Scope for genetic rescue of an endangered subspecies though re-establishing natural gene flow with another subspecies

Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding d...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 25; no. 6; pp. 1242 - 1258
Main Authors Harrisson, Katherine A., Pavlova, Alexandra, Gonçalves da Silva, Anders, Rose, Rebecca, Bull, James K., Lancaster, Melanie L., Murray, Neil, Quin, Bruce, Menkhorst, Peter, Magrath, Michael J. L., Sunnucks, Paul
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.
AbstractList Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow-tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (N sub(e) < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre-1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive-bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow-tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (N(e) < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre-1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive-bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Nₑ < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow-tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre-1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive-bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size ( N e  < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue) , should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.
Author Pavlova, Alexandra
Sunnucks, Paul
Rose, Rebecca
Bull, James K.
Menkhorst, Peter
Gonçalves da Silva, Anders
Magrath, Michael J. L.
Harrisson, Katherine A.
Murray, Neil
Quin, Bruce
Lancaster, Melanie L.
Author_xml – sequence: 1
  givenname: Katherine A.
  surname: Harrisson
  fullname: Harrisson, Katherine A.
  email: katherine.harrisson@gmail.com
  organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia
– sequence: 2
  givenname: Alexandra
  surname: Pavlova
  fullname: Pavlova, Alexandra
  organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia
– sequence: 3
  givenname: Anders
  surname: Gonçalves da Silva
  fullname: Gonçalves da Silva, Anders
  organization: School of Biological Sciences, Monash University, Clayton Campus, 3800, Clayton, Vic., Australia
– sequence: 4
  givenname: Rebecca
  surname: Rose
  fullname: Rose, Rebecca
  organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia
– sequence: 5
  givenname: James K.
  surname: Bull
  fullname: Bull, James K.
  organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia
– sequence: 6
  givenname: Melanie L.
  surname: Lancaster
  fullname: Lancaster, Melanie L.
  organization: Healesville Sanctuary, Vic., 3777, Healesville, Australia
– sequence: 7
  givenname: Neil
  surname: Murray
  fullname: Murray, Neil
  organization: Department of Ecology, Environment and Evolution, La Trobe University, Vic., 3086, Melbourne, Australia
– sequence: 8
  givenname: Bruce
  surname: Quin
  fullname: Quin, Bruce
  organization: Department of Environment, Land, Water and Planning, Symes Road, Vic., 3139, Woori Yallock, Australia
– sequence: 9
  givenname: Peter
  surname: Menkhorst
  fullname: Menkhorst, Peter
  organization: Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Vic., 3084, Heidelberg, Australia
– sequence: 10
  givenname: Michael J. L.
  surname: Magrath
  fullname: Magrath, Michael J. L.
  organization: Department of Wildlife Conservation and Science, Zoos Victoria, Vic., 3052, Parkville, Australia
– sequence: 11
  givenname: Paul
  surname: Sunnucks
  fullname: Sunnucks, Paul
  organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26820991$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNPCghdAltjAYlp7HNszSxSV8hOKBEVlZ3nsO4nLxE5tj0LfHrdJEKpA3I035zu6198ROvDBA0LPKTmhZU5XYE4o41P5CE0oE7yq2-n3AzQhragrShp2iI5SuiaEsprzJ-iwFk1N2pZO0PjVhDXgPkS8AA_ZGRwhmRFw6LH2GLzVfgERLE5jl9ZgHCScl2FcLAtZQcq6G1xaOr_AXucx6uHehPshbPDG5WXRhLyE-IfgKXrc6yHBs917jL69Pbucvavmn8_fz97MKzNta1lZ1nFhJZHaGG37jpeVe8tbYnhTGwE9NJKLVhALneWNaaxoGK1l3U9tB9SyY_Rq613HcDOWXdXKJQPDoD2EMSnaEEbahgjxf1RKIXgrqCzoywfodRijL4fcUZSUIgQv1IsdNXYrsGod3UrHW7X_-wKcbgETQ0oRemVc1tkFn6N2g6JE3bWrSrvqvt2SeP0gsZf-jd3ZN26A23-D6tPZbJ-otgmXMvz8ndDxhxKSSa6uLs7Vl4v5R0E_XKor9gv7LcOl
CitedBy_id crossref_primary_10_1016_j_tree_2019_06_006
crossref_primary_10_1071_WR18170
crossref_primary_10_1111_eva_12761
crossref_primary_10_1111_eva_12484
crossref_primary_10_1111_eva_13677
crossref_primary_10_1111_1755_0998_13844
crossref_primary_10_1360_SSV_2022_0141
crossref_primary_10_1016_j_biocon_2022_109584
crossref_primary_10_1016_j_gecco_2021_e01681
crossref_primary_10_1016_j_biocon_2017_07_008
crossref_primary_10_1111_mec_14361
crossref_primary_10_1111_csp2_13215
crossref_primary_10_1016_j_biocon_2023_110203
crossref_primary_10_1638_2022_0126
crossref_primary_10_1111_1365_2435_13429
crossref_primary_10_1071_BT22006
crossref_primary_10_1111_eva_13223
crossref_primary_10_1111_mec_17109
crossref_primary_10_1111_csp2_483
crossref_primary_10_1111_mec_17606
crossref_primary_10_1111_age_12907
crossref_primary_10_1007_s10750_019_03981_9
crossref_primary_10_1080_01584197_2021_1903331
crossref_primary_10_1111_mec_15540
crossref_primary_10_1111_1755_0998_13476
crossref_primary_10_1111_eva_70037
crossref_primary_10_1139_gen_2024_0036
crossref_primary_10_1080_22221751_2024_2350164
crossref_primary_10_1007_s10592_024_01632_8
crossref_primary_10_1007_s10592_024_01636_4
crossref_primary_10_1016_j_avrs_2022_100035
crossref_primary_10_1002_ece3_6942
crossref_primary_10_1002_ece3_5616
crossref_primary_10_1016_j_biocon_2021_109072
crossref_primary_10_1038_s41437_023_00653_2
crossref_primary_10_3897_zookeys_1179_96015
crossref_primary_10_1111_icad_12235
crossref_primary_10_1016_j_cub_2019_06_064
crossref_primary_10_1016_j_scitotenv_2022_159513
crossref_primary_10_1093_gigascience_giac025
crossref_primary_10_3390_ani13132098
crossref_primary_10_1038_s41598_020_72428_2
crossref_primary_10_1093_jhered_esae029
crossref_primary_10_1080_03721426_2018_1483185
crossref_primary_10_1111_acv_12519
Cites_doi 10.1007/s12686-011-9548-7
10.1071/MU09002
10.1093/genetics/152.2.763
10.1071/MU958163
10.1111/j.1752-4571.2011.00192.x
10.1534/genetics.109.112532
10.1146/annurev.ge.29.120195.001513
10.1111/j.1558-5646.1989.tb04226.x
10.1016/S0169-5347(00)01876-0
10.1111/j.1523-1739.1987.tb00023.x
10.1046/j.1523-1739.1995.9050988.x-i1
10.1111/j.1755-0998.2007.02061.x
10.1111/j.1755-0998.2010.02885.x
10.1111/j.1365-294X.2005.02553.x
10.1093/jhered/est016
10.1016/j.tree.2012.07.001
10.1111/eva.12149
10.1016/j.tree.2014.10.009
10.1534/genetics.107.075481
10.1002/zoo.1430140609
10.1046/j.1523-1739.1996.10061509.x
10.1073/pnas.1504732112
10.1016/j.biocon.2004.01.022
10.1046/j.1471-8286.2003.00566.x
10.1111/j.1365-294X.2004.02396.x
10.1111/cobi.12431
10.1046/j.1523-1739.2003.01236.x
10.1534/genetics.107.083816
10.1016/j.biocon.2014.04.005
10.1073/pnas.081068098
10.1093/bioinformatics/bts460
10.1017/CBO9780511809002
10.1534/genetics.114.164822
10.1111/mec.13139
10.1071/MU9930209
10.1111/j.1365-294X.2010.04878.x
10.1111/j.1469-1795.2005.00010.x
10.1098/rspb.2012.2058
10.1126/science.282.5394.1695
10.1007/s10592-009-9999-5
10.1111/mec.13046
10.1046/j.1523-1739.1996.10061500.x
10.1093/bioinformatics/btm233
10.1111/j.1523-1739.2011.01662.x
10.1111/1755-0998.12157
10.1016/j.biocon.2013.12.036
10.1098/rspb.2012.2228
10.1111/j.1755-0998.2010.02831.x
10.1111/j.1365-294X.2005.02673.x
10.1111/j.1471-8286.2006.01560.x
10.1093/genetics/121.2.379
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
2016 John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
DOI 10.1111/mec.13547
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE
AGRICOLA
Entomology Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 1258
ExternalDocumentID 3973467921
26820991
10_1111_mec_13547
MEC13547
ark_67375_WNG_RNLK61JT_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Merrin Foundation
– fundername: Victorian Department of Environment and Primary Industries (DEPI)
– fundername: North Central Catchment Management Authority
– fundername: Zoos Victoria
– fundername: CSIRO Ecosystem Sciences
– fundername: Victorian Government
– fundername: Parks Victoria
– fundername: Goulburn Broken Catchment Management Authority
– fundername: Holsworth Wildlife Research Endowment
– fundername: Birds Australia
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AETEA
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c4927-d3b56d707accadfb5991fd590c582c6efe8756960debd58c8d6831272f4dbe1d3
IEDL.DBID DR2
ISSN 0962-1083
IngestDate Fri Jul 11 18:39:06 EDT 2025
Fri Jul 11 08:46:50 EDT 2025
Wed Aug 13 09:53:51 EDT 2025
Mon Jul 21 05:48:18 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Tue Jul 01 03:21:57 EDT 2025
Wed Aug 20 07:26:53 EDT 2025
Wed Oct 30 10:01:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords vortex
population viability
yellow-tufted honeyeater
genetic rescue
genetic restoration
helmeted honeyeater
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4927-d3b56d707accadfb5991fd590c582c6efe8756960debd58c8d6831272f4dbe1d3
Notes Zoos Victoria
Victorian Department of Environment and Primary Industries (DEPI)
Goulburn Broken Catchment Management Authority
Merrin Foundation
Holsworth Wildlife Research Endowment
North Central Catchment Management Authority
istex:91A7C997D03927FF17F8F66C3AEA994D15E6B6E4
Museum of Victoria
Australian Research Council - No. LP0776322
Victorian Government
Birds Australia
Parks Victoria
ark:/67375/WNG-RNLK61JT-W
CSIRO Ecosystem Sciences
Appendix S1. vortex simulation parameters.Appendix S2. Yellingbo population history.Appendix S3. Sampling info.Appendix S4. Lab methods.Appendix S5. migrate-n sample information.Appendix S6. migrate-n analysis.Appendix S7. Allele frequencies.Appendix S8. Summary of structure analysis based on all cassidix samples.Appendix S9. Summary of structure analysis based on all cassidix and gippslandicus samples.
ArticleID:MEC13547
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9455-4124
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mec.13547
PMID 26820991
PQID 1771054765
PQPubID 31465
PageCount 17
ParticipantIDs proquest_miscellaneous_1803098066
proquest_miscellaneous_1776659617
proquest_journals_1771054765
pubmed_primary_26820991
crossref_citationtrail_10_1111_mec_13547
crossref_primary_10_1111_mec_13547
wiley_primary_10_1111_mec_13547_MEC13547
istex_primary_ark_67375_WNG_RNLK61JT_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03
March 2016
2016-03-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Frankham R, Ballou JD, Briscoe DA (2010) Introduction to Conservation Genetics, 2nd edn. Cambridge University Press, Cambridge.
Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756.
Frankham R (1995) Conservation genetics. Annual Review of Genetics, 29, 305-327.
Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237.
Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185, 313-326.
Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 152, 763-773.
Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology, 10, 1500-1508.
Blackney J, Menkhorst P (1993) Distribution of subspecies of the yellow-tufted honeyeater in the Yarra Valley region, Victoria. Emu, 93, 209-213.
McMahon A, Franklin D (1993) The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley. The Victorian Naturalist, 110, 230-237.
Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935.
Weeks AR, Sgro CM, Young AG et al. (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 4, 709-725.
Westemeier RL, Brawn JD, Simpson SA et al. (1998) Tracking the long-term decline and recovery of an isolated population. Science, 282, 1695-1698.
Hemmings N, West M, Birkhead T (2012) Causes of hatching failure in endangered birds. Biology Letters, 12, rsbl.2012.0655.
Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proceedings of the Royal Society B: Biological Sciences, 280, 20122058.
Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14, 3335-3352.
Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics, 197, 769-780.
Wakefield N (1958) The yellow-tufted honeyeater with a description of a new subspecies. Emu, 58, 163-194.
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587.
Fernández J, Toro M, Caballero A (2008) Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics, 179, 683-692.
Lacy RC (1995) Clarification of genetic terms and their use in the management of captive populations. Zoo Biology, 14, 565-577.
Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? (vol 19, pg 3038, 2010). Molecular Ecology, 19, 5320.
Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology, 1, 143-158.
Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution, 15, 290-295.
Pavlova A, Selwood P, Harrisson KA et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biological Conservation, 174, 136-146.
Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539.
Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution, 43, 258-275.
Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361.
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evolutionary Applications, 7, 1008-1025.
Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11, 141-145.
Tallmon DA, Gregovich D, Waples RS et al. (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Molecular Ecology Resources, 10, 684-692.
Garnett ST, Szabo J, Dutson G (2011) Action Plan for Australian Birds. CSIRO Publishing, Melbourne.
Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Conservation Biology, 9, 996-1007.
Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24, 2610-2618.
Heber S, Varsani A, Kuhn S et al. (2013) The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proceedings of the Royal Society B: Biological Sciences, 280, 20122228.
Smales IJ, Quin B, Menkhorst PW, Franklin DC (2009) Demography of the helmeted honeyeater (Lichenostomus melanops cassidix). Emu, 109, 352-359.
Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626.
Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138.
Frankham R, Ballou JD, Eldridge MDB et al. (2011) Predicting the probability of outbreeding depression. Conservation Biology, 25, 465-475.
Hufbauer RA, Szűcs M, Kasyon E et al. (2015) Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences, 112, 10557-10562.
Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends in Ecology & Evolution, 30, 42-49.
Sánchez-Molano E, Caballero A, Fernández J (2013) Efficiency of conservation management methods for subdivided populations under local adaptation. Journal of Heredity, 104, 554-564.
Pierson JC, Beissinger SR, Bragg JG et al. (2015) Incorporating evolutionary processes into population viability models. Conservation Biology, 29, 755-764.
Pimm SL, Dollar L, Bass O (2006) The genetic rescue of the Florida panther. Animal Conservation, 9, 115-122.
Waples RS (1989) A generalized-approach for estimating effective population-size from temporal changes in allele frequency. Genetics, 121, 379-391.
Do C, Waples RS, Peel D et al. (2014) NEESTIMATOR v2: re-implementation of software for the estimation of contemporary effective population size (N-e) from genetic data. Molecular Ecology Resources, 14, 209-214.
Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology & Evolution, 27, 578-584.
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.
Hamilton JA, Miller JM (2015) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conservation Biology, 30, 30-41.
Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, 98, 4563-4568.
Menkhorst P (2008) National Recovery Plan for the Helmeted Honeyeater Lichenostomus melanops cassidix. Department of Sustainability and Environment, Melbourne.
Menkhorst P, Middleton D (1991) Helmeted Honeyeater Recovery Plan: 1989-1993. Department of Conservation and Environment, Melbourne.
Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801-1806.
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conservation Biology, 10, 1509-1518.
Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56-63.
Lacy RC, Pollak JP (2015) A Stochastic Simulation of the Extinction Process. Chicago Zoological Society, Brookfield, Illinois.
Wright S (1931) Evolution in Mendelian populations. Genetics, 16, 97.
Gonçalves da Silva A, Appleyard SA, Upston J (2015) Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach. Molecular Ecology, 24, 564-579.
Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biological Conservation, 120, 145-147.
2010; 11
1987; 1
1931; 16
2010; 10
2004; 120
1989; 43
2010; 19
2015; 30
1958; 58
2004; 4
2010; 185
2011; 11
2008; 8
2003; 17
2014; 170
2013; 280
2012; 12
2014; 174
2001
1990
2000; 15
2007; 177
2014; 14
2012; 28
2012; 27
1995; 29
2011; 25
2014; 7
2007; 23
1998; 282
2003; 164
2001; 98
1995; 9
2011
2010
1995; 14
2013; 104
2006; 9
2008
1995
2000; 155
1991
2011; 4
2014; 197
1996; 10
2015; 24
2015; 29
1993; 93
2015; 112
1989; 121
1999; 152
2015
2008; 179
2012; 4
2009; 109
1993; 110
2005; 14
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Hamilton JA (e_1_2_6_22_1) 2015; 30
Smales IJ (e_1_2_6_51_1) 1990
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Weeks AR (e_1_2_6_61_1) 2015
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Ballou JD (e_1_2_6_2_1) 1995
e_1_2_6_9_1
Garnett ST (e_1_2_6_19_1) 2011
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Lacy RC (e_1_2_6_34_1) 2015
Menkhorst P (e_1_2_6_38_1) 2008
Hemmings N (e_1_2_6_27_1) 2012; 12
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Menkhorst P (e_1_2_6_39_1) 1991
e_1_2_6_8_1
e_1_2_6_4_1
McMahon A (e_1_2_6_37_1) 1993; 110
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – reference: Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138.
– reference: Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends in Ecology & Evolution, 30, 42-49.
– reference: Fernández J, Toro M, Caballero A (2008) Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics, 179, 683-692.
– reference: Frankham R (1995) Conservation genetics. Annual Review of Genetics, 29, 305-327.
– reference: Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology, 1, 143-158.
– reference: Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185, 313-326.
– reference: Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology & Evolution, 27, 578-584.
– reference: Hufbauer RA, Szűcs M, Kasyon E et al. (2015) Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences, 112, 10557-10562.
– reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
– reference: Menkhorst P, Middleton D (1991) Helmeted Honeyeater Recovery Plan: 1989-1993. Department of Conservation and Environment, Melbourne.
– reference: Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution, 15, 290-295.
– reference: Hamilton JA, Miller JM (2015) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conservation Biology, 30, 30-41.
– reference: Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proceedings of the Royal Society B: Biological Sciences, 280, 20122058.
– reference: Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14, 3335-3352.
– reference: Westemeier RL, Brawn JD, Simpson SA et al. (1998) Tracking the long-term decline and recovery of an isolated population. Science, 282, 1695-1698.
– reference: Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Conservation Biology, 9, 996-1007.
– reference: Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? (vol 19, pg 3038, 2010). Molecular Ecology, 19, 5320.
– reference: Garnett ST, Szabo J, Dutson G (2011) Action Plan for Australian Birds. CSIRO Publishing, Melbourne.
– reference: Gonçalves da Silva A, Appleyard SA, Upston J (2015) Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach. Molecular Ecology, 24, 564-579.
– reference: Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587.
– reference: Hemmings N, West M, Birkhead T (2012) Causes of hatching failure in endangered birds. Biology Letters, 12, rsbl.2012.0655.
– reference: Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361.
– reference: Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, 98, 4563-4568.
– reference: Menkhorst P (2008) National Recovery Plan for the Helmeted Honeyeater Lichenostomus melanops cassidix. Department of Sustainability and Environment, Melbourne.
– reference: Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conservation Biology, 10, 1509-1518.
– reference: Pimm SL, Dollar L, Bass O (2006) The genetic rescue of the Florida panther. Animal Conservation, 9, 115-122.
– reference: Heber S, Varsani A, Kuhn S et al. (2013) The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proceedings of the Royal Society B: Biological Sciences, 280, 20122228.
– reference: Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626.
– reference: Smales IJ, Quin B, Menkhorst PW, Franklin DC (2009) Demography of the helmeted honeyeater (Lichenostomus melanops cassidix). Emu, 109, 352-359.
– reference: Do C, Waples RS, Peel D et al. (2014) NEESTIMATOR v2: re-implementation of software for the estimation of contemporary effective population size (N-e) from genetic data. Molecular Ecology Resources, 14, 209-214.
– reference: Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24, 2610-2618.
– reference: Weeks AR, Sgro CM, Young AG et al. (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 4, 709-725.
– reference: Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56-63.
– reference: Sánchez-Molano E, Caballero A, Fernández J (2013) Efficiency of conservation management methods for subdivided populations under local adaptation. Journal of Heredity, 104, 554-564.
– reference: Pierson JC, Beissinger SR, Bragg JG et al. (2015) Incorporating evolutionary processes into population viability models. Conservation Biology, 29, 755-764.
– reference: Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11, 141-145.
– reference: Blackney J, Menkhorst P (1993) Distribution of subspecies of the yellow-tufted honeyeater in the Yarra Valley region, Victoria. Emu, 93, 209-213.
– reference: McMahon A, Franklin D (1993) The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley. The Victorian Naturalist, 110, 230-237.
– reference: Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539.
– reference: Waples RS (1989) A generalized-approach for estimating effective population-size from temporal changes in allele frequency. Genetics, 121, 379-391.
– reference: Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801-1806.
– reference: Lacy RC (1995) Clarification of genetic terms and their use in the management of captive populations. Zoo Biology, 14, 565-577.
– reference: Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756.
– reference: Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evolutionary Applications, 7, 1008-1025.
– reference: Frankham R, Ballou JD, Briscoe DA (2010) Introduction to Conservation Genetics, 2nd edn. Cambridge University Press, Cambridge.
– reference: Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics, 197, 769-780.
– reference: Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 152, 763-773.
– reference: Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution, 43, 258-275.
– reference: Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology, 10, 1500-1508.
– reference: Frankham R, Ballou JD, Eldridge MDB et al. (2011) Predicting the probability of outbreeding depression. Conservation Biology, 25, 465-475.
– reference: Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biological Conservation, 120, 145-147.
– reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.
– reference: Tallmon DA, Gregovich D, Waples RS et al. (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Molecular Ecology Resources, 10, 684-692.
– reference: Pavlova A, Selwood P, Harrisson KA et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biological Conservation, 174, 136-146.
– reference: Lacy RC, Pollak JP (2015) A Stochastic Simulation of the Extinction Process. Chicago Zoological Society, Brookfield, Illinois.
– reference: Wakefield N (1958) The yellow-tufted honeyeater with a description of a new subspecies. Emu, 58, 163-194.
– reference: Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237.
– reference: Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935.
– reference: Wright S (1931) Evolution in Mendelian populations. Genetics, 16, 97.
– volume: 25
  start-page: 465
  year: 2011
  end-page: 475
  article-title: Predicting the probability of outbreeding depression
  publication-title: Conservation Biology
– year: 2011
– volume: 58
  start-page: 163
  year: 1958
  end-page: 194
  article-title: The yellow‐tufted honeyeater with a description of a new subspecies
  publication-title: Emu
– start-page: 76
  year: 1995
  end-page: 111
– volume: 10
  start-page: 1509
  year: 1996
  end-page: 1518
  article-title: The one‐migrant‐per‐generation rule in conservation and management
  publication-title: Conservation Biology
– volume: 112
  start-page: 10557
  year: 2015
  end-page: 10562
  article-title: Three types of rescue can avert extinction in a changing environment
  publication-title: Proceedings of the National Academy of Sciences
– volume: 120
  start-page: 145
  year: 2004
  end-page: 147
  article-title: Novel genes continue to enhance population growth in adders ( )
  publication-title: Biological Conservation
– volume: 15
  start-page: 290
  year: 2000
  end-page: 295
  article-title: Considering evolutionary processes in conservation biology
  publication-title: Trends in Ecology & Evolution
– year: 2001
– volume: 24
  start-page: 2610
  year: 2015
  end-page: 2618
  article-title: Genetic rescue of small inbred populations: meta‐analysis reveals large and consistent benefits of gene flow
  publication-title: Molecular Ecology
– volume: 28
  start-page: 2537
  year: 2012
  end-page: 2539
  article-title: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research‐an update
  publication-title: Bioinformatics
– volume: 4
  start-page: 709
  year: 2011
  end-page: 725
  article-title: Assessing the benefits and risks of translocations in changing environments: a genetic perspective
  publication-title: Evolutionary Applications
– volume: 14
  start-page: 565
  year: 1995
  end-page: 577
  article-title: Clarification of genetic terms and their use in the management of captive populations
  publication-title: Zoo Biology
– volume: 110
  start-page: 230
  year: 1993
  end-page: 237
  article-title: The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley
  publication-title: The Victorian Naturalist
– volume: 4
  start-page: 137
  year: 2004
  end-page: 138
  article-title: DISTRUCT: a program for the graphical display of population structure
  publication-title: Molecular Ecology Notes
– year: 1990
– volume: 11
  start-page: 141
  year: 2011
  end-page: 145
  article-title: COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients
  publication-title: Molecular Ecology Resources
– volume: 9
  start-page: 115
  year: 2006
  end-page: 122
  article-title: The genetic rescue of the Florida panther
  publication-title: Animal Conservation
– volume: 16
  start-page: 97
  year: 1931
  article-title: Evolution in Mendelian populations
  publication-title: Genetics
– volume: 30
  start-page: 30
  year: 2015
  end-page: 41
  article-title: Adaptive introgression as a resource for management and genetic conservation in a changing climate
  publication-title: Conservation Biology
– volume: 43
  start-page: 258
  year: 1989
  end-page: 275
  article-title: Estimating relatedness using genetic markers
  publication-title: Evolution
– year: 2008
– volume: 29
  start-page: 305
  year: 1995
  end-page: 327
  article-title: Conservation genetics
  publication-title: Annual Review of Genetics
– volume: 24
  start-page: 564
  year: 2015
  end-page: 579
  article-title: Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach
  publication-title: Molecular Ecology
– volume: 14
  start-page: 209
  year: 2014
  end-page: 214
  article-title: NEESTIMATOR v2: re‐implementation of software for the estimation of contemporary effective population size (N‐e) from genetic data
  publication-title: Molecular Ecology Resources
– year: 2015
– volume: 17
  start-page: 230
  year: 2003
  end-page: 237
  article-title: Correlation between fitness and genetic diversity
  publication-title: Conservation Biology
– volume: 104
  start-page: 554
  year: 2013
  end-page: 564
  article-title: Efficiency of conservation management methods for subdivided populations under local adaptation
  publication-title: Journal of Heredity
– volume: 29
  start-page: 755
  year: 2015
  end-page: 764
  article-title: Incorporating evolutionary processes into population viability models
  publication-title: Conservation Biology
– volume: 14
  start-page: 3335
  year: 2005
  end-page: 3352
  article-title: Genetic estimates of contemporary effective population size: to what time periods do the estimates apply?
  publication-title: Molecular Ecology
– volume: 179
  start-page: 683
  year: 2008
  end-page: 692
  article-title: Management of subdivided populations in conservation programs: development of a novel dynamic system
  publication-title: Genetics
– volume: 93
  start-page: 209
  year: 1993
  end-page: 213
  article-title: Distribution of subspecies of the yellow‐tufted honeyeater in the Yarra Valley region, Victoria
  publication-title: Emu
– volume: 7
  start-page: 1008
  year: 2014
  end-page: 1025
  article-title: Using genomics to characterize evolutionary potential for conservation of wild populations
  publication-title: Evolutionary Applications
– volume: 9
  start-page: 996
  year: 1995
  end-page: 1007
  article-title: Gene flow and genetic restoration: the Florida panther as a case study
  publication-title: Conservation Biology
– volume: 10
  start-page: 684
  year: 2010
  end-page: 692
  article-title: When are genetic methods useful for estimating contemporary abundance and detecting population trends?
  publication-title: Molecular Ecology Resources
– volume: 185
  start-page: 313
  year: 2010
  end-page: 326
  article-title: Unified framework to evaluate panmixia and migration direction among multiple sampling locations
  publication-title: Genetics
– volume: 164
  start-page: 1567
  year: 2003
  end-page: 1587
  article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies
  publication-title: Genetics
– volume: 27
  start-page: 578
  year: 2012
  end-page: 584
  article-title: How does the 50/500 rule apply to MVPs?
  publication-title: Trends in Ecology & Evolution
– year: 2010
– volume: 23
  start-page: 1801
  year: 2007
  end-page: 1806
  article-title: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure
  publication-title: Bioinformatics
– volume: 280
  start-page: 20122228
  year: 2013
  article-title: The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 109
  start-page: 352
  year: 2009
  end-page: 359
  article-title: Demography of the helmeted honeyeater ( )
  publication-title: Emu
– volume: 14
  start-page: 2611
  year: 2005
  end-page: 2620
  article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
  publication-title: Molecular Ecology
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 8
  start-page: 753
  year: 2008
  end-page: 756
  article-title: LDNE: a program for estimating effective population size from data on linkage disequilibrium
  publication-title: Molecular Ecology Resources
– volume: 98
  start-page: 4563
  year: 2001
  end-page: 4568
  article-title: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach
  publication-title: Proceedings of the National Academy of Sciences
– volume: 4
  start-page: 359
  year: 2012
  end-page: 361
  article-title: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method
  publication-title: Conservation Genetics Resources
– volume: 30
  start-page: 42
  year: 2015
  end-page: 49
  article-title: Genetic rescue to the rescue
  publication-title: Trends in Ecology & Evolution
– volume: 197
  start-page: 769
  year: 2014
  end-page: 780
  article-title: Effects of overlapping generations on linkage disequilibrium estimates of effective population size
  publication-title: Genetics
– volume: 19
  start-page: 5320
  year: 2010
  article-title: What can genetics tell us about population connectivity? (vol 19, pg 3038, 2010)
  publication-title: Molecular Ecology
– volume: 177
  start-page: 927
  year: 2007
  end-page: 935
  article-title: Unbiased estimator for genetic drift and effective population size
  publication-title: Genetics
– volume: 282
  start-page: 1695
  year: 1998
  end-page: 1698
  article-title: Tracking the long‐term decline and recovery of an isolated population
  publication-title: Science
– volume: 152
  start-page: 763
  year: 1999
  end-page: 773
  article-title: Maximum‐likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach
  publication-title: Genetics
– volume: 1
  start-page: 143
  year: 1987
  end-page: 158
  article-title: Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision
  publication-title: Conservation Biology
– year: 1991
– volume: 10
  start-page: 1500
  year: 1996
  end-page: 1508
  article-title: Relationship of genetic variation to population size in wildlife
  publication-title: Conservation Biology
– volume: 11
  start-page: 615
  year: 2010
  end-page: 626
  article-title: Genetic rescue guidelines with examples from Mexican wolves and Florida panthers
  publication-title: Conservation Genetics
– start-page: 127
  year: 2015
  end-page: 140
– volume: 170
  start-page: 56
  year: 2014
  end-page: 63
  article-title: Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses
  publication-title: Biological Conservation
– volume: 12
  start-page: rsbl.2012.0655
  year: 2012
  article-title: Causes of hatching failure in endangered birds
  publication-title: Biology Letters
– volume: 280
  start-page: 20122058
  year: 2013
  article-title: Source population characteristics affect heterosis following genetic rescue of fragmented plant populations
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 174
  start-page: 136
  year: 2014
  end-page: 146
  article-title: Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species
  publication-title: Biological Conservation
– volume: 121
  start-page: 379
  year: 1989
  end-page: 391
  article-title: A generalized‐approach for estimating effective population‐size from temporal changes in allele frequency
  publication-title: Genetics
– ident: e_1_2_6_9_1
  doi: 10.1007/s12686-011-9548-7
– ident: e_1_2_6_52_1
  doi: 10.1071/MU09002
– ident: e_1_2_6_3_1
  doi: 10.1093/genetics/152.2.763
– ident: e_1_2_6_54_1
  doi: 10.1071/MU958163
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1752-4571.2011.00192.x
– ident: e_1_2_6_5_1
  doi: 10.1534/genetics.109.112532
– ident: e_1_2_6_13_1
  doi: 10.1146/annurev.ge.29.120195.001513
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1558-5646.1989.tb04226.x
– ident: e_1_2_6_7_1
  doi: 10.1016/S0169-5347(00)01876-0
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1523-1739.1987.tb00023.x
– volume: 110
  start-page: 230
  year: 1993
  ident: e_1_2_6_37_1
  article-title: The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley
  publication-title: The Victorian Naturalist
– volume-title: National Recovery Plan for the Helmeted Honeyeater Lichenostomus melanops cassidix
  year: 2008
  ident: e_1_2_6_38_1
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1523-1739.1995.9050988.x-i1
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1755-0998.2007.02061.x
– volume-title: Action Plan for Australian Birds
  year: 2011
  ident: e_1_2_6_19_1
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1755-0998.2010.02885.x
– volume-title: Management and Conservation of Small Populations
  year: 1990
  ident: e_1_2_6_51_1
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_6_50_1
  doi: 10.1093/jhered/est016
– ident: e_1_2_6_30_1
  doi: 10.1016/j.tree.2012.07.001
– ident: e_1_2_6_23_1
  doi: 10.1111/eva.12149
– ident: e_1_2_6_63_1
  doi: 10.1016/j.tree.2014.10.009
– ident: e_1_2_6_31_1
  doi: 10.1534/genetics.107.075481
– ident: e_1_2_6_33_1
  doi: 10.1002/zoo.1430140609
– ident: e_1_2_6_40_1
  doi: 10.1046/j.1523-1739.1996.10061509.x
– ident: e_1_2_6_28_1
  doi: 10.1073/pnas.1504732112
– ident: e_1_2_6_36_1
  doi: 10.1016/j.biocon.2004.01.022
– ident: e_1_2_6_49_1
  doi: 10.1046/j.1471-8286.2003.00566.x
– start-page: 127
  volume-title: Advances in Reintroduction Biology of Australian and New Zealand Fauna
  year: 2015
  ident: e_1_2_6_61_1
– start-page: 76
  volume-title: Population Management for Survival & Recovery. Analytical Methods and Strategies in Small Population Conservation
  year: 1995
  ident: e_1_2_6_2_1
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_6_44_1
  doi: 10.1111/cobi.12431
– ident: e_1_2_6_48_1
  doi: 10.1046/j.1523-1739.2003.01236.x
– volume: 30
  start-page: 30
  year: 2015
  ident: e_1_2_6_22_1
  article-title: Adaptive introgression as a resource for management and genetic conservation in a changing climate
  publication-title: Conservation Biology
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_6_12_1
  doi: 10.1534/genetics.107.083816
– ident: e_1_2_6_41_1
  doi: 10.1016/j.biocon.2014.04.005
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.081068098
– ident: e_1_2_6_42_1
  doi: 10.1093/bioinformatics/bts460
– ident: e_1_2_6_16_1
  doi: 10.1017/CBO9780511809002
– ident: e_1_2_6_59_1
  doi: 10.1534/genetics.114.164822
– ident: e_1_2_6_15_1
  doi: 10.1111/mec.13139
– ident: e_1_2_6_6_1
  doi: 10.1071/MU9930209
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1365-294X.2010.04878.x
– volume: 12
  start-page: rsbl.2012.0655
  year: 2012
  ident: e_1_2_6_27_1
  article-title: Causes of hatching failure in endangered birds
  publication-title: Biology Letters
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1469-1795.2005.00010.x
– volume-title: Helmeted Honeyeater Recovery Plan: 1989–1993
  year: 1991
  ident: e_1_2_6_39_1
– ident: e_1_2_6_43_1
  doi: 10.1098/rspb.2012.2058
– ident: e_1_2_6_62_1
  doi: 10.1126/science.282.5394.1695
– ident: e_1_2_6_26_1
  doi: 10.1007/s10592-009-9999-5
– ident: e_1_2_6_20_1
  doi: 10.1111/mec.13046
– ident: e_1_2_6_14_1
  doi: 10.1046/j.1523-1739.1996.10061500.x
– volume-title: A Stochastic Simulation of the Extinction Process
  year: 2015
  ident: e_1_2_6_34_1
– ident: e_1_2_6_29_1
  doi: 10.1093/bioinformatics/btm233
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1523-1739.2011.01662.x
– ident: e_1_2_6_8_1
  doi: 10.1111/1755-0998.12157
– ident: e_1_2_6_21_1
– ident: e_1_2_6_18_1
  doi: 10.1016/j.biocon.2013.12.036
– ident: e_1_2_6_24_1
  doi: 10.1098/rspb.2012.2228
– ident: e_1_2_6_53_1
  doi: 10.1111/j.1755-0998.2010.02831.x
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-294X.2005.02673.x
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1471-8286.2006.01560.x
– ident: e_1_2_6_56_1
  doi: 10.1093/genetics/121.2.379
SSID ssj0013255
Score 2.3912165
Snippet Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1242
SubjectTerms Alleles
Animals
birds
Breeding
Cassidix
Conservation of Natural Resources
Endangered Species
Environmental changes
Gene Flow
Genetic diversity
Genetic Drift
genetic rescue
genetic restoration
Genetic Variation
helmeted honeyeater
hybridization
Hybridization, Genetic
Inbreeding
inbreeding depression
Lichenostomus melanops cassidix
Microsatellite Repeats
Models, Genetic
monitoring
outbreeding depression
Passeriformes - classification
Passeriformes - genetics
Population decline
Population Density
Population number
population size
population viability
risk
Sequence Analysis, DNA
viability
vortex
yellow-tufted honeyeater
Title Scope for genetic rescue of an endangered subspecies though re-establishing natural gene flow with another subspecies
URI https://api.istex.fr/ark:/67375/WNG-RNLK61JT-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.13547
https://www.ncbi.nlm.nih.gov/pubmed/26820991
https://www.proquest.com/docview/1771054765
https://www.proquest.com/docview/1776659617
https://www.proquest.com/docview/1803098066
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSx0xFA5iKfSl-zLWlrSU0peRycxkGfokcq3Yeh-sog-FkMmCoJ1bvPei9smf4G_sL_GczMK12FL6FsiZTJZzku8kZyHkXVbkPguSpSxYn5bW2VS5Ik-dL-EwsNbxCn2Hd8Zia7_cPuSHS-Rj7wvTxocYLtxQMuJ-jQJu6umCkH_3FpM2lOhJjrZaCIh284UXhJjxFBB6DluNKrqoQmjFM3x54yy6g9N6fhvQvIlb48Gz-YB867vc2pscr81n9Zr9-Vs0x_8c00NyvwOkdL3loEdkyTePyd02ReUFlEYxrPXFE3L2FR1YKIBcCkyHvo8UVHU793QSqGmoB-Uerwi9o1PYjTCvvZ_S2RGmAQLKX5dXMFrTX3rRGFEUfoxt0XAyOaN4JQwNRZewhSaekv3N0d7GVtqlbUhtWeUydUXNhZOZNMAdLtQcIGiANc8sV7kVPnjQkQRoTs7XjiurnFAFy2UeSld75opnZLmZNP4FoSELzGTCVIzL0hmoNrBjiNpWhZKVqhLyoV9AbbuY5pha40T3ug3MqI4zmpC3A-mPNpDHbUTvIxcMFOb0GC3fJNcH4096d_zls2Dbe_ogIas9m-hO6KeaSYBr0IrgCXkzVIO44huMafxkHmmE4BXgxr_QKHz3UgAGE_K8ZcGhQ7lQ6OzMYOSRkf48Fr0z2oiFlX8nfUnuASAUrY3dKlmenc79KwBds_p1lK5rChcpnA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iguiL9zEatRURXybM1ceALxI2rsnuPsQNyYsMM30gJM5KdpcYn_wJ_kZ_iVU9BxuJIr41dE1PH1XdX1V3VQG8jNLERk7GYey0DTNtdKhMmoTGZngYaG14Tr7D44kYHmS7R_xoDd50vjBNfIje4EaS4fdrEnAySK9I-WerKWtDJq_ABmX09grVfrJyh-BzniJGT3CzUWkbV4je8fSfXjiNNmhiv14GNS8iV3_07NyEj12nmxcnx1vLRbWlv_0Wz_F_R3ULbrSYlL1tmOg2rNn6DlxtslSeY2ngI1uf34WzD-TDwhDnMuQ7cn9kqK3rpWUzx8qaWdTvyUpoDZvjhkSp7e2cLT5RJiCk_Pn9Bw637OxezAcVxR9TW8ydzM4YWYWxIe8VttLEPTjYGUy3h2GbuSHUWZ7I0KQVF0ZGskQGMa7iiEIdLnukuUq0sM6imiRQeTK2MlxpZYRK40QmLjOVjU16H9brWW0fAnORi8tIlHnMZWZKrC5x0xCVzlMlc5UH8LpbwUK3Yc0pu8ZJ0ak3OKOFn9EAXvSkX5pYHpcRvfJs0FOUp8f0-E3y4nDyrtifjPZEvDstDgPY7PikaOV-XsQSERu2IngAz_tqlFi6hilrO1t6GiF4jtDxLzSKrr4U4sEAHjQ82HcoEYr8nWMcueekP4-lGA-2feHRv5M-g2vD6XhUjN5P9h7DdcSHonlytwnri9OlfYIYbFE99aL2C4BfLbc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VViAuvKGBAgYhxCVVnMSPiBNqdyl9rFBp1R6QrMQPVWrJVt1dlXLiJ_Ab-SWMnYe2qCDEzZInjseesb-xPTMAr5IstYkTNKZO2zjXRsfSZGlsbI6bgdaGFd53eGfEN_bzzUN2uABvO1-YJj5Ef-DmNSOs117BT42bU_IvVvukDbm4Bks5T6QX6fXddO4KIaQ8RYie4lojszaskH_G0396aTNa8uP69SqkeRm4hp1neBs-d31uHpwcr86m1ar-9ls4x_9k6g7cahEpedeI0F1YsPU9uN7kqLzA0iDEtb64D-efvAcLQZRLUOq88yNBW13PLBk7UtbEonXvzwitIRNcjnxiezsh0yOfBwgpf37_gdyW3akXCSFF8ce-LeJOxufEnwljQ8EnbK6JB7A_HOytbcRt3oZY50UqYpNVjBuRiBLFw7iKIQZ1OOmJZjLV3DqLRhJH08nYyjCppeEyo6lIXW4qS032EBbrcW2XgbjE0TLhZUGZyE2J1SUuGbzSRSZFIYsI3nQTqHQb1Nzn1jhRnXGDI6rCiEbwsic9bSJ5XEX0OkhBT1GeHfunb4Kpg9F7tTva3uJ0c08dRLDSiYlqtX6iqEC8hq1wFsGLvhr11V_ClLUdzwIN56xA4PgXGukvviSiwQgeNSLYdyjl0ns7U-Q8CNKfeVE7g7VQePzvpM_hxsf1odr-MNp6AjcRHPLmvd0KLE7PZvYpArBp9Swo2i_5zyxv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scope+for+genetic+rescue+of+an+endangered+subspecies+though+re-establishing+natural+gene+flow+with+another+subspecies&rft.jtitle=Molecular+ecology&rft.au=Harrisson%2C+Katherine+A&rft.au=Pavlova%2C+Alexandra&rft.au=Gon%C3%A7alves+da+Silva%2C+Anders&rft.au=Rose%2C+Rebecca&rft.date=2016-03-01&rft.eissn=1365-294X&rft.volume=25&rft.issue=6&rft.spage=1242&rft_id=info:doi/10.1111%2Fmec.13547&rft_id=info%3Apmid%2F26820991&rft.externalDocID=26820991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon