Marked disparity between age‐related changes in dopamine and other presynaptic dopaminergic markers in human striatum

Because age‐related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic l‐amino acid decarboxylase (AADC), vesicular monoa...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 87; no. 3; pp. 574 - 585
Main Authors Haycock, John W., Becker, Laurence, Ang, Lee, Furukawa, Yoshiaki, Hornykiewicz, Oleh, Kish, Stephen J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.11.2003
Blackwell
Subjects
Age
Online AccessGet full text
ISSN0022-3042
1471-4159
DOI10.1046/j.1471-4159.2003.02017.x

Cover

Loading…
Abstract Because age‐related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic l‐amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post‐mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2‐ to 3‐fold) post‐natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post‐natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post‐natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA‐related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.
AbstractList Because age‐related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic l‐amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post‐mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2‐ to 3‐fold) post‐natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post‐natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post‐natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA‐related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.
Because age‐related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic l ‐amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post‐mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2‐ to 3‐fold) post‐natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post‐natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post‐natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA‐related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.
Because age-related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post-mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2- to 3-fold) post-natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post-natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post-natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA-related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.Because age-related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post-mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2- to 3-fold) post-natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post-natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic post-natal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA-related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.
Because age-related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of several presynpatic DAergic markers [DA, homovanillic acid, tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT)] in post-mortem human striatum (caudate and putamen) from 56 neurologically normal subjects aged 1 day to 103 years. Striatal DA levels exhibited pronounced (2- to 3-fold) post-natal increases through adolescence and then decreases during aging. Similarly, TH and AADC increased almost 100% during the first 2 post-natal years; however, the levels of TH and, to a lesser extent, AADC then declined to adult levels by approximately 30 years of age. Although VMAT2 and DAT levels closely paralleled those of TH, resulting in relatively constant TH to transporter ratios during development and aging, a modest but significant decline (13%) in DAT levels was observed in only caudate during aging. This biphasic postnatal pattern of the presynaptic markers suggests that striatal DAergic innervation/neuropil appears to continue to develop well past birth but appears to become overelaborated and undergo regressive remodeling during adolescence. However, during adulthood, a striking discrepancy was observed between the loss of DA and the relative preservation of proteins involved in its biosynthesis and compartmentation. This suggests that declines in DA-related function during adulthood and senescence may be explained by losses in DA per se as opposed to DAergic neuropil.
Author Haycock, John W.
Becker, Laurence
Hornykiewicz, Oleh
Ang, Lee
Kish, Stephen J.
Furukawa, Yoshiaki
Author_xml – sequence: 1
  givenname: John W.
  surname: Haycock
  fullname: Haycock, John W.
– sequence: 2
  givenname: Laurence
  surname: Becker
  fullname: Becker, Laurence
– sequence: 3
  givenname: Lee
  surname: Ang
  fullname: Ang, Lee
– sequence: 4
  givenname: Yoshiaki
  surname: Furukawa
  fullname: Furukawa, Yoshiaki
– sequence: 5
  givenname: Oleh
  surname: Hornykiewicz
  fullname: Hornykiewicz, Oleh
– sequence: 6
  givenname: Stephen J.
  surname: Kish
  fullname: Kish, Stephen J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15231357$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/14535941$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2O0zAUhS00iOkMvALKBnYNtmPH8QIkVPGrATawtm6dm9YlcYLtqNMdj8Az8iQk0zIjsWHkhW2d7xz_nAty5nuPhGSM5oyK8sUuZ0KxpWBS55zSIqecMpVfPyCLW-GMLCjlfFlQwc_JRYw7SlkpSvaInDMhC6kFW5D9Jwjfsc5qFwcILh2yNaY9os9gg79__grYQpp0uwW_wZg5n9X9AJ3zmIGvsz5tMWRDwHjwMCRnb-WwmTbdnB5ubNuxA5_FFByksXtMHjbQRnxymi_Jt7dvvq7eL6--vPuwen21tEJztWSCNutKVwjAamRKVaXColJCW00b0EyDFVxzULWUklu5FgKLBptmklHp4pI8P-YOof8xYkymc9Fi24LHfoxGyWlUWv4XZJqVfLrABD49geO6w9oMwU2vPJi_fzoBz04ARAttE8BbF-84yQtWyDmoOnI29DEGbO4Qauaazc7MbZq5TTPXbG5qNteT9dU_VusSJNf7FMC19wl4eQzYuxYP9z7YfPy8mlfFHyebwxs
CODEN JONRA9
CitedBy_id crossref_primary_10_1016_j_neuint_2017_04_008
crossref_primary_10_1016_j_expneurol_2009_10_019
crossref_primary_10_1007_s00702_015_1438_9
crossref_primary_10_1016_j_neurobiolaging_2007_04_003
crossref_primary_10_1371_journal_pone_0188538
crossref_primary_10_1007_s11064_004_9688_1
crossref_primary_10_1007_s11307_014_0811_7
crossref_primary_10_1016_j_ntt_2006_09_023
crossref_primary_10_1017_S1355617706060024
crossref_primary_10_1089_neu_2016_4840
crossref_primary_10_1016_j_neubiorev_2013_07_019
crossref_primary_10_1155_2017_1202459
crossref_primary_10_1016_j_pbb_2008_12_013
crossref_primary_10_1016_j_psyneuen_2009_12_002
crossref_primary_10_1016_j_neuroimage_2010_12_030
crossref_primary_10_3109_01677063_2014_908191
crossref_primary_10_1007_s12035_018_1256_9
crossref_primary_10_1007_s10571_007_9146_0
crossref_primary_10_1016_j_parkreldis_2011_11_025
crossref_primary_10_1016_j_sleep_2016_06_003
crossref_primary_10_1016_j_neuroscience_2010_02_073
crossref_primary_10_1016_j_drugalcdep_2018_05_021
crossref_primary_10_1016_j_biopsych_2018_02_1172
crossref_primary_10_1007_s11064_008_9858_7
crossref_primary_10_1016_j_purol_2023_01_002
crossref_primary_10_1093_brain_awl028
crossref_primary_10_3389_fncir_2021_735625
crossref_primary_10_1371_journal_pone_0075952
crossref_primary_10_1016_j_neuroscience_2010_01_034
crossref_primary_10_1016_j_neurobiolaging_2007_09_009
crossref_primary_10_1016_j_brainres_2004_12_009
crossref_primary_10_3758_s13415_014_0273_z
crossref_primary_10_1016_j_nbd_2007_01_010
crossref_primary_10_1007_s00702_006_0449_y
crossref_primary_10_1016_j_ncl_2009_04_011
crossref_primary_10_1523_JNEUROSCI_4862_03_2004
crossref_primary_10_1038_ijo_2014_206
crossref_primary_10_14789_ejmj_JMJ24_0023_R
crossref_primary_10_1016_j_biopsycho_2023_108623
crossref_primary_10_1016_j_dcn_2015_10_010
crossref_primary_10_1002_acn3_707
crossref_primary_10_1016_j_bbr_2014_01_029
crossref_primary_10_1016_j_neulet_2004_04_041
crossref_primary_10_1002_syn_20580
crossref_primary_10_1111_bpa_13036
crossref_primary_10_4140_TCP_sA_2006_002
crossref_primary_10_3389_fnbeh_2018_00199
crossref_primary_10_1021_acschembio_1c00803
crossref_primary_10_3233_JAD_230312
crossref_primary_10_1016_j_neurobiolaging_2005_12_010
crossref_primary_10_1162_jocn_2006_18_3_376
crossref_primary_10_1016_j_expneurol_2006_10_004
crossref_primary_10_1021_acschemneuro_5b00282
crossref_primary_10_5582_bst_2015_01088
crossref_primary_10_1016_j_neurobiolaging_2015_10_006
crossref_primary_10_1038_sj_jcbfm_9600276
crossref_primary_10_1016_j_neubiorev_2016_07_034
crossref_primary_10_1152_ajpendo_00357_2006
crossref_primary_10_1038_jcbfm_2011_63
crossref_primary_10_1038_sj_npp_1301412
crossref_primary_10_1016_j_molbrainres_2004_09_028
crossref_primary_10_1016_j_expneurol_2008_11_003
crossref_primary_10_1002_gps_1569
crossref_primary_10_1002_cne_20995
crossref_primary_10_1093_gerona_glx119
crossref_primary_10_1016_j_bandc_2009_10_013
crossref_primary_10_1016_j_neuint_2017_04_001
crossref_primary_10_1016_j_neubiorev_2018_03_007
crossref_primary_10_1016_j_nucmedbio_2004_10_001
crossref_primary_10_1038_nrn3039
crossref_primary_10_1002_ana_22284
crossref_primary_10_3389_fnins_2016_00504
crossref_primary_10_1371_journal_pone_0049483
crossref_primary_10_3389_fnagi_2022_931015
crossref_primary_10_1016_j_neuroscience_2005_12_030
crossref_primary_10_1002_cne_21919
crossref_primary_10_1111_j_1447_0594_2004_00137_x
crossref_primary_10_1016_j_ijdevneu_2019_02_002
crossref_primary_10_17567_ataunidfd_290596
crossref_primary_10_1152_ajpendo_00510_2006
crossref_primary_10_1016_j_pbb_2008_01_003
crossref_primary_10_1016_j_dcn_2014_04_003
crossref_primary_10_1016_j_neuroscience_2017_02_042
crossref_primary_10_1002_cne_20389
crossref_primary_10_1016_j_expneurol_2009_05_028
crossref_primary_10_1016_j_mad_2015_06_002
crossref_primary_10_1016_j_tins_2006_01_001
crossref_primary_10_1016_j_ntt_2008_04_002
crossref_primary_10_1152_jn_00390_2015
crossref_primary_10_1016_j_neurobiolaging_2023_10_008
crossref_primary_10_1017_S0954579415001042
crossref_primary_10_1002_ajmg_b_30677
crossref_primary_10_1016_j_bcp_2007_11_019
crossref_primary_10_1111_acel_12312
crossref_primary_10_1002_syn_21662
crossref_primary_10_1016_j_neubiorev_2009_12_007
crossref_primary_10_1007_s12035_013_8397_7
crossref_primary_10_1016_j_expneurol_2023_114509
crossref_primary_10_1038_s41598_023_28174_2
crossref_primary_10_3389_fnana_2014_00080
crossref_primary_10_1016_j_neuro_2018_05_003
crossref_primary_10_1016_j_yhbeh_2016_02_001
crossref_primary_10_1162_jocn_a_00890
crossref_primary_10_1016_j_neuroscience_2004_09_033
crossref_primary_10_1093_cercor_bhn095
crossref_primary_10_1016_j_pbb_2010_11_011
crossref_primary_10_1016_j_jns_2007_01_069
crossref_primary_10_1212_WNL_0b013e3181a187dd
crossref_primary_10_1016_j_bandc_2013_09_011
crossref_primary_10_1016_j_yhbeh_2009_10_015
crossref_primary_10_1021_acs_est_3c08126
crossref_primary_10_1016_j_neurobiolaging_2005_02_015
crossref_primary_10_1111_j_1601_183X_2005_00161_x
crossref_primary_10_3390_ijms25021131
crossref_primary_10_1111_j_1471_4159_2007_04855_x
crossref_primary_10_1523_JNEUROSCI_3729_08_2008
crossref_primary_10_3390_ijms24021428
crossref_primary_10_1016_j_heliyon_2024_e32688
crossref_primary_10_1093_brain_awr233
crossref_primary_10_1007_s00213_010_2147_6
crossref_primary_10_1016_j_amjoto_2020_102534
crossref_primary_10_1007_s11357_022_00583_7
crossref_primary_10_1016_j_cpr_2016_11_003
crossref_primary_10_3389_fped_2021_569594
crossref_primary_10_1002_syn_20708
crossref_primary_10_1007_s00259_008_0989_5
crossref_primary_10_1002_cne_23899
crossref_primary_10_1038_s41398_018_0202_y
crossref_primary_10_1016_j_bbr_2012_01_013
crossref_primary_10_1016_j_jagp_2020_12_024
crossref_primary_10_1523_JNEUROSCI_1674_18_2018
crossref_primary_10_1016_j_jagp_2016_06_005
crossref_primary_10_1177_17590914211055064
crossref_primary_10_1016_j_pharmthera_2015_06_003
crossref_primary_10_1016_j_dcn_2017_10_009
crossref_primary_10_1523_JNEUROSCI_5436_03_2004
crossref_primary_10_1016_j_mad_2022_111666
crossref_primary_10_1016_j_brainresbull_2021_07_016
crossref_primary_10_1016_j_neuropharm_2016_04_035
crossref_primary_10_1267_ahc_38_367
crossref_primary_10_1002_mds_25493
crossref_primary_10_1016_j_dr_2020_100943
crossref_primary_10_1007_s12474_010_0003_4
crossref_primary_10_1016_j_tips_2005_03_009
crossref_primary_10_1111_jnc_12652
Cites_doi 10.1093/brain/123.2.366
10.1126/science.1145194
10.1002/ana.410260409
10.1046/j.1525-1373.1999.d01-140.x
10.1016/0376-8716(95)01118-I
10.1111/j.1471-4159.1978.tb10792.x
10.1016/0003-2697(78)90679-6
10.1016/0022-1759(91)90178-I
10.1016/0014-2999(86)90758-2
10.1523/JNEUROSCI.14-05-02966.1994
10.1111/j.1471-4159.1991.tb03477.x
10.1111/j.1471-4159.1993.tb03494.x
10.1007/BF01254252
10.1007/978-1-4684-0925-3_13
10.1002/cne.903580306
10.1016/S0028-3908(99)00210-5
10.1016/S0169-328X(98)00058-8
10.1016/S0278-5846(98)00017-7
10.1001/archneur.1975.00490430069012
10.1002/ana.410400312
10.1007/BF01250085
10.1016/0014-2999(95)00594-3
10.1002/ana.410350405
10.1002/mds.870100104
10.1111/j.1471-4159.1980.tb06593.x
10.1001/archpsyc.1977.01770130091009
10.1016/0306-4522(93)90267-J
10.1093/brain/114.5.2283
10.1146/annurev.biochem.68.1.355
10.1046/j.1471-4159.1996.67010019.x
10.1016/0006-8993(72)90019-4
10.1007/BF01485901
10.1093/cercor/8.5.415
10.1016/S0891-5849(96)00405-4
10.1111/j.1471-4159.1991.tb11410.x
10.1001/archneur.1977.00500130053010
10.1016/S0387-7604(00)00144-3
10.1111/j.1471-4159.1993.tb03177.x
10.1016/0003-2697(89)90240-6
10.1002/ana.410380220
10.1016/0003-2697(85)90442-7
10.1139/o67-227
10.1002/1096-9861(20001030)426:4<534::AID-CNE3>3.0.CO;2-G
10.1056/NEJM198804073181402
10.1002/ana.410400609
10.1159/000112087
10.1007/BF00717030
10.1073/pnas.86.7.2493
10.1093/brain/97.1.457
10.1212/WNL.47.3.718
10.1073/pnas.89.15.7095
10.1016/0006-3223(94)90610-6
10.1073/pnas.93.10.5166
10.1006/abio.1993.1068
10.1016/S0006-3223(00)00695-8
10.1523/JNEUROSCI.16-10-03507.1996
10.1023/A:1024295422944
10.1016/0006-8993(93)90932-D
10.1111/j.1471-4159.1992.tb09766.x
10.1002/ana.410360218
10.1002/ana.410440125
10.1212/WNL.42.10.1980
10.1111/j.1471-4159.1976.tb04437.x
10.1016/0006-291X(89)91772-5
10.1016/0197-4580(91)90013-A
10.1212/WNL.51.2.632
10.1046/j.1471-4159.1994.62020680.x
10.1016/0197-4580(89)90001-8
10.1046/j.1471-4159.2002.00881.x
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright_xml – notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1046/j.1471-4159.2003.02017.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 585
ExternalDocumentID 14535941
15231357
10_1046_j_1471_4159_2003_02017_x
JNC2017
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH00967
– fundername: NINDS NIH HHS
  grantid: NS26034
– fundername: NIMH NIH HHS
  grantid: MH55208
– fundername: NIDA NIH HHS
  grantid: DA07182
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7TK
7X8
ID FETCH-LOGICAL-c4927-140fb898eaa1de177867e38749c90fa919ac4292a7d5552c5b44e3feff90fe793
IEDL.DBID DR2
ISSN 0022-3042
IngestDate Fri Jul 11 11:52:43 EDT 2025
Fri Jul 11 06:13:17 EDT 2025
Wed Feb 19 02:35:31 EST 2025
Mon Jul 21 09:11:03 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Tue Jul 01 02:14:46 EDT 2025
Wed Jan 22 17:05:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Senescence
blot immunolabeling
Central nervous system
Lyases
Biosynthesis
Tyrosine 3-monooxygenase
Encephalon
Carboxy-lyases
Development
Age
Vesicular monoamine transporter
aromatic L-amino acid decarboxylase
Human
Dopamine
vesicular monoamine transporter 2
Enzyme
Postmortem
Basal ganglion
Corpus striatum
Catecholamine
Putamen
tyrosine hydroxylase
Carbon-carbon lyases
dopamine transporter
Neurotransmitter
Aromatic-L-amino-acid decarboxylase
Dopaminergic neuron
Oxidoreductases
Presynaptic nerve ending
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4927-140fb898eaa1de177867e38749c90fa919ac4292a7d5552c5b44e3feff90fe793
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 14535941
PQID 19162177
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_75757895
proquest_miscellaneous_19162177
pubmed_primary_14535941
pascalfrancis_primary_15231357
crossref_primary_10_1046_j_1471_4159_2003_02017_x
crossref_citationtrail_10_1046_j_1471_4159_2003_02017_x
wiley_primary_10_1046_j_1471_4159_2003_02017_x_JNC2017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2003
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: November 2003
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2003
Publisher Blackwell Science Ltd
Blackwell
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell
References 1991; 114
1989; 86
1974; 97
1991; 12
1991; 56
2000; 47
1995; 38
1993; 60
1978; 30
1960; 38
2000; 41
1975
1992; 58
1999; 40
1972; 46
1995; 294
1996; 37
1994; 62
1998; 44
2001; 86
1993b; 208
1968; 12
1996a; 40
1980; 34
1995; 21
1994; 36
1994; 35
1975; 188
2000; 123
1977; 34
1992; 42
1998; 51
1992; 89
1996; 67
1998; 57
1993; 628
1990; 38
1967; 45
2000; 22
1994; 271
1997; 24
1997; 23
1995; 10
1999; 68
1989; 181
1996; 93
1995; 358
2002; 81
1975; 32
1999; 222
1989; 26
1991; 138
1996; 16
1983; 38
1976b; 26
1995; 5
1998; 22
1972; 26
1996b; 47
1979; 45
1993a; 60
1989; 10
1979; 47
2000; 39
1986; 126
1978; 87
2000; 426
1989; 164
1993; 54
1994; 14
1996; 40
1994; 16
1976a
1994; 3
1988; 318
1985; 150
1998; 8
e_1_2_31_12_1
e_1_2_31_35_1
e_1_2_31_58_1
e_1_2_31_10_1
e_1_2_31_37_1
e_1_2_31_79_1
e_1_2_31_39_1
e_1_2_31_80_1
Staley J. K. (e_1_2_31_64_1) 1994; 271
Thiessen B. (e_1_2_31_67_1) 1990; 38
e_1_2_31_61_1
McGeer E. (e_1_2_31_46_1) 1976
e_1_2_31_40_1
e_1_2_31_63_1
e_1_2_31_82_1
e_1_2_31_42_1
e_1_2_31_44_1
e_1_2_31_24_1
e_1_2_31_2_1
e_1_2_31_23_1
e_1_2_31_47_1
e_1_2_31_68_1
e_1_2_31_4_1
e_1_2_31_21_1
e_1_2_31_26_1
e_1_2_31_6_1
e_1_2_31_28_1
Hirai S. (e_1_2_31_29_1) 1968; 12
Frey K. A. (e_1_2_31_18_1) 2001; 86
Wilson J. M. (e_1_2_31_76_1) 1994; 14
Côté L. J. (e_1_2_31_8_1) 1983; 38
Volkow N. D. (e_1_2_31_73_1) 1996; 37
e_1_2_31_50_1
e_1_2_31_71_1
e_1_2_31_16_1
e_1_2_31_31_1
e_1_2_31_54_1
Staley J. K. (e_1_2_31_65_1) 1995; 21
e_1_2_31_77_1
e_1_2_31_14_1
e_1_2_31_33_1
e_1_2_31_56_1
e_1_2_31_75_1
e_1_2_31_11_1
e_1_2_31_36_1
Mozley P. D. (e_1_2_31_49_1) 1999; 40
e_1_2_31_57_1
e_1_2_31_38_1
e_1_2_31_59_1
Irwin I. (e_1_2_31_32_1) 1994; 3
DiChiara G. (e_1_2_31_9_1) 1995; 38
e_1_2_31_81_1
e_1_2_31_60_1
e_1_2_31_62_1
e_1_2_31_43_1
e_1_2_31_45_1
e_1_2_31_66_1
e_1_2_31_69_1
e_1_2_31_3_1
e_1_2_31_22_1
e_1_2_31_25_1
e_1_2_31_48_1
e_1_2_31_5_1
e_1_2_31_20_1
e_1_2_31_27_1
e_1_2_31_7_1
Pirker W. (e_1_2_31_52_1) 2000; 41
e_1_2_31_70_1
Lloyd K. G. (e_1_2_31_41_1) 1972; 26
e_1_2_31_19_1
e_1_2_31_74_1
e_1_2_31_17_1
e_1_2_31_30_1
e_1_2_31_51_1
e_1_2_31_72_1
e_1_2_31_15_1
e_1_2_31_53_1
e_1_2_31_78_1
e_1_2_31_13_1
e_1_2_31_34_1
e_1_2_31_55_1
References_xml – volume: 51
  start-page: 632
  year: 1998
  end-page: 634
  article-title: Influence of development and aging on brain biopterin: implications for dopa‐responsive dystonia onset
  publication-title: Neurology
– volume: 86
  start-page: 2493
  year: 1989
  end-page: 2497
  article-title: Striatal phosphoproteins in Parkinson disease and progressive supranuclear palsy
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 628
  start-page: 17
  year: 1993
  end-page: 25
  article-title: Cocaine use increases [ H]WIN 35428 binding sites in human striatum
  publication-title: Brain Res.
– volume: 40
  start-page: 428
  year: 1996a
  end-page: 439
  article-title: Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users
  publication-title: Ann. Neurol.
– volume: 38
  start-page: 19
  year: 1983
  end-page: 30
  article-title: Biochemical changes in normal aging in human brain
  publication-title: Adv. Neurol.
– volume: 22
  start-page: 455
  year: 1998
  end-page: 466
  article-title: Striatal [ I]RTI‐55 binding sites in cocaine‐abusing humans
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiat.
– volume: 22
  start-page: S45
  year: 2000
  end-page: S49
  article-title: Alterations of tetrahydrobiopterin biosynthesis and pteridine levels in mouse tissues during growth and aging
  publication-title: Brain Dev.
– volume: 208
  start-page: 397
  year: 1993b
  end-page: 399
  article-title: Polyvinylpyrrolidone as a blocking agent in immunochemical studies
  publication-title: Anal. Biochem.
– volume: 26
  start-page: 551
  year: 1989
  end-page: 557
  article-title: Striatal dopamine deficiency in Parkinson's disease: role of aging
  publication-title: Ann. Neurol.
– volume: 46
  start-page: 251
  year: 1972
  end-page: 285
  article-title: The developing neostriatum of the rabbit: correlation of fluorescence histochemistry, electron microscopy, endogenous dopamine levels, and [ H]dopamine uptake
  publication-title: Brain Res.
– volume: 5
  start-page: 260
  year: 1995
  end-page: 264
  article-title: Striatal 3,4‐dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies?
  publication-title: Ann. Neurol.
– volume: 38
  start-page: 201
  year: 1990
  end-page: 205
  article-title: Age, environments, and the number of substantia nigra neurons
  publication-title: Adv. Neurol.
– volume: 34
  start-page: 33
  year: 1977
  end-page: 35
  article-title: Aging and extrapyramidal function
  publication-title: Arch. Neurol.
– volume: 40
  start-page: 1812
  year: 1999
  end-page: 1817
  article-title: Effects of age on dopamine transporters in healthy humans
  publication-title: J. Nucl. Med.
– volume: 32
  start-page: 47
  year: 1975
  end-page: 49
  article-title: Postmortem changes in brain catecholamine enzymes
  publication-title: Arch. Neurol.
– volume: 47
  start-page: 718
  year: 1996b
  end-page: 726
  article-title: Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson's disease
  publication-title: Neurology
– volume: 181
  start-page: 259
  year: 1989
  end-page: 266
  article-title: Quantitation of tyrosine hydroxylase protein levels: spot immunolabeling with an affinity‐purified antibody
  publication-title: Anal. Biochem.
– volume: 271
  start-page: 1678
  year: 1994
  end-page: 1685
  article-title: High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 54
  start-page: 477
  year: 1993
  end-page: 492
  article-title: Four isoforms of tyrosine hydroxylase are expressed in human brain
  publication-title: Neuroscience
– volume: 44
  start-page: 143
  year: 1998
  end-page: 147
  article-title: Parallel loss of presynaptic and postsynaptic dopamine markers in normal aging
  publication-title: Ann. Neurol.
– volume: 68
  start-page: 355
  year: 1999
  end-page: 381
  article-title: Tetrahydropterin‐dependent amino acid hydroxylases
  publication-title: Annu. Rev. Biochem.
– volume: 3
  start-page: 251
  year: 1994
  end-page: 265
  article-title: Aging and the nigrostriatal dopamine system: a non‐human primate study
  publication-title: Neurodegeneration
– volume: 38
  start-page: 1236
  year: 1960
  end-page: 1239
  article-title: Verteilung von Noradrenalin und Dopamin (3‐Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems
  publication-title: Klin. Wochenschr.
– volume: 16
  start-page: 44
  year: 1994
  end-page: 52
  article-title: Developing substantia nigra in human: a qualitative study
  publication-title: Dev. Neurosci.
– volume: 37
  start-page: 554
  year: 1996
  end-page: 559
  article-title: Dopamine transporters decrease with age
  publication-title: J. Nucl. Med.
– volume: 42
  start-page: 1980
  year: 1992
  end-page: 1988
  article-title: Aromatic 1‐amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis
  publication-title: Neurology
– volume: 35
  start-page: 396
  year: 1994
  end-page: 402
  article-title: DOPA responsive dystonia: pathological and biochemical observations in a case
  publication-title: Ann. Neurol.
– volume: 26
  start-page: 65
  year: 1976b
  end-page: 76
  article-title: Enzymes associated with the metabolism of catecholamines, acetylcholine, and GABA in human controls and patients with Parkinson's disease and Huntington's chorea
  publication-title: J. Neurochem.
– volume: 38
  start-page: 95
  year: 1995
  end-page: 137
  article-title: The role of dopamine in drug abuse viewed from the perspective of its role in motivation
  publication-title: Drug Alcohol Depend.
– volume: 39
  start-page: 1075
  year: 2000
  end-page: 1082
  article-title: Reserpine or chronic paroxetine treatments do not modify the vesicular monoamine transporter 2 expression in serotonin‐containing regions of the rat brain
  publication-title: Neuropharmacology
– volume: 126
  start-page: 175
  year: 1986
  end-page: 176
  article-title: Decreased density of human striatal dopamine uptake sites with age
  publication-title: Eur. J. Pharmacol.
– volume: 56
  start-page: 2139
  year: 1991
  end-page: 2142
  article-title: Four forms of tyrosine hydroxylase are present in human adrenal medulla
  publication-title: J. Neurochem.
– volume: 294
  start-page: 577
  year: 1995
  end-page: 583
  article-title: The vesicular monoamine transporter is not regulated by dopaminergic drug treatments
  publication-title: Eur. J. Pharmacol.
– volume: 60
  start-page: 493
  year: 1993a
  end-page: 502
  article-title: Multiple forms of tyrosine hydroxylase in human neuroblastoma cells: quantitation with isoform‐specific antibodies
  publication-title: J. Neurochem.
– start-page: 389
  year: 1976a
  end-page: 403
– volume: 34
  start-page: 89
  year: 1977
  end-page: 92
  article-title: Monoamine metabolism in human brain
  publication-title: Arch. Gen. Psychiat.
– volume: 56
  start-page: 1191
  year: 1991
  end-page: 1200
  article-title: Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate
  publication-title: J. Neurochem.
– volume: 36
  start-page: 272
  year: 1994
  end-page: 277
  article-title: Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: a tyrosine hydroxylase immunohistochemical study
  publication-title: Biol. Psychiat.
– volume: 45
  start-page: 1943
  year: 1967
  end-page: 1952
  article-title: Distribution of tyrosine hydroxylase activity in adult and developing brain
  publication-title: Can. J. Biochem.
– volume: 42
  start-page: 383
  year: 1992
  end-page: 390
  article-title: Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter
  publication-title: Mol. Pharmacol.
– volume: 81
  start-page: 947
  year: 2002
  end-page: 953
  article-title: Species differences in the expression of multiple tyrosine hydroxylase protein isoforms
  publication-title: J. Neurochem.
– volume: 57
  start-page: 31
  year: 1998
  end-page: 37
  article-title: Regulation of rat brain vesicular monoamine transporter by chronic treatment with ovarian hormones
  publication-title: Brain Res. Mol. Brain Res.
– volume: 114
  start-page: 2283
  year: 1991
  end-page: 2301
  article-title: Aging and Parkinson's disease: substantia nigra regional selectivity
  publication-title: Brain
– volume: 150
  start-page: 76
  year: 1985
  end-page: 85
  article-title: Measurement of protein using bichinchoninic acid
  publication-title: Anal. Biochem.
– volume: 36
  start-page: 237
  year: 1994
  end-page: 239
  article-title: Decreased dopamine transporters with age in health human subjects
  publication-title: Ann. Neurol.
– volume: 188
  start-page: 1217
  year: 1975
  end-page: 1219
  article-title: Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons
  publication-title: Science
– volume: 45
  start-page: 81
  year: 1979
  end-page: 105
  article-title: Post‐mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature
  publication-title: J. Neural Transm.
– volume: 93
  start-page: 5166
  year: 1996
  end-page: 5171
  article-title: Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular transporter
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 222
  start-page: 236
  year: 1999
  end-page: 245
  article-title: Antioxidants, oxidative stress, and degenerative neurological disorders
  publication-title: Proc. Soc. Exp. Biol. Med.
– volume: 60
  start-page: 2098
  year: 1993
  end-page: 2105
  article-title: Synaptic neurochemistry of human striatum during development: changes in sudden infant death syndrome
  publication-title: J. Neurochem.
– volume: 87
  start-page: 299
  year: 1978
  end-page: 305
  article-title: Elimination of nonspecific adsorption of serum products by sepharose‐bound antigens
  publication-title: Anal. Biochem.
– volume: 318
  start-page: 876
  year: 1988
  end-page: 880
  article-title: Uneven pattern of dopamine loss in striatum of patients with idiopathic Parkinson's disease: pathophysiologic and clinical implications
  publication-title: New Eng. J. Med.
– volume: 47
  start-page: 93
  year: 1979
  end-page: 97
  article-title: The effects of aging on the pigmented nerve cells of the human locus coeruleus and substantia nigra
  publication-title: Acta Neuropath.
– volume: 10
  start-page: 661
  year: 1989
  end-page: 664
  article-title: Age‐correlated loss of dopamine uptake sites labelled with [ H]GBR‐12935 in human putamen
  publication-title: Neurobiol. Aging
– volume: 24
  start-page: 1171
  year: 1997
  end-page: 1174
  article-title: [ I]beta‐CIT single‐photon emission tomography in Parkinson's disease reveals a smaller decline in dopamine transporters with age than in controls
  publication-title: Eur. J. Nucl. Med.
– volume: 138
  start-page: 291
  year: 1991
  end-page: 299
  article-title: Optimum dissociating conditions for immunoaffinity and preferential isolation of antibodies with high specific activity
  publication-title: J. Immunol. Meth.
– volume: 14
  start-page: 2966
  year: 1994
  end-page: 2979
  article-title: Heterogeneous subregional binding patterns of H‐WIN 35,428 and H‐GBR 12,935 are differentially regulated by chronic cocaine self‐administration
  publication-title: J. Neurosci.
– volume: 47
  start-page: 130S
  year: 2000
  article-title: Cocaine effects on striatal dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) protein in humans
  publication-title: Biol. Psychiat.
– volume: 41
  start-page: 36
  year: 2000
  end-page: 44
  article-title: Imaging serotonin and dopamine transporters with I‐beta‐CIT SPECT: binding kinetics and effects of normal aging
  publication-title: J. Nucl. Med.
– start-page: 287
  year: 1975
  end-page: 305
– volume: 97
  start-page: 457
  year: 1974
  end-page: 472
  article-title: Huntington's chorea: post‐mortem measurement of glutamic acid decarboxylase, choline acetyl‐transferase and dopamine in basal ganglia
  publication-title: Brain
– volume: 34
  start-page: 278
  year: 1980
  end-page: 283
  article-title: Regional distribution of neurotransmitter synthesizing enzymes in the basal ganglia of human brain
  publication-title: J. Neurochem.
– volume: 10
  start-page: 10
  year: 1995
  end-page: 17
  article-title: Striatal tyrosine hydroxylase and dopa decarboxylase protein in dominantly‐inherited olivopontocerebellar atrophy and idiopathic Parkinson's disease
  publication-title: Mov. Disorders
– volume: 16
  start-page: 3507
  year: 1996
  end-page: 3510
  article-title: The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self‐administration in the rat
  publication-title: J. Neurosci.
– volume: 21
  start-page: 721
  year: 1995
  article-title: Quantification of dopamine transporter proteins in cocaine fatalities using immunological approaches
  publication-title: Soc. Neurosci. Abstract
– volume: 40
  start-page: 873
  year: 1996
  end-page: 884
  article-title: Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging
  publication-title: Ann. Neurol.
– volume: 30
  start-page: 841
  year: 1978
  end-page: 848
  article-title: Regional distribution of monoamines and their metabolites in the human brain
  publication-title: J. Neurochem.
– volume: 12
  start-page: 845
  year: 1968
  end-page: 849
  article-title: Ageing of the substantia nigra
  publication-title: Adv. Neurol. Sci.
– volume: 12
  start-page: 336
  year: 1991
  end-page: 338
  article-title: Morphometry of the human cortex cerebri and corpus striatum during aging
  publication-title: Neurobiol. Aging
– volume: 123
  start-page: 366
  year: 2000
  end-page: 373
  article-title: Preservation of midbrain catecholaminergic neurons in very old human subjects
  publication-title: Brain
– volume: 23
  start-page: 1
  year: 1997
  end-page: 7
  article-title: Chronic inhibition of the high‐affinity dopamine uptake system increases oxidative damage to proteins in the aged rat substantia nigra
  publication-title: Free Radic. Biol. Med.
– volume: 426
  start-page: 534
  year: 2000
  end-page: 548
  article-title: Age‐related decreases in GTP‐cyclohydrolase‐I immunoreactive neurons in the monkey and human substantia nigra
  publication-title: J. Comp. Neurol.
– volume: 62
  start-page: 680
  year: 1994
  end-page: 685
  article-title: Elevated tyrosine hydroxylase in the locus coeruleus of suicide victims
  publication-title: J. Neurochem.
– volume: 358
  start-page: 383
  year: 1995
  end-page: 400
  article-title: Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis
  publication-title: J. Comp. Neurol.
– volume: 8
  start-page: 415
  year: 1998
  end-page: 427
  article-title: Postnatal development of tyrosine hydroxylase‐ and dopamine transporter‐immunoreactive axons in monkey rostral entorhinal cortex
  publication-title: Cereb. Cortex
– volume: 58
  start-page: 642
  year: 1992
  end-page: 648
  article-title: Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson's disease
  publication-title: J. Neurochem.
– volume: 164
  start-page: 1024
  year: 1989
  end-page: 1030
  article-title: Isolation and characterization of a cDNA clone encoding human aromatic 1‐amino acid decarboxylase
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 26
  start-page: 65
  year: 1972
  end-page: 76
  article-title: Occurrence and distribution of aromatic 1‐amino acid (L‐DOPA) decarboxylase in the human brain
  publication-title: J. Neurochem.
– volume: 89
  start-page: 7095
  year: 1992
  end-page: 7099
  article-title: Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 86
  start-page: 237
  year: 2001
  end-page: 247
  article-title: Imaging the vesicular monoamine transporter
  publication-title: Adv. Neurol.
– volume: 67
  start-page: 19
  year: 1996
  end-page: 25
  article-title: New species of human tyrosine hydroxylase mRNA are produced in variable amounts in adrenal medulla and are overexpressed in progressive supranuclear palsy
  publication-title: J. Neurochem.
– ident: e_1_2_31_37_1
  doi: 10.1093/brain/123.2.366
– ident: e_1_2_31_61_1
  doi: 10.1126/science.1145194
– ident: e_1_2_31_60_1
  doi: 10.1002/ana.410260409
– ident: e_1_2_31_16_1
  doi: 10.1046/j.1525-1373.1999.d01-140.x
– volume: 38
  start-page: 95
  year: 1995
  ident: e_1_2_31_9_1
  article-title: The role of dopamine in drug abuse viewed from the perspective of its role in motivation
  publication-title: Drug Alcohol Depend.
  doi: 10.1016/0376-8716(95)01118-I
– ident: e_1_2_31_42_1
  doi: 10.1111/j.1471-4159.1978.tb10792.x
– ident: e_1_2_31_62_1
  doi: 10.1016/0003-2697(78)90679-6
– volume: 3
  start-page: 251
  year: 1994
  ident: e_1_2_31_32_1
  article-title: Aging and the nigrostriatal dopamine system: a non‐human primate study
  publication-title: Neurodegeneration
– ident: e_1_2_31_69_1
  doi: 10.1016/0022-1759(91)90178-I
– ident: e_1_2_31_81_1
  doi: 10.1016/0014-2999(86)90758-2
– volume: 14
  start-page: 2966
  year: 1994
  ident: e_1_2_31_76_1
  article-title: Heterogeneous subregional binding patterns of 3H‐WIN 35,428 and 3H‐GBR 12,935 are differentially regulated by chronic cocaine self‐administration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-05-02966.1994
– ident: e_1_2_31_25_1
  doi: 10.1111/j.1471-4159.1991.tb03477.x
– ident: e_1_2_31_33_1
  doi: 10.1111/j.1471-4159.1993.tb03494.x
– ident: e_1_2_31_68_1
  doi: 10.1007/BF01254252
– ident: e_1_2_31_45_1
  doi: 10.1007/978-1-4684-0925-3_13
– volume: 86
  start-page: 237
  year: 2001
  ident: e_1_2_31_18_1
  article-title: Imaging the vesicular monoamine transporter
  publication-title: Adv. Neurol.
– ident: e_1_2_31_58_1
  doi: 10.1002/cne.903580306
– ident: e_1_2_31_71_1
  doi: 10.1016/S0028-3908(99)00210-5
– ident: e_1_2_31_54_1
  doi: 10.1016/S0169-328X(98)00058-8
– ident: e_1_2_31_40_1
  doi: 10.1016/S0278-5846(98)00017-7
– ident: e_1_2_31_6_1
  doi: 10.1001/archneur.1975.00490430069012
– ident: e_1_2_31_77_1
  doi: 10.1002/ana.410400312
– ident: e_1_2_31_2_1
  doi: 10.1007/BF01250085
– ident: e_1_2_31_70_1
  doi: 10.1016/0014-2999(95)00594-3
– volume: 38
  start-page: 19
  year: 1983
  ident: e_1_2_31_8_1
  article-title: Biochemical changes in normal aging in human brain
  publication-title: Adv. Neurol.
– volume: 40
  start-page: 1812
  year: 1999
  ident: e_1_2_31_49_1
  article-title: Effects of age on dopamine transporters in healthy humans
  publication-title: J. Nucl. Med.
– ident: e_1_2_31_53_1
  doi: 10.1002/ana.410350405
– ident: e_1_2_31_82_1
  doi: 10.1002/mds.870100104
– ident: e_1_2_31_20_1
  doi: 10.1111/j.1471-4159.1980.tb06593.x
– ident: e_1_2_31_55_1
  doi: 10.1001/archpsyc.1977.01770130091009
– ident: e_1_2_31_38_1
  doi: 10.1016/0306-4522(93)90267-J
– ident: e_1_2_31_14_1
  doi: 10.1093/brain/114.5.2283
– ident: e_1_2_31_15_1
  doi: 10.1146/annurev.biochem.68.1.355
– ident: e_1_2_31_10_1
  doi: 10.1046/j.1471-4159.1996.67010019.x
– ident: e_1_2_31_66_1
  doi: 10.1016/0006-8993(72)90019-4
– ident: e_1_2_31_11_1
  doi: 10.1007/BF01485901
– ident: e_1_2_31_13_1
  doi: 10.1093/cercor/8.5.415
– volume: 271
  start-page: 1678
  year: 1994
  ident: e_1_2_31_64_1
  article-title: High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims
  publication-title: J. Pharmacol. Exp. Ther.
– ident: e_1_2_31_56_1
  doi: 10.1016/S0891-5849(96)00405-4
– ident: e_1_2_31_79_1
  doi: 10.1111/j.1471-4159.1991.tb11410.x
– ident: e_1_2_31_48_1
  doi: 10.1001/archneur.1977.00500130053010
– ident: e_1_2_31_80_1
  doi: 10.1016/S0387-7604(00)00144-3
– ident: e_1_2_31_26_1
  doi: 10.1111/j.1471-4159.1993.tb03177.x
– ident: e_1_2_31_24_1
  doi: 10.1016/0003-2697(89)90240-6
– ident: e_1_2_31_36_1
  doi: 10.1002/ana.410380220
– ident: e_1_2_31_63_1
  doi: 10.1016/0003-2697(85)90442-7
– volume: 26
  start-page: 65
  year: 1972
  ident: e_1_2_31_41_1
  article-title: Occurrence and distribution of aromatic 1‐amino acid (L‐DOPA) decarboxylase in the human brain
  publication-title: J. Neurochem.
– volume: 12
  start-page: 845
  year: 1968
  ident: e_1_2_31_29_1
  article-title: Ageing of the substantia nigra
  publication-title: Adv. Neurol. Sci.
– ident: e_1_2_31_44_1
  doi: 10.1139/o67-227
– ident: e_1_2_31_7_1
  doi: 10.1002/1096-9861(20001030)426:4<534::AID-CNE3>3.0.CO;2-G
– ident: e_1_2_31_34_1
  doi: 10.1056/NEJM198804073181402
– start-page: 389
  volume-title: Neurobiology of Aging
  year: 1976
  ident: e_1_2_31_46_1
– ident: e_1_2_31_17_1
  doi: 10.1002/ana.410400609
– ident: e_1_2_31_59_1
  doi: 10.1159/000112087
– ident: e_1_2_31_43_1
  doi: 10.1007/BF00717030
– ident: e_1_2_31_21_1
  doi: 10.1073/pnas.86.7.2493
– ident: e_1_2_31_5_1
  doi: 10.1093/brain/97.1.457
– ident: e_1_2_31_78_1
  doi: 10.1212/WNL.47.3.718
– ident: e_1_2_31_4_1
  doi: 10.1073/pnas.89.15.7095
– ident: e_1_2_31_57_1
  doi: 10.1016/0006-3223(94)90610-6
– ident: e_1_2_31_12_1
  doi: 10.1073/pnas.93.10.5166
– ident: e_1_2_31_27_1
  doi: 10.1006/abio.1993.1068
– ident: e_1_2_31_50_1
  doi: 10.1016/S0006-3223(00)00695-8
– volume: 38
  start-page: 201
  year: 1990
  ident: e_1_2_31_67_1
  article-title: Age, environments, and the number of substantia nigra neurons
  publication-title: Adv. Neurol.
– ident: e_1_2_31_75_1
  doi: 10.1523/JNEUROSCI.16-10-03507.1996
– ident: e_1_2_31_22_1
  doi: 10.1023/A:1024295422944
– ident: e_1_2_31_39_1
  doi: 10.1016/0006-8993(93)90932-D
– ident: e_1_2_31_35_1
  doi: 10.1111/j.1471-4159.1992.tb09766.x
– ident: e_1_2_31_72_1
  doi: 10.1002/ana.410360218
– ident: e_1_2_31_74_1
  doi: 10.1002/ana.410440125
– ident: e_1_2_31_30_1
  doi: 10.1212/WNL.42.10.1980
– ident: e_1_2_31_47_1
  doi: 10.1111/j.1471-4159.1976.tb04437.x
– volume: 37
  start-page: 554
  year: 1996
  ident: e_1_2_31_73_1
  article-title: Dopamine transporters decrease with age
  publication-title: J. Nucl. Med.
– ident: e_1_2_31_31_1
  doi: 10.1016/0006-291X(89)91772-5
– ident: e_1_2_31_23_1
  doi: 10.1016/0197-4580(91)90013-A
– ident: e_1_2_31_19_1
  doi: 10.1212/WNL.51.2.632
– ident: e_1_2_31_51_1
  doi: 10.1046/j.1471-4159.1994.62020680.x
– volume: 21
  start-page: 721
  year: 1995
  ident: e_1_2_31_65_1
  article-title: Quantification of dopamine transporter proteins in cocaine fatalities using immunological approaches
  publication-title: Soc. Neurosci. Abstract
– ident: e_1_2_31_3_1
  doi: 10.1016/0197-4580(89)90001-8
– ident: e_1_2_31_28_1
  doi: 10.1046/j.1471-4159.2002.00881.x
– volume: 41
  start-page: 36
  year: 2000
  ident: e_1_2_31_52_1
  article-title: Imaging serotonin and dopamine transporters with 123I‐beta‐CIT SPECT: binding kinetics and effects of normal aging
  publication-title: J. Nucl. Med.
SSID ssj0016461
Score 2.200904
Snippet Because age‐related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of...
Because age-related changes in brain dopaminergic innervation are assumed to influence human disorders involving dopamine (DA), we measured the levels of...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 574
SubjectTerms Adolescent
Adult
Age Factors
Aged
Aged, 80 and over
Aging - metabolism
aromatic l‐amino acid decarboxylase
Aromatic-L-Amino-Acid Decarboxylases - analysis
Biological and medical sciences
Biomarkers - analysis
blot immunolabeling
Child
Child, Preschool
Corpus Striatum - chemistry
Development. Senescence. Regeneration. Transplantation
Dopamine - analysis
Dopamine Plasma Membrane Transport Proteins
dopamine transporter
Female
Fundamental and applied biological sciences. Psychology
Homovanillic Acid - analysis
Humans
Infant
Infant, Newborn
Male
Membrane Glycoproteins - analysis
Membrane Transport Proteins - analysis
Middle Aged
Nerve Tissue Proteins
Neuropeptides
Phosphopyruvate Hydratase - analysis
postmortem
Presynaptic Terminals - chemistry
Presynaptic Terminals - metabolism
Reference Values
Tyrosine 3-Monooxygenase - analysis
tyrosine hydroxylase
Vertebrates: nervous system and sense organs
Vesicular Biogenic Amine Transport Proteins
Vesicular Monoamine Transport Proteins
vesicular monoamine transporter 2
Title Marked disparity between age‐related changes in dopamine and other presynaptic dopaminergic markers in human striatum
URI https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1471-4159.2003.02017.x
https://www.ncbi.nlm.nih.gov/pubmed/14535941
https://www.proquest.com/docview/19162177
https://www.proquest.com/docview/75757895
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB5CLg2E_iRN47bZ6lB687KKJMs6hqUhBJpDaSA3I8syhHSdsOsl2Z76CH3GPklnJNthQyih9LagHWHLo5n5pJn5AD5mpajRi3BKK3epdKZMc-UmqeIOgZjVGJNQgfOXs-zkXJ5eqIsu_4lqYWJ_iOHAjXZGsNe0wW0ZWUgmobstbXKN-Af9cWjrOcbAh-sxxZOUukXx0dehkxR10eJD43BU1C6pp7_gfGyiNU-1fWMXuGh1ZLt4LBxdj26Dezp-AVf9i8WslKvxsi3H7seDno__581fwvMuimVHUe1ewYZvdmD3qEEEP1uxTyzklYYD-x14Nu055XbhlkqDfMWqywWxH7Yr1uWJMTRrv3_-CpU1OB7LkRfssmEVovoZPjKzTcVCuRij3N1VY9HYuWF4jhaczWj2eRAL3IMskJK0y9lrOD_-_G16knbUD6mT5lCnCPvqMje5t5ZXnlOTO-1FrqVxZlJbw411RLRldaWUOnSqlNKL2tc1Dnu0OXuw2Vw3fh-Y0Lmq5KREKIYilTYZQizjhKZLXSHqBHT_mQvX9UUneo7vRbifl1nAR5oXtN7E2imKsN7FXQJ8kLyJvUGeIDNa06R7QYWRtlA6gQ-9ahX4cej6xjb-erkoEFlnCCD_8g-tiJ3AqATeRJ28n10qoYzkCWRBs578vMXp2ZR-vf1XwXewFfMf6dTqPWy286U_wDiuLUdhh47Il6o_A5w50Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6h9lAkRKHlkQKtD4hblnVtx_GxWlEtpd0DaqXeIsdxpKrdtNrNCpYTP4Hf2F_CjPOoFlWoQtxW8o6VOOPxfJ7HB_A-yUWJpwintHIXS2fyOFVuGCvuEIhZjT4JFTifTJLxmTw6V-ctHRDVwjT9IfoLN9oZwV7TBqcL6Y9tWLLd5RoBEB7Ioa_nAD0frgfoUK4TwXfAV1_7XlLUR4v3rcNRVdu0ni7Eed9MK2fVkxs7x2UrG76L-xzSVf82HFCHm3DVvVqTl3I5WNT5wP34o-vjf3r3Z_C0dWTZQaN5z-GRr7Zg-6BCED9dsg8spJaGO_st2Bh1tHLb8I2qg3zBios5ESDWS9amijG0bLc_f4XiGhxvKpLn7KJiBQL7KT4zs1XBQsUYo_TdZWXR3rl-eIZGnE1p9lkQC_SDLPCS1IvpCzg7_HQ6Gsct-0PspNnXMSK_Mk9N6q3lhefU5057kWppnBmW1nBjHXFtWV0opfadyqX0ovRlicMezc5LWKuuK_8amNCpKuQwRzSGIoU2CaIs44SmuK4QZQS6-86Za1ujE0PHVRZC9DIJEEnzjNabiDtFFtY7-x4B7yVvmvYgD5DZXVGlO0GFzrZQOoK9Trcy_DgUwbGVv17MMwTXCWLIv_xDKyIoMCqCV41S3s0ulVBG8giSoFoPft7saDKiXzv_KrgHG-PTk-Ps-PPkyxt43KRD0iXWW1irZwv_Dt26Ot8N2_U3L8Q9Bg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5IBRWKl9ba8dLmQXybddMkk8lj2brUqouIhb4NmUwGSt3psjuLrk_-BH-jv8RzMpeyUqSIbwvZE2YyJyfny7l8AC-TXJR4inBKK3exdCaPU-WGseIOgZjV6JNQgfOHSXJ8Kk_O1Fmb_0S1ME1_iP7CjXZGsNe0wWdF-bqNSrabXCP-wfM4tPUcoOPD9QD9ydsyGaak4Uef-lZS1EaL953DUVPbrJ4uwnndTGtH1ebMLnDVyobu4jp_dN29DefT-AFcdG_WpKVcDJZ1PnDf_2j6-H9e_SHcb91Ydtjo3SO45ast2D6sEMJPV-wVC4ml4cZ-C-6OOlK5bfhKtUG-YMX5gugP6xVrE8UY2rVfP36G0hocb-qRF-y8YgXC-ik-MrNVwUK9GKPk3VVl0dq5fniOJpxNafZ5EAvkgyywktTL6WM4Hb_5PDqOW-6H2ElzoGPEfWWemtRbywvPqcud9iLV0jgzLK3hxjpi2rK6UEodOJVL6UXpyxKHPRqdHdioLiu_C0zoVBVymCMWQ5FCmwQxlnFCU1RXiDIC3X3mzLWN0Ymf40sWAvQyCQBJ84zWm2g7RRbWO_sWAe8lZ01zkBvI7K1p0pWgQldbKB3BfqdaGX4cit_Yyl8uFxlC6wQR5F_-oRXRExgVwZNGJ69ml0ooI3kESdCsGz9vdjIZ0a-n_yq4D3c-Ho2z928n757BvSYXkm6wnsNGPV_6F-jT1fle2Ky_AVgXO74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marked+disparity+between+age-related+changes+in+dopamine+and+other+presynaptic+dopaminergic+markers+in+human+striatum&rft.jtitle=Journal+of+neurochemistry&rft.au=HAYCOCK%2C+John+W&rft.au=BECKER%2C+Laurence&rft.au=ANG%2C+Lee&rft.au=FURUKAWA%2C+Yoshiaki&rft.date=2003-11-01&rft.pub=Blackwell&rft.issn=0022-3042&rft.volume=87&rft.issue=3&rft.spage=574&rft.epage=585&rft_id=info:doi/10.1046%2Fj.1471-4159.2003.02017.x&rft.externalDBID=n%2Fa&rft.externalDocID=15231357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon