, J.J., Ballou, J.D. & Frankham, R. (2003). The frequency and severity of catastrophic die-offs in vertebrates. Anim. Conserv. 6, 109-114.
– reference: Robert, A., Chantepie, S., Pavard, S., Sarrazin, F. & Teplitsky, C. (in press). Actuarial senescence can decrease the viability of mammal populations. Ecol. Appl.
– reference: Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911-927.
– reference: Nagelkerke, N. (1991). A note on a general definition of the coefficient of determination. Biometrika 78, 691-692.
– reference: Robert, A., Couvet, D. & Sarrazin, F. (2007). Integration of demography and genetics in population restorations. Ecoscience 14, 463-471.
– reference: Brook, B.W., O'Grady, J.J., Chapman, A.P., Burgman, M.A., Akçakaya, H.R. & Frankham, R. (2000). Predictive accuracy of population viability analysis in conservation biology. Nature 404, 385-387.
– reference: Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. (2009). When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J. Appl. Ecol. 46, 92-100.
– reference: Sarrazin, F. & Barbault, R. (1996). Re-introductions: challenges and lessons for basic ecology. Trends Ecol. Evol. 11, 474-478.
– reference: Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic population dynamics in ecology and conservation. Oxford: Oxford University Press.
– reference: Le Gouar, P., Robert, A., Choisy, J.P., Henriquet, S., Lécuyer, P., Tessier, C. & Sarrazin, F. (2008). Roles of survival and dispersal in reintroduction success of Griffon vulture (Gyps fulvus). Ecol. Appl. 18, 859-872.
– reference: Dimond, W.J. & Armstrong, D.P. (2007). Adaptive harvesting of source populations for translocation: a case study using New Zealand robins. Conserv. Biol. 21, 114-124.
– reference: Coulson, T., Mace, G.M., Hudson, E. & Possingham, H. (2001). The use and abuse of population viability analysis. Trends Ecol. Evol. 16, 219-221.
– reference: Brook, B.W., Sodhi, N.S. & Bradshaw, C.J.A. (2008). Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453-460.
– reference: Sarrazin, F. (2007). Introductory remarks: a demographic frame for reintroduction. Ecoscience 14, iii-v.
– reference: Beissinger, S. & McCullough, D.R. (2002). Population viability analysis. Chicago: University of Chicago Press.
– reference: Long, S.J. & Freese, J. (2001). Regression models for categorical dependent variables using Stata. College Station: Stata Press.
– reference: Mac Nally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiv. Conserv. 9, 655-671.
– reference: Robert, A. (2006). Negative environmental perturbations may improve species persistence. Proc. Roy. Soc. Lond. Ser. B. 273, 2501-2506.
– reference: Caswell, H. (2001). Matrix population models, 2nd edn. Sunderland: Sinauer.
– reference: Seddon, P.J., Armstrong, D.P. & Maloney, R.F. (2007). Developing the science of reintroduction biology. Conserv. Biol. 21, 303-312.
– reference: Fischer, J.D. & Lindenmayer, B. (2000). An assessment of the published results of animal relocations. Biol. Conserv. 96, 1-11.
– reference: Mihoub, J.-B., Jiguet, F., Lécuyer, P., Eliotout, B. & Sarrazin, F. (2014). Modelling nesting site suitability in a population of reintroduced Eurasian black vultures Aegypius monachus in the Grands Causses, France. Oryx 48, 116-124.
– reference: Bajomi, B., Pullin, A.S., Stewart, G.B. & Takács-Sánta, A. (2010). Bias and dispersal in the animal reintroduction literature. Oryx 44, 358-365.
– reference: O'Grady, J.J., Reed, D.H., Brook, B.W. & Frankham, R. (2004). What are the best correlates of predicted extinction risk? Biol. Conserv. 118, 513-520.
– reference: Robert, A. (2009). Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915-2922.
– reference: Hirzel, A.H., Posse, B., Oggier, P.A., Crettenand, Y., Glenz, C. & Arlettaz, R. (2004). Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. J. Appl. Ecol. 41, 1103-1116.
– reference: Mace, G.M. & Lande, R. (1991). Assessing extinction threats: toward a re-evaluation of IUCN threatened species categories. Conserv. Biol. 5, 148-157.
– reference: Mihoub, J.-B., Robert, A., Le Gouar, P. & Sarrazin, F. (2011). Post-release dispersal in animal translocations: social attraction and the 'vacuum effect'. PLoS ONE 6, e27453.
– reference: Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. Am. Stat. 45, 90-96.
– reference: Lynch, H.J. & Fagan, W.F. (2009). Survivorship curves and their impact on the estimation of maximum population growth rates. Ecology 90, 1116-1124.
– reference: Sutherland, W.J., Armstrong, D., Butchart, S.H.M., Earnhardt, J.M., Ewen, J., Jamieson, I., Jones, C.G., Lee, R., Newbery, P., Nichols, J.D., Parker, K.A., Sarrazin, F., Seddon, P., Shah, N. & Tatayah, V. (2010). Standards for documenting and monitoring bird reintroduction projects. Conserv. Lett. 3, 229-235.
– reference: Balmford, A. (1996). Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193-196.
– reference: Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, G., Akcakaya, R., Leader-Williams, N., Milner-Gulland, E.J. & Stuart, S.N. (2008). Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22, 1424-1442.
– reference: Armstrong, D.P. & Seddon, P.J. (2008). Directions in reintroduction biology. Trends Ecol. Evol. 23, 20-25.
– reference: Kirchner, F., Robert, A. & Colas, B. (2006). Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J. Appl. Ecol. 43, 1011-1021.
– reference: Robert, A. (2011). Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times. BMC Evol. Biol. 11, 260.
– start-page: 165
  year: 2012
  end-page: 222
– year: 2011
– start-page: 130
  year: 1997
  end-page: 149
– volume: 43
  start-page: 1011
  year: 2006
  end-page: 1021
  article-title: Modelling the dynamics of introduced populations in the narrow‐endemic : a demo‐genetic integration
  publication-title: J. Appl. Ecol.
– start-page: 27
  year: 2000
  end-page: 52
– volume: 21
  start-page: 303
  year: 2007
  end-page: 312
  article-title: Developing the science of reintroduction biology
  publication-title: Conserv. Biol.
– start-page: 395
  year: 2012
  end-page: 440
– volume: 11
  start-page: 474
  year: 1996
  end-page: 478
  article-title: Re‐introductions: challenges and lessons for basic ecology
  publication-title: Trends Ecol. Evol.
– volume: 46
  start-page: 92
  year: 2009
  end-page: 100
  article-title: When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps
  publication-title: J. Appl. Ecol.
– volume: 118
  start-page: 513
  year: 2004
  end-page: 520
  article-title: What are the best correlates of predicted extinction risk?
  publication-title: Biol. Conserv.
– year: 2005
– volume: 14
  start-page: 463
  year: 2007
  end-page: 471
  article-title: Integration of demography and genetics in population restorations
  publication-title: Ecoscience
– volume: 90
  start-page: 1116
  year: 2009
  end-page: 1124
  article-title: Survivorship curves and their impact on the estimation of maximum population growth rates
  publication-title: Ecology
– volume: 6
  start-page: e27453
  year: 2011
  article-title: Post‐release dispersal in animal translocations: social attraction and the ‘vacuum effect’
  publication-title: PLoS ONE
– year: 2001
– year: 2003
– volume: 5
  start-page: 148
  year: 1991
  end-page: 157
  article-title: Assessing extinction threats: toward a re‐evaluation of IUCN threatened species categories
  publication-title: Conserv. Biol.
– volume: 16
  start-page: 219
  year: 2001
  end-page: 221
  article-title: The use and abuse of population viability analysis
  publication-title: Trends Ecol. Evol.
– volume: 8
  start-page: 51
  year: 2005
  end-page: 58
  article-title: Taxonomic bias in reintroduction projects
  publication-title: Anim. Conserv.
– volume: 23
  start-page: 453
  year: 2008
  end-page: 460
  article-title: Synergies among extinction drivers under global change
  publication-title: Trends Ecol. Evol.
– volume: 273
  start-page: 2501
  year: 2006
  end-page: 2506
  article-title: Negative environmental perturbations may improve species persistence
  publication-title: Proc. Roy. Soc. Lond. Ser. B.
– volume: 22
  start-page: 1424
  year: 2008
  end-page: 1442
  article-title: Quantification of extinction risk: IUCN's system for classifying threatened species
  publication-title: Conserv. Biol.
– volume: 96
  start-page: 1
  year: 2000
  end-page: 11
  article-title: An assessment of the published results of animal relocations
  publication-title: Biol. Conserv.
– volume: 142
  start-page: 911
  year: 1993
  end-page: 927
  article-title: Risks of population extinction from demographic and environmental stochasticity and random catastrophes
  publication-title: Am. Nat.
– volume: 23
  start-page: 20
  year: 2008
  end-page: 25
  article-title: Directions in reintroduction biology
  publication-title: Trends Ecol. Evol.
– volume: 6
  start-page: 109
  year: 2003
  end-page: 114
  article-title: The frequency and severity of catastrophic die‐offs in vertebrates
  publication-title: Anim. Conserv.
– volume: 41
  start-page: 1103
  year: 2004
  end-page: 1116
  article-title: Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture
  publication-title: J. Appl. Ecol.
– volume: 11
  start-page: 193
  year: 1996
  end-page: 196
  article-title: Extinction filters and current resilience: the significance of past selection pressures for conservation biology
  publication-title: Trends Ecol. Evol.
– volume: 44
  start-page: 358
  year: 2010
  end-page: 365
  article-title: Bias and dispersal in the animal reintroduction literature
  publication-title: Oryx
– volume: 78
  start-page: 691
  year: 1991
  end-page: 692
  article-title: A note on a general definition of the coefficient of determination
  publication-title: Biometrika
– year: 2002
– volume: 21
  start-page: 114
  year: 2007
  end-page: 124
  article-title: Adaptive harvesting of source populations for translocation: a case study using New Zealand robins
  publication-title: Conserv. Biol.
– volume: 3
  start-page: 229
  year: 2010
  end-page: 235
  article-title: Standards for documenting and monitoring bird reintroduction projects
  publication-title: Conserv. Lett.
– volume: 26
  start-page: 307
  year: 2011
  end-page: 316
  article-title: Minimum viable populations: is there a ‘magic number’ for conservation practitioners?
  publication-title: Trends Ecol. Evol.
– volume: 142
  start-page: 2915
  year: 2009
  end-page: 2922
  article-title: Captive breeding genetics and reintroduction success
  publication-title: Biol. Conserv.
– volume: 11
  start-page: 260
  year: 2011
  article-title: Find the weakest link. A comparison between demographic, genetic and demo‐genetic metapopulation extinction times
  publication-title: BMC Evol. Biol.
– volume: 9
  start-page: 655
  year: 2000
  end-page: 671
  article-title: Regression and model‐building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models
  publication-title: Biodiv. Conserv.
– volume: 48
  start-page: 116
  year: 2014
  end-page: 124
  article-title: Modelling nesting site suitability in a population of reintroduced Eurasian black vultures in the Grands Causses, France
  publication-title: Oryx
– article-title: Actuarial senescence can decrease the viability of mammal populations
  publication-title: Ecol. Appl.
– volume: 18
  start-page: 859
  year: 2008
  end-page: 872
  article-title: Roles of survival and dispersal in reintroduction success of Griffon vulture ( )
  publication-title: Ecol. Appl.
– volume: 404
  start-page: 385
  year: 2000
  end-page: 387
  article-title: Predictive accuracy of population viability analysis in conservation biology
  publication-title: Nature
– volume: 45
  start-page: 90
  year: 1991
  end-page: 96
  article-title: Hierarchical partitioning
  publication-title: Am. Stat.
– volume: 14
  start-page: iii
  year: 2007
  end-page: v
  article-title: Introductory remarks: a demographic frame for reintroduction
  publication-title: Ecoscience
– year: 2013
– ident: e_1_2_6_20_1
– ident: e_1_2_6_41_1
  doi: 10.1186/1471-2148-11-260
– ident: e_1_2_6_13_1
  doi: 10.1016/S0006-3207(00)00048-3
– ident: e_1_2_6_23_1
  doi: 10.1093/acprof:oso/9780198525257.001.0001
– ident: e_1_2_6_36_1
  doi: 10.1016/j.biocon.2003.10.002
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-2664.2008.01585.x
– ident: e_1_2_6_14_1
  doi: 10.1016/j.tree.2011.03.001
– volume-title: Regression models for categorical dependent variables using Stata
  year: 2001
  ident: e_1_2_6_25_1
– ident: e_1_2_6_18_1
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1523-1739.2006.00627.x
– ident: e_1_2_6_3_1
  doi: 10.1016/j.tree.2007.10.003
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1523-1739.1991.tb00119.x
– ident: e_1_2_6_40_1
  doi: 10.1016/j.biocon.2009.07.016
– ident: e_1_2_6_5_1
  doi: 10.1016/0169-5347(96)10026-4
– ident: e_1_2_6_37_1
– ident: e_1_2_6_2_1
  doi: 10.1002/9781444355833.ch6
– volume-title: Matrix population models
  year: 2001
  ident: e_1_2_6_9_1
– ident: e_1_2_6_27_1
  doi: 10.1023/A:1008985925162
– ident: e_1_2_6_7_1
  doi: 10.1038/35006050
– ident: e_1_2_6_33_1
  doi: 10.1017/S0030605312000634
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1523-1739.2006.00537.x
– ident: e_1_2_6_8_1
  doi: 10.1016/j.tree.2008.03.011
– ident: e_1_2_6_11_1
  doi: 10.1016/S0169-5347(01)02137-1
– volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_6_6_1
– ident: e_1_2_6_45_1
  doi: 10.1016/0169-5347(96)20092-8
– ident: e_1_2_6_26_1
  doi: 10.1890/08-0286.1
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pone.0027453
– ident: e_1_2_6_42_1
  doi: 10.2980/1195-6860(2007)14[463:IODAGI]2.0.CO;2
– ident: e_1_2_6_19_1
– ident: e_1_2_6_39_1
  doi: 10.1098/rspb.2006.3601
– ident: e_1_2_6_10_1
  doi: 10.2307/2684366
– ident: e_1_2_6_43_1
  article-title: Actuarial senescence can decrease the viability of mammal populations
  publication-title: Ecol. Appl.
– ident: e_1_2_6_22_1
  doi: 10.1086/285580
– ident: e_1_2_6_44_1
  doi: 10.2980/1195-6860(2007)14[iii:RL]2.0.CO;2
– ident: e_1_2_6_16_1
– ident: e_1_2_6_47_1
  doi: 10.1017/S1367943004001799
– start-page: 27
  volume-title: Conservation of mammalian diversity. Has the panda had its day?
  year: 2000
  ident: e_1_2_6_28_1
– ident: e_1_2_6_34_1
  doi: 10.1093/biomet/78.3.691
– ident: e_1_2_6_15_1
  doi: 10.1002/9781444355833.ch12
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-2664.2006.01179.x
– ident: e_1_2_6_35_1
– ident: e_1_2_6_24_1
  doi: 10.1890/07-0854.1
– ident: e_1_2_6_4_1
  doi: 10.1017/S0030605310000281
– ident: e_1_2_6_29_1
  doi: 10.1007/978-94-011-5874-9_8
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1523-1739.2008.01044.x
– ident: e_1_2_6_38_1
  doi: 10.1017/S1367943003003147
– ident: e_1_2_6_17_1
  doi: 10.1111/j.0021-8901.2004.00980.x
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1755-263X.2010.00113.x
SSID ssj0012831
Score 2.430096
Snippet Despite recent efforts to develop the science of reintroduction biology, there is still no general and broadly accepted definition of reintroduction success....
SourceID hal
proquest
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 397
SubjectTerms Carrying capacity
conservation translocations
Endangered & extinct species
extinction
IUCN
Life history
Life Sciences
natural resources conservation
Nature conservation
population
population dynamics
Population number
population size
population viability analysis
Reintroduction
reintroductions
risk
Species extinction
Success
Threatened species
uncertainty
viability
Wildlife conservation
Title Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment
URI https://api.istex.fr/ark:/67375/WNG-S5VCFZDJ-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facv.12188
https://www.proquest.com/docview/1724224409
https://www.proquest.com/docview/2000010512
https://hal.science/hal-03496918
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1IvjiR1V6WksUEV-27G6S3Ys-Hddez1LvwXq1iBDy2ZbqndxHsf3rO5P9oJUK4sux3E5gk8xMfrM78xtC3sg8s660WSJh8xMevE0MYzaBk8UI0BHLHL6H_DQqhmO-dySOVsiHpham4odoX7ihZUR_jQauzfyakWt7jtQIXSz0xVwtBESfW-oocLusrrkqE6QYr1mFMIunHXnjLLoT9BR-TzAf8i4u8e8boPM6dI1nz-Ah-d48dZVycra1XJgte_kHoeN_TusReVBjUtqrlOgxWfGTNXJvJ_JZXzwhbtuH2EaCzvwpJra7inGWzpex2yLF3Plj-nHcH1HwQUj-rClgYbo4QUQKztRRLOiEmPw91dT5nxVN9qmluuUFfUrGg50v_WFSN2dILJc5RJ6Ce6SC0aHrhSxckCwUOjXMOGZZ2S1KWzLugi4s40EwKdLUWG-kz1PHtWPPyOpkOvHrhErNAgCPwntR8CxPNdasANDUhosS4rcOeddsk7I1czk20PihmggGFk3FReuQ163or4qu4zahddhrpY_BjarxQY4ke_U3axgPCtAORe7tYW9f4X-RWl9m3fOsQ95G_WjF9OwM8-NKob6OdtWBOOwPvm3vKRDcaBRI1a5hrgAxcsBNEFd3yKv2Nhg1fqnREz9dzrE3aGxdmuUw96gtf5-N6vUP48Xzfxd9Qe7DrEWVlLhBVhezpX8J4GphNqMVXQGaDhtS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB71EIIXbtSFAgYhxEuqJLZzIF5W2y7bst0H2i1VJWQ5ttNWhV20RwX8emacQy0CCfESRclYiu2Z8TfO-BuAV3kcGZuaKMhx8gNROhMUnJsAV5ZCoo4Ybmkfcn-UDMZi71ger8C75ixMxQ_RbriRZXh_TQZOG9JXrFybS-JGyLJVWKeK3j6g-tiSR6Hj5fWpqzQgkvGaV4jyeNqm11aj1VJP8XpGGZHrNMjfr8HOq-DVrz79O_C5-e4q6eRia7kotszP3ygd_7djd-F2DUtZt9Kje7DiJvfhxo6ntP7xAOy2K30lCTZz55TbbivSWTZf-oKLjNLnT9nuuDdi6IaI_1kzhMNscUagFP2pZXSmE8Pyt0wz675WTNnnhumWGvQhjPs7h71BUNdnCIzIYww-pXDEBqPLzMk8sWXOy0SHBS8sNzzNktSkXNhSJ4aLUvJchmFhXJG7OLRCW_4I1ibTidsAlmteIvZInJOJiOJQ07EVxJq6EDLFEK4Db5p5UqYmL6caGl9UE8TgoCk_aB142Yp-qxg7_iS0gZOt9Cl6UjU-iIlnr_5tje1RA9qmRL896A4VPfPs-nmUXUYdeO0VpBXTswtKkUul-jR6rw7kUa9_sr2nUHCz0SBVe4e5QtAoEDphaN2BF-1rtGv6WaMnbrqcU3lQX700irHvXl3-3hvV7R35m8f_Lvocbg4O94dquDv68ARu4QjIKkdxE9YWs6V7ilhrUTzzJvULROUfbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEA99oPjFt_S0ahQRv2zZ3ST70E_HXc9rrYdYry0ihDzbUr0r9yjqX-9M9kErCuKXZdmdwCaZmfwmO_kNIS_KNDE2N0lUwuRH3DsTacZMBCuLFqAjhlnch3w_yoZjvnskjlbIm-YsTMUP0W64oWUEf40Gfm79JSNX5gKpEYpilazzLC5QpfsfW-4o8LusPnSVR8gxXtMKYRpP2_TKYrTq1RSuJ5gQuY5j_P0K6ryMXcPiM7hFvjSfXeWcnG0tF3rL_PyN0fE_-3Wb3KxBKe1WWnSHrLjJXXJtOxBa_7hHbN_5UEeCztwpZrbbinKWzpeh3CLF5PljujPujSg4IWR_VhTAMF2cICQFb2opnuiEoPw1VdS6bxVP9qmhqiUGvU_Gg-1PvWFUV2eIDC9TCD0Fd8gFo3zhRJlZXzKfqVgzbZlheZHlJmfcepUZxr1gpYhjbZwuXRpbrix7QNYm04nbILRUzAPyyJwTGU_SWOGhFUCaSnORQwDXIa-aaZKmpi7HChpfZRPCwKDJMGgd8rwVPa_4Ov4ktAFzLdUx-FE53k-RZa_-aQ3tQQHapki-PezuSXwWuPXLpLhIOuRl0I9WTM3OMEEuF_Jw9Fbui4Pe4HN_V4LgZqNAsvYNcwmQkQNwgsC6Q561r8Gq8VeNmrjpco7FQUPt0iSFvgdt-XtvZLd3EG4e_rvoU3L9Q38g93ZG7x6RGzAAokpQ3CRri9nSPQagtdBPgkH9AuWIHiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+reintroduction+success+using+IUCN+criteria+for+threatened+species%3A+a+demographic+assessment&rft.jtitle=Animal+conservation&rft.au=Robert%2C+A.&rft.au=Colas%2C+B.&rft.au=Guigon%2C+I.&rft.au=Kerbiriou%2C+C.&rft.date=2015-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1367-9430&rft.eissn=1469-1795&rft.volume=18&rft.issue=5&rft.spage=397&rft.epage=406&rft_id=info:doi/10.1111%2Facv.12188&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_S5VCFZDJ_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-9430&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-9430&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-9430&client=summon