Scope for genetic rescue of an endangered subspecies though re-establishing natural gene flow with another subspecies
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding d...
Saved in:
Published in | Molecular ecology Vol. 25; no. 6; pp. 1242 - 1258 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes. |
---|---|
AbstractList | Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow-tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (N sub(e) < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre-1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive-bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes. Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow-tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (N(e) < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre-1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive-bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes. Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Nₑ < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes. Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow-tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre-1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive-bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes. Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes. Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size ( N e < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue) , should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes. |
Author | Pavlova, Alexandra Sunnucks, Paul Rose, Rebecca Bull, James K. Menkhorst, Peter Gonçalves da Silva, Anders Magrath, Michael J. L. Harrisson, Katherine A. Murray, Neil Quin, Bruce Lancaster, Melanie L. |
Author_xml | – sequence: 1 givenname: Katherine A. surname: Harrisson fullname: Harrisson, Katherine A. email: katherine.harrisson@gmail.com organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia – sequence: 2 givenname: Alexandra surname: Pavlova fullname: Pavlova, Alexandra organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia – sequence: 3 givenname: Anders surname: Gonçalves da Silva fullname: Gonçalves da Silva, Anders organization: School of Biological Sciences, Monash University, Clayton Campus, 3800, Clayton, Vic., Australia – sequence: 4 givenname: Rebecca surname: Rose fullname: Rose, Rebecca organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia – sequence: 5 givenname: James K. surname: Bull fullname: Bull, James K. organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia – sequence: 6 givenname: Melanie L. surname: Lancaster fullname: Lancaster, Melanie L. organization: Healesville Sanctuary, Vic., 3777, Healesville, Australia – sequence: 7 givenname: Neil surname: Murray fullname: Murray, Neil organization: Department of Ecology, Environment and Evolution, La Trobe University, Vic., 3086, Melbourne, Australia – sequence: 8 givenname: Bruce surname: Quin fullname: Quin, Bruce organization: Department of Environment, Land, Water and Planning, Symes Road, Vic., 3139, Woori Yallock, Australia – sequence: 9 givenname: Peter surname: Menkhorst fullname: Menkhorst, Peter organization: Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Vic., 3084, Heidelberg, Australia – sequence: 10 givenname: Michael J. L. surname: Magrath fullname: Magrath, Michael J. L. organization: Department of Wildlife Conservation and Science, Zoos Victoria, Vic., 3052, Parkville, Australia – sequence: 11 givenname: Paul surname: Sunnucks fullname: Sunnucks, Paul organization: School of Biological Sciences, Monash University, Clayton Campus, Vic., 3800, Clayton, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26820991$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNPCghdAltjAYlp7HNszSxSV8hOKBEVlZ3nsO4nLxE5tj0LfHrdJEKpA3I035zu6198ROvDBA0LPKTmhZU5XYE4o41P5CE0oE7yq2-n3AzQhragrShp2iI5SuiaEsprzJ-iwFk1N2pZO0PjVhDXgPkS8AA_ZGRwhmRFw6LH2GLzVfgERLE5jl9ZgHCScl2FcLAtZQcq6G1xaOr_AXucx6uHehPshbPDG5WXRhLyE-IfgKXrc6yHBs917jL69Pbucvavmn8_fz97MKzNta1lZ1nFhJZHaGG37jpeVe8tbYnhTGwE9NJKLVhALneWNaaxoGK1l3U9tB9SyY_Rq613HcDOWXdXKJQPDoD2EMSnaEEbahgjxf1RKIXgrqCzoywfodRijL4fcUZSUIgQv1IsdNXYrsGod3UrHW7X_-wKcbgETQ0oRemVc1tkFn6N2g6JE3bWrSrvqvt2SeP0gsZf-jd3ZN26A23-D6tPZbJ-otgmXMvz8ndDxhxKSSa6uLs7Vl4v5R0E_XKor9gv7LcOl |
CitedBy_id | crossref_primary_10_1016_j_tree_2019_06_006 crossref_primary_10_1071_WR18170 crossref_primary_10_1111_eva_12761 crossref_primary_10_1111_eva_12484 crossref_primary_10_1111_eva_13677 crossref_primary_10_1111_1755_0998_13844 crossref_primary_10_1360_SSV_2022_0141 crossref_primary_10_1016_j_biocon_2022_109584 crossref_primary_10_1016_j_gecco_2021_e01681 crossref_primary_10_1016_j_biocon_2017_07_008 crossref_primary_10_1111_mec_14361 crossref_primary_10_1111_csp2_13215 crossref_primary_10_1016_j_biocon_2023_110203 crossref_primary_10_1638_2022_0126 crossref_primary_10_1111_1365_2435_13429 crossref_primary_10_1071_BT22006 crossref_primary_10_1111_eva_13223 crossref_primary_10_1111_mec_17109 crossref_primary_10_1111_csp2_483 crossref_primary_10_1111_mec_17606 crossref_primary_10_1111_age_12907 crossref_primary_10_1007_s10750_019_03981_9 crossref_primary_10_1080_01584197_2021_1903331 crossref_primary_10_1111_mec_15540 crossref_primary_10_1111_1755_0998_13476 crossref_primary_10_1111_eva_70037 crossref_primary_10_1139_gen_2024_0036 crossref_primary_10_1080_22221751_2024_2350164 crossref_primary_10_1007_s10592_024_01632_8 crossref_primary_10_1007_s10592_024_01636_4 crossref_primary_10_1016_j_avrs_2022_100035 crossref_primary_10_1002_ece3_6942 crossref_primary_10_1002_ece3_5616 crossref_primary_10_1016_j_biocon_2021_109072 crossref_primary_10_1038_s41437_023_00653_2 crossref_primary_10_3897_zookeys_1179_96015 crossref_primary_10_1111_icad_12235 crossref_primary_10_1016_j_cub_2019_06_064 crossref_primary_10_1016_j_scitotenv_2022_159513 crossref_primary_10_1093_gigascience_giac025 crossref_primary_10_3390_ani13132098 crossref_primary_10_1038_s41598_020_72428_2 crossref_primary_10_1093_jhered_esae029 crossref_primary_10_1080_03721426_2018_1483185 crossref_primary_10_1111_acv_12519 |
Cites_doi | 10.1007/s12686-011-9548-7 10.1071/MU09002 10.1093/genetics/152.2.763 10.1071/MU958163 10.1111/j.1752-4571.2011.00192.x 10.1534/genetics.109.112532 10.1146/annurev.ge.29.120195.001513 10.1111/j.1558-5646.1989.tb04226.x 10.1016/S0169-5347(00)01876-0 10.1111/j.1523-1739.1987.tb00023.x 10.1046/j.1523-1739.1995.9050988.x-i1 10.1111/j.1755-0998.2007.02061.x 10.1111/j.1755-0998.2010.02885.x 10.1111/j.1365-294X.2005.02553.x 10.1093/jhered/est016 10.1016/j.tree.2012.07.001 10.1111/eva.12149 10.1016/j.tree.2014.10.009 10.1534/genetics.107.075481 10.1002/zoo.1430140609 10.1046/j.1523-1739.1996.10061509.x 10.1073/pnas.1504732112 10.1016/j.biocon.2004.01.022 10.1046/j.1471-8286.2003.00566.x 10.1111/j.1365-294X.2004.02396.x 10.1111/cobi.12431 10.1046/j.1523-1739.2003.01236.x 10.1534/genetics.107.083816 10.1016/j.biocon.2014.04.005 10.1073/pnas.081068098 10.1093/bioinformatics/bts460 10.1017/CBO9780511809002 10.1534/genetics.114.164822 10.1111/mec.13139 10.1071/MU9930209 10.1111/j.1365-294X.2010.04878.x 10.1111/j.1469-1795.2005.00010.x 10.1098/rspb.2012.2058 10.1126/science.282.5394.1695 10.1007/s10592-009-9999-5 10.1111/mec.13046 10.1046/j.1523-1739.1996.10061500.x 10.1093/bioinformatics/btm233 10.1111/j.1523-1739.2011.01662.x 10.1111/1755-0998.12157 10.1016/j.biocon.2013.12.036 10.1098/rspb.2012.2228 10.1111/j.1755-0998.2010.02831.x 10.1111/j.1365-294X.2005.02673.x 10.1111/j.1471-8286.2006.01560.x 10.1093/genetics/121.2.379 |
ContentType | Journal Article |
Copyright | 2016 John Wiley & Sons Ltd 2016 John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2016 John Wiley & Sons Ltd – notice: 2016 John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7S9 L.6 |
DOI | 10.1111/mec.13547 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE AGRICOLA Entomology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 1258 |
ExternalDocumentID | 3973467921 26820991 10_1111_mec_13547 MEC13547 ark_67375_WNG_RNLK61JT_W |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Merrin Foundation – fundername: Victorian Department of Environment and Primary Industries (DEPI) – fundername: North Central Catchment Management Authority – fundername: Zoos Victoria – fundername: CSIRO Ecosystem Sciences – fundername: Victorian Government – fundername: Parks Victoria – fundername: Goulburn Broken Catchment Management Authority – fundername: Holsworth Wildlife Research Endowment – fundername: Birds Australia |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AETEA AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4927-d3b56d707accadfb5991fd590c582c6efe8756960debd58c8d6831272f4dbe1d3 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 |
IngestDate | Fri Jul 11 18:39:06 EDT 2025 Fri Jul 11 08:46:50 EDT 2025 Wed Aug 13 09:53:51 EDT 2025 Mon Jul 21 05:48:18 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 03:21:57 EDT 2025 Wed Aug 20 07:26:53 EDT 2025 Wed Oct 30 10:01:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | vortex population viability yellow-tufted honeyeater genetic rescue genetic restoration helmeted honeyeater |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4927-d3b56d707accadfb5991fd590c582c6efe8756960debd58c8d6831272f4dbe1d3 |
Notes | Zoos Victoria Victorian Department of Environment and Primary Industries (DEPI) Goulburn Broken Catchment Management Authority Merrin Foundation Holsworth Wildlife Research Endowment North Central Catchment Management Authority istex:91A7C997D03927FF17F8F66C3AEA994D15E6B6E4 Museum of Victoria Australian Research Council - No. LP0776322 Victorian Government Birds Australia Parks Victoria ark:/67375/WNG-RNLK61JT-W CSIRO Ecosystem Sciences Appendix S1. vortex simulation parameters.Appendix S2. Yellingbo population history.Appendix S3. Sampling info.Appendix S4. Lab methods.Appendix S5. migrate-n sample information.Appendix S6. migrate-n analysis.Appendix S7. Allele frequencies.Appendix S8. Summary of structure analysis based on all cassidix samples.Appendix S9. Summary of structure analysis based on all cassidix and gippslandicus samples. ArticleID:MEC13547 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9455-4124 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mec.13547 |
PMID | 26820991 |
PQID | 1771054765 |
PQPubID | 31465 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1803098066 proquest_miscellaneous_1776659617 proquest_journals_1771054765 pubmed_primary_26820991 crossref_citationtrail_10_1111_mec_13547 crossref_primary_10_1111_mec_13547 wiley_primary_10_1111_mec_13547_MEC13547 istex_primary_ark_67375_WNG_RNLK61JT_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03 March 2016 2016-03-00 20160301 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Frankham R, Ballou JD, Briscoe DA (2010) Introduction to Conservation Genetics, 2nd edn. Cambridge University Press, Cambridge. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756. Frankham R (1995) Conservation genetics. Annual Review of Genetics, 29, 305-327. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185, 313-326. Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 152, 763-773. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology, 10, 1500-1508. Blackney J, Menkhorst P (1993) Distribution of subspecies of the yellow-tufted honeyeater in the Yarra Valley region, Victoria. Emu, 93, 209-213. McMahon A, Franklin D (1993) The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley. The Victorian Naturalist, 110, 230-237. Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935. Weeks AR, Sgro CM, Young AG et al. (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 4, 709-725. Westemeier RL, Brawn JD, Simpson SA et al. (1998) Tracking the long-term decline and recovery of an isolated population. Science, 282, 1695-1698. Hemmings N, West M, Birkhead T (2012) Causes of hatching failure in endangered birds. Biology Letters, 12, rsbl.2012.0655. Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proceedings of the Royal Society B: Biological Sciences, 280, 20122058. Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14, 3335-3352. Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics, 197, 769-780. Wakefield N (1958) The yellow-tufted honeyeater with a description of a new subspecies. Emu, 58, 163-194. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. Fernández J, Toro M, Caballero A (2008) Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics, 179, 683-692. Lacy RC (1995) Clarification of genetic terms and their use in the management of captive populations. Zoo Biology, 14, 565-577. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? (vol 19, pg 3038, 2010). Molecular Ecology, 19, 5320. Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology, 1, 143-158. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution, 15, 290-295. Pavlova A, Selwood P, Harrisson KA et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biological Conservation, 174, 136-146. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution, 43, 258-275. Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evolutionary Applications, 7, 1008-1025. Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11, 141-145. Tallmon DA, Gregovich D, Waples RS et al. (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Molecular Ecology Resources, 10, 684-692. Garnett ST, Szabo J, Dutson G (2011) Action Plan for Australian Birds. CSIRO Publishing, Melbourne. Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Conservation Biology, 9, 996-1007. Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24, 2610-2618. Heber S, Varsani A, Kuhn S et al. (2013) The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proceedings of the Royal Society B: Biological Sciences, 280, 20122228. Smales IJ, Quin B, Menkhorst PW, Franklin DC (2009) Demography of the helmeted honeyeater (Lichenostomus melanops cassidix). Emu, 109, 352-359. Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. Frankham R, Ballou JD, Eldridge MDB et al. (2011) Predicting the probability of outbreeding depression. Conservation Biology, 25, 465-475. Hufbauer RA, Szűcs M, Kasyon E et al. (2015) Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences, 112, 10557-10562. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends in Ecology & Evolution, 30, 42-49. Sánchez-Molano E, Caballero A, Fernández J (2013) Efficiency of conservation management methods for subdivided populations under local adaptation. Journal of Heredity, 104, 554-564. Pierson JC, Beissinger SR, Bragg JG et al. (2015) Incorporating evolutionary processes into population viability models. Conservation Biology, 29, 755-764. Pimm SL, Dollar L, Bass O (2006) The genetic rescue of the Florida panther. Animal Conservation, 9, 115-122. Waples RS (1989) A generalized-approach for estimating effective population-size from temporal changes in allele frequency. Genetics, 121, 379-391. Do C, Waples RS, Peel D et al. (2014) NEESTIMATOR v2: re-implementation of software for the estimation of contemporary effective population size (N-e) from genetic data. Molecular Ecology Resources, 14, 209-214. Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology & Evolution, 27, 578-584. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620. Hamilton JA, Miller JM (2015) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conservation Biology, 30, 30-41. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, 98, 4563-4568. Menkhorst P (2008) National Recovery Plan for the Helmeted Honeyeater Lichenostomus melanops cassidix. Department of Sustainability and Environment, Melbourne. Menkhorst P, Middleton D (1991) Helmeted Honeyeater Recovery Plan: 1989-1993. Department of Conservation and Environment, Melbourne. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801-1806. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conservation Biology, 10, 1509-1518. Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56-63. Lacy RC, Pollak JP (2015) A Stochastic Simulation of the Extinction Process. Chicago Zoological Society, Brookfield, Illinois. Wright S (1931) Evolution in Mendelian populations. Genetics, 16, 97. Gonçalves da Silva A, Appleyard SA, Upston J (2015) Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach. Molecular Ecology, 24, 564-579. Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biological Conservation, 120, 145-147. 2010; 11 1987; 1 1931; 16 2010; 10 2004; 120 1989; 43 2010; 19 2015; 30 1958; 58 2004; 4 2010; 185 2011; 11 2008; 8 2003; 17 2014; 170 2013; 280 2012; 12 2014; 174 2001 1990 2000; 15 2007; 177 2014; 14 2012; 28 2012; 27 1995; 29 2011; 25 2014; 7 2007; 23 1998; 282 2003; 164 2001; 98 1995; 9 2011 2010 1995; 14 2013; 104 2006; 9 2008 1995 2000; 155 1991 2011; 4 2014; 197 1996; 10 2015; 24 2015; 29 1993; 93 2015; 112 1989; 121 1999; 152 2015 2008; 179 2012; 4 2009; 109 1993; 110 2005; 14 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Hamilton JA (e_1_2_6_22_1) 2015; 30 Smales IJ (e_1_2_6_51_1) 1990 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Weeks AR (e_1_2_6_61_1) 2015 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Ballou JD (e_1_2_6_2_1) 1995 e_1_2_6_9_1 Garnett ST (e_1_2_6_19_1) 2011 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Lacy RC (e_1_2_6_34_1) 2015 Menkhorst P (e_1_2_6_38_1) 2008 Hemmings N (e_1_2_6_27_1) 2012; 12 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Menkhorst P (e_1_2_6_39_1) 1991 e_1_2_6_8_1 e_1_2_6_4_1 McMahon A (e_1_2_6_37_1) 1993; 110 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – reference: Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. – reference: Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends in Ecology & Evolution, 30, 42-49. – reference: Fernández J, Toro M, Caballero A (2008) Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics, 179, 683-692. – reference: Frankham R (1995) Conservation genetics. Annual Review of Genetics, 29, 305-327. – reference: Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology, 1, 143-158. – reference: Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185, 313-326. – reference: Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology & Evolution, 27, 578-584. – reference: Hufbauer RA, Szűcs M, Kasyon E et al. (2015) Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences, 112, 10557-10562. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. – reference: Menkhorst P, Middleton D (1991) Helmeted Honeyeater Recovery Plan: 1989-1993. Department of Conservation and Environment, Melbourne. – reference: Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution, 15, 290-295. – reference: Hamilton JA, Miller JM (2015) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conservation Biology, 30, 30-41. – reference: Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proceedings of the Royal Society B: Biological Sciences, 280, 20122058. – reference: Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14, 3335-3352. – reference: Westemeier RL, Brawn JD, Simpson SA et al. (1998) Tracking the long-term decline and recovery of an isolated population. Science, 282, 1695-1698. – reference: Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Conservation Biology, 9, 996-1007. – reference: Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? (vol 19, pg 3038, 2010). Molecular Ecology, 19, 5320. – reference: Garnett ST, Szabo J, Dutson G (2011) Action Plan for Australian Birds. CSIRO Publishing, Melbourne. – reference: Gonçalves da Silva A, Appleyard SA, Upston J (2015) Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach. Molecular Ecology, 24, 564-579. – reference: Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. – reference: Hemmings N, West M, Birkhead T (2012) Causes of hatching failure in endangered birds. Biology Letters, 12, rsbl.2012.0655. – reference: Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. – reference: Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, 98, 4563-4568. – reference: Menkhorst P (2008) National Recovery Plan for the Helmeted Honeyeater Lichenostomus melanops cassidix. Department of Sustainability and Environment, Melbourne. – reference: Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conservation Biology, 10, 1509-1518. – reference: Pimm SL, Dollar L, Bass O (2006) The genetic rescue of the Florida panther. Animal Conservation, 9, 115-122. – reference: Heber S, Varsani A, Kuhn S et al. (2013) The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proceedings of the Royal Society B: Biological Sciences, 280, 20122228. – reference: Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626. – reference: Smales IJ, Quin B, Menkhorst PW, Franklin DC (2009) Demography of the helmeted honeyeater (Lichenostomus melanops cassidix). Emu, 109, 352-359. – reference: Do C, Waples RS, Peel D et al. (2014) NEESTIMATOR v2: re-implementation of software for the estimation of contemporary effective population size (N-e) from genetic data. Molecular Ecology Resources, 14, 209-214. – reference: Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24, 2610-2618. – reference: Weeks AR, Sgro CM, Young AG et al. (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 4, 709-725. – reference: Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56-63. – reference: Sánchez-Molano E, Caballero A, Fernández J (2013) Efficiency of conservation management methods for subdivided populations under local adaptation. Journal of Heredity, 104, 554-564. – reference: Pierson JC, Beissinger SR, Bragg JG et al. (2015) Incorporating evolutionary processes into population viability models. Conservation Biology, 29, 755-764. – reference: Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11, 141-145. – reference: Blackney J, Menkhorst P (1993) Distribution of subspecies of the yellow-tufted honeyeater in the Yarra Valley region, Victoria. Emu, 93, 209-213. – reference: McMahon A, Franklin D (1993) The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley. The Victorian Naturalist, 110, 230-237. – reference: Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539. – reference: Waples RS (1989) A generalized-approach for estimating effective population-size from temporal changes in allele frequency. Genetics, 121, 379-391. – reference: Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801-1806. – reference: Lacy RC (1995) Clarification of genetic terms and their use in the management of captive populations. Zoo Biology, 14, 565-577. – reference: Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756. – reference: Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evolutionary Applications, 7, 1008-1025. – reference: Frankham R, Ballou JD, Briscoe DA (2010) Introduction to Conservation Genetics, 2nd edn. Cambridge University Press, Cambridge. – reference: Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics, 197, 769-780. – reference: Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 152, 763-773. – reference: Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution, 43, 258-275. – reference: Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology, 10, 1500-1508. – reference: Frankham R, Ballou JD, Eldridge MDB et al. (2011) Predicting the probability of outbreeding depression. Conservation Biology, 25, 465-475. – reference: Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biological Conservation, 120, 145-147. – reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620. – reference: Tallmon DA, Gregovich D, Waples RS et al. (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Molecular Ecology Resources, 10, 684-692. – reference: Pavlova A, Selwood P, Harrisson KA et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biological Conservation, 174, 136-146. – reference: Lacy RC, Pollak JP (2015) A Stochastic Simulation of the Extinction Process. Chicago Zoological Society, Brookfield, Illinois. – reference: Wakefield N (1958) The yellow-tufted honeyeater with a description of a new subspecies. Emu, 58, 163-194. – reference: Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237. – reference: Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935. – reference: Wright S (1931) Evolution in Mendelian populations. Genetics, 16, 97. – volume: 25 start-page: 465 year: 2011 end-page: 475 article-title: Predicting the probability of outbreeding depression publication-title: Conservation Biology – year: 2011 – volume: 58 start-page: 163 year: 1958 end-page: 194 article-title: The yellow‐tufted honeyeater with a description of a new subspecies publication-title: Emu – start-page: 76 year: 1995 end-page: 111 – volume: 10 start-page: 1509 year: 1996 end-page: 1518 article-title: The one‐migrant‐per‐generation rule in conservation and management publication-title: Conservation Biology – volume: 112 start-page: 10557 year: 2015 end-page: 10562 article-title: Three types of rescue can avert extinction in a changing environment publication-title: Proceedings of the National Academy of Sciences – volume: 120 start-page: 145 year: 2004 end-page: 147 article-title: Novel genes continue to enhance population growth in adders ( ) publication-title: Biological Conservation – volume: 15 start-page: 290 year: 2000 end-page: 295 article-title: Considering evolutionary processes in conservation biology publication-title: Trends in Ecology & Evolution – year: 2001 – volume: 24 start-page: 2610 year: 2015 end-page: 2618 article-title: Genetic rescue of small inbred populations: meta‐analysis reveals large and consistent benefits of gene flow publication-title: Molecular Ecology – volume: 28 start-page: 2537 year: 2012 end-page: 2539 article-title: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research‐an update publication-title: Bioinformatics – volume: 4 start-page: 709 year: 2011 end-page: 725 article-title: Assessing the benefits and risks of translocations in changing environments: a genetic perspective publication-title: Evolutionary Applications – volume: 14 start-page: 565 year: 1995 end-page: 577 article-title: Clarification of genetic terms and their use in the management of captive populations publication-title: Zoo Biology – volume: 110 start-page: 230 year: 1993 end-page: 237 article-title: The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley publication-title: The Victorian Naturalist – volume: 4 start-page: 137 year: 2004 end-page: 138 article-title: DISTRUCT: a program for the graphical display of population structure publication-title: Molecular Ecology Notes – year: 1990 – volume: 11 start-page: 141 year: 2011 end-page: 145 article-title: COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients publication-title: Molecular Ecology Resources – volume: 9 start-page: 115 year: 2006 end-page: 122 article-title: The genetic rescue of the Florida panther publication-title: Animal Conservation – volume: 16 start-page: 97 year: 1931 article-title: Evolution in Mendelian populations publication-title: Genetics – volume: 30 start-page: 30 year: 2015 end-page: 41 article-title: Adaptive introgression as a resource for management and genetic conservation in a changing climate publication-title: Conservation Biology – volume: 43 start-page: 258 year: 1989 end-page: 275 article-title: Estimating relatedness using genetic markers publication-title: Evolution – year: 2008 – volume: 29 start-page: 305 year: 1995 end-page: 327 article-title: Conservation genetics publication-title: Annual Review of Genetics – volume: 24 start-page: 564 year: 2015 end-page: 579 article-title: Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach publication-title: Molecular Ecology – volume: 14 start-page: 209 year: 2014 end-page: 214 article-title: NEESTIMATOR v2: re‐implementation of software for the estimation of contemporary effective population size (N‐e) from genetic data publication-title: Molecular Ecology Resources – year: 2015 – volume: 17 start-page: 230 year: 2003 end-page: 237 article-title: Correlation between fitness and genetic diversity publication-title: Conservation Biology – volume: 104 start-page: 554 year: 2013 end-page: 564 article-title: Efficiency of conservation management methods for subdivided populations under local adaptation publication-title: Journal of Heredity – volume: 29 start-page: 755 year: 2015 end-page: 764 article-title: Incorporating evolutionary processes into population viability models publication-title: Conservation Biology – volume: 14 start-page: 3335 year: 2005 end-page: 3352 article-title: Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? publication-title: Molecular Ecology – volume: 179 start-page: 683 year: 2008 end-page: 692 article-title: Management of subdivided populations in conservation programs: development of a novel dynamic system publication-title: Genetics – volume: 93 start-page: 209 year: 1993 end-page: 213 article-title: Distribution of subspecies of the yellow‐tufted honeyeater in the Yarra Valley region, Victoria publication-title: Emu – volume: 7 start-page: 1008 year: 2014 end-page: 1025 article-title: Using genomics to characterize evolutionary potential for conservation of wild populations publication-title: Evolutionary Applications – volume: 9 start-page: 996 year: 1995 end-page: 1007 article-title: Gene flow and genetic restoration: the Florida panther as a case study publication-title: Conservation Biology – volume: 10 start-page: 684 year: 2010 end-page: 692 article-title: When are genetic methods useful for estimating contemporary abundance and detecting population trends? publication-title: Molecular Ecology Resources – volume: 185 start-page: 313 year: 2010 end-page: 326 article-title: Unified framework to evaluate panmixia and migration direction among multiple sampling locations publication-title: Genetics – volume: 164 start-page: 1567 year: 2003 end-page: 1587 article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies publication-title: Genetics – volume: 27 start-page: 578 year: 2012 end-page: 584 article-title: How does the 50/500 rule apply to MVPs? publication-title: Trends in Ecology & Evolution – year: 2010 – volume: 23 start-page: 1801 year: 2007 end-page: 1806 article-title: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure publication-title: Bioinformatics – volume: 280 start-page: 20122228 year: 2013 article-title: The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 109 start-page: 352 year: 2009 end-page: 359 article-title: Demography of the helmeted honeyeater ( ) publication-title: Emu – volume: 14 start-page: 2611 year: 2005 end-page: 2620 article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study publication-title: Molecular Ecology – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 8 start-page: 753 year: 2008 end-page: 756 article-title: LDNE: a program for estimating effective population size from data on linkage disequilibrium publication-title: Molecular Ecology Resources – volume: 98 start-page: 4563 year: 2001 end-page: 4568 article-title: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach publication-title: Proceedings of the National Academy of Sciences – volume: 4 start-page: 359 year: 2012 end-page: 361 article-title: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method publication-title: Conservation Genetics Resources – volume: 30 start-page: 42 year: 2015 end-page: 49 article-title: Genetic rescue to the rescue publication-title: Trends in Ecology & Evolution – volume: 197 start-page: 769 year: 2014 end-page: 780 article-title: Effects of overlapping generations on linkage disequilibrium estimates of effective population size publication-title: Genetics – volume: 19 start-page: 5320 year: 2010 article-title: What can genetics tell us about population connectivity? (vol 19, pg 3038, 2010) publication-title: Molecular Ecology – volume: 177 start-page: 927 year: 2007 end-page: 935 article-title: Unbiased estimator for genetic drift and effective population size publication-title: Genetics – volume: 282 start-page: 1695 year: 1998 end-page: 1698 article-title: Tracking the long‐term decline and recovery of an isolated population publication-title: Science – volume: 152 start-page: 763 year: 1999 end-page: 773 article-title: Maximum‐likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach publication-title: Genetics – volume: 1 start-page: 143 year: 1987 end-page: 158 article-title: Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision publication-title: Conservation Biology – year: 1991 – volume: 10 start-page: 1500 year: 1996 end-page: 1508 article-title: Relationship of genetic variation to population size in wildlife publication-title: Conservation Biology – volume: 11 start-page: 615 year: 2010 end-page: 626 article-title: Genetic rescue guidelines with examples from Mexican wolves and Florida panthers publication-title: Conservation Genetics – start-page: 127 year: 2015 end-page: 140 – volume: 170 start-page: 56 year: 2014 end-page: 63 article-title: Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses publication-title: Biological Conservation – volume: 12 start-page: rsbl.2012.0655 year: 2012 article-title: Causes of hatching failure in endangered birds publication-title: Biology Letters – volume: 280 start-page: 20122058 year: 2013 article-title: Source population characteristics affect heterosis following genetic rescue of fragmented plant populations publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 174 start-page: 136 year: 2014 end-page: 146 article-title: Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species publication-title: Biological Conservation – volume: 121 start-page: 379 year: 1989 end-page: 391 article-title: A generalized‐approach for estimating effective population‐size from temporal changes in allele frequency publication-title: Genetics – ident: e_1_2_6_9_1 doi: 10.1007/s12686-011-9548-7 – ident: e_1_2_6_52_1 doi: 10.1071/MU09002 – ident: e_1_2_6_3_1 doi: 10.1093/genetics/152.2.763 – ident: e_1_2_6_54_1 doi: 10.1071/MU958163 – ident: e_1_2_6_60_1 doi: 10.1111/j.1752-4571.2011.00192.x – ident: e_1_2_6_5_1 doi: 10.1534/genetics.109.112532 – ident: e_1_2_6_13_1 doi: 10.1146/annurev.ge.29.120195.001513 – ident: e_1_2_6_47_1 doi: 10.1111/j.1558-5646.1989.tb04226.x – ident: e_1_2_6_7_1 doi: 10.1016/S0169-5347(00)01876-0 – ident: e_1_2_6_32_1 doi: 10.1111/j.1523-1739.1987.tb00023.x – volume: 110 start-page: 230 year: 1993 ident: e_1_2_6_37_1 article-title: The significance of Mountain Swamp Gum for helmeted honeyeater populations in the Yarra Valley publication-title: The Victorian Naturalist – volume-title: National Recovery Plan for the Helmeted Honeyeater Lichenostomus melanops cassidix year: 2008 ident: e_1_2_6_38_1 – ident: e_1_2_6_25_1 doi: 10.1046/j.1523-1739.1995.9050988.x-i1 – ident: e_1_2_6_58_1 doi: 10.1111/j.1755-0998.2007.02061.x – volume-title: Action Plan for Australian Birds year: 2011 ident: e_1_2_6_19_1 – ident: e_1_2_6_55_1 doi: 10.1111/j.1755-0998.2010.02885.x – volume-title: Management and Conservation of Small Populations year: 1990 ident: e_1_2_6_51_1 – ident: e_1_2_6_11_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_6_50_1 doi: 10.1093/jhered/est016 – ident: e_1_2_6_30_1 doi: 10.1016/j.tree.2012.07.001 – ident: e_1_2_6_23_1 doi: 10.1111/eva.12149 – ident: e_1_2_6_63_1 doi: 10.1016/j.tree.2014.10.009 – ident: e_1_2_6_31_1 doi: 10.1534/genetics.107.075481 – ident: e_1_2_6_33_1 doi: 10.1002/zoo.1430140609 – ident: e_1_2_6_40_1 doi: 10.1046/j.1523-1739.1996.10061509.x – ident: e_1_2_6_28_1 doi: 10.1073/pnas.1504732112 – ident: e_1_2_6_36_1 doi: 10.1016/j.biocon.2004.01.022 – ident: e_1_2_6_49_1 doi: 10.1046/j.1471-8286.2003.00566.x – start-page: 127 volume-title: Advances in Reintroduction Biology of Australian and New Zealand Fauna year: 2015 ident: e_1_2_6_61_1 – start-page: 76 volume-title: Population Management for Survival & Recovery. Analytical Methods and Strategies in Small Population Conservation year: 1995 ident: e_1_2_6_2_1 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-294X.2004.02396.x – ident: e_1_2_6_44_1 doi: 10.1111/cobi.12431 – ident: e_1_2_6_48_1 doi: 10.1046/j.1523-1739.2003.01236.x – volume: 30 start-page: 30 year: 2015 ident: e_1_2_6_22_1 article-title: Adaptive introgression as a resource for management and genetic conservation in a changing climate publication-title: Conservation Biology – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_6_12_1 doi: 10.1534/genetics.107.083816 – ident: e_1_2_6_41_1 doi: 10.1016/j.biocon.2014.04.005 – ident: e_1_2_6_4_1 doi: 10.1073/pnas.081068098 – ident: e_1_2_6_42_1 doi: 10.1093/bioinformatics/bts460 – ident: e_1_2_6_16_1 doi: 10.1017/CBO9780511809002 – ident: e_1_2_6_59_1 doi: 10.1534/genetics.114.164822 – ident: e_1_2_6_15_1 doi: 10.1111/mec.13139 – ident: e_1_2_6_6_1 doi: 10.1071/MU9930209 – ident: e_1_2_6_35_1 doi: 10.1111/j.1365-294X.2010.04878.x – volume: 12 start-page: rsbl.2012.0655 year: 2012 ident: e_1_2_6_27_1 article-title: Causes of hatching failure in endangered birds publication-title: Biology Letters – ident: e_1_2_6_45_1 doi: 10.1111/j.1469-1795.2005.00010.x – volume-title: Helmeted Honeyeater Recovery Plan: 1989–1993 year: 1991 ident: e_1_2_6_39_1 – ident: e_1_2_6_43_1 doi: 10.1098/rspb.2012.2058 – ident: e_1_2_6_62_1 doi: 10.1126/science.282.5394.1695 – ident: e_1_2_6_26_1 doi: 10.1007/s10592-009-9999-5 – ident: e_1_2_6_20_1 doi: 10.1111/mec.13046 – ident: e_1_2_6_14_1 doi: 10.1046/j.1523-1739.1996.10061500.x – volume-title: A Stochastic Simulation of the Extinction Process year: 2015 ident: e_1_2_6_34_1 – ident: e_1_2_6_29_1 doi: 10.1093/bioinformatics/btm233 – ident: e_1_2_6_17_1 doi: 10.1111/j.1523-1739.2011.01662.x – ident: e_1_2_6_8_1 doi: 10.1111/1755-0998.12157 – ident: e_1_2_6_21_1 – ident: e_1_2_6_18_1 doi: 10.1016/j.biocon.2013.12.036 – ident: e_1_2_6_24_1 doi: 10.1098/rspb.2012.2228 – ident: e_1_2_6_53_1 doi: 10.1111/j.1755-0998.2010.02831.x – ident: e_1_2_6_57_1 doi: 10.1111/j.1365-294X.2005.02673.x – ident: e_1_2_6_64_1 doi: 10.1111/j.1471-8286.2006.01560.x – ident: e_1_2_6_56_1 doi: 10.1093/genetics/121.2.379 |
SSID | ssj0013255 |
Score | 2.3912165 |
Snippet | Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1242 |
SubjectTerms | Alleles Animals birds Breeding Cassidix Conservation of Natural Resources Endangered Species Environmental changes Gene Flow Genetic diversity Genetic Drift genetic rescue genetic restoration Genetic Variation helmeted honeyeater hybridization Hybridization, Genetic Inbreeding inbreeding depression Lichenostomus melanops cassidix Microsatellite Repeats Models, Genetic monitoring outbreeding depression Passeriformes - classification Passeriformes - genetics Population decline Population Density Population number population size population viability risk Sequence Analysis, DNA viability vortex yellow-tufted honeyeater |
Title | Scope for genetic rescue of an endangered subspecies though re-establishing natural gene flow with another subspecies |
URI | https://api.istex.fr/ark:/67375/WNG-RNLK61JT-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.13547 https://www.ncbi.nlm.nih.gov/pubmed/26820991 https://www.proquest.com/docview/1771054765 https://www.proquest.com/docview/1776659617 https://www.proquest.com/docview/1803098066 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSx0xFA5iKfSl-zLWlrSU0peRycxkGfokcq3Yeh-sog-FkMmCoJ1bvPei9smf4G_sL_GczMK12FL6FsiZTJZzku8kZyHkXVbkPguSpSxYn5bW2VS5Ik-dL-EwsNbxCn2Hd8Zia7_cPuSHS-Rj7wvTxocYLtxQMuJ-jQJu6umCkH_3FpM2lOhJjrZaCIh284UXhJjxFBB6DluNKrqoQmjFM3x54yy6g9N6fhvQvIlb48Gz-YB867vc2pscr81n9Zr9-Vs0x_8c00NyvwOkdL3loEdkyTePyd02ReUFlEYxrPXFE3L2FR1YKIBcCkyHvo8UVHU793QSqGmoB-Uerwi9o1PYjTCvvZ_S2RGmAQLKX5dXMFrTX3rRGFEUfoxt0XAyOaN4JQwNRZewhSaekv3N0d7GVtqlbUhtWeUydUXNhZOZNMAdLtQcIGiANc8sV7kVPnjQkQRoTs7XjiurnFAFy2UeSld75opnZLmZNP4FoSELzGTCVIzL0hmoNrBjiNpWhZKVqhLyoV9AbbuY5pha40T3ug3MqI4zmpC3A-mPNpDHbUTvIxcMFOb0GC3fJNcH4096d_zls2Dbe_ogIas9m-hO6KeaSYBr0IrgCXkzVIO44huMafxkHmmE4BXgxr_QKHz3UgAGE_K8ZcGhQ7lQ6OzMYOSRkf48Fr0z2oiFlX8nfUnuASAUrY3dKlmenc79KwBds_p1lK5rChcpnA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iguiL9zEatRURXybM1ceALxI2rsnuPsQNyYsMM30gJM5KdpcYn_wJ_kZ_iVU9BxuJIr41dE1PH1XdX1V3VQG8jNLERk7GYey0DTNtdKhMmoTGZngYaG14Tr7D44kYHmS7R_xoDd50vjBNfIje4EaS4fdrEnAySK9I-WerKWtDJq_ABmX09grVfrJyh-BzniJGT3CzUWkbV4je8fSfXjiNNmhiv14GNS8iV3_07NyEj12nmxcnx1vLRbWlv_0Wz_F_R3ULbrSYlL1tmOg2rNn6DlxtslSeY2ngI1uf34WzD-TDwhDnMuQ7cn9kqK3rpWUzx8qaWdTvyUpoDZvjhkSp7e2cLT5RJiCk_Pn9Bw637OxezAcVxR9TW8ydzM4YWYWxIe8VttLEPTjYGUy3h2GbuSHUWZ7I0KQVF0ZGskQGMa7iiEIdLnukuUq0sM6imiRQeTK2MlxpZYRK40QmLjOVjU16H9brWW0fAnORi8tIlHnMZWZKrC5x0xCVzlMlc5UH8LpbwUK3Yc0pu8ZJ0ak3OKOFn9EAXvSkX5pYHpcRvfJs0FOUp8f0-E3y4nDyrtifjPZEvDstDgPY7PikaOV-XsQSERu2IngAz_tqlFi6hilrO1t6GiF4jtDxLzSKrr4U4sEAHjQ82HcoEYr8nWMcueekP4-lGA-2feHRv5M-g2vD6XhUjN5P9h7DdcSHonlytwnri9OlfYIYbFE99aL2C4BfLbc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VViAuvKGBAgYhxCVVnMSPiBNqdyl9rFBp1R6QrMQPVWrJVt1dlXLiJ_Ab-SWMnYe2qCDEzZInjseesb-xPTMAr5IstYkTNKZO2zjXRsfSZGlsbI6bgdaGFd53eGfEN_bzzUN2uABvO1-YJj5Ef-DmNSOs117BT42bU_IvVvukDbm4Bks5T6QX6fXddO4KIaQ8RYie4lojszaskH_G0396aTNa8uP69SqkeRm4hp1neBs-d31uHpwcr86m1ar-9ls4x_9k6g7cahEpedeI0F1YsPU9uN7kqLzA0iDEtb64D-efvAcLQZRLUOq88yNBW13PLBk7UtbEonXvzwitIRNcjnxiezsh0yOfBwgpf37_gdyW3akXCSFF8ce-LeJOxufEnwljQ8EnbK6JB7A_HOytbcRt3oZY50UqYpNVjBuRiBLFw7iKIQZ1OOmJZjLV3DqLRhJH08nYyjCppeEyo6lIXW4qS032EBbrcW2XgbjE0TLhZUGZyE2J1SUuGbzSRSZFIYsI3nQTqHQb1Nzn1jhRnXGDI6rCiEbwsic9bSJ5XEX0OkhBT1GeHfunb4Kpg9F7tTva3uJ0c08dRLDSiYlqtX6iqEC8hq1wFsGLvhr11V_ClLUdzwIN56xA4PgXGukvviSiwQgeNSLYdyjl0ns7U-Q8CNKfeVE7g7VQePzvpM_hxsf1odr-MNp6AjcRHPLmvd0KLE7PZvYpArBp9Swo2i_5zyxv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scope+for+genetic+rescue+of+an+endangered+subspecies+though+re-establishing+natural+gene+flow+with+another+subspecies&rft.jtitle=Molecular+ecology&rft.au=Harrisson%2C+Katherine+A&rft.au=Pavlova%2C+Alexandra&rft.au=Gon%C3%A7alves+da+Silva%2C+Anders&rft.au=Rose%2C+Rebecca&rft.date=2016-03-01&rft.eissn=1365-294X&rft.volume=25&rft.issue=6&rft.spage=1242&rft_id=info:doi/10.1111%2Fmec.13547&rft_id=info%3Apmid%2F26820991&rft.externalDocID=26820991 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |