Flexible Organic/Inorganic Hybrid Near‐Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring
Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐e...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 31 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W−1 and noise equivalent power of 1.2 × 10−15 W Hz−1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring.
Epidermal and flexible photoplethysmogram (PPG) sensors that can be operated in the near‐infrared regime with high sensitivity are demonstrated. The sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than conventional PPG sensors while consuming less power. |
---|---|
AbstractList | Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near-infrared (NIR) PPG sensors integrating a low-power, high-sensitivity organic phototransistor (OPT) with a high-efficiency inorganic light-emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 10
A W
and noise equivalent power of 1.2 × 10
W Hz
is achieved, greatly surpassing commercial available silicon-based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low-power, real-time physiological monitoring. Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W−1 and noise equivalent power of 1.2 × 10−15 W Hz−1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring. Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W−1 and noise equivalent power of 1.2 × 10−15 W Hz−1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring. Epidermal and flexible photoplethysmogram (PPG) sensors that can be operated in the near‐infrared regime with high sensitivity are demonstrated. The sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than conventional PPG sensors while consuming less power. Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near‐infrared (NIR) PPG sensors integrating a low‐power, high‐sensitivity organic phototransistor (OPT) with a high‐efficiency inorganic light‐emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 10 5 A W −1 and noise equivalent power of 1.2 × 10 −15 W Hz −1/2 is achieved, greatly surpassing commercial available silicon‐based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low‐power, real‐time physiological monitoring. Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near-infrared (NIR) PPG sensors integrating a low-power, high-sensitivity organic phototransistor (OPT) with a high-efficiency inorganic light-emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W-1 and noise equivalent power of 1.2 × 10-15 W Hz-1/2 is achieved, greatly surpassing commercial available silicon-based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low-power, real-time physiological monitoring.Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work, epidermal and flexible near-infrared (NIR) PPG sensors integrating a low-power, high-sensitivity organic phototransistor (OPT) with a high-efficiency inorganic light-emitting diode are developed. By exploiting an organic bulk heterojunction active layer and a bilayer gate dielectric design, a low voltage (<3 V) operated OPT with NIR responsivity as high as 3.5 × 105 A W-1 and noise equivalent power of 1.2 × 10-15 W Hz-1/2 is achieved, greatly surpassing commercial available silicon-based photodetectors. In addition, the ultrathin encapsulation structure renders the device highly flexible and allows transfer printing of the device directly onto human skin. It is demonstrated that the epidermal/flexible PPG sensors are capable of continuously monitoring heart rate variability and precisely tracking the changes of pulse pressure at different postures of human subjects with the aid of electrocardiogram monitoring, exhibiting more reliable performance than commercial PPG sensors while consuming less power. The study suggests that the hybrid PPG sensor design may provide a promising solution for low-power, real-time physiological monitoring. |
Author | Zhao, Ni Zhang, Jie Liu, Jing Luo, Ningqi Xu, Huihua Zhou, Guodong |
Author_xml | – sequence: 1 givenname: Huihua surname: Xu fullname: Xu, Huihua organization: The Chinese University of Hong Kong – sequence: 2 givenname: Jing surname: Liu fullname: Liu, Jing organization: The Chinese University of Hong Kong – sequence: 3 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: The Chinese University of Hong Kong – sequence: 4 givenname: Guodong surname: Zhou fullname: Zhou, Guodong organization: The Chinese University of Hong Kong – sequence: 5 givenname: Ningqi surname: Luo fullname: Luo, Ningqi organization: The Chinese University of Hong Kong – sequence: 6 givenname: Ni surname: Zhao fullname: Zhao, Ni email: nzhao@ee.cuhk.edu.hk organization: The Chinese University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28612929$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFDEchoNU7LZ69SgDXrzMNn9nJ8dla-1CawX1HJJMZpuSSdZfZrR760fwM_pJTNlWoSAeQnJ4npfwvkfoIKboEHpN8JxgTE90N-g5xWSBsVyIZ2hGBCU1x1IcoBmWTNSy4e0hOsr5Bhemwc0LdEjbhlBJ5Qz5s-BuvQmuuoKNjt6erGPav6rznQHfVR-dhl93P9exBw2uqz5dpzFtgxuvd3lIG9BD9dnFnKDqy1lp6Hz6rrOdgobqMkU_JvBx8xI973XI7tXDfYy-nr3_sjqvL64-rFfLi9pySUUtsJSOMtPShmthnGyZpX0jKZet1VQwYvqFMBT3TBsjekHahlrMJOESc2fZMXq3z91C-ja5PKrBZ-tC0NGlKSsiS1NMLjgr6Nsn6E2aIJbfFap0VFLbtlBvHqjJDK5TW_CDhp16LLEAfA9YSDmD65X1ox59iiNoHxTB6n4rdb-V-rNV0eZPtMfkfwpyL_zwwe3-Q6vl6eXyr_sbRzqngg |
CitedBy_id | crossref_primary_10_1039_D2TC00646D crossref_primary_10_1016_j_matchemphys_2022_126223 crossref_primary_10_1002_aenm_202002646 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1039_C9CS00431A crossref_primary_10_1002_adom_202300312 crossref_primary_10_3390_ma16062133 crossref_primary_10_1016_j_isci_2021_103711 crossref_primary_10_1021_acsaelm_0c00724 crossref_primary_10_1002_adfm_202206765 crossref_primary_10_1038_s41598_018_35062_7 crossref_primary_10_1016_j_mtbio_2023_100787 crossref_primary_10_1016_j_sna_2024_115311 crossref_primary_10_1002_cptc_201900198 crossref_primary_10_1002_adom_202200371 crossref_primary_10_1002_cjoc_202200686 crossref_primary_10_1039_D2MH00892K crossref_primary_10_1002_adfm_202400676 crossref_primary_10_1021_acsami_0c06022 crossref_primary_10_1109_JSTQE_2024_3350431 crossref_primary_10_3390_s21113674 crossref_primary_10_1002_adfm_201805045 crossref_primary_10_1016_j_jelechem_2018_08_001 crossref_primary_10_1002_adfm_202103787 crossref_primary_10_1002_smll_202206309 crossref_primary_10_1080_08037051_2024_2304190 crossref_primary_10_1109_JSEN_2024_3515893 crossref_primary_10_1016_j_pmatsci_2022_100962 crossref_primary_10_1002_adma_201901437 crossref_primary_10_1021_acsami_4c03388 crossref_primary_10_1109_TSM_2021_3083069 crossref_primary_10_1002_adma_201802359 crossref_primary_10_1016_j_dyepig_2020_108811 crossref_primary_10_35848_1347_4065_ac2f20 crossref_primary_10_1002_adma_202402568 crossref_primary_10_1002_adma_202403538 crossref_primary_10_1002_aisy_202000091 crossref_primary_10_1016_j_infrared_2024_105455 crossref_primary_10_1039_D1MA01170G crossref_primary_10_1021_acsami_0c14237 crossref_primary_10_1038_s41467_021_22558_6 crossref_primary_10_1088_1742_6596_2070_1_012040 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_1038_s41928_019_0354_7 crossref_primary_10_1002_adma_202310478 crossref_primary_10_1016_j_sna_2025_116461 crossref_primary_10_1039_D2TC03318F crossref_primary_10_3390_technologies7020035 crossref_primary_10_1021_acsmaterialslett_2c00085 crossref_primary_10_1109_OJNANO_2022_3226603 crossref_primary_10_3390_s22124460 crossref_primary_10_1039_D2TC04889B crossref_primary_10_1021_acsami_3c10338 crossref_primary_10_1002_smtd_202300246 crossref_primary_10_1016_j_chempr_2024_01_002 crossref_primary_10_1109_RBME_2018_2887301 crossref_primary_10_1002_sdtp_17615 crossref_primary_10_1002_adma_202207763 crossref_primary_10_1088_1361_6579_acead2 crossref_primary_10_3390_s20082291 crossref_primary_10_1021_acsmaterialslett_2c00191 crossref_primary_10_1002_advs_202304174 crossref_primary_10_1063_5_0102811 crossref_primary_10_3390_ma16155249 crossref_primary_10_1016_j_actbio_2021_06_018 crossref_primary_10_1039_D4NR03257H crossref_primary_10_1021_acsnano_4c04291 crossref_primary_10_1039_C8TC02230E crossref_primary_10_5757_ASCT_2025_34_1_27 crossref_primary_10_1016_j_carbpol_2023_121310 crossref_primary_10_1039_D2CS00207H crossref_primary_10_1002_lpor_202300791 crossref_primary_10_1002_adfm_202211486 crossref_primary_10_1002_adma_202201364 crossref_primary_10_1039_C8TC06078A crossref_primary_10_1002_admi_202101897 crossref_primary_10_1002_smtd_202402250 crossref_primary_10_1002_aenm_201801003 crossref_primary_10_1016_j_nanoen_2020_105240 crossref_primary_10_1039_C8TB01063C crossref_primary_10_1002_admt_202000347 crossref_primary_10_1039_D3DD00041A crossref_primary_10_1002_admt_201800628 crossref_primary_10_1002_aelm_201900055 crossref_primary_10_1039_D4TC04940C crossref_primary_10_1002_admt_202301232 crossref_primary_10_1080_10426914_2021_2001505 crossref_primary_10_1109_TBME_2018_2874957 crossref_primary_10_1088_2515_7639_abd018 crossref_primary_10_1007_s00339_018_1899_4 crossref_primary_10_1021_acsami_1c20742 crossref_primary_10_1021_acs_nanolett_4c01917 crossref_primary_10_1021_acsami_2c10133 crossref_primary_10_1039_D4NR03110E crossref_primary_10_1002_adom_202202469 crossref_primary_10_1186_s43593_022_00024_0 crossref_primary_10_1039_D0MH00483A crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1002_adfm_202407978 crossref_primary_10_1002_adma_201706260 crossref_primary_10_1016_j_xinn_2023_100485 crossref_primary_10_1039_D1TC01101D crossref_primary_10_1038_s41928_024_01199_9 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_1039_D0TC04933F crossref_primary_10_1002_lpor_202000262 crossref_primary_10_1002_adma_202211714 crossref_primary_10_1109_LED_2022_3216280 crossref_primary_10_1016_j_nanoen_2021_106399 crossref_primary_10_1016_j_orgel_2022_106452 crossref_primary_10_34133_cbsystems_0172 crossref_primary_10_1039_C8TB02862A crossref_primary_10_1039_D3TC02028B crossref_primary_10_1021_acsami_2c04169 crossref_primary_10_1038_s41528_022_00229_w crossref_primary_10_4028_p_op1nzx crossref_primary_10_1016_j_cej_2022_139815 crossref_primary_10_1021_acsaelm_9b00136 crossref_primary_10_1002_adma_201806010 crossref_primary_10_1088_1674_4926_44_11_112001 crossref_primary_10_1002_adma_201800156 crossref_primary_10_3390_s23167214 crossref_primary_10_1016_j_nanoms_2024_10_001 crossref_primary_10_1002_adfm_202007119 crossref_primary_10_1016_j_nanoen_2022_107311 crossref_primary_10_1016_j_orgel_2022_106454 crossref_primary_10_1039_C8TC03917H crossref_primary_10_1109_JPROC_2019_2930808 crossref_primary_10_1002_admt_202101134 crossref_primary_10_1109_JEDS_2022_3195210 crossref_primary_10_1039_D3SD00201B crossref_primary_10_1109_TNANO_2023_3234357 crossref_primary_10_3390_nano12213775 crossref_primary_10_1088_1361_6641_abacde crossref_primary_10_1002_adom_202302210 crossref_primary_10_1088_1361_6463_ac5990 crossref_primary_10_1063_5_0202910 crossref_primary_10_1002_smtd_201700340 crossref_primary_10_1016_j_nanoen_2023_109097 crossref_primary_10_2174_1573411017999210120180646 crossref_primary_10_1016_j_jallcom_2020_156948 crossref_primary_10_1002_adma_202004416 crossref_primary_10_1002_admt_202200454 crossref_primary_10_35848_1347_4065_acaa42 crossref_primary_10_1002_adma_202100582 crossref_primary_10_1002_inf2_12063 crossref_primary_10_1021_acsami_0c08049 crossref_primary_10_1021_acsbiomaterials_9b01659 crossref_primary_10_1002_pssr_201700400 crossref_primary_10_1002_adma_202416899 crossref_primary_10_1002_adfm_202100565 crossref_primary_10_1021_acsami_2c07924 crossref_primary_10_1109_JSEN_2023_3287291 crossref_primary_10_1039_D3CC04189A crossref_primary_10_1016_j_wees_2024_05_004 crossref_primary_10_1021_acsphotonics_4c02182 crossref_primary_10_1002_adfm_202315469 crossref_primary_10_1002_inf2_12073 crossref_primary_10_1021_acsnano_2c08731 crossref_primary_10_1002_aelm_202300340 crossref_primary_10_1002_adma_202300034 crossref_primary_10_1002_adma_201906027 crossref_primary_10_1109_JSEN_2022_3174611 crossref_primary_10_1002_lpor_202401992 crossref_primary_10_1016_j_isci_2024_110707 crossref_primary_10_1038_s41467_018_07943_y crossref_primary_10_1002_adom_202202008 crossref_primary_10_1002_pssa_202200068 crossref_primary_10_1002_marc_202100931 crossref_primary_10_1109_JPHOT_2023_3236817 crossref_primary_10_1002_marc_202100134 crossref_primary_10_1002_adfm_201902127 crossref_primary_10_1039_D2SD00037G crossref_primary_10_1002_adom_202301955 crossref_primary_10_1039_C8NR08589G crossref_primary_10_1002_advs_202410332 crossref_primary_10_1109_ACCESS_2021_3078534 crossref_primary_10_1109_TCPMT_2021_3082647 crossref_primary_10_1093_ehjopen_oeae040 crossref_primary_10_1021_acs_chemmater_9b00966 crossref_primary_10_1002_adma_201902045 crossref_primary_10_7498_aps_72_20230480 crossref_primary_10_1088_1674_4926_24080026 crossref_primary_10_1002_adma_202418705 crossref_primary_10_1007_s11664_022_09922_y crossref_primary_10_1039_D1CC04828G crossref_primary_10_1039_D4TC01925C crossref_primary_10_1002_adma_201808138 crossref_primary_10_1039_D0TC05390B crossref_primary_10_1002_aelm_202400762 crossref_primary_10_1039_C9TC01331H crossref_primary_10_1002_inf2_12424 crossref_primary_10_1002_admt_202200250 crossref_primary_10_1109_LED_2018_2865497 crossref_primary_10_1002_adma_202301020 crossref_primary_10_1002_adom_202102650 crossref_primary_10_1126_sciadv_abq0187 crossref_primary_10_1002_advs_201900925 crossref_primary_10_1016_j_optmat_2021_110886 crossref_primary_10_3390_electronics11030316 crossref_primary_10_1109_JSEN_2019_2928462 crossref_primary_10_3390_photonics11111014 crossref_primary_10_1109_JBHI_2020_2990529 crossref_primary_10_1038_s41598_022_11946_7 crossref_primary_10_3390_s24237634 crossref_primary_10_3390_s20164484 crossref_primary_10_1002_adma_202209598 crossref_primary_10_1021_acsphotonics_2c01983 crossref_primary_10_1038_s41746_023_00835_6 crossref_primary_10_1002_aelm_202300765 crossref_primary_10_1016_j_xcrp_2023_101690 crossref_primary_10_1002_aelm_202400619 crossref_primary_10_1002_adom_202402800 crossref_primary_10_1038_s41528_022_00139_x crossref_primary_10_1016_j_xcrp_2021_100541 crossref_primary_10_1016_j_bios_2020_112946 crossref_primary_10_1021_acsphotonics_8b00729 crossref_primary_10_1016_j_dyepig_2021_109782 crossref_primary_10_1016_j_nanoen_2020_105614 crossref_primary_10_1021_acsami_3c11753 crossref_primary_10_1021_acsami_8b12009 crossref_primary_10_1002_aisy_202100167 crossref_primary_10_3390_app11052313 crossref_primary_10_1002_adom_202401821 crossref_primary_10_1088_2053_1591_aacc17 |
Cites_doi | 10.1038/ncomms2832 10.1016/0140-6736(90)90878-9 10.1161/01.CIR.94.11.2850 10.1177/016173467900100406 10.1038/ncomms6745 10.1038/nnano.2012.60 10.1088/1742-6596/307/1/012060 10.1001/jama.1996.03530440051036 10.1126/sciadv.1501856 10.1007/s10877-007-9103-y 10.1098/rspb.1922.0022 10.1109/TBME.2015.2480679 10.1016/S0140-6736(97)11144-8 10.1039/c3nr03989g 10.1364/AO.46.001754 10.1038/nature04855 10.1002/smll.201402495 10.1126/sciadv.1600418 10.1016/0002-8703(87)90666-1 10.1002/adfm.201504560 10.1002/anie.201506687 10.1038/srep00754 10.1109/TBME.2014.2309951 10.1093/oxfordjournals.eurheartj.a014868 10.1063/1.2115075 10.1002/adma.201403560 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201700975 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 28612929 10_1002_adma_201700975 ADMA201700975 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Innovation and Technology funderid: ITS/111/14 – fundername: Innovation and Technology Commission of Hong Kong funderid: 3132823 – fundername: Chinese University of Hong Kong |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4925-5099e23b8264a5be983c2f692498ca2531bf75b20f3abb5f51862c03914904ec3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:42:44 EDT 2025 Fri Jul 25 07:18:21 EDT 2025 Thu Apr 03 07:09:35 EDT 2025 Tue Jul 01 00:44:34 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Wed Jan 22 17:06:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | photoplethysmogram sensors near-infrared organic/inorganic hybrids organic phototransistors |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4925-5099e23b8264a5be983c2f692498ca2531bf75b20f3abb5f51862c03914904ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28612929 |
PQID | 1928603988 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1909739743 proquest_journals_1928603988 pubmed_primary_28612929 crossref_citationtrail_10_1002_adma_201700975 crossref_primary_10_1002_adma_201700975 wiley_primary_10_1002_adma_201700975_ADMA201700975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Aug |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-Aug |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2014 2016 2015; 2 5 2 27 2012; 2 1987; 113 2008 2014; 22 61 1996; 17 1998 1996; 351 94 2013 2016; 4 26 2010 1922; 93 2015; 11 2015; 54 2005 2011; 6 307 2016; 63 2005; 87 1979; 1 1990 1996; 335 275 2012; 7 2013; 5 2007; 46 2006; 442 Chuo Y. (e_1_2_5_8_1) 2010 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_5_4 e_1_2_5_7_2 e_1_2_5_11_1 e_1_2_5_5_3 e_1_2_5_6_2 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_5_2 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_3_2 e_1_2_5_4_1 e_1_2_5_2_2 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_18_1 e_1_2_5_19_2 Poon C. C. Y. (e_1_2_5_19_1) 2005; 6 |
References_xml | – volume: 93 start-page: 298 year: 1922 publication-title: Proc. R. Soc. B – volume: 351 94 start-page: 478 2850 year: 1998 1996 publication-title: Lancet Circulation – volume: 6 307 start-page: 5877 12060 year: 2005 2011 publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. J. Phys.: Conf. Ser. – volume: 22 61 start-page: 23 1538 year: 2008 2014 publication-title: J. Clin. Monit. Comput. IEEE Trans. Biomed. Eng. – volume: 7 start-page: 363 year: 2012 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 356 year: 1979 publication-title: Ultrason. Imaging – volume: 87 start-page: 173502 year: 2005 publication-title: Appl. Phys. Lett. – volume: 113 start-page: 1489 year: 1987 publication-title: Am. Heart J. – volume: 4 26 start-page: 1858 1178 year: 2013 2016 publication-title: Nat. Commun. Adv. Funct. Mater. – start-page: 155 year: 2010 publication-title: IEEE Sens. J. – volume: 17 start-page: 354 year: 1996 publication-title: Eur. Heart J. – volume: 335 275 start-page: 765 1571 year: 1990 1996 publication-title: Lancet JAMA, J. Am. Med. Assoc. – volume: 11 start-page: 906 year: 2015 publication-title: Small – volume: 54 start-page: 13068 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 63 start-page: 964 year: 2016 publication-title: IEEE Trans. Biomed. Eng. – volume: 2 start-page: 754 year: 2012 publication-title: Sci. Rep. – volume: 5 start-page: 11850 year: 2013 publication-title: Nanoscale – volume: 2 5 2 27 start-page: e1600418 5745 e1501856 7638 year: 2016 2014 2016 2015 publication-title: Sci. Adv. Nat. Commun. Sci. Adv. Adv. Mater. – volume: 46 start-page: 1754 year: 2007 publication-title: Appl. Opt. – volume: 442 start-page: 180 year: 2006 publication-title: Nature – ident: e_1_2_5_7_1 doi: 10.1038/ncomms2832 – ident: e_1_2_5_3_1 doi: 10.1016/0140-6736(90)90878-9 – ident: e_1_2_5_15_1 – ident: e_1_2_5_2_2 doi: 10.1161/01.CIR.94.11.2850 – ident: e_1_2_5_21_1 doi: 10.1177/016173467900100406 – start-page: 155 year: 2010 ident: e_1_2_5_8_1 publication-title: IEEE Sens. J. – ident: e_1_2_5_5_2 doi: 10.1038/ncomms6745 – ident: e_1_2_5_13_1 doi: 10.1038/nnano.2012.60 – ident: e_1_2_5_19_2 doi: 10.1088/1742-6596/307/1/012060 – ident: e_1_2_5_3_2 doi: 10.1001/jama.1996.03530440051036 – ident: e_1_2_5_5_3 doi: 10.1126/sciadv.1501856 – ident: e_1_2_5_6_1 doi: 10.1007/s10877-007-9103-y – ident: e_1_2_5_20_1 doi: 10.1098/rspb.1922.0022 – ident: e_1_2_5_4_1 – ident: e_1_2_5_22_1 doi: 10.1109/TBME.2015.2480679 – ident: e_1_2_5_2_1 doi: 10.1016/S0140-6736(97)11144-8 – ident: e_1_2_5_11_1 doi: 10.1039/c3nr03989g – ident: e_1_2_5_9_1 doi: 10.1364/AO.46.001754 – ident: e_1_2_5_14_1 doi: 10.1038/nature04855 – ident: e_1_2_5_17_1 doi: 10.1002/smll.201402495 – ident: e_1_2_5_5_1 doi: 10.1126/sciadv.1600418 – volume: 6 start-page: 5877 year: 2005 ident: e_1_2_5_19_1 publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – ident: e_1_2_5_1_1 doi: 10.1016/0002-8703(87)90666-1 – ident: e_1_2_5_7_2 doi: 10.1002/adfm.201504560 – ident: e_1_2_5_10_1 doi: 10.1002/anie.201506687 – ident: e_1_2_5_23_1 doi: 10.1038/srep00754 – ident: e_1_2_5_16_1 – ident: e_1_2_5_6_2 doi: 10.1109/TBME.2014.2309951 – ident: e_1_2_5_18_1 doi: 10.1093/oxfordjournals.eurheartj.a014868 – ident: e_1_2_5_12_1 doi: 10.1063/1.2115075 – ident: e_1_2_5_5_4 doi: 10.1002/adma.201403560 |
SSID | ssj0009606 |
Score | 2.6310847 |
Snippet | Wearable photoplethysmogram (PPG) sensors offer convenient and informative measurements for evaluating daily physiological states of individuals. In this work,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Blood Pressure Electrocardiography Encapsulation Heart Rate Humans Infrared detectors Low voltage Materials science Monitoring Monitoring, Physiologic near‐infrared organic phototransistors organic/inorganic hybrids photoplethysmogram sensors Photoplethysmography Physiology Power consumption Power efficiency Printing Sensors Silicon Transfer printing Wearable technology |
Title | Flexible Organic/Inorganic Hybrid Near‐Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201700975 https://www.ncbi.nlm.nih.gov/pubmed/28612929 https://www.proquest.com/docview/1928603988 https://www.proquest.com/docview/1909739743 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VnNpDobSF0G3lSpU4hc06TuIcV7SrBYlVVYrELbIdW1SlWbSbPdATj8Az9kk6E--GDQghtbdEseWf8Xi-cWY-A3xKHJlFMQjRtkWhKLkNpZYqNII7HimuSkMH-ieTdHwmjs-T87Usfs8P0R64kWY0-zUpuNLz_h1pqCob3iDil8szyjKngC1CRd_u-KMInjdke3ES5qmQK9bGiPe71btW6QHU7CLXxvSMNkGtOu0jTn4eLGp9YH7f43P8n1FtwcslLmVDv5BewTNbbcOLNbbC1_BjROSZ-tIyn8Bp-keVvxTKsPE1ZX6xCerNn5vbo8rNKLCdfb2Y1hShTqvhVxMIxk7Rb57OGGJldtiJhWV-e6G23sDZ6Mv3w3G4vKkBZZrzJETUkVsea_RVhEq0zWVsuEvJt5NGcdRz7bJE88jFSuvEJQN0pAyR04s8EtbEb2GjmlZ2F9hAliK1sXWZ00KnJVrPLNYZJcRaZ1MVQLiSVGGWNOZ0m8Zl4QmYeUFTWLRTGMB-W_7KE3g8WrK3EnyxVOR5gQBYpthRKQP42H5GFaT_Kqqy0wWVIc4jdMziAHb8gmmbwtqIqHgeAG_E_kQfiuHnk2H7tvcvld7Bc3r2QYo92KhnC_segVOtPzTK8RcrTA_f |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAHKD-lKS0YCYlTulnHTpzjqnS1C90VglbiFtmOLRAlWy27Bzj1EfqMfRJm4k3aBSEkOCaxFcfj8XzjzHwD8FJ6MouiH6NtS2JRcRcro3RsBfc80VxXlg70J9NsdCLefJRtNCHlwgR-iO7AjTSj2a9JwelAunfFGqqrhjiICOaKXN6EW1TWu_Gq3l8xSBFAb-j2UhkXmVAtb2PCe-v91-3Sb2BzHbs2xmd4H0w77BBz8mV_uTD79scvjI7_9V2bcG8FTdkgrKUHcMPVD-HuNcLCR_B5SPyZ5tSxkMNpe-M61IWybPSdkr_YFFXn8vxiXPs5xbazd59mCwpSpwXxtYkFYx_QdZ7NGcJldrAWDsvCDkPvegwnw8Pjg1G8KtaAYi24jBF4FI6nBt0VoaVxhUot9xm5d8pqjqpufC4NT3yqjZFe9tGXssRPL4pEOJtuwUY9q902sL6qROZS53NvhMkqNKB5anLKiXXeZTqCuBVVaVdM5lRQ47QMHMy8pCksuymM4FXX_ixwePyx5W4r-XKly99KxMAqw4EqFcGL7jFqIf1a0bWbLakN0R6hb5ZG8CSsmO5V2BtBFS8i4I3c_zKGcvB6Muiudv6l03O4PTqeHJVH4-nbp3CH7oeYxV3YWMyXbg9x1MI8azTlJyH5E_o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NTULwAON_2AZGQuIpa-rYifNYrVQtsGoCJu0tsh1bTBvpVNoHeNpH2Gfkk-wubrOVCU2CxyS27Pjucr9z7n4GeCs9uUXRjdG3JbGouIuVUTq2gnueaK4rSxv6--NseCg-HMmja1X8gR-i3XAjy2i-12TgZ5XvXJGG6qrhDSJ-uSKXd2ADB1Ok1_3PVwRShM8btr1UxkUm1JK2MeGd1f6rbukG1lyFro3vGTwEvZx1SDk52Z3PzK799Qeh4_-81iY8WABT1gua9AjWXP0Y7l-jK3wCxwNizzSnjoUKTtsZ1eFUKMuGP6n0i43RcH6fX4xqP6XMdnbwbTKjFHVSh-9NJhj7goHzZMoQLLO9lWRYFr4vNNZTOBy8_7o3jBdHNaBQCy5jhB2F46nBYEVoaVyhUst9RsGdspqjoRufS8MTn2pjpJddjKQssdOLIhHOps9gvZ7U7gWwrqpE5lLnc2-EySp0n3lqcqqIdd5lOoJ4KanSLnjM6TiN0zIwMPOSlrBslzCCd237s8Dg8deW20vBlwtL_lEiAlYZTlSpCN60j9EG6ceKrt1kTm2I9AgjszSC50Fh2qGwN0IqXkTAG7HfMoey19_vtVcv_6XTa7h70B-Un0bjj1twj26HhMVtWJ9N524HQdTMvGrs5BLulxKy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Organic%2FInorganic+Hybrid+Near-Infrared+Photoplethysmogram+Sensor+for+Cardiovascular+Monitoring&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xu%2C+Huihua&rft.au=Liu%2C+Jing&rft.au=Zhang%2C+Jie&rft.au=Zhou%2C+Guodong&rft.date=2017-08-01&rft.eissn=1521-4095&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201700975&rft_id=info%3Apmid%2F28612929&rft.externalDocID=28612929 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |