Enhancing RUSLE to include runoff-driven phenomena
RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabiliti...
Saved in:
Published in | Hydrological processes Vol. 25; no. 9; pp. 1373 - 1390 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.04.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time-varying runoff and process-based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30-year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long-term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2-predicted monthly runoff suggested that the procedures outlined may underestimate plot-scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process-based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5-ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0·5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22·1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
AbstractList | RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time-varying runoff and process-based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30-year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long-term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2-predicted monthly runoff suggested that the procedures outlined may underestimate plot-scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process-based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5-ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0·5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22·1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. Copyright © 2010 John Wiley & Sons, Ltd. RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time-varying runoff and process-based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30-year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long-term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2-predicted monthly runoff suggested that the procedures outlined may underestimate plot-scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process-based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5-ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0?5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22?1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time-varying runoff and process-based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30-year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long-term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2-predicted monthly runoff suggested that the procedures outlined may underestimate plot-scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process-based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5-ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0·5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22·1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. |
Author | Dabney, Seth M. Vieira, Dalmo A. N. Yoder, Daniel C. Bingner, Ronald L. |
Author_xml | – sequence: 1 fullname: Dabney, Seth M – sequence: 2 fullname: Yoder, Daniel C – sequence: 3 fullname: Vieira, Dalmo A.N – sequence: 4 fullname: Bingner, Ronald L |
BookMark | eNqF0EFvEzEQBWALFYm0IPEP2COXDTO78do-oiq0oNAWSgScrMnuuDFs7NTeAPn3pEqFSgXqaS7fexq9Q3EQYmAhniOMEaB6tdyux0ob9UiMEIwpEbQ8ECPQWpYNaPVEHOb8DQAmoGEkqmlYUmh9uCo-zi9n02KIhQ9tv-m4SJsQnSu75H9wKNZLDnHFgZ6Kx476zM9u75GYv5l-Oj4tZ-cnb49fz8p2YipVGuzQGZSI3YJYd7J2yLhgBnJocKE6p4kmxMYoVZF0spa6qhtoSZp2gfWReLnvXad4veE82JXPLfc9BY6bbFGBUY3RZvIwrRqpNBgND1NAZRqlqzsPtCnmnNjZdfIrStsdsjdj293Y9mbsHR3fo60faPAxDIl8_69AuQ_89D1v_1tsT79e_O19HvjXH0_pu21UraT9fHZi5QW8-3CG7-2XnX-x946ipavks51fVoA1oJFSN1j_Bqh2qIU |
CitedBy_id | crossref_primary_10_1016_j_catena_2016_08_039 crossref_primary_10_3390_atmos9020048 crossref_primary_10_1002_agg2_20471 crossref_primary_10_1016_j_ssci_2018_05_014 crossref_primary_10_2134_agronj2011_0356 crossref_primary_10_1002_hyp_13730 crossref_primary_10_1002_hyp_9790 crossref_primary_10_1002_hyp_9591 crossref_primary_10_1016_j_scitotenv_2017_04_046 crossref_primary_10_1371_journal_pone_0272161 crossref_primary_10_1016_j_jhydrol_2014_10_016 crossref_primary_10_2134_agronj2013_0059 crossref_primary_10_1061__ASCE_HE_1943_5584_0001143 crossref_primary_10_1002_esp_4337 crossref_primary_10_1139_er_2020_0070 crossref_primary_10_1016_j_geoderma_2023_116621 crossref_primary_10_1016_j_catena_2023_106925 crossref_primary_10_1007_s11069_019_03670_9 crossref_primary_10_1002_joc_8702 crossref_primary_10_1016_j_catena_2018_09_016 crossref_primary_10_1071_WF18011 crossref_primary_10_1016_j_jhydrol_2016_05_049 crossref_primary_10_3390_soilsystems3040062 crossref_primary_10_1002_hyp_10271 crossref_primary_10_1016_j_scitotenv_2016_11_123 crossref_primary_10_3390_rs15225432 crossref_primary_10_1016_j_catena_2024_108016 crossref_primary_10_3389_fenvs_2019_00193 crossref_primary_10_1016_j_jhydrol_2023_129555 crossref_primary_10_1007_s40808_021_01291_5 crossref_primary_10_1007_s40710_018_0338_z crossref_primary_10_1016_j_catena_2022_106067 crossref_primary_10_1016_j_envsoft_2019_03_025 crossref_primary_10_1016_j_still_2019_104375 crossref_primary_10_1016_j_catena_2020_104745 crossref_primary_10_1016_j_geomorph_2022_108216 crossref_primary_10_1016_j_ecoinf_2019_04_004 crossref_primary_10_1061__ASCE_HE_1943_5584_0001120 crossref_primary_10_5194_hess_20_4359_2016 crossref_primary_10_5194_nhess_20_947_2020 crossref_primary_10_1002_hyp_8102 crossref_primary_10_1016_j_catena_2018_07_007 crossref_primary_10_1038_s41598_024_59019_1 crossref_primary_10_1016_j_catena_2015_09_015 crossref_primary_10_1016_j_gloplacha_2012_10_016 crossref_primary_10_1007_s12040_020_1362_8 crossref_primary_10_1016_j_scitotenv_2022_159119 crossref_primary_10_1021_acs_est_9b04285 crossref_primary_10_1016_j_ecolind_2021_108092 crossref_primary_10_1016_j_ancene_2013_10_003 |
Cites_doi | 10.1175/1520-0450(1996)035<1878:SWSOAA>2.0.CO;2 10.13031/2013.23153 10.1016/S0341-8162(02)00143-1 10.1175/1520-0477(2002)083<0954:TGEWGT>2.3.CO;2 10.2136/sssaj2007.0434 10.13031/2013.23957 10.1111/j.1752-1688.2005.tb03742.x 10.1029/96WR02104 10.1029/91WR02381 10.1061/(ASCE)0733-9429(1991)117:6(725) 10.1002/hyp.1177 10.13031/2013.23150 10.2489/jswc.63.6.496 10.1002/hyp.6668 10.13031/2013.9952 10.1061/(ASCE)1084-0699(1997)2:3(145) 10.1061/(ASCE)1084-0699(2006)11:6(631) 10.2136/sssaj1998.03615995006200060026x 10.13031/2013.21343 |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. |
DBID | FBQ BSCLL AAYXX CITATION 7QH 7ST 7TG 7U6 7UA C1K F1W H96 KL. L.G SOI 7S9 L.6 8FD FR3 KR7 |
DOI | 10.1002/hyp.7897 |
DatabaseName | AGRIS Istex CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1099-1085 |
EndPage | 1390 |
ExternalDocumentID | 10_1002_hyp_7897 HYP7897 ark_67375_WNG_5P0JQN1M_X US201301955861 |
Genre | article |
GeographicLocations | Mississippi |
GeographicLocations_xml | – name: Mississippi |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FBQ FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TEORI UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~KM ~WT AEUQT AFPWT BSCLL RWI WRC WWD AAYXX AEYWJ AGQPQ AGYGG CITATION 7QH 7ST 7TG 7U6 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H96 KL. L.G SOI 7S9 L.6 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c4927-91d1f91511dbae8d53f1e1bee0af191b7df8aa4ae99772a5f53582360ca59cb13 |
IEDL.DBID | DR2 |
ISSN | 0885-6087 1099-1085 |
IngestDate | Fri Jul 11 11:15:00 EDT 2025 Fri Jul 11 00:26:37 EDT 2025 Fri Jul 11 08:41:23 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Tue Jul 01 01:46:21 EDT 2025 Wed Jan 22 16:53:24 EST 2025 Wed Oct 30 09:56:06 EDT 2024 Thu Apr 03 09:46:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4927-91d1f91511dbae8d53f1e1bee0af191b7df8aa4ae99772a5f53582360ca59cb13 |
Notes | http://handle.nal.usda.gov/10113/54391 http://dx.doi.org/10.1002/hyp.7897 ArticleID:HYP7897 istex:0CA8ED9895817321E63421EF006A4EEADA45D189 ark:/67375/WNG-5P0JQN1M-X ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1017967821 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1709769894 proquest_miscellaneous_1265780980 proquest_miscellaneous_1017967821 crossref_primary_10_1002_hyp_7897 crossref_citationtrail_10_1002_hyp_7897 wiley_primary_10_1002_hyp_7897_HYP7897 istex_primary_ark_67375_WNG_5P0JQN1M_X fao_agris_US201301955861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 April 2011 |
PublicationDateYYYYMMDD | 2011-04-30 |
PublicationDate_xml | – month: 04 year: 2011 text: 30 April 2011 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Hydrological processes |
PublicationTitleAlternate | Hydrol. Process |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Harmel RD, Johnson G, Richardson CW. 2002. The GEM experience: weather generator technology development in the USDA. Bulletin of the American Meteorological Society 83: 954-957. Poesen J, Nachtergaele J, Verstraeten G, Valentin C. 2003. Gully erosion and environmental change: importance and research needs. Catena 50: 91-133. Smith RE. 1997. Discussion: runoff curve number: has it reached maturity? Journal of Hydrologic Engineering 2(3): 145-147. USDA-SCS. 1992. Ephemeral Gully Erosion Model (EGEM). Version 2.0, User Manual. U.S. Department of Agriculture, Soil Conservation Service: Washington, DC; 106. Foster GR. 2005. Modeling ephemeral gully erosion for conservation planning. International Journal of Sediment Research 20(3): 157-175. Yalin MS. 1963. An expression for bed-load transportation. Proceedings of American Society of Civil Engineering 89(HY3): 221-250. Hjelmfelt AT. 1991. Investigation of curve number procedure. Journal of Hydraulic Engineering 117(6): 725-737. Haan CT. 1977. Statistical Methods in Hydrology, Iowa State University Press: Ames, IA; 378 pp. Johnson GL, Hanson CL, Hardegree SP, Ballard EB. 1996. Stochastic weather simulation: overview and analysis of two commonly used models. Journal of Applied Methods 35: 1878-1896. Gordon LM, Bennett SJ, Bingner RL, Theurer FD, Alonso CV. 2007. Simulating ephemeral gully erosion in AnnAGNPS. Transactions of the ASABE 50(3): 857-866. Garen DC, Moore DS. 2005. Curve number hydrology in water quality modelling: uses abuses and future directions. Journal of the American Water Resources Association 41: 377-388. Haan CT, Barfield BJ, Hayes JC. 1994. Design Hydrology and Sedimentology for Small Catchments. Academic Press: San Diego, CA. Jain MK, Mishra SK, Suresh Babu P, Venugopal K, Singh VP. 2006. Enhanced runoff curve umber model incorporating storm duration and a nonlinear Ia-S relation. Journal of Hydrologic Engineering 11(6): 631-635. Kinnell PIA, Risse LM. 1998. USLE-M: Empirical modeling rainfall erosion through runoff and sediment concentration. Soil Science Society of America Journal 62: 1667-1672. Yu B. 2002. Using CLIGEN to generate RUSLE climate inputs. Transactions of the ASAE 45: 311-320. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50: 885-900. Dabney SM, McGregor KC, Wilson GV, Cullum RF. 2009. How management of grass hedges affects their erosion reduction potential. Soil Science Society of America Journal 73(1): 241-254. Kuhnle RA, Bingner RL, Foster GR, Grissinger EH. 1995. Effect of land use changes on sediment transport in Goodwin Creek. Water Resources Research 32(10): 3189-3196. ASCE. 2009. Curve number hydrology, state of the practice. Hawkins RH, Ward TJ, Woodward DE, Van Mullem JA (eds). American Society of Civil Engineers: Reston, VA; 106 pp. Hairsine PB, Rose CW. 1992. Modeling water erosion due to overland flow using physical principles: 2. Rill flow. Water Resources Research 28: 245-250. Kuhnle RA, Bingner RL, Alonso CV, Wilson CG, Simon A. 2008. Conservation practice effects on sediment load in the Goodwin Creek Experimental Watershed. Journal of Soil and Water Conservation 63(6): 496-503. Meyer CR, Renschler CS, Vining RC. 2008. Implementing quality control on a random number stream to improve a stochastic weather generator. Hydrological Processes 22: 1069-1079. Renschler CS. 2003. Designing geo-spatial interfaces to scale process models: the GeoWEPP approach. Hydrological Processes 17: 1005-1017. Ascough JC, Baffaut C, Nearing MA, Liu BY. 1997. The WEPP watershed model: I. Hydrology and erosion. Transactions of the American Society of Agricultural Engineers 40(4): 921-933. SAS Institute. 1996. SAS/STAT Software: Changes and enhancements through release 6.11. SAS Inst., Cary, N.C. Yoder DC, Tyner JS, Balousek JD, Panuska JC, Buchanan JR, Kirsch, and KJ, Lyon JP. 2007. Conservation planning for construction sites. Transactions of the ASABE 50(5): 1613-1618. 1997; 40 1963; 89 2010 2006; 11 1980a 1980b 1995; 32 2009 2005; 41 1997 2008 2005; 20 1996 2006 1994 2003; 17 2007; 50 1997; 2 2004 2003 1992 1991; 117 1996; 35 1998; 62 2003; 50 1978 1977 2009; 73 2001 2002; 83 2002; 45 1992; 28 1965 1982 2008; 22 2008; 63 Haan CT (e_1_2_14_12_1) 1977 Haan CT (e_1_2_14_13_1) 1994 SAS Institute (e_1_2_14_29_1) 1996 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_10_1 e_1_2_14_35_1 e_1_2_14_32_1 Smith RE (e_1_2_14_30_1) 1997; 2 e_1_2_14_33_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_14_1 e_1_2_14_17_1 Hawkins RH (e_1_2_14_16_1) 1982 e_1_2_14_37_1 Foster GR (e_1_2_14_6_1) 2005; 20 Foster GR (e_1_2_14_8_1) 1980 e_1_2_14_5_1 Yu B (e_1_2_14_41_1) 2002; 45 ASCE (e_1_2_14_2_1) 2009 e_1_2_14_20_1 USDA‐SCS (e_1_2_14_36_1) 1992 e_1_2_14_4_1 e_1_2_14_3_1 e_1_2_14_40_1 Foster GR (e_1_2_14_7_1) 1980 e_1_2_14_23_1 e_1_2_14_24_1 e_1_2_14_21_1 e_1_2_14_22_1 e_1_2_14_27_1 e_1_2_14_28_1 e_1_2_14_25_1 Yalin MS (e_1_2_14_39_1) 1963; 89 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_18_1 Street L (e_1_2_14_31_1) 2001 Foster GR (e_1_2_14_9_1) 2003 |
References_xml | – reference: SAS Institute. 1996. SAS/STAT Software: Changes and enhancements through release 6.11. SAS Inst., Cary, N.C. – reference: Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50: 885-900. – reference: Yoder DC, Tyner JS, Balousek JD, Panuska JC, Buchanan JR, Kirsch, and KJ, Lyon JP. 2007. Conservation planning for construction sites. Transactions of the ASABE 50(5): 1613-1618. – reference: Harmel RD, Johnson G, Richardson CW. 2002. The GEM experience: weather generator technology development in the USDA. Bulletin of the American Meteorological Society 83: 954-957. – reference: Smith RE. 1997. Discussion: runoff curve number: has it reached maturity? Journal of Hydrologic Engineering 2(3): 145-147. – reference: Haan CT. 1977. Statistical Methods in Hydrology, Iowa State University Press: Ames, IA; 378 pp. – reference: Yu B. 2002. Using CLIGEN to generate RUSLE climate inputs. Transactions of the ASAE 45: 311-320. – reference: Meyer CR, Renschler CS, Vining RC. 2008. Implementing quality control on a random number stream to improve a stochastic weather generator. Hydrological Processes 22: 1069-1079. – reference: Johnson GL, Hanson CL, Hardegree SP, Ballard EB. 1996. Stochastic weather simulation: overview and analysis of two commonly used models. Journal of Applied Methods 35: 1878-1896. – reference: USDA-SCS. 1992. Ephemeral Gully Erosion Model (EGEM). Version 2.0, User Manual. U.S. Department of Agriculture, Soil Conservation Service: Washington, DC; 106. – reference: Haan CT, Barfield BJ, Hayes JC. 1994. Design Hydrology and Sedimentology for Small Catchments. Academic Press: San Diego, CA. – reference: Ascough JC, Baffaut C, Nearing MA, Liu BY. 1997. The WEPP watershed model: I. Hydrology and erosion. Transactions of the American Society of Agricultural Engineers 40(4): 921-933. – reference: Kinnell PIA, Risse LM. 1998. USLE-M: Empirical modeling rainfall erosion through runoff and sediment concentration. Soil Science Society of America Journal 62: 1667-1672. – reference: Yalin MS. 1963. An expression for bed-load transportation. Proceedings of American Society of Civil Engineering 89(HY3): 221-250. – reference: Hjelmfelt AT. 1991. Investigation of curve number procedure. Journal of Hydraulic Engineering 117(6): 725-737. – reference: Foster GR. 2005. Modeling ephemeral gully erosion for conservation planning. International Journal of Sediment Research 20(3): 157-175. – reference: Kuhnle RA, Bingner RL, Alonso CV, Wilson CG, Simon A. 2008. Conservation practice effects on sediment load in the Goodwin Creek Experimental Watershed. Journal of Soil and Water Conservation 63(6): 496-503. – reference: ASCE. 2009. Curve number hydrology, state of the practice. Hawkins RH, Ward TJ, Woodward DE, Van Mullem JA (eds). American Society of Civil Engineers: Reston, VA; 106 pp. – reference: Jain MK, Mishra SK, Suresh Babu P, Venugopal K, Singh VP. 2006. Enhanced runoff curve umber model incorporating storm duration and a nonlinear Ia-S relation. Journal of Hydrologic Engineering 11(6): 631-635. – reference: Poesen J, Nachtergaele J, Verstraeten G, Valentin C. 2003. Gully erosion and environmental change: importance and research needs. Catena 50: 91-133. – reference: Renschler CS. 2003. Designing geo-spatial interfaces to scale process models: the GeoWEPP approach. Hydrological Processes 17: 1005-1017. – reference: Gordon LM, Bennett SJ, Bingner RL, Theurer FD, Alonso CV. 2007. Simulating ephemeral gully erosion in AnnAGNPS. Transactions of the ASABE 50(3): 857-866. – reference: Garen DC, Moore DS. 2005. Curve number hydrology in water quality modelling: uses abuses and future directions. Journal of the American Water Resources Association 41: 377-388. – reference: Hairsine PB, Rose CW. 1992. Modeling water erosion due to overland flow using physical principles: 2. Rill flow. Water Resources Research 28: 245-250. – reference: Dabney SM, McGregor KC, Wilson GV, Cullum RF. 2009. How management of grass hedges affects their erosion reduction potential. Soil Science Society of America Journal 73(1): 241-254. – reference: Kuhnle RA, Bingner RL, Foster GR, Grissinger EH. 1995. Effect of land use changes on sediment transport in Goodwin Creek. Water Resources Research 32(10): 3189-3196. – volume: 50 start-page: 91 year: 2003 end-page: 133 article-title: Gully erosion and environmental change: importance and research needs publication-title: Catena – volume: 35 start-page: 1878 year: 1996 end-page: 1896 article-title: Stochastic weather simulation: overview and analysis of two commonly used models publication-title: Journal of Applied Methods – year: 2001 – start-page: 303 year: 1982 end-page: 324 – year: 1996 – volume: 73 start-page: 241 issue: 1 year: 2009 end-page: 254 article-title: How management of grass hedges affects their erosion reduction potential publication-title: Soil Science Society of America Journal – start-page: 713 year: 2001 – volume: 45 start-page: 311 year: 2002 end-page: 320 article-title: Using CLIGEN to generate RUSLE climate inputs publication-title: Transactions of the ASAE – volume: 89 start-page: 221 issue: HY3 year: 1963 end-page: 250 article-title: An expression for bed‐load transportation publication-title: Proceedings of American Society of Civil Engineering – volume: 50 start-page: 857 issue: 3 year: 2007 end-page: 866 article-title: Simulating ephemeral gully erosion in AnnAGNPS publication-title: Transactions of the ASABE – volume: 50 start-page: 885 year: 2007 end-page: 900 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Transactions of the ASABE – volume: 28 start-page: 245 year: 1992 end-page: 250 article-title: Modeling water erosion due to overland flow using physical principles: 2. Rill flow publication-title: Water Resources Research – volume: 63 start-page: 496 issue: 6 year: 2008 end-page: 503 article-title: Conservation practice effects on sediment load in the Goodwin Creek Experimental Watershed publication-title: Journal of Soil and Water Conservation – volume: 40 start-page: 921 issue: 4 year: 1997 end-page: 933 article-title: The WEPP watershed model: I. Hydrology and erosion publication-title: Transactions of the American Society of Agricultural Engineers – volume: 20 start-page: 157 issue: 3 year: 2005 end-page: 175 article-title: Modeling ephemeral gully erosion for conservation planning publication-title: International Journal of Sediment Research – year: 1994 – volume: 117 start-page: 725 issue: 6 year: 1991 end-page: 737 article-title: Investigation of curve number procedure publication-title: Journal of Hydraulic Engineering – year: 2010 – volume: 32 start-page: 3189 issue: 10 year: 1995 end-page: 3196 article-title: Effect of land use changes on sediment transport in Goodwin Creek publication-title: Water Resources Research – start-page: 106 year: 2009 – volume: 22 start-page: 1069 year: 2008 end-page: 1079 article-title: Implementing quality control on a random number stream to improve a stochastic weather generator publication-title: Hydrological Processes – start-page: 193 year: 1980b end-page: 281 – volume: 62 start-page: 1667 year: 1998 end-page: 1672 article-title: USLE‐M: Empirical modeling rainfall erosion through runoff and sediment concentration publication-title: Soil Science Society of America Journal – start-page: 378 year: 1977 – volume: 17 start-page: 1005 year: 2003 end-page: 1017 article-title: Designing geo‐spatial interfaces to scale process models: the GeoWEPP approach publication-title: Hydrological Processes – year: 1965 – year: 2008 – volume: 41 start-page: 377 year: 2005 end-page: 388 article-title: Curve number hydrology in water quality modelling: uses abuses and future directions publication-title: Journal of the American Water Resources Association – volume: 83 start-page: 954 year: 2002 end-page: 957 article-title: The GEM experience: weather generator technology development in the USDA publication-title: Bulletin of the American Meteorological Society – year: 2006 – volume: 2 start-page: 145 issue: 3 year: 1997 end-page: 147 article-title: Discussion: runoff curve number: has it reached maturity? publication-title: Journal of Hydrologic Engineering – year: 2004 – volume: 11 start-page: 631 issue: 6 year: 2006 end-page: 635 article-title: Enhanced runoff curve umber model incorporating storm duration and a nonlinear Ia‐S relation publication-title: Journal of Hydrologic Engineering – year: 1997 – volume: 50 start-page: 1613 issue: 5 year: 2007 end-page: 1618 article-title: Conservation planning for construction sites publication-title: Transactions of the ASABE – start-page: 36 year: 1980a end-page: 64 – start-page: 106 year: 1992 – year: 1978 – start-page: 154 year: 2003 end-page: 160 – ident: e_1_2_14_38_1 – ident: e_1_2_14_21_1 – ident: e_1_2_14_35_1 – ident: e_1_2_14_19_1 doi: 10.1175/1520-0450(1996)035<1878:SWSOAA>2.0.CO;2 – ident: e_1_2_14_25_1 doi: 10.13031/2013.23153 – ident: e_1_2_14_26_1 doi: 10.1016/S0341-8162(02)00143-1 – ident: e_1_2_14_15_1 doi: 10.1175/1520-0477(2002)083<0954:TGEWGT>2.3.CO;2 – ident: e_1_2_14_5_1 doi: 10.2136/sssaj2007.0434 – ident: e_1_2_14_32_1 – start-page: 193 volume-title: CREAMS: A Field‐Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems year: 1980 ident: e_1_2_14_8_1 – ident: e_1_2_14_40_1 doi: 10.13031/2013.23957 – start-page: 106 volume-title: Curve number hydrology, state of the practice year: 2009 ident: e_1_2_14_2_1 – ident: e_1_2_14_27_1 – ident: e_1_2_14_10_1 doi: 10.1111/j.1752-1688.2005.tb03742.x – ident: e_1_2_14_4_1 – volume-title: Design Hydrology and Sedimentology for Small Catchments year: 1994 ident: e_1_2_14_13_1 – ident: e_1_2_14_23_1 doi: 10.1029/96WR02104 – start-page: 106 volume-title: Ephemeral Gully Erosion Model (EGEM) year: 1992 ident: e_1_2_14_36_1 – ident: e_1_2_14_14_1 doi: 10.1029/91WR02381 – ident: e_1_2_14_17_1 doi: 10.1061/(ASCE)0733-9429(1991)117:6(725) – ident: e_1_2_14_34_1 – start-page: 36 volume-title: CREAMS: A Field‐Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems year: 1980 ident: e_1_2_14_7_1 – ident: e_1_2_14_37_1 – ident: e_1_2_14_28_1 doi: 10.1002/hyp.1177 – ident: e_1_2_14_11_1 doi: 10.13031/2013.23150 – volume: 89 start-page: 221 issue: 3 year: 1963 ident: e_1_2_14_39_1 article-title: An expression for bed‐load transportation publication-title: Proceedings of American Society of Civil Engineering – volume-title: SAS/STAT Software: Changes and enhancements through release 6.11 year: 1996 ident: e_1_2_14_29_1 – start-page: 154 volume-title: First Interagency Conference on Research in the Watersheds year: 2003 ident: e_1_2_14_9_1 – start-page: 378 volume-title: Statistical Methods in Hydrology year: 1977 ident: e_1_2_14_12_1 – ident: e_1_2_14_22_1 doi: 10.2489/jswc.63.6.496 – ident: e_1_2_14_24_1 doi: 10.1002/hyp.6668 – volume: 45 start-page: 311 year: 2002 ident: e_1_2_14_41_1 article-title: Using CLIGEN to generate RUSLE climate inputs publication-title: Transactions of the ASAE doi: 10.13031/2013.9952 – volume: 20 start-page: 157 issue: 3 year: 2005 ident: e_1_2_14_6_1 article-title: Modeling ephemeral gully erosion for conservation planning publication-title: International Journal of Sediment Research – ident: e_1_2_14_33_1 – volume: 2 start-page: 145 issue: 3 year: 1997 ident: e_1_2_14_30_1 article-title: Discussion: runoff curve number: has it reached maturity? publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(1997)2:3(145) – start-page: 303 volume-title: Rainfall–runoff relationships year: 1982 ident: e_1_2_14_16_1 – ident: e_1_2_14_18_1 doi: 10.1061/(ASCE)1084-0699(2006)11:6(631) – ident: e_1_2_14_20_1 doi: 10.2136/sssaj1998.03615995006200060026x – ident: e_1_2_14_3_1 doi: 10.13031/2013.21343 – start-page: 713 volume-title: Proceedings of the International Symposium on Soil Erosion Research for the 21st Century, 3–5 Jan 2001, Honolulu, HI year: 2001 ident: e_1_2_14_31_1 |
SSID | ssj0004080 |
Score | 2.2583203 |
Snippet | RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide... |
SourceID | proquest crossref wiley istex fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1373 |
SubjectTerms | Channels climate concentrated flow cotton ephemeral gully Erosion Erosion mechanisms field crops Gullies gully erosion hydrologic models land use Mathematical models Mississippi prediction rain rain intensity Rainfall Revised Universal Soil Loss Equation Runoff RUSLE sediment sediment transport sheet erosion soil Soil (material) storms Universal Soil Loss Equation |
Title | Enhancing RUSLE to include runoff-driven phenomena |
URI | https://api.istex.fr/ark:/67375/WNG-5P0JQN1M-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.7897 https://www.proquest.com/docview/1017967821 https://www.proquest.com/docview/1265780980 https://www.proquest.com/docview/1709769894 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagF7hAeamFgoKE4JSt7bVj54jQllVFV6VlxSIO1jhxulWrpNpuJMqJn8Bv5Jcwk8eWIqgQp1wm8nNmPtsz3zD2AvesVCFTsfEB8ICiRAyW6PG0TkyGEMQayh3emyTjqdqd6VkXVUm5MC0_xOrCjTSjsdek4ODPty9JQ-cXZwNjU0okp1AtwkMHl8xRijdF01CHdJxwa3reWS63-x-veKKbBVSIT2lqv1wBm79C1sbn7Nxln_vetqEmJ4N66QfZ19-IHP9vOOvsTgdFo9ft3rnHboTyPrvVVUWfXzxgalTOiY6jPIoOpofvRtGyio7L7LTOQ7Soy6oofnz7ni_IXkYUKkZkDvCQTXdGH96M467KQpypVBq0drkoUnT8IvcQbK6HhQjCh8ChwMOcN3lhARSEFKGiBF1oSq4dJjwDnWZeDB-xtbIqwwaLAhqLoVBepxDw3MhBJnnmFSiFLtBbscle9TPuso6CnCphnLqWPFk6nAVHs7DJnq8kz1rajT_IbOCiOThCa-imh5LeYEWqtU2woZfNSq7-hcUJRbAZ7T5O3jq9z3ffT8Sem2E7_VI71Ct6LIEyVPW5a0wVenIprpGRCRo8nlp-jYzhiPiI5h471WyAvw7IjT_t0_fxvwo-YbfbK2563Npia8tFHZ4iRlr6Z402_AT_oArv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacigXylMt5REkBKdsba8dO-KE0Jal7K5K2xWLhGTZjtNFrZJq2UiUEz-B38gvYSbZbCmCCnHKZSLbY8_MN358Q8hTWLNcBC9i5YKFBEWw2Gqkx5MyUR4giFb4dng4SvpjsTeRkxXyon0L0_BDLDfc0DJqf40GjhvSOxesodPzs47SqVol17Cgd51PHVxwRwlal00DK5JxQrVqmWcp32n_vBSLVnNbAkJF5X65BDd_Ba111NndIB_b_jaXTU461dx1_NffqBz_c0A3yY0FGo1eNsvnFlkJxW2yviiMPj2_Q0SvmCIjR3EcHYwPB71oXkafCn9aZSGaVUWZ5z--fc9m6DIjvC2GfA72Lhnv9o5e9eNFoYXYi5QrcHgZy1OI_SxzNuhMdnMWmAuB2hzyOaeyXFsrbEgBLXIrc4nva7sJ9Vam3rHuPbJWlEXYJFEAf9FlwsnUBkgdqeVJ5p2wQkAUdJptkeetyo1fsJBjMYxT0_AncwNaMKiFLfJkKXnWMG_8QWYTZs3YY3CIZnzI8RiWpVLqBBp6Vk_l8l87O8FLbEqa96PXRu7TvXcjNjQTaKedawOmhecltghl9dnU3gqCOWdXyPAEfB5NNb1CRlEAfch0D52qV8BfB2T6H_bxe_9fBR-T9f7RcGAGb0Zvt8n1Zscbz7oekLX5rAoPATLN3aPaNH4CorEPCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZokYAL5akWCiwSgtOmtmOvvceKJoTSRqElIhUHy971NqjVbhSyEuXUn8Bv5Jcws4-UIqgQpz3sWLbH87I9_oaQFyCzXPhEhMp5CxsUwUKrER5PykglEIJohW-H94fRYCx2J3LSZFXiW5gaH2J54IaaUdlrVPBZmm1dgIZOz2YdpWO1Qq6LiGqU6J2DC-goQauqaaBEMoTfqgWepXyrbXnJFa1ktoAAFXn79VK0-WvMWjmd_hr51A63zjU56ZQL10m-_Ybk-H_zuUNuN7FosF0Lz11yzef3yM2mLPr07D4RvXyKeBz5cXAwPtzrBYsi-Jwnp2Xqg3mZF1n24_x7OkeDGWCuGKI52Adk3O99eD0ImzILYSJirsDcpSyLwfOz1FmvU9nNmGfOe2oz2M05lWbaWmF9DLEitzKT-Lq2G9HEyjhxrPuQrOZF7tdJ4MFadJlwMrYeNo7U8ihNnLBCgA90mm2QVy3HTdJgkGMpjFNToydzA1wwyIUN8nxJOatxN_5Asw6LZuwxmEMzPuR4CctiKXUEHb2sVnLZ1s5PMIVNSfNx-MbIEd19P2T7ZgL9tEttQLHwtsTmvii_mMpWgSvn7AoaHoHFo7GmV9AoCiEf4tzDoCoB-OuEzOBohN9H_0r4jNwY7fTN3tvhu8fkVn3cjRddm2R1MS_9E4iXFu5ppRg_AYciDcI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+RUSLE+to+include+runoff-driven+phenomena&rft.jtitle=Hydrological+processes&rft.au=Dabney%2C+Seth+M&rft.au=Yoder%2C+Daniel+C&rft.au=Vieira%2C+Dalmo+A+N&rft.au=Bingner%2C+Ronald+L&rft.date=2011-04-30&rft.issn=1099-1085&rft.volume=25&rft.issue=9&rft.spage=1373&rft.epage=1390&rft_id=info:doi/10.1002%2Fhyp.7897&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |