Flexible Organic/Inorganic Hybrid Near‐Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring

Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐e...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 31
Main Authors Xu, Huihua, Liu, Jing, Zhang, Jie, Zhou, Guodong, Luo, Ningqi, Zhao, Ni
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W−1 and noise equivalent power of 1.2 × 10−15 W Hz−1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring. Epidermal and flexible photoplethysmogram (PPG) sensors that can be operated in the near‐infrared regime with high sensitivity are demonstrated. The sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than conventional PPG sensors while consuming less power.
AbstractList Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near-infrared (NIR) PPG sensors integrating a low-power, high-sensitivity organic phototransistor (OPT) with a high-efficiency inorganic light-emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 10 A W and noise equivalent power of 1.2 × 10 W Hz is achieved, greatly surpassing commercial available silicon-based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low-power, real-time physiological monitoring.
Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W−1 and noise equivalent power of 1.2 × 10−15 W Hz−1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring.
Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W−1 and noise equivalent power of 1.2 × 10−15 W Hz−1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring. Epidermal and flexible photoplethysmogram (PPG) sensors that can be operated in the near‐infrared regime with high sensitivity are demonstrated. The sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than conventional PPG sensors while consuming less power.
Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 10 5 A W −1 and noise equivalent power of 1.2 × 10 −15 W Hz −1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring.
Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near-infrared (NIR) PPG sensors integrating a low-power, high-sensitivity organic phototransistor (OPT) with a high-efficiency inorganic light-emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W-1 and noise equivalent power of 1.2 × 10-15 W Hz-1/2 is achieved, greatly surpassing commercial available silicon-based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low-power, real-time physiological monitoring.Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near-infrared (NIR) PPG sensors integrating a low-power, high-sensitivity organic phototransistor (OPT) with a high-efficiency inorganic light-emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W-1 and noise equivalent power of 1.2 × 10-15 W Hz-1/2 is achieved, greatly surpassing commercial available silicon-based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low-power, real-time physiological monitoring.
Author Zhao, Ni
Zhang, Jie
Liu, Jing
Luo, Ningqi
Xu, Huihua
Zhou, Guodong
Author_xml – sequence: 1
  givenname: Huihua
  surname: Xu
  fullname: Xu, Huihua
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Guodong
  surname: Zhou
  fullname: Zhou, Guodong
  organization: The Chinese University of Hong Kong
– sequence: 5
  givenname: Ningqi
  surname: Luo
  fullname: Luo, Ningqi
  organization: The Chinese University of Hong Kong
– sequence: 6
  givenname: Ni
  surname: Zhao
  fullname: Zhao, Ni
  email: nzhao@ee.cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28612929$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFDEchoNU7LZ69SgDXrzMNn9nJ8dla-1CawX1HJJMZpuSSdZfZrR760fwM_pJTNlWoSAeQnJ4npfwvkfoIKboEHpN8JxgTE90N-g5xWSBsVyIZ2hGBCU1x1IcoBmWTNSy4e0hOsr5Bhemwc0LdEjbhlBJ5Qz5s-BuvQmuuoKNjt6erGPav6rznQHfVR-dhl93P9exBw2uqz5dpzFtgxuvd3lIG9BD9dnFnKDqy1lp6Hz6rrOdgobqMkU_JvBx8xI973XI7tXDfYy-nr3_sjqvL64-rFfLi9pySUUtsJSOMtPShmthnGyZpX0jKZet1VQwYvqFMBT3TBsjekHahlrMJOESc2fZMXq3z91C-ja5PKrBZ-tC0NGlKSsiS1NMLjgr6Nsn6E2aIJbfFap0VFLbtlBvHqjJDK5TW_CDhp16LLEAfA9YSDmD65X1ox59iiNoHxTB6n4rdb-V-rNV0eZPtMfkfwpyL_zwwe3-Q6vl6eXyr_sbRzqngg
CitedBy_id crossref_primary_10_1039_D2TC00646D
crossref_primary_10_1016_j_matchemphys_2022_126223
crossref_primary_10_1002_aenm_202002646
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1039_C9CS00431A
crossref_primary_10_1002_adom_202300312
crossref_primary_10_3390_ma16062133
crossref_primary_10_1016_j_isci_2021_103711
crossref_primary_10_1021_acsaelm_0c00724
crossref_primary_10_1002_adfm_202206765
crossref_primary_10_1038_s41598_018_35062_7
crossref_primary_10_1016_j_mtbio_2023_100787
crossref_primary_10_1016_j_sna_2024_115311
crossref_primary_10_1002_cptc_201900198
crossref_primary_10_1002_adom_202200371
crossref_primary_10_1002_cjoc_202200686
crossref_primary_10_1039_D2MH00892K
crossref_primary_10_1002_adfm_202400676
crossref_primary_10_1021_acsami_0c06022
crossref_primary_10_1109_JSTQE_2024_3350431
crossref_primary_10_3390_s21113674
crossref_primary_10_1002_adfm_201805045
crossref_primary_10_1016_j_jelechem_2018_08_001
crossref_primary_10_1002_adfm_202103787
crossref_primary_10_1002_smll_202206309
crossref_primary_10_1080_08037051_2024_2304190
crossref_primary_10_1109_JSEN_2024_3515893
crossref_primary_10_1016_j_pmatsci_2022_100962
crossref_primary_10_1002_adma_201901437
crossref_primary_10_1021_acsami_4c03388
crossref_primary_10_1109_TSM_2021_3083069
crossref_primary_10_1002_adma_201802359
crossref_primary_10_1016_j_dyepig_2020_108811
crossref_primary_10_35848_1347_4065_ac2f20
crossref_primary_10_1002_adma_202402568
crossref_primary_10_1002_adma_202403538
crossref_primary_10_1002_aisy_202000091
crossref_primary_10_1016_j_infrared_2024_105455
crossref_primary_10_1039_D1MA01170G
crossref_primary_10_1021_acsami_0c14237
crossref_primary_10_1038_s41467_021_22558_6
crossref_primary_10_1088_1742_6596_2070_1_012040
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1038_s41928_019_0354_7
crossref_primary_10_1002_adma_202310478
crossref_primary_10_1016_j_sna_2025_116461
crossref_primary_10_1039_D2TC03318F
crossref_primary_10_3390_technologies7020035
crossref_primary_10_1021_acsmaterialslett_2c00085
crossref_primary_10_1109_OJNANO_2022_3226603
crossref_primary_10_3390_s22124460
crossref_primary_10_1039_D2TC04889B
crossref_primary_10_1021_acsami_3c10338
crossref_primary_10_1002_smtd_202300246
crossref_primary_10_1016_j_chempr_2024_01_002
crossref_primary_10_1109_RBME_2018_2887301
crossref_primary_10_1002_sdtp_17615
crossref_primary_10_1002_adma_202207763
crossref_primary_10_1088_1361_6579_acead2
crossref_primary_10_3390_s20082291
crossref_primary_10_1021_acsmaterialslett_2c00191
crossref_primary_10_1002_advs_202304174
crossref_primary_10_1063_5_0102811
crossref_primary_10_3390_ma16155249
crossref_primary_10_1016_j_actbio_2021_06_018
crossref_primary_10_1039_D4NR03257H
crossref_primary_10_1021_acsnano_4c04291
crossref_primary_10_1039_C8TC02230E
crossref_primary_10_5757_ASCT_2025_34_1_27
crossref_primary_10_1016_j_carbpol_2023_121310
crossref_primary_10_1039_D2CS00207H
crossref_primary_10_1002_lpor_202300791
crossref_primary_10_1002_adfm_202211486
crossref_primary_10_1002_adma_202201364
crossref_primary_10_1039_C8TC06078A
crossref_primary_10_1002_admi_202101897
crossref_primary_10_1002_smtd_202402250
crossref_primary_10_1002_aenm_201801003
crossref_primary_10_1016_j_nanoen_2020_105240
crossref_primary_10_1039_C8TB01063C
crossref_primary_10_1002_admt_202000347
crossref_primary_10_1039_D3DD00041A
crossref_primary_10_1002_admt_201800628
crossref_primary_10_1002_aelm_201900055
crossref_primary_10_1039_D4TC04940C
crossref_primary_10_1002_admt_202301232
crossref_primary_10_1080_10426914_2021_2001505
crossref_primary_10_1109_TBME_2018_2874957
crossref_primary_10_1088_2515_7639_abd018
crossref_primary_10_1007_s00339_018_1899_4
crossref_primary_10_1021_acsami_1c20742
crossref_primary_10_1021_acs_nanolett_4c01917
crossref_primary_10_1021_acsami_2c10133
crossref_primary_10_1039_D4NR03110E
crossref_primary_10_1002_adom_202202469
crossref_primary_10_1186_s43593_022_00024_0
crossref_primary_10_1039_D0MH00483A
crossref_primary_10_1038_s41569_025_01127_0
crossref_primary_10_1002_adfm_202407978
crossref_primary_10_1002_adma_201706260
crossref_primary_10_1016_j_xinn_2023_100485
crossref_primary_10_1039_D1TC01101D
crossref_primary_10_1038_s41928_024_01199_9
crossref_primary_10_1021_acs_chemrev_8b00573
crossref_primary_10_1039_D0TC04933F
crossref_primary_10_1002_lpor_202000262
crossref_primary_10_1002_adma_202211714
crossref_primary_10_1109_LED_2022_3216280
crossref_primary_10_1016_j_nanoen_2021_106399
crossref_primary_10_1016_j_orgel_2022_106452
crossref_primary_10_34133_cbsystems_0172
crossref_primary_10_1039_C8TB02862A
crossref_primary_10_1039_D3TC02028B
crossref_primary_10_1021_acsami_2c04169
crossref_primary_10_1038_s41528_022_00229_w
crossref_primary_10_4028_p_op1nzx
crossref_primary_10_1016_j_cej_2022_139815
crossref_primary_10_1021_acsaelm_9b00136
crossref_primary_10_1002_adma_201806010
crossref_primary_10_1088_1674_4926_44_11_112001
crossref_primary_10_1002_adma_201800156
crossref_primary_10_3390_s23167214
crossref_primary_10_1016_j_nanoms_2024_10_001
crossref_primary_10_1002_adfm_202007119
crossref_primary_10_1016_j_nanoen_2022_107311
crossref_primary_10_1016_j_orgel_2022_106454
crossref_primary_10_1039_C8TC03917H
crossref_primary_10_1109_JPROC_2019_2930808
crossref_primary_10_1002_admt_202101134
crossref_primary_10_1109_JEDS_2022_3195210
crossref_primary_10_1039_D3SD00201B
crossref_primary_10_1109_TNANO_2023_3234357
crossref_primary_10_3390_nano12213775
crossref_primary_10_1088_1361_6641_abacde
crossref_primary_10_1002_adom_202302210
crossref_primary_10_1088_1361_6463_ac5990
crossref_primary_10_1063_5_0202910
crossref_primary_10_1002_smtd_201700340
crossref_primary_10_1016_j_nanoen_2023_109097
crossref_primary_10_2174_1573411017999210120180646
crossref_primary_10_1016_j_jallcom_2020_156948
crossref_primary_10_1002_adma_202004416
crossref_primary_10_1002_admt_202200454
crossref_primary_10_35848_1347_4065_acaa42
crossref_primary_10_1002_adma_202100582
crossref_primary_10_1002_inf2_12063
crossref_primary_10_1021_acsami_0c08049
crossref_primary_10_1021_acsbiomaterials_9b01659
crossref_primary_10_1002_pssr_201700400
crossref_primary_10_1002_adma_202416899
crossref_primary_10_1002_adfm_202100565
crossref_primary_10_1021_acsami_2c07924
crossref_primary_10_1109_JSEN_2023_3287291
crossref_primary_10_1039_D3CC04189A
crossref_primary_10_1016_j_wees_2024_05_004
crossref_primary_10_1021_acsphotonics_4c02182
crossref_primary_10_1002_adfm_202315469
crossref_primary_10_1002_inf2_12073
crossref_primary_10_1021_acsnano_2c08731
crossref_primary_10_1002_aelm_202300340
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1002_adma_201906027
crossref_primary_10_1109_JSEN_2022_3174611
crossref_primary_10_1002_lpor_202401992
crossref_primary_10_1016_j_isci_2024_110707
crossref_primary_10_1038_s41467_018_07943_y
crossref_primary_10_1002_adom_202202008
crossref_primary_10_1002_pssa_202200068
crossref_primary_10_1002_marc_202100931
crossref_primary_10_1109_JPHOT_2023_3236817
crossref_primary_10_1002_marc_202100134
crossref_primary_10_1002_adfm_201902127
crossref_primary_10_1039_D2SD00037G
crossref_primary_10_1002_adom_202301955
crossref_primary_10_1039_C8NR08589G
crossref_primary_10_1002_advs_202410332
crossref_primary_10_1109_ACCESS_2021_3078534
crossref_primary_10_1109_TCPMT_2021_3082647
crossref_primary_10_1093_ehjopen_oeae040
crossref_primary_10_1021_acs_chemmater_9b00966
crossref_primary_10_1002_adma_201902045
crossref_primary_10_7498_aps_72_20230480
crossref_primary_10_1088_1674_4926_24080026
crossref_primary_10_1002_adma_202418705
crossref_primary_10_1007_s11664_022_09922_y
crossref_primary_10_1039_D1CC04828G
crossref_primary_10_1039_D4TC01925C
crossref_primary_10_1002_adma_201808138
crossref_primary_10_1039_D0TC05390B
crossref_primary_10_1002_aelm_202400762
crossref_primary_10_1039_C9TC01331H
crossref_primary_10_1002_inf2_12424
crossref_primary_10_1002_admt_202200250
crossref_primary_10_1109_LED_2018_2865497
crossref_primary_10_1002_adma_202301020
crossref_primary_10_1002_adom_202102650
crossref_primary_10_1126_sciadv_abq0187
crossref_primary_10_1002_advs_201900925
crossref_primary_10_1016_j_optmat_2021_110886
crossref_primary_10_3390_electronics11030316
crossref_primary_10_1109_JSEN_2019_2928462
crossref_primary_10_3390_photonics11111014
crossref_primary_10_1109_JBHI_2020_2990529
crossref_primary_10_1038_s41598_022_11946_7
crossref_primary_10_3390_s24237634
crossref_primary_10_3390_s20164484
crossref_primary_10_1002_adma_202209598
crossref_primary_10_1021_acsphotonics_2c01983
crossref_primary_10_1038_s41746_023_00835_6
crossref_primary_10_1002_aelm_202300765
crossref_primary_10_1016_j_xcrp_2023_101690
crossref_primary_10_1002_aelm_202400619
crossref_primary_10_1002_adom_202402800
crossref_primary_10_1038_s41528_022_00139_x
crossref_primary_10_1016_j_xcrp_2021_100541
crossref_primary_10_1016_j_bios_2020_112946
crossref_primary_10_1021_acsphotonics_8b00729
crossref_primary_10_1016_j_dyepig_2021_109782
crossref_primary_10_1016_j_nanoen_2020_105614
crossref_primary_10_1021_acsami_3c11753
crossref_primary_10_1021_acsami_8b12009
crossref_primary_10_1002_aisy_202100167
crossref_primary_10_3390_app11052313
crossref_primary_10_1002_adom_202401821
crossref_primary_10_1088_2053_1591_aacc17
Cites_doi 10.1038/ncomms2832
10.1016/0140-6736(90)90878-9
10.1161/01.CIR.94.11.2850
10.1177/016173467900100406
10.1038/ncomms6745
10.1038/nnano.2012.60
10.1088/1742-6596/307/1/012060
10.1001/jama.1996.03530440051036
10.1126/sciadv.1501856
10.1007/s10877-007-9103-y
10.1098/rspb.1922.0022
10.1109/TBME.2015.2480679
10.1016/S0140-6736(97)11144-8
10.1039/c3nr03989g
10.1364/AO.46.001754
10.1038/nature04855
10.1002/smll.201402495
10.1126/sciadv.1600418
10.1016/0002-8703(87)90666-1
10.1002/adfm.201504560
10.1002/anie.201506687
10.1038/srep00754
10.1109/TBME.2014.2309951
10.1093/oxfordjournals.eurheartj.a014868
10.1063/1.2115075
10.1002/adma.201403560
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201700975
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28612929
10_1002_adma_201700975
ADMA201700975
Genre article
Journal Article
GrantInformation_xml – fundername: Innovation and Technology
  funderid: ITS/111/14
– fundername: Innovation and Technology Commission of Hong Kong
  funderid: 3132823
– fundername: Chinese University of Hong Kong
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4925-5099e23b8264a5be983c2f692498ca2531bf75b20f3abb5f51862c03914904ec3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:42:44 EDT 2025
Fri Jul 25 07:18:21 EDT 2025
Thu Apr 03 07:09:35 EDT 2025
Tue Jul 01 00:44:34 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Wed Jan 22 17:06:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords photoplethysmogram sensors
near-infrared
organic/inorganic hybrids
organic phototransistors
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4925-5099e23b8264a5be983c2f692498ca2531bf75b20f3abb5f51862c03914904ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28612929
PQID 1928603988
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_1909739743
proquest_journals_1928603988
pubmed_primary_28612929
crossref_citationtrail_10_1002_adma_201700975
crossref_primary_10_1002_adma_201700975
wiley_primary_10_1002_adma_201700975_ADMA201700975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Aug
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2014 2016 2015; 2 5 2 27
2012; 2
1987; 113
2008 2014; 22 61
1996; 17
1998 1996; 351 94
2013 2016; 4 26
2010
1922; 93
2015; 11
2015; 54
2005 2011; 6 307
2016; 63
2005; 87
1979; 1
1990 1996; 335 275
2012; 7
2013; 5
2007; 46
2006; 442
Chuo Y. (e_1_2_5_8_1) 2010
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_5_4
e_1_2_5_7_2
e_1_2_5_11_1
e_1_2_5_5_3
e_1_2_5_6_2
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_5_2
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_3_2
e_1_2_5_4_1
e_1_2_5_2_2
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_18_1
e_1_2_5_19_2
Poon C. C. Y. (e_1_2_5_19_1) 2005; 6
References_xml – volume: 93
  start-page: 298
  year: 1922
  publication-title: Proc. R. Soc. B
– volume: 351 94
  start-page: 478 2850
  year: 1998 1996
  publication-title: Lancet Circulation
– volume: 6 307
  start-page: 5877 12060
  year: 2005 2011
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. J. Phys.: Conf. Ser.
– volume: 22 61
  start-page: 23 1538
  year: 2008 2014
  publication-title: J. Clin. Monit. Comput. IEEE Trans. Biomed. Eng.
– volume: 7
  start-page: 363
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 356
  year: 1979
  publication-title: Ultrason. Imaging
– volume: 87
  start-page: 173502
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 113
  start-page: 1489
  year: 1987
  publication-title: Am. Heart J.
– volume: 4 26
  start-page: 1858 1178
  year: 2013 2016
  publication-title: Nat. Commun. Adv. Funct. Mater.
– start-page: 155
  year: 2010
  publication-title: IEEE Sens. J.
– volume: 17
  start-page: 354
  year: 1996
  publication-title: Eur. Heart J.
– volume: 335 275
  start-page: 765 1571
  year: 1990 1996
  publication-title: Lancet JAMA, J. Am. Med. Assoc.
– volume: 11
  start-page: 906
  year: 2015
  publication-title: Small
– volume: 54
  start-page: 13068
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  start-page: 964
  year: 2016
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2
  start-page: 754
  year: 2012
  publication-title: Sci. Rep.
– volume: 5
  start-page: 11850
  year: 2013
  publication-title: Nanoscale
– volume: 2 5 2 27
  start-page: e1600418 5745 e1501856 7638
  year: 2016 2014 2016 2015
  publication-title: Sci. Adv. Nat. Commun. Sci. Adv. Adv. Mater.
– volume: 46
  start-page: 1754
  year: 2007
  publication-title: Appl. Opt.
– volume: 442
  start-page: 180
  year: 2006
  publication-title: Nature
– ident: e_1_2_5_7_1
  doi: 10.1038/ncomms2832
– ident: e_1_2_5_3_1
  doi: 10.1016/0140-6736(90)90878-9
– ident: e_1_2_5_15_1
– ident: e_1_2_5_2_2
  doi: 10.1161/01.CIR.94.11.2850
– ident: e_1_2_5_21_1
  doi: 10.1177/016173467900100406
– start-page: 155
  year: 2010
  ident: e_1_2_5_8_1
  publication-title: IEEE Sens. J.
– ident: e_1_2_5_5_2
  doi: 10.1038/ncomms6745
– ident: e_1_2_5_13_1
  doi: 10.1038/nnano.2012.60
– ident: e_1_2_5_19_2
  doi: 10.1088/1742-6596/307/1/012060
– ident: e_1_2_5_3_2
  doi: 10.1001/jama.1996.03530440051036
– ident: e_1_2_5_5_3
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_5_6_1
  doi: 10.1007/s10877-007-9103-y
– ident: e_1_2_5_20_1
  doi: 10.1098/rspb.1922.0022
– ident: e_1_2_5_4_1
– ident: e_1_2_5_22_1
  doi: 10.1109/TBME.2015.2480679
– ident: e_1_2_5_2_1
  doi: 10.1016/S0140-6736(97)11144-8
– ident: e_1_2_5_11_1
  doi: 10.1039/c3nr03989g
– ident: e_1_2_5_9_1
  doi: 10.1364/AO.46.001754
– ident: e_1_2_5_14_1
  doi: 10.1038/nature04855
– ident: e_1_2_5_17_1
  doi: 10.1002/smll.201402495
– ident: e_1_2_5_5_1
  doi: 10.1126/sciadv.1600418
– volume: 6
  start-page: 5877
  year: 2005
  ident: e_1_2_5_19_1
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– ident: e_1_2_5_1_1
  doi: 10.1016/0002-8703(87)90666-1
– ident: e_1_2_5_7_2
  doi: 10.1002/adfm.201504560
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201506687
– ident: e_1_2_5_23_1
  doi: 10.1038/srep00754
– ident: e_1_2_5_16_1
– ident: e_1_2_5_6_2
  doi: 10.1109/TBME.2014.2309951
– ident: e_1_2_5_18_1
  doi: 10.1093/oxfordjournals.eurheartj.a014868
– ident: e_1_2_5_12_1
  doi: 10.1063/1.2115075
– ident: e_1_2_5_5_4
  doi: 10.1002/adma.201403560
SSID ssj0009606
Score 2.6310847
Snippet Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Blood Pressure
Electrocardiography
Encapsulation
Heart Rate
Humans
Infrared detectors
Low voltage
Materials science
Monitoring
Monitoring, Physiologic
near‐infrared
organic phototransistors
organic/inorganic hybrids
photoplethysmogram sensors
Photoplethysmography
Physiology
Power consumption
Power efficiency
Printing
Sensors
Silicon
Transfer printing
Wearable technology
Title Flexible Organic/Inorganic Hybrid Near‐Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201700975
https://www.ncbi.nlm.nih.gov/pubmed/28612929
https://www.proquest.com/docview/1928603988
https://www.proquest.com/docview/1909739743
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VnNpDobSF0G3lSpU4hc06TuIcV7SrBYlVVYrELbIdW1SlWbSbPdATj8Az9kk6E--GDQghtbdEseWf8Xi-cWY-A3xKHJlFMQjRtkWhKLkNpZYqNII7HimuSkMH-ieTdHwmjs-T87Usfs8P0R64kWY0-zUpuNLz_h1pqCob3iDil8szyjKngC1CRd_u-KMInjdke3ES5qmQK9bGiPe71btW6QHU7CLXxvSMNkGtOu0jTn4eLGp9YH7f43P8n1FtwcslLmVDv5BewTNbbcOLNbbC1_BjROSZ-tIyn8Bp-keVvxTKsPE1ZX6xCerNn5vbo8rNKLCdfb2Y1hShTqvhVxMIxk7Rb57OGGJldtiJhWV-e6G23sDZ6Mv3w3G4vKkBZZrzJETUkVsea_RVhEq0zWVsuEvJt5NGcdRz7bJE88jFSuvEJQN0pAyR04s8EtbEb2GjmlZ2F9hAliK1sXWZ00KnJVrPLNYZJcRaZ1MVQLiSVGGWNOZ0m8Zl4QmYeUFTWLRTGMB-W_7KE3g8WrK3EnyxVOR5gQBYpthRKQP42H5GFaT_Kqqy0wWVIc4jdMziAHb8gmmbwtqIqHgeAG_E_kQfiuHnk2H7tvcvld7Bc3r2QYo92KhnC_segVOtPzTK8RcrTA_f
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAHKD-lKS0YCYlTulnHTpzjqnS1C90VglbiFtmOLRAlWy27Bzj1EfqMfRJm4k3aBSEkOCaxFcfj8XzjzHwD8FJ6MouiH6NtS2JRcRcro3RsBfc80VxXlg70J9NsdCLefJRtNCHlwgR-iO7AjTSj2a9JwelAunfFGqqrhjiICOaKXN6EW1TWu_Gq3l8xSBFAb-j2UhkXmVAtb2PCe-v91-3Sb2BzHbs2xmd4H0w77BBz8mV_uTD79scvjI7_9V2bcG8FTdkgrKUHcMPVD-HuNcLCR_B5SPyZ5tSxkMNpe-M61IWybPSdkr_YFFXn8vxiXPs5xbazd59mCwpSpwXxtYkFYx_QdZ7NGcJldrAWDsvCDkPvegwnw8Pjg1G8KtaAYi24jBF4FI6nBt0VoaVxhUot9xm5d8pqjqpufC4NT3yqjZFe9tGXssRPL4pEOJtuwUY9q902sL6qROZS53NvhMkqNKB5anLKiXXeZTqCuBVVaVdM5lRQ47QMHMy8pCksuymM4FXX_ixwePyx5W4r-XKly99KxMAqw4EqFcGL7jFqIf1a0bWbLakN0R6hb5ZG8CSsmO5V2BtBFS8i4I3c_zKGcvB6Muiudv6l03O4PTqeHJVH4-nbp3CH7oeYxV3YWMyXbg9x1MI8azTlJyH5E_o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NTULwAON_2AZGQuIpa-rYifNYrVQtsGoCJu0tsh1bTBvpVNoHeNpH2Gfkk-wubrOVCU2CxyS27Pjucr9z7n4GeCs9uUXRjdG3JbGouIuVUTq2gnueaK4rSxv6--NseCg-HMmja1X8gR-i3XAjy2i-12TgZ5XvXJGG6qrhDSJ-uSKXd2ADB1Ok1_3PVwRShM8btr1UxkUm1JK2MeGd1f6rbukG1lyFro3vGTwEvZx1SDk52Z3PzK799Qeh4_-81iY8WABT1gua9AjWXP0Y7l-jK3wCxwNizzSnjoUKTtsZ1eFUKMuGP6n0i43RcH6fX4xqP6XMdnbwbTKjFHVSh-9NJhj7goHzZMoQLLO9lWRYFr4vNNZTOBy8_7o3jBdHNaBQCy5jhB2F46nBYEVoaVyhUst9RsGdspqjoRufS8MTn2pjpJddjKQssdOLIhHOps9gvZ7U7gWwrqpE5lLnc2-EySp0n3lqcqqIdd5lOoJ4KanSLnjM6TiN0zIwMPOSlrBslzCCd237s8Dg8deW20vBlwtL_lEiAlYZTlSpCN60j9EG6ceKrt1kTm2I9AgjszSC50Fh2qGwN0IqXkTAG7HfMoey19_vtVcv_6XTa7h70B-Un0bjj1twj26HhMVtWJ9N524HQdTMvGrs5BLulxKy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Organic%2FInorganic+Hybrid+Near-Infrared+Photoplethysmogram+Sensor+for+Cardiovascular+Monitoring&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Huihua&rft.au=Liu%2C+Jing&rft.au=Zhang%2C+Jie&rft.au=Zhou%2C+Guodong&rft.date=2017-08-01&rft.eissn=1521-4095&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201700975&rft_id=info%3Apmid%2F28612929&rft.externalDocID=28612929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon