Chang's meaning of capacitation: A molecular perspective
SUMMARY Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized r...
Saved in:
Published in | Molecular reproduction and development Vol. 83; no. 10; pp. 860 - 874 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.10.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization‐competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860–874, 2016 © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | SUMMARY
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization‐competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860–874, 2016 © 2016 Wiley Periodicals, Inc. Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc. SUMMARY Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc. Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc. |
Author | Visconti, Pablo E. Gervasi, Maria Gracia |
Author_xml | – sequence: 1 givenname: Maria Gracia surname: Gervasi fullname: Gervasi, Maria Gracia organization: Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Massachusetts, Amherst – sequence: 2 givenname: Pablo E. surname: Visconti fullname: Visconti, Pablo E. email: pvisconti@vasci.umass.edu, Corresponding author:Department of Veterinary and Animal Sciences, ISBUniversity of MassachusettsAmherst, MA 01003., pvisconti@vasci.umass.edu organization: Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Massachusetts, Amherst |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27256723$$D View this record in MEDLINE/PubMed |
BookMark | eNp90LlOxDAQBmALgbgLXgBFogCKgGOvL7rVwi43AoGgsxzvBAy5sBOOtyewLAUSVJ7i-0fjfwnNllUJCK0leCfBmOwWfrxDCOd0Bi0mWMmYCMVmP-cejnuM3C2gpRAeMcZKSTyPFoggjAtCF5EcPJjyfjNEBZjSlfdRlUXW1Ma6xjSuKveiflRUOdg2Nz6qwYcabONeYAXNZSYPsPr9LqOb4cH14DA-vRgdDfqnse0pQmMmrcQMFIzpGHOmCMuspSkHwrAUkCjBVUYtgzSVihjKMkl5Cj0FQqYmMXQZbU321r56biE0unDBQp6bEqo26ER2H1ccS9nRjV_0sWp92V3XKZpIprgQnVr_Vm1awFjX3hXGv-tpJx3YngDrqxA8ZD8kwfqzb931rb_67uzuLzstrvHG5f8lXl0O73-v1mdX-9NEPEm40MDbT8L4J80FFUzfno80PT47YftqqC_pB6KsnZ4 |
CODEN | MREDEE |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2020_07_008 crossref_primary_10_3390_ijms25147582 crossref_primary_10_1016_j_ijbiomac_2022_04_079 crossref_primary_10_1074_mcp_RA118_000904 crossref_primary_10_1016_j_ijbiomac_2023_125955 crossref_primary_10_1016_j_theriogenology_2020_06_020 crossref_primary_10_3389_fcell_2018_00060 crossref_primary_10_1016_j_animal_2023_100795 crossref_primary_10_1016_j_rvsc_2020_10_020 crossref_primary_10_1111_andr_13823 crossref_primary_10_1038_s41598_024_65134_w crossref_primary_10_1111_andr_13423 crossref_primary_10_1002_mrd_22810 crossref_primary_10_1093_humupd_dmw048 crossref_primary_10_1111_brv_12569 crossref_primary_10_3389_fcell_2023_1160154 crossref_primary_10_4103_aja202350 crossref_primary_10_1002_rmb2_12227 crossref_primary_10_1016_j_mod_2018_04_004 crossref_primary_10_1096_fj_202401243R crossref_primary_10_1007_s00441_020_03181_1 crossref_primary_10_1093_mtomcs_mfad059 crossref_primary_10_17221_142_2024_CJAS crossref_primary_10_3390_cells13100865 crossref_primary_10_3389_fcell_2021_765673 crossref_primary_10_3390_cells11020220 crossref_primary_10_1002_rmb2_12614 crossref_primary_10_1002_mrd_23524 crossref_primary_10_3390_biology10111105 crossref_primary_10_3168_jds_2019_16572 crossref_primary_10_1080_19396368_2022_2122761 crossref_primary_10_1242_jcs_260296 crossref_primary_10_1152_physrev_00009_2020 crossref_primary_10_3390_ijms19124097 crossref_primary_10_1002_jcb_26789 crossref_primary_10_1016_j_virusres_2020_198101 crossref_primary_10_3390_ijms21082701 crossref_primary_10_1111_rda_14335 crossref_primary_10_1242_jcs_261306 crossref_primary_10_1111_rda_14733 crossref_primary_10_3389_fphys_2019_00968 crossref_primary_10_1002_mrd_23772 crossref_primary_10_4103_aja_aja_76_20 crossref_primary_10_1016_j_jphotochem_2023_114643 crossref_primary_10_1093_biolre_ioy132 crossref_primary_10_1002_pmic_201800319 crossref_primary_10_1016_j_isci_2023_107354 crossref_primary_10_3390_ani10112171 crossref_primary_10_1242_jcs_250654 crossref_primary_10_3389_fcell_2021_772254 crossref_primary_10_5713_ab_24_0631 crossref_primary_10_1016_j_rbmo_2022_07_011 crossref_primary_10_3390_ani12081012 crossref_primary_10_1016_j_jri_2020_103246 crossref_primary_10_1111_andr_12320 crossref_primary_10_3389_fcell_2022_950979 crossref_primary_10_1038_s41598_020_72425_5 crossref_primary_10_3390_antiox10071025 crossref_primary_10_1080_1828051X_2021_1886611 crossref_primary_10_3389_fcell_2019_00262 crossref_primary_10_1002_mrd_23421 crossref_primary_10_1007_s00018_022_04652_0 crossref_primary_10_1038_s41598_019_54920_6 crossref_primary_10_1266_ggs_21_00024 crossref_primary_10_1016_j_mce_2020_110955 crossref_primary_10_3389_fcell_2022_827940 crossref_primary_10_1242_jcs_215897 crossref_primary_10_1111_andr_13349 crossref_primary_10_1016_j_rvsc_2023_105013 crossref_primary_10_3389_fcell_2019_00230 crossref_primary_10_3390_ijms242216093 crossref_primary_10_3390_ijms23073477 crossref_primary_10_3389_fcell_2023_1234221 crossref_primary_10_1254_fpj_21110 crossref_primary_10_3389_fcell_2021_777086 crossref_primary_10_1016_j_celrep_2022_111655 crossref_primary_10_1016_j_anireprosci_2021_106849 crossref_primary_10_3389_fphys_2022_1013082 crossref_primary_10_1016_j_anireprosci_2021_106848 crossref_primary_10_1002_rmb2_12021 crossref_primary_10_20473_ovz_v12i1_2023_18_24 crossref_primary_10_3390_ijms23116284 crossref_primary_10_3390_biology11040526 crossref_primary_10_1093_biolre_iox103 crossref_primary_10_3390_ani11010074 crossref_primary_10_1002_jcb_29521 crossref_primary_10_1016_j_theriogenology_2024_08_009 crossref_primary_10_1096_fj_202100122R crossref_primary_10_1071_RD17476 crossref_primary_10_1093_molbev_msaa183 crossref_primary_10_3389_fendo_2022_1069319 crossref_primary_10_3390_ijms221910241 crossref_primary_10_1093_molehr_gaae007 crossref_primary_10_1093_biolre_ioy202 crossref_primary_10_1016_j_anireprosci_2022_107079 crossref_primary_10_1016_j_semcdb_2024_12_002 crossref_primary_10_1016_j_tplants_2017_10_006 crossref_primary_10_1016_j_theriogenology_2022_08_017 crossref_primary_10_3389_fcell_2021_673961 crossref_primary_10_1093_biolre_ioae150 crossref_primary_10_1111_andr_13564 crossref_primary_10_1007_s00232_024_00316_1 crossref_primary_10_1002_mrd_23331 crossref_primary_10_1152_physiol_00033_2019 crossref_primary_10_1096_fj_202201862RR crossref_primary_10_1038_s41467_023_40855_0 crossref_primary_10_1002_mrd_23690 crossref_primary_10_1002_wsbm_1569 crossref_primary_10_1111_rda_13151 crossref_primary_10_3390_biology10111154 crossref_primary_10_1016_j_anireprosci_2020_106570 crossref_primary_10_5187_jast_2022_e15 crossref_primary_10_1016_j_theriogenology_2020_02_017 crossref_primary_10_1002_mrd_22921 crossref_primary_10_3390_ijms21062121 crossref_primary_10_1111_andr_13691 |
Cites_doi | 10.1016/j.bbagen.2013.07.029 10.1002/jcp.24571 10.1016/0002-9378(58)90722-1 10.1177/26.2.24069 10.1038/170326a0 10.1073/pnas.0902761106 10.1073/pnas.1317113110 10.1046/j.1439-0531.2002.00346.x 10.1073/pnas.0400050101 10.1095/biolreprod37.1.225 10.1016/j.ydbio.2006.05.038 10.1002/j.1939-4640.1992.tb01631.x 10.1016/B978-0-12-416024-8.00014-3 10.1080/15216540701222872 10.1095/biolreprod.108.075242 10.1073/pnas.0610286104 10.1073/pnas.1018202108 10.1085/jgp.200409030 10.1095/biolreprod64.2.491 10.1242/jcs.121442 10.1073/pnas.1016902108 10.1016/j.cell.2009.12.053 10.1073/pnas.95.5.2552 10.1016/0012-1606(83)90032-5 10.1016/j.devcel.2014.01.005 10.1146/annurev-physiol-020911-153258 10.1038/aja.2012.81 10.1073/pnas.0405580101 10.1530/jrf.0.0370131 10.1002/jez.1402440218 10.1038/ncb1072 10.1038/35055178 10.1073/pnas.20.2.121 10.1093/biolreprod/8.5.599 10.1002/cm.20279 10.1095/biolreprod36.5.1191 10.1093/biolreprod/4.1.3 10.1016/j.theriogenology.2009.07.005 10.1095/biolreprod.115.135368 10.1073/pnas.0611296104 10.1038/184466a0 10.1371/journal.pone.0091181 10.1007/978-1-4684-4016-4_6 10.3109/19396368.2010.512377 10.1073/pnas.88.7.2840 10.1038/168697b0 10.1074/jbc.M206284200 10.1095/biolreprod2.Supplement_2.128 10.1071/BI9680961 10.1016/S0014-5793(99)00433-0 10.1093/oxfordjournals.humrep.a135754 10.1262/jrd1955.16.152 10.1093/humupd/dmi047 10.7554/eLife.05161 10.1002/mrd.21234 10.1095/biolreprod53.6.1280 10.1530/jrf.0.0630109 10.1152/physiol.00049.2009 10.1126/science.289.5479.625 10.1371/journal.pone.0016993 10.1095/biolreprod.112.105262 10.1530/rep.1.00374 10.1074/jbc.M110.140152 10.1074/jbc.M110.175463 10.1002/jez.1402280113 10.1530/jrf.0.0230193 10.1093/molehr/gat067 10.1016/j.bbadis.2014.07.013 10.1530/jrf.0.0910567 10.1073/pnas.1116965108 10.7554/eLife.14052 10.1111/j.1469-185X.2011.00196.x 10.1006/dbio.1996.0044 10.1530/REP-08-0204 10.1016/j.ydbio.2016.02.006 10.1016/0014-4827(74)90199-2 10.1006/dbio.1995.1304 10.1006/dbio.2001.0353 10.1538/expanim.59.105 10.1530/jrf.0.0250231 10.1095/biolreprod36.1.203 10.1042/BST0380593 10.1096/fj.12-205211 10.1074/jbc.M011252200 10.1074/jbc.M314249200 10.1095/biolreprod44.1.102 10.1083/jcb.200411001 10.1095/biolreprod61.1.76 10.1126/science.1188178 10.1038/35098027 10.1073/pnas.1117963109 10.1387/ijdb.072527ss 10.1093/biolreprod/8.4.441 10.1242/dev.090613 10.1095/biolreprod.109.083113 10.1016/S0074-7696(08)62576-0 10.1016/0012-1606(86)90388-X 10.3109/01485018408987514 10.1038/aja.2010.69 10.1095/biolreprod18.2.229 10.1006/dbio.2002.0728 10.1016/S0092-8674(00)80558-9 10.1530/REP-12-0279 10.1098/rspb.1958.0066 10.3109/01485019508987871 10.1051/rnd:19840508 10.1083/jcb.201204024 10.1016/j.cell.2014.02.056 10.1095/biolreprod.112.107086 10.1126/science.281.5384.1857 10.1002/jemt.10320 10.1074/jbc.M113.489476 10.1002/j.1939-4640.1984.tb00775.x 10.1002/jcp.21075 10.1016/0006-291X(72)90858-3 10.1038/42484 10.1242/dev.125.13.2415 10.1095/biolreprod.114.127266 10.1002/mrd.1120050404 10.1073/pnas.1222166110 10.1095/biolreprod28.1.108 10.1071/BI9680973 10.1073/pnas.96.1.79 10.1242/dev.121.4.1129 10.1016/j.bbadis.2014.04.020 10.1091/mbc.E11-12-1025 10.1074/jbc.M109.085845 10.1002/mrd.1080400413 10.1016/S0021-9258(17)44079-8 10.1371/journal.pone.0030671 10.1083/jcb.201106096 10.1126/science.130.3367.81 10.1038/nature04417 10.1073/pnas.1100240108 10.1095/biolreprod42.3.450 10.1083/jcb.201404025 10.1016/S0021-9258(17)39295-5 10.1371/journal.pone.0060578 10.1126/scisignal.3142pe35 10.1016/0165-0378(87)90014-3 10.1073/pnas.0811895106 10.1095/biolreprod46.3.419 10.1002/jcp.24873 10.1002/mrd.1120090106 10.1074/jbc.M112.393488 10.1016/j.febslet.2010.02.005 10.1073/pnas.2136654100 10.1038/200281b0 10.1073/pnas.80.5.1327 10.1093/molehr/gat033 10.2307/1538405 10.1095/biolreprod61.6.1445 10.1242/jcs.047225 10.1095/biolreprod31.5.1119 10.1095/biolreprod.104.034140 10.1095/biolreprod.106.056028 10.1016/j.devcel.2005.06.007 10.1186/1471-2229-6-7 10.1016/S0140-6736(78)92957-4 10.1095/biolreprod.106.055038 10.1071/BI9510581 10.1093/humupd/dmn029 10.1038/nature03362 10.1111/j.1365-313X.2011.04729.x 10.1093/molehr/gau029 10.1095/biolreprod34.2.349 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TM 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/mrd.22663 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Anatomy & Physiology Zoology |
EISSN | 1098-2795 |
EndPage | 874 |
ExternalDocumentID | 4226694041 27256723 10_1002_mrd_22663 MRD22663 ark_67375_WNG_3JMK5D9F_Q |
Genre | reviewArticle Historical Article Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development funderid: NIH RO1 HD38082; HD44044 – fundername: Lalor Foundation – fundername: NICHD NIH HHS grantid: R01 HD038082 – fundername: NICHD NIH HHS grantid: R01 HD044044 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XJT XV2 ZXP ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ BQCPF AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4923-58c805e9ed3d065925fcc3b6e25087e19769f3c5ebb892a35f836be49e78ba1a3 |
IEDL.DBID | DR2 |
ISSN | 1040-452X 1098-2795 |
IngestDate | Fri Jul 11 02:01:12 EDT 2025 Fri Jul 25 10:37:07 EDT 2025 Wed Feb 19 02:00:20 EST 2025 Tue Jul 01 03:34:47 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Wed Jan 22 17:05:11 EST 2025 Wed Oct 30 09:47:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4923-58c805e9ed3d065925fcc3b6e25087e19769f3c5ebb892a35f836be49e78ba1a3 |
Notes | ArticleID:MRD22663 Eunice Kennedy Shriver National Institute of Child Health and Human Development - No. NIH RO1 HD38082; No. HD44044 ark:/67375/WNG-3JMK5D9F-Q istex:AC19577D59CA6E57B035D4D8B01CBB2D0EF82BDF Lalor Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrd.22663 |
PMID | 27256723 |
PQID | 1831859677 |
PQPubID | 1006435 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1826696088 proquest_journals_1831859677 pubmed_primary_27256723 crossref_primary_10_1002_mrd_22663 crossref_citationtrail_10_1002_mrd_22663 wiley_primary_10_1002_mrd_22663_MRD22663 istex_primary_ark_67375_WNG_3JMK5D9F_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10 October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Molecular reproduction and development |
PublicationTitleAlternate | Mol. Reprod. Dev |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Kirichok Y, Navarro B, Clapham DE. 2006. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439:737-740. Palanivelu R, Preuss D. 2006. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. Gahlay G, Gauthier L, Baibakov B, Epifano O, Dean J. 2010. Gamete recognition in mice depends on the cleavage status of an egg's zona pellucida protein. Science 329:216-219. Toyoda Y, Yokoyama M, Hosi T. 1971. Studies on the fertilization of mouse eggs in vitro. Jpn J Anim Reprod 16:145-157. Suarez SS, Pacey AA. 2006. Sperm transport in the female reproductive tract. Hum Reprod Update 12:23-37. Murdoch RN, White IG. 1968b. The influence of the female genital tract on the metabolism of rabbit spermatozoa. II. Effect of storage with glucose, lactate, bicarbonate, and female genital tract fluids. Aust J Biol Sci 21:973-980. Gervasi MG, Rapanelli M, Ribeiro ML, Farina M, Billi S, Franchi AM, Perez-Martinez S. 2009. The endocannabinoid system in bull sperm and bovine oviductal epithelium: Role of anandamide in sperm-oviduct interaction. Reproduction 137:403-414. Okabe M. 2013. The cell biology of mammalian fertilization. Development 140:4471-4479. Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL. 2003. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA 100:14869-14874. Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE. 2007. Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl 65:245-259. Talevi R, Gualtieri R. 2001. Sulfated glycoconjugates are powerful modulators of bovine sperm adhesion and release from the oviductal epithelium in vitro. Biol Reprod 64:491-498. Chang H, Suarez SS. 2010. Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm. Biol Reprod 83:507-513. Cohen R, Buttke DE, Asano A, Mukai C, Nelson JL, Ren D, Miller RJ, Cohen-Kutner M, Atlas D, Travis AJ. 2014. Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 28:310-321. Wijshake T, Baker DJ, van de Sluis B. 2014. Endonucleases: New tools to edit the mouse genome. Biochim Biophys Acta 1842:1942-1950. Austin CR. 1951. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 4:581-596. Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE, Smithies O, Krege JH, O'Brien DA. 1998. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci USA 95:2552-2557. Miranda PV, Allaire A, Sosnik J, Visconti PE. 2009. Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol Reprod 80:897-904. Kopf GS, Garbers DL. 1978. Correlation between sea urchin sperm respiratory rates and cyclic AMP concentrations as a function of cell dilution. Biol Reprod 18:229-233. Murdoch RN, White IG. 1971. Studies of the stimulating effect of bicarbonate on the metabolism of ram spermatozoa. J Reprod Fertil 25:231-242. Dauzier L, Thibault C, Wintenberger S. 1954. Fecundation in vitro of rabbit egg. C R Hebd Seances Acad des Sci 238:844-845. Ikawa M, Tokuhiro K, Yamaguchi R, Benham AM, Tamura T, Wada I, Satouh Y, Inoue N, Okabe M. 2011. Calsperin is a testis-specific chaperone required for sperm fertility. J Biol Chem 286:5639-5646. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG. 1998. Fertilization defects in sperm from mice lacking fertilin beta. Science 281:1857-1859. Talevi R, Zagami M, Castaldo M, Gualtieri R. 2007. Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium. Biol Reprod 76:728-735. Wood CD, Nishigaki T, Furuta T, Baba SA, Darszon A. 2005. Real-time analysis of the role of Ca(2+) in flagellar movement and motility in single sea urchin sperm. J Cell Biol 169:725-731. Nakanishi T, Ikawa M, Yamada S, Parvinen M, Baba T, Nishimune Y, Okabe M. 1999. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett 449:277-283. Newell AE, Fiedler SE, Ruan JM, Pan J, Wang PJ, Deininger J, Corless CL, Carr DW. 2008. Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction. Cell Motil Cytoskeleton 65:539-552. Demarco IA, Espinosa F, Edwards J, Sosnik J, De La Vega-Beltran JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE. 2003. Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation. J Biol Chem 278:7001-7009. Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. 2015. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 92:121. Cherr GN, Lambert H, Meizel S, Katz DF. 1986. In vitro studies of the golden hamster sperm acrosome reaction: Completion on the zona pellucida and induction by homologous soluble zonae pellucidae. Dev Biol 114:119-131. Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE. 2014. Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157:808-822. Yanagimachi R. 1970. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil 23:193-196. Austin CR, Bishop MW. 1958. Role of the rodent acrosome and perforatorium in fertilization. Proc R Soc Lond B Biol Sci 149:241-248. Pincus G, Garcia CR, Rock J, Paniagua M, Pendleton A, Laraque F, Nicolas R, Borno R, Pean V. 1959. Effectiveness of an oral contraceptive; effects of a progestin-estrogen combination upon fertility, menstrual phenomena, and health. Science 130:81-83. Muro Y, Hasuwa H, Isotani A, Miyata H, Yamagata K, Ikawa M, Yanagimachi R, Okabe M. 2016. Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization. Biol Reprod 94:80. Suarez SS. 2002. Formation of a reservoir of sperm in the oviduct. Reprod Domest Anim 37:140-143. Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconti PE, Cuasnicu PS. 2013. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod 19:570-580. Shalgi R, Smith TT, Yanagimachi R. 1992. A quantitative comparison of the passage of capacitated and uncapacitated hamster spermatozoa through the uterotubal junction. Biol Reprod 46:419-424. Harper MJ. 1973. Relationship between sperm transport and penetration of eggs in the rabbit oviduct. Biol Reprod 8:441-450. Storey BT, Lee MA, Muller C, Ward CR, Wirtshafter DG. 1984. Binding of mouse spermatozoa to the zonae pellucidae of mouse eggs in cumulus: Evidence that the acrosomes remain substantially intact. Biol Reprod 31:1119-1128. Pacey AA, Davies N, Warren MA, Barratt CL, Cooke ID. 1995. Hyperactivation may assist human spermatozoa to detach from intimate association with the endosalpinx. Hum Reprod 10:2603-2609. Okabe M, Adachi T, Takada K, Oda H, Yagasaki M, Kohama Y, Mimura T. 1987. Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J Reprod Immunol 11:91-100. Inoue N, Ikawa M, Isotani A, Okabe M. 2005. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234-238. Garbers DL, First NL, Gorman SK, Lardy HA. 1973. The effects of cyclic nucleotide phosphodiesterase inhibitors on ejaculated porcine spermatozoan metabolism. Biol Reprod 8:599-606. Hoskins DD, Acott TS, Critchlow L, Vijayaraghavan S. 1983. Studies on the roles of cyclic AMP and calcium in the development of bovine sperm motility. J Submicrosc Cytol 15:21-27. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. 1995. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121:1129-1137. Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA, McKnight GS. 2004. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci USA 101:13483-13488. Bedford JM. 1983. Significance of the need for sperm capacitation before fertilization in eutherian mammals. Biol Reprod 28:108-120. Gualtieri R, Boni R, Tosti E, Zagami M, Talevi R. 2005. Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro. Reproduction 129:51-60. Vredenburgh-Wilberg WL, Parrish JJ. 1995. Intracellular pH of bovine sperm increases during capacitation. Mol Reprod Dev 40:490-502. Jimenez T, McDermott JP, Sanchez G, Blanco G. 2011. Na,K-ATPase alpha4 isoform is essential for sperm fertility. Proc Natl Acad Sci USA 108:644-649. Yanagimachi R. 1982. Requirement of extracellular calcium-Ions for various stages of fertilization and fertilization-related phenomena in the hamster. Gamete Res 5:323-344. Zeng XH, Yang C, Kim ST, Lingle CJ, Xia XM. 2011. Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci USA 108:5879-5884. Ikawa M, Wada I, Kominami K, Watanabe D, Toshimori K, Nishimune Y, Okabe M. 1997. The putative chaperone calmegin is required for sperm fertility. Nature 387:607-611. Visconti PE, Krapf D, de la Vega-Beltran JL, Acevedo JJ, Darszon A. 2011. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 13:395-405. Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. 2012. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 74:453-475. Pincus G, Chang MC. 1953. The effects of progesterone and related compounds on ovulation and early development in the rabbit. Acta Physiol Lat Am 3:177-183. Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL. 2007. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the 2007; 104 1987; 36 1998; 281 2009; 80 1995; 35 2013; 126 1934; 20 2010; 584 1983; 95 2006; 296 2014; 28 2012; 14 2013; 8 2007; 76 2003; 278 1983; 15 1951; 4 1999; 449 1987; 37 1972; 48 2014; 20 1968b; 21 1990; 42 2007; 212 2010; 25 1971; 16 1991; 88 2008b; 52 1997; 387 1970; 23 2009; 122 1991; 91 2011; 68 1992; 46 2013; 110 1981 2005; 72 2012; 26 1983; 28 2010; 3 1998; 95 2007; 65 1995; 121 2012; 23 1971; 4 2001; 413 1995; 53 1983; 258 1986; 114 2010; 38 1959; 184 2010; 329 1952; 170 2013; 88 1971; 25 1953; 3 2010; 285 2013; 102 2016; 94 1994 1991 2014; 1842 2011; 6 1985; 260 2012; 109 2014; 157 2001; 276 2016; 5 2012; 196 1995; 40 1984; 31 2012; 198 2004; 279 2005; 9 1952; 103 1984; 5 2015; 230 2005; 129 1984; 9 2002; 248 1983; 80 1973; 8 2003; 100 1956; 5 2009; 106 2010; 56 2012; 287 2010; 59 2004; 124 1986; 34 1984; 24 2013; 288 1978; 2 1992; 13 2011; 13 2010; 140 1995; 171 1970; 2 2013; 19 2014; 205 1974; 89 2000; 289 1963; 200 1991; 44 1982; 5 1984; 13 1996; 173 2003; 5 2008; 65 1999; 96 1978; 26 1968a; 21 1998; 125 2014; 9 1954; 238 2010; 73 2011; 286 1983; 228 2004; 101 2010; 77 1974; 37 2008a; 14 1987; 11 2002; 37 2006; 439 1987; 244 2012; 144 2013; 1830 2015; 4 2006; 12 2015; 92 2005; 434 1995; 10 1958; 75 1978; 18 2006; 6 2013; 140 1999; 61 1951; 168 1981; 63 2009; 137 2010; 83 2012; 74 2007; 59 2001; 64 2014; 229 1958; 149 1959; 130 2011; 108 2005; 169 2001; 3 2016; 411 2003; 61 2012; 7 2012; 87 2001; 237 e_1_2_4_172_1 e_1_2_4_84_1 e_1_2_4_61_1 e_1_2_4_80_1 e_1_2_4_23_1 e_1_2_4_65_1 e_1_2_4_127_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_69_1 e_1_2_4_88_1 e_1_2_4_108_1 e_1_2_4_100_1 e_1_2_4_123_1 e_1_2_4_146_1 e_1_2_4_169_1 e_1_2_4_104_1 e_1_2_4_142_1 e_1_2_4_165_1 e_1_2_4_161_1 e_1_2_4_5_1 e_1_2_4_9_1 e_1_2_4_96_1 e_1_2_4_73_1 e_1_2_4_50_1 e_1_2_4_92_1 e_1_2_4_31_1 e_1_2_4_77_1 e_1_2_4_12_1 e_1_2_4_54_1 e_1_2_4_116_1 e_1_2_4_139_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_58_1 e_1_2_4_112_1 e_1_2_4_135_1 e_1_2_4_158_1 e_1_2_4_39_1 Hoskins DD (e_1_2_4_55_1) 1983; 15 e_1_2_4_131_1 e_1_2_4_154_1 e_1_2_4_171_1 e_1_2_4_85_1 e_1_2_4_62_1 e_1_2_4_81_1 e_1_2_4_20_1 e_1_2_4_66_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_149_1 e_1_2_4_107_1 Toyoda Y (e_1_2_4_148_1) 1971; 16 e_1_2_4_47_1 e_1_2_4_89_1 e_1_2_4_28_1 e_1_2_4_145_1 e_1_2_4_126_1 e_1_2_4_168_1 e_1_2_4_103_1 e_1_2_4_141_1 e_1_2_4_122_1 e_1_2_4_164_1 e_1_2_4_160_1 Dauzier L (e_1_2_4_34_1) 1954; 238 e_1_2_4_2_1 e_1_2_4_70_1 e_1_2_4_93_1 e_1_2_4_6_1 e_1_2_4_51_1 e_1_2_4_74_1 e_1_2_4_32_1 e_1_2_4_78_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_97_1 e_1_2_4_138_1 e_1_2_4_119_1 e_1_2_4_17_1 e_1_2_4_134_1 Yanagimachi R (e_1_2_4_170_1) 1994 e_1_2_4_115_1 e_1_2_4_157_1 e_1_2_4_130_1 e_1_2_4_111_1 e_1_2_4_153_1 Florman HM (e_1_2_4_42_1) 1991 e_1_2_4_151_1 e_1_2_4_82_1 e_1_2_4_40_1 e_1_2_4_63_1 Okamura N (e_1_2_4_102_1) 1983; 258 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_67_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_86_1 e_1_2_4_106_1 e_1_2_4_129_1 e_1_2_4_29_1 e_1_2_4_125_1 e_1_2_4_167_1 e_1_2_4_144_1 e_1_2_4_163_1 e_1_2_4_140_1 e_1_2_4_3_1 e_1_2_4_7_1 e_1_2_4_94_1 e_1_2_4_52_1 e_1_2_4_90_1 e_1_2_4_71_1 e_1_2_4_10_1 e_1_2_4_56_1 e_1_2_4_33_1 e_1_2_4_75_1 e_1_2_4_14_1 e_1_2_4_98_1 e_1_2_4_118_1 e_1_2_4_37_1 e_1_2_4_79_1 e_1_2_4_18_1 Garbers DL (e_1_2_4_45_1) 1973; 8 e_1_2_4_114_1 e_1_2_4_137_1 e_1_2_4_156_1 e_1_2_4_110_1 e_1_2_4_133_1 e_1_2_4_152_1 e_1_2_4_150_1 e_1_2_4_173_1 Chang MC (e_1_2_4_22_1) 1971; 4 e_1_2_4_83_1 e_1_2_4_41_1 e_1_2_4_60_1 e_1_2_4_64_1 e_1_2_4_105_1 e_1_2_4_49_1 e_1_2_4_87_1 e_1_2_4_128_1 e_1_2_4_26_1 e_1_2_4_68_1 e_1_2_4_124_1 Salicioni AM (e_1_2_4_121_1) 2007; 65 e_1_2_4_147_1 Pincus G (e_1_2_4_109_1) 1953; 3 e_1_2_4_120_1 e_1_2_4_166_1 e_1_2_4_101_1 e_1_2_4_143_1 e_1_2_4_162_1 e_1_2_4_4_1 e_1_2_4_95_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_72_1 e_1_2_4_91_1 e_1_2_4_11_1 e_1_2_4_53_1 e_1_2_4_76_1 e_1_2_4_117_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_99_1 e_1_2_4_113_1 e_1_2_4_159_1 e_1_2_4_19_1 e_1_2_4_136_1 e_1_2_4_155_1 e_1_2_4_132_1 |
References_xml | – reference: Zeng Y, Oberdorf JA, Florman HM. 1996. PH regulation in mouse sperm: Identification of Na(+)-, Cl(−)-, and HCO3(−)-dependent and arylaminobenzoate-dependent regulatory mechanisms and characterization of their roles in sperm capacitation. Dev Biol 173:510-520. – reference: Demarco IA, Espinosa F, Edwards J, Sosnik J, De La Vega-Beltran JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE. 2003. Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation. J Biol Chem 278:7001-7009. – reference: Marcello MR, Jia W, Leary JA, Moore KL, Evans JP. 2011. Lack of tyrosylprotein sulfotransferase-2 activity results in altered sperm-egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm. J Biol Chem 286:13060-13070. – reference: Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR. 1999. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 96:79-84. – reference: Austin CR. 1951. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 4:581-596. – reference: Eddy EM, Toshimori K, O'Brien DA. 2003. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 61:103-115. – reference: Hunter RH. 2012. Components of oviduct physiology in eutherian mammals. Biol Rev Camb Philos Soc 87:244-255. – reference: Talevi R, Gualtieri R. 2010. Molecules involved in sperm-oviduct adhesion and release. Theriogenology 73:796-801. – reference: Chang H, Suarez SS. 2010. Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm. Biol Reprod 83:507-513. – reference: Cherr GN, Lambert H, Meizel S, Katz DF. 1986. In vitro studies of the golden hamster sperm acrosome reaction: Completion on the zona pellucida and induction by homologous soluble zonae pellucidae. Dev Biol 114:119-131. – reference: Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. 2001. A sperm ion channel required for sperm motility and male fertility. Nature 413:603-609. – reference: Wassarman PM. 1999. Mammalian fertilization: Molecular aspects of gamete adhesion, exocytosis, and fusion. Cell 96:175-183. – reference: Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW. 2013. Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol Reprod 88:41. – reference: Coy P, Garcia-Vazquez FA, Visconti PE, Aviles M. 2012. Roles of the oviduct in mammalian fertilization. Reproduction 144:649-660. – reference: Jimenez T, McDermott JP, Sanchez G, Blanco G. 2011. Na,K-ATPase alpha4 isoform is essential for sperm fertility. Proc Natl Acad Sci USA 108:644-649. – reference: Okabe M, Adachi T, Takada K, Oda H, Yagasaki M, Kohama Y, Mimura T. 1987. Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J Reprod Immunol 11:91-100. – reference: Suarez SS, Osman RA. 1987. Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol Reprod 36:1191-1198. – reference: Talevi R, Zagami M, Castaldo M, Gualtieri R. 2007. Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium. Biol Reprod 76:728-735. – reference: Wassarman PM, Jovine L, Litscher ES. 2001. A profile of fertilization in mammals. Nat Cell Biol 3:E59-E64. – reference: Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL. 2003. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA 100:14869-14874. – reference: Gahlay G, Gauthier L, Baibakov B, Epifano O, Dean J. 2010. Gamete recognition in mice depends on the cleavage status of an egg's zona pellucida protein. Science 329:216-219. – reference: Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR, Visconti PE. 2009. Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741-2749. – reference: Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, Butler A, Alisio A, Darszon A, Salkoff L. 2010. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041-1046. – reference: Bleil JD, Wassarman PM. 1983. Sperm-egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol 95:317-324. – reference: Stauss CR, Votta TJ, Suarez SS. 1995. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod 53:1280-1285. – reference: Toyoda Y, Yokoyama M, Hosi T. 1971. Studies on the fertilization of mouse eggs in vitro. Jpn J Anim Reprod 16:145-157. – reference: Palanivelu R, Johnson MA. 2010. Functional genomics of pollen tube-pistil interactions in Arabidopsis. Biochem Soc Trans 38:593-597. – reference: Yanagimachi R, Usui N. 1974. Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res 89:161-174. – reference: Krapf D, O'Brien E, Maidagan MP, Morales EO, Visconti PE, Arranz SE. 2014. Calcineurin regulates progressive motility activation of rhinella (Bufo) arenarum sperm through dephosphorylation of PKC substrates. J Cell Physiol 229:1378-1386. – reference: Shen C, Kuang Y, Liu J, Feng J, Chen X, Wu W, Chi J, Tang L, Wang Y, Fei J, Wang Z. 2013. Prss37 is required for male fertility in the mouse. Biol Reprod 88:123. – reference: Visconti PE, Krapf D, de la Vega-Beltran JL, Acevedo JJ, Darszon A. 2011. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 13:395-405. – reference: Pacey AA, Davies N, Warren MA, Barratt CL, Cooke ID. 1995. Hyperactivation may assist human spermatozoa to detach from intimate association with the endosalpinx. Hum Reprod 10:2603-2609. – reference: Cohen R, Buttke DE, Asano A, Mukai C, Nelson JL, Ren D, Miller RJ, Cohen-Kutner M, Atlas D, Travis AJ. 2014. Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 28:310-321. – reference: Jansen V, Alvarez L, Balbach M, Strunker T, Hegemann P, Kaupp UB, Wachten D. 2015. Controlling fertilization and cAMP signaling in sperm by optogenetics. Elife 4:e05161. – reference: Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. 2010. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140:327-337. – reference: Pincus G, Enzmann EV. 1934. Can mammalian eggs undergo normal development in vitro? Proc Natl Acad Sci USA 20:121-122. – reference: Smith TT, Yanagimachi R. 1990. The viability of hamster spermatozoa stored in the isthmus of the oviduct: The importance of sperm-epithelium contact for sperm survival. Biol Reprod 42:450-457. – reference: Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG. 1998. Fertilization defects in sperm from mice lacking fertilin beta. Science 281:1857-1859. – reference: Garbers DL, First NL, Gorman SK, Lardy HA. 1973. The effects of cyclic nucleotide phosphodiesterase inhibitors on ejaculated porcine spermatozoan metabolism. Biol Reprod 8:599-606. – reference: Newell AE, Fiedler SE, Ruan JM, Pan J, Wang PJ, Deininger J, Corless CL, Carr DW. 2008. Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction. Cell Motil Cytoskeleton 65:539-552. – reference: Tateno H, Krapf D, Hino T, Sanchez-Cardenas C, Darszon A, Yanagimachi R, Visconti PE. 2013. Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proc Natl Acad Sci USA 110:18543-18548. – reference: Vredenburgh-Wilberg WL, Parrish JJ. 1995. Intracellular pH of bovine sperm increases during capacitation. Mol Reprod Dev 40:490-502. – reference: Wood CD, Nishigaki T, Furuta T, Baba SA, Darszon A. 2005. Real-time analysis of the role of Ca(2+) in flagellar movement and motility in single sea urchin sperm. J Cell Biol 169:725-731. – reference: Ramsey IS, Ruchti E, Kaczmarek JS, Clapham DE. 2009. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci USA 106:7642-7647. – reference: Steptoe PC, Edwards RG. 1978. Birth after the reimplantation of a human embryo. Lancet 2:366. – reference: Murdoch RN, White IG. 1968b. The influence of the female genital tract on the metabolism of rabbit spermatozoa. II. Effect of storage with glucose, lactate, bicarbonate, and female genital tract fluids. Aust J Biol Sci 21:973-980. – reference: Hoskins DD, Acott TS, Critchlow L, Vijayaraghavan S. 1983. Studies on the roles of cyclic AMP and calcium in the development of bovine sperm motility. J Submicrosc Cytol 15:21-27. – reference: Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W. 1999. Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 61:1445-1451. – reference: Solzin J, Helbig A, Van Q, Brown JE, Hildebrand E, Weyand I, Kaupp UB. 2004. Revisiting the role of H+ in chemotactic signaling of sperm. J Gen Physiol 124:115-124. – reference: Wertheimer E, Krapf D, de la Vega-Beltran JL, Sanchez-Cardenas C, Navarrete F, Haddad D, Escoffier J, Salicioni AM, Levin LR, Buck J, Mager J, Darszon A, Visconti PE. 2013. Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J Biol Chem 288:35307-35320. – reference: Loza-Huerta A, Vera-Estrella R, Darszon A, Beltran C. 2013. Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co-purify with low density detergent-insoluble membranes and are PKA or PKC-substrates possibly involved in sperm motility regulation. Biochim Biophys Acta 1830:5305-5315. – reference: Alvarez L, Dai L, Friedrich BM, Kashikar ND, Gregor I, Pascal R, Kaupp UB. 2012. The rate of change in Ca(2+) concentration controls sperm chemotaxis. J Cell Biol 196:653-663. – reference: Yamaguchi R, Fujihara Y, Ikawa M, Okabe M. 2012. Mice expressing aberrant sperm-specific protein PMIS2 produce normal-looking but fertilization-incompetent spermatozoa. Mol Biol Cell 23:2671-2679. – reference: Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. 2012. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 74:453-475. – reference: Dan JC. 1956. The acrosome reaction. Int Rev Cytol 5:365-393. – reference: Pincus G, Rock J, Garcia CR, Ricewray E, Paniagua M, Rodriguez I. 1958. Fertility control with oral medication. Am J Obstet Gynecol 75:1333-1346. – reference: Dauzier L, Thibault C, Wintenberger S. 1954. Fecundation in vitro of rabbit egg. C R Hebd Seances Acad des Sci 238:844-845. – reference: Gervasi MG, Rapanelli M, Ribeiro ML, Farina M, Billi S, Franchi AM, Perez-Martinez S. 2009. The endocannabinoid system in bull sperm and bovine oviductal epithelium: Role of anandamide in sperm-oviduct interaction. Reproduction 137:403-414. – reference: Meizel S, Deamer DW. 1978. The pH of the hamster sperm acrosome. J Histochem Cytochem 26:98-105. – reference: De La Vega-Beltran JL, Sanchez-Cardenas C, Krapf D, Hernandez-Gonzalez EO, Wertheimer E, Trevino CL, Visconti PE, Darszon A. 2012. Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction. J Biol Chem 287:44384-44393. – reference: Hasuwa H, Muro Y, Ikawa M, Kato N, Tsujimoto Y, Okabe M. 2010. Transgenic mouse sperm that have green acrosome and red mitochondria allow visualization of sperm and their acrosome reaction in vivo. Exp Anim 59:105-107. – reference: Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconti PE, Cuasnicu PS. 2013. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod 19:570-580. – reference: Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. 2015. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 92:121. – reference: Ikawa M, Tokuhiro K, Yamaguchi R, Benham AM, Tamura T, Wada I, Satouh Y, Inoue N, Okabe M. 2011. Calsperin is a testis-specific chaperone required for sperm fertility. J Biol Chem 286:5639-5646. – reference: Shalgi R, Smith TT, Yanagimachi R. 1992. A quantitative comparison of the passage of capacitated and uncapacitated hamster spermatozoa through the uterotubal junction. Biol Reprod 46:419-424. – reference: Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. 1991. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod 44:102-107. – reference: Suarez SS. 2002. Formation of a reservoir of sperm in the oviduct. Reprod Domest Anim 37:140-143. – reference: Nakanishi T, Ikawa M, Yamada S, Toshimori K, Okabe M. 2001. Alkalinization of acrosome measured by GFP as a pH indicator and its relation to sperm capacitation. Dev Biol 237:222-231. – reference: Nishimura H, Kim E, Nakanishi T, Baba T. 2004. Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. J Biol Chem 279:34957-34962. – reference: Rankin TL, Tong ZB, Castle PE, Lee E, Gore-Langton R, Nelson LM, Dean J. 1998. Human ZP3 restores fertility in Zp3 null mice without affecting order-specific sperm binding. Development 125:2415-2424. – reference: Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MA, Robben TJ, Strik AM, Kuil C, Philipsen RL, van Duin M, Conti M, Gossen JA. 2004. Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA 101:2993-2998. – reference: Chavez JC, de la Vega-Beltran JL, Escoffier J, Visconti PE, Trevino CL, Darszon A, Salkoff L, Santi CM. 2013. Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization. PLoS ONE 8:e60578. – reference: Kopf GS, Garbers DL. 1978. Correlation between sea urchin sperm respiratory rates and cyclic AMP concentrations as a function of cell dilution. Biol Reprod 18:229-233. – reference: Miranda PV, Allaire A, Sosnik J, Visconti PE. 2009. Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol Reprod 80:897-904. – reference: Inoue N, Ikawa M, Isotani A, Okabe M. 2005. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234-238. – reference: Unates DR, Guidobaldi HA, Gatica LV, Cubilla MA, Teves ME, Moreno A, Giojalas LC. 2014. Versatile action of picomolar gradients of progesterone on different sperm subpopulations. PLoS ONE 9:e91181. – reference: Visconti PE. 2009. Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci USA 106:667-668. – reference: Burkman LJ. 1984. Characterization of hyperactivated motility by human-spermatozoa during Capacitation-Comparison of fertile and oligozoospermic sperm populations. Arch Androl 13:153-165. – reference: Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS, Suarez SS, Levin LR, Williams CJ, Buck J, Moss SB. 2005. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 9:249-259. – reference: Chang MC. 1971. Second annual Carl G. Hartman Lecture. Experimental studies of mammalian spermatozoa and eggs. Biol Reprod 4:3-15. – reference: Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. 1995. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121:1129-1137. – reference: Dan JC. 1952. Studies on the acrosome I. Reaction to egg-water and other stimuli. Biol Bull 103:54-56. – reference: Cooper TG. 1984. The onset and maintenance of hyperactivated motility of spermatozoa from the mouse. Gamete Res 9:55-74. – reference: Mayorga LS, Tomes CN, Belmonte SA. 2007. Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 59:286-292. – reference: Ralt D, Goldenberg M, Fetterolf P, Thompson D, Dor J, Mashiach S, Garbers DL, Eisenbach M. 1991. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc Natl Acad Sci USA 88:2840-2844. – reference: Hunter RH. 1981. Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J Reprod Fertil 63:109-117. – reference: Muro Y, Hasuwa H, Isotani A, Miyata H, Yamagata K, Ikawa M, Yanagimachi R, Okabe M. 2016. Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization. Biol Reprod 94:80. – reference: Carr DW, Fujita A, Stentz CL, Liberty GA, Olson GE, Narumiya S. 2001. Identification of sperm-specific proteins that interact with A-kinase anchoring proteins in a manner similar to the type II regulatory subunit of PKA. J Biol Chem 276:17332-17338. – reference: Bedford JM. 1970. Sperm capacitation and fertilization in mammals. Biol Reprod 2:128-158. – reference: Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE. 2014. Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157:808-822. – reference: Mukherjee S, Jansen V, Jikeli JF, Hamzeh H, Alvarez L, Dombrowski M, Balbach M, Strunker T, Seifert R, Kaupp UB, Wachten D. 2016. A novel biosensor to study cAMP dynamics in cilia and flagella. Elife 5:e14052. – reference: Okabe M. 2013. The cell biology of mammalian fertilization. Development 140:4471-4479. – reference: Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL. 2007. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci USA 104:9325-9330. – reference: Suarez SS. 1987. Sperm transport and motility in the mouse oviduct: Observations in situ. Biol Reprod 36:203-210. – reference: Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y. 1985. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260:9699-9705. – reference: Wang D, King SM, Quill TA, Doolittle LK, Garbers DL. 2003. A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5:1117-1122. – reference: Suarez SS, Pacey AA. 2006. Sperm transport in the female reproductive tract. Hum Reprod Update 12:23-37. – reference: Suarez SS, Dai XB, DeMott RP, Redfern K, Mirando MA. 1992. Movement characteristics of boar sperm obtained from the oviduct or hyperactivated in vitro. J Androl 13:75-80. – reference: Storey BT, Lee MA, Muller C, Ward CR, Wirtshafter DG. 1984. Binding of mouse spermatozoa to the zonae pellucidae of mouse eggs in cumulus: Evidence that the acrosomes remain substantially intact. Biol Reprod 31:1119-1128. – reference: Fujihara Y, Tokuhiro K, Muro Y, Kondoh G, Araki Y, Ikawa M, Okabe M. 2013. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc Natl Acad Sci USA 110:8111-8116. – reference: Nakanishi T, Ikawa M, Yamada S, Parvinen M, Baba T, Nishimune Y, Okabe M. 1999. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett 449:277-283. – reference: Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA, McKnight GS. 2004. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci USA 101:13483-13488. – reference: Marquez B, Suarez SS. 2007. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2+ influx. Biol Reprod 76:660-665. – reference: Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J. 2000. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625-628. – reference: Yanagimachi R, Chang MC. 1963. Fertilization of hamster eggs in vitro. Nature 200:281-282. – reference: Smith TT, Yanagimachi R. 1991. Attachment and release of spermatozoa from the caudal isthmus of the hamster oviduct. J Reprod Fertil 91:567-573. – reference: Ahmad K, Bracho GE, Wolf DP, Tash JS. 1995. Regulation of human sperm motility and hyperactivation components by calcium, calmodulin, and protein phosphatases. Arch Androl 35:187-208. – reference: Lee MA, Storey BT. 1986. Bicarbonate is essential for fertilization of mouse eggs: Mouse sperm require it to undergo the acrosome reaction. Biol Reprod 34:349-356. – reference: Hoskins DD, Stephens DT, Hall ML. 1974. Cyclic adenosine 3':5'-monophosphate and protein kinase levels in developing bovine spermatozoa. J Reprod Fertil 37:131-133. – reference: Austin CR, Bishop MW. 1958. Role of the rodent acrosome and perforatorium in fertilization. Proc R Soc Lond B Biol Sci 149:241-248. – reference: Suarez SS. 2008b. Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol 52:455-462. – reference: Hunter RH, Wilmut I. 1984. Sperm transport in the cow: Peri-ovulatory redistribution of viable cells within the oviduct. Reprod Nutr Dev 24:597-608. – reference: Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. 2011. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 108:4892-4896. – reference: Holt WV, Fazeli A. 2010. The oviduct as a complex mediator of mammalian sperm function and selection. Mol Reprod Dev 77:934-943. – reference: Qin Y, Wysocki RJ, Somogyi A, Feinstein Y, Franco JY, Tsukamoto T, Dunatunga D, Levy C, Smith S, Simpson R, Gang D, Johnson MA, Palanivelu R. 2011. Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant J 68:800-815. – reference: Yanagimachi R. 1982. Requirement of extracellular calcium-Ions for various stages of fertilization and fertilization-related phenomena in the hamster. Gamete Res 5:323-344. – reference: Pincus G, Garcia CR, Rock J, Paniagua M, Pendleton A, Laraque F, Nicolas R, Borno R, Pean V. 1959. Effectiveness of an oral contraceptive; effects of a progestin-estrogen combination upon fertility, menstrual phenomena, and health. Science 130:81-83. – reference: Suarez SS, Vincenti L, Ceglia MW. 1987. Hyperactivated motility induced in mouse sperm by calcium ionophore A23187 is reversible. J Exp Zool 244:331-336. – reference: Suarez SS. 2008a. Control of hyperactivation in sperm. Hum Reprod Update 14:647-657. – reference: Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE, Smithies O, Krege JH, O'Brien DA. 1998. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci USA 95:2552-2557. – reference: Yanagimachi R. 1970. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil 23:193-196. – reference: Murdoch RN, White IG. 1971. Studies of the stimulating effect of bicarbonate on the metabolism of ram spermatozoa. J Reprod Fertil 25:231-242. – reference: Wijshake T, Baker DJ, van de Sluis B. 2014. Endonucleases: New tools to edit the mouse genome. Biochim Biophys Acta 1842:1942-1950. – reference: Gervasi MG, Osycka-Salut C, Caballero J, Vazquez-Levin M, Pereyra E, Billi S, Franchi AM, Perez-Martinez S. 2011. Anandamide capacitates bull spermatozoa through CB1 and TRPV1 activation. PLoS ONE 6:e16993. – reference: Miki K, Willis WD, Brown PR, Goulding EH, Fulcher KD, Eddy EM. 2002. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev Biol 248:331-342. – reference: Talevi R, Gualtieri R. 2001. Sulfated glycoconjugates are powerful modulators of bovine sperm adhesion and release from the oviductal epithelium in vitro. Biol Reprod 64:491-498. – reference: Visconti PE, Stewart-Savage J, Blasco A, Battaglia L, Miranda P, Kopf GS, Tezon JG. 1999. Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol Reprod 61:76-84. – reference: Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, Gossen JA, Esposito G, van Duin M, Conti M. 2006. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 296:353-362. – reference: Okamura N, Sugita Y. 1983. Activation of spermatozoan adenylate cyclase by a low molecular weight factor in porcine seminal plasma. J Biol Chem 258:13056-13062. – reference: Hunter RH, Nichol R. 1983. Transport of spermatozoa in the sheep oviduct: Preovulatory sequestering of cells in the caudal isthmus. J Exp Zool 228:121-128. – reference: Santi CM, Orta G, Salkoff L, Visconti PE, Darszon A, Trevino CL. 2013. K+ and Cl- channels and transporters in sperm function. Curr Top Dev Biol 102:385-421. – reference: Harper MJ. 1973. Relationship between sperm transport and penetration of eggs in the rabbit oviduct. Biol Reprod 8:441-450. – reference: Ikawa M, Wada I, Kominami K, Watanabe D, Toshimori K, Nishimune Y, Okabe M. 1997. The putative chaperone calmegin is required for sperm fertility. Nature 387:607-611. – reference: Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM, Visconti PE. 2010. Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem 285:7977-7985. – reference: Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, Ramsey IS, Quill TA, Clapham DE. 2007. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci USA 104:1219-1223. – reference: Pincus G, Chang MC. 1953. The effects of progesterone and related compounds on ovulation and early development in the rabbit. Acta Physiol Lat Am 3:177-183. – reference: Ren D, Xia J. 2010. Calcium signaling through CatSper channels in mammalian fertilization. Physiology (Bethesda) 25:165-175. – reference: Ickowicz D, Finkelstein M, Breitbart H. 2012. Mechanism of sperm capacitation and the acrosome reaction: Role of protein kinases. Asian J Androl 14:816-821. – reference: Palanivelu R, Preuss D. 2006. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. – reference: Guerrero A, Espinal J, Wood CD, Rendon JM, Carneiro J, Martinez-Mekler G, Darszon A. 2013. Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients. J Cell Sci 126:1477-1487. – reference: Murdoch RN, White IG. 1968a. The influence of the female genital tract on the metabolism of rabbit spermatozoa. I. Direct effect of tubal and uterine fluids, bicarbonate, and other factors. Aust J Biol Sci 21:961-972. – reference: Chang MC. 1959. Fertilization of rabbit ova in vitro. Nature 184:466-467. – reference: Hoskins DD, Casillas ER, Stephens DT. 1972. Cyclic AMP-dependent protein kinases of bovine epididymal spermatozoa. Biochem Biophys Res Commun 48:1131-1138. – reference: Visconti PE, Florman HM. 2010. Mechanisms of sperm-egg interactions: Between sugars and broken bonds. Sci Signal 3:pe35. – reference: Chang MC. 1951. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697-698. – reference: Chang MC. 1984. The meaning of sperm capacitation. A historical perspective. J Androl 5:45-50. – reference: Bailey JL. 2010. Factors regulating sperm capacitation. Syst Biol Reprod Med 56:334-348. – reference: Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R. 2011. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl Acad Sci USA 108:20008-20011. – reference: Tokuhiro K, Ikawa M, Benham AM, Okabe M. 2012. Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected]. Proc Natl Acad Sci USA 109:3850-3855. – reference: Gualtieri R, Boni R, Tosti E, Zagami M, Talevi R. 2005. Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro. Reproduction 129:51-60. – reference: Osycka-Salut C, Gervasi MG, Pereyra E, Cella M, Ribeiro ML, Franchi AM, Perez-Martinez S. 2012. Anandamide induces sperm release from oviductal epithelia through nitric oxide pathway in bovines. PLoS ONE 7:e30671. – reference: Kashikar ND, Alvarez L, Seifert R, Gregor I, Jackle O, Beyermann M, Krause E, Kaupp UB. 2012. Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm. J Cell Biol 198:1075-1091. – reference: Kirichok Y, Navarro B, Clapham DE. 2006. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439:737-740. – reference: Bedford JM. 1983. Significance of the need for sperm capacitation before fertilization in eutherian mammals. Biol Reprod 28:108-120. – reference: Buffone MG, Wertheimer E, Visconti PE, Krapf D. 2014. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochi Biophys Acta 1842:2610-2620. – reference: Huang Z, Somanath PR, Chakrabarti R, Eddy EM, Vijayaraghavan S. 2005. Changes in intracellular distribution and activity of protein phosphatase PP1gamma2 and its regulating proteins in spermatozoa lacking AKAP4. Biol Reprod 72:384-392. – reference: Austin CR. 1952. The capacitation of the mammalian sperm. Nature 170:326. – reference: Lopez-Gonzalez I, Torres-Rodriguez P, Sanchez-Carranza O, Solis-Lopez A, Santi CM, Darszon A, Trevino CL. 2014. Membrane hyperpolarization during human sperm capacitation. Mol Hum Reprod 20:619-629. – reference: Navarrete FA, Garcia-Vazquez FA, Alvau A, Escoffier J, Krapf D, Sanchez-Cardenas C, Salicioni AM, Darszon A, Visconti PE. 2015. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J Cell Physiol 230:1758-1769. – reference: Zeng Y, Clark EN, Florman HM. 1995. Sperm membrane potential: Hyperpolarization during capacitation regulates zona pellucida-dependent acrosomal secretion. Dev Biol 171:554-563. – reference: Avella MA, Baibakov B, Dean J. 2014. A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. J Cell Biol 205:801-809. – reference: Aitken RJ, Nixon B. 2013. Sperm capacitation: A distant landscape glimpsed but unexplored. Mol Hum Reprod 19:785-793. – reference: Escoffier J, Boisseau S, Serres C, Chen CC, Kim D, Stamboulian S, Shin HS, Campbell KP, De Waard M, Arnoult C. 2007. Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: An evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice. J Cell Physiol 212:753-763. – reference: Krutskikh A, Poliandri A, Cabrera-Sharp V, Dacheux JL, Poutanen M, Huhtaniemi I. 2012. Epididymal protein Rnase10 is required for post-testicular sperm maturation and male fertility. FASEB J 26:4198-4209. – reference: Babcock DF, Rufo GA, Jr., Lardy HA. 1983. Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm. Proc Natl Acad Sci USA 80:1327-1331. – reference: Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE. 2007. Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl 65:245-259. – reference: Smith TT, Koyanagi F, Yanagimachi R. 1987. Distribution and number of spermatozoa in the oviduct of the golden hamster after natural mating and artificial insemination. Biol Reprod 37:225-234. – reference: Zeng XH, Yang C, Kim ST, Lingle CJ, Xia XM. 2011. Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci USA 108:5879-5884. – reference: La Spina FA, Puga Molina LC, Romarowski A, Vitale AM, Falzone TL, Krapf D, Hirohashi N, Buffone MG. 2016. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev Biol 411:172-182. – volume: 65 start-page: 539 year: 2008 end-page: 552 article-title: Protein kinase A RII‐like (R2D2) proteins exhibit differential localization and AKAP interaction publication-title: Cell Motil Cytoskeleton – volume: 36 start-page: 203 year: 1987 end-page: 210 article-title: Sperm transport and motility in the mouse oviduct: Observations in situ publication-title: Biol Reprod – volume: 56 start-page: 334 year: 2010 end-page: 348 article-title: Factors regulating sperm capacitation publication-title: Syst Biol Reprod Med – volume: 3 start-page: 177 year: 1953 end-page: 183 article-title: The effects of progesterone and related compounds on ovulation and early development in the rabbit publication-title: Acta Physiol Lat Am – volume: 244 start-page: 331 year: 1987 end-page: 336 article-title: Hyperactivated motility induced in mouse sperm by calcium ionophore A23187 is reversible publication-title: J Exp Zool – volume: 4 start-page: 581 year: 1951 end-page: 596 article-title: Observations on the penetration of the sperm in the mammalian egg publication-title: Aust J Sci Res B – volume: 61 start-page: 103 year: 2003 end-page: 115 article-title: Fibrous sheath of mammalian spermatozoa publication-title: Microsc Res Tech – volume: 63 start-page: 109 year: 1981 end-page: 117 article-title: Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation publication-title: J Reprod Fertil – volume: 287 start-page: 44384 year: 2012 end-page: 44393 article-title: Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction publication-title: J Biol Chem – volume: 387 start-page: 607 year: 1997 end-page: 611 article-title: The putative chaperone calmegin is required for sperm fertility publication-title: Nature – volume: 100 start-page: 14869 year: 2003 end-page: 14874 article-title: Hyperactivated sperm motility driven by CatSper2 is required for fertilization publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 310 year: 2014 end-page: 321 article-title: Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization publication-title: Dev Cell – volume: 61 start-page: 1445 year: 1999 end-page: 1451 article-title: Male mice deficient for germ‐cell cyritestin are infertile publication-title: Biol Reprod – volume: 125 start-page: 2415 year: 1998 end-page: 2424 article-title: Human ZP3 restores fertility in Zp3 null mice without affecting order‐specific sperm binding publication-title: Development – volume: 184 start-page: 466 year: 1959 end-page: 467 article-title: Fertilization of rabbit ova in vitro publication-title: Nature – volume: 5 start-page: e14052 year: 2016 article-title: A novel biosensor to study cAMP dynamics in cilia and flagella publication-title: Elife – volume: 439 start-page: 737 year: 2006 end-page: 740 article-title: Whole‐cell patch‐clamp measurements of spermatozoa reveal an alkaline‐activated Ca2+ channel publication-title: Nature – volume: 281 start-page: 1857 year: 1998 end-page: 1859 article-title: Fertilization defects in sperm from mice lacking fertilin beta publication-title: Science – volume: 40 start-page: 490 year: 1995 end-page: 502 article-title: Intracellular pH of bovine sperm increases during capacitation publication-title: Mol Reprod Dev – volume: 95 start-page: 317 year: 1983 end-page: 324 article-title: Sperm‐egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein publication-title: Dev Biol – volume: 296 start-page: 353 year: 2006 end-page: 362 article-title: Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization publication-title: Dev Biol – volume: 37 start-page: 225 year: 1987 end-page: 234 article-title: Distribution and number of spermatozoa in the oviduct of the golden hamster after natural mating and artificial insemination publication-title: Biol Reprod – start-page: 189 year: 1994 end-page: 317 – volume: 205 start-page: 801 year: 2014 end-page: 809 article-title: A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans publication-title: J Cell Biol – volume: 279 start-page: 34957 year: 2004 end-page: 34962 article-title: Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface publication-title: J Biol Chem – volume: 237 start-page: 222 year: 2001 end-page: 231 article-title: Alkalinization of acrosome measured by GFP as a pH indicator and its relation to sperm capacitation publication-title: Dev Biol – volume: 38 start-page: 593 year: 2010 end-page: 597 article-title: Functional genomics of pollen tube‐pistil interactions in Arabidopsis publication-title: Biochem Soc Trans – volume: 34 start-page: 349 year: 1986 end-page: 356 article-title: Bicarbonate is essential for fertilization of mouse eggs: Mouse sperm require it to undergo the acrosome reaction publication-title: Biol Reprod – volume: 26 start-page: 98 year: 1978 end-page: 105 article-title: The pH of the hamster sperm acrosome publication-title: J Histochem Cytochem – volume: 77 start-page: 934 year: 2010 end-page: 943 article-title: The oviduct as a complex mediator of mammalian sperm function and selection publication-title: Mol Reprod Dev – volume: 411 start-page: 172 year: 2016 end-page: 182 article-title: Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct publication-title: Dev Biol – volume: 42 start-page: 450 year: 1990 end-page: 457 article-title: The viability of hamster spermatozoa stored in the isthmus of the oviduct: The importance of sperm‐epithelium contact for sperm survival publication-title: Biol Reprod – volume: 76 start-page: 660 year: 2007 end-page: 665 article-title: Bovine sperm hyperactivation is promoted by alkaline‐stimulated Ca2+ influx publication-title: Biol Reprod – volume: 28 start-page: 108 year: 1983 end-page: 120 article-title: Significance of the need for sperm capacitation before fertilization in eutherian mammals publication-title: Biol Reprod – volume: 80 start-page: 897 year: 2009 end-page: 904 article-title: Localization of low‐density detergent‐resistant membrane proteins in intact and acrosome‐reacted mouse sperm publication-title: Biol Reprod – volume: 11 start-page: 91 year: 1987 end-page: 100 article-title: Capacitation‐related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro publication-title: J Reprod Immunol – volume: 92 start-page: 121 year: 2015 article-title: Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation publication-title: Biol Reprod – volume: 121 start-page: 1129 year: 1995 end-page: 1137 article-title: Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation publication-title: Development – volume: 5 start-page: 45 year: 1984 end-page: 50 article-title: The meaning of sperm capacitation. A historical perspective publication-title: J Androl – volume: 129 start-page: 51 year: 2005 end-page: 60 article-title: Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro publication-title: Reproduction – volume: 108 start-page: 4892 year: 2011 end-page: 4896 article-title: Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization publication-title: Proc Natl Acad Sci USA – volume: 108 start-page: 20008 year: 2011 end-page: 20011 article-title: Acrosome‐reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: e91181 year: 2014 article-title: Versatile action of picomolar gradients of progesterone on different sperm subpopulations publication-title: PLoS ONE – volume: 171 start-page: 554 year: 1995 end-page: 563 article-title: Sperm membrane potential: Hyperpolarization during capacitation regulates zona pellucida‐dependent acrosomal secretion publication-title: Dev Biol – volume: 258 start-page: 13056 year: 1983 end-page: 13062 article-title: Activation of spermatozoan adenylate cyclase by a low molecular weight factor in porcine seminal plasma publication-title: J Biol Chem – volume: 36 start-page: 1191 year: 1987 end-page: 1198 article-title: Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract publication-title: Biol Reprod – volume: 8 start-page: 599 year: 1973 end-page: 606 article-title: The effects of cyclic nucleotide phosphodiesterase inhibitors on ejaculated porcine spermatozoan metabolism publication-title: Biol Reprod – volume: 75 start-page: 1333 year: 1958 end-page: 1346 article-title: Fertility control with oral medication publication-title: Am J Obstet Gynecol – volume: 101 start-page: 13483 year: 2004 end-page: 13488 article-title: Sperm‐specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility publication-title: Proc Natl Acad Sci USA – volume: 122 start-page: 2741 year: 2009 end-page: 2749 article-title: Tssk6 is required for Izumo relocalization and gamete fusion in the mouse publication-title: J Cell Sci – volume: 13 start-page: 395 year: 2011 end-page: 405 article-title: Ion channels, phosphorylation and mammalian sperm capacitation publication-title: Asian J Androl – volume: 108 start-page: 5879 year: 2011 end-page: 5884 article-title: Deletion of the Slo3 gene abolishes alkalization‐activated K+ current in mouse spermatozoa publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 1117 year: 2003 end-page: 1122 article-title: A new sperm‐specific Na+/H+ exchanger required for sperm motility and fertility publication-title: Nat Cell Biol – volume: 19 start-page: 785 year: 2013 end-page: 793 article-title: Sperm capacitation: A distant landscape glimpsed but unexplored publication-title: Mol Hum Reprod – volume: 434 start-page: 234 year: 2005 end-page: 238 article-title: The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs publication-title: Nature – volume: 2 start-page: 366 year: 1978 article-title: Birth after the reimplantation of a human embryo publication-title: Lancet – volume: 20 start-page: 619 year: 2014 end-page: 629 article-title: Membrane hyperpolarization during human sperm capacitation publication-title: Mol Hum Reprod – volume: 3 start-page: pe35 year: 2010 article-title: Mechanisms of sperm‐egg interactions: Between sugars and broken bonds publication-title: Sci Signal – volume: 286 start-page: 5639 year: 2011 end-page: 5646 article-title: Calsperin is a testis‐specific chaperone required for sperm fertility publication-title: J Biol Chem – volume: 9 start-page: 55 year: 1984 end-page: 74 article-title: The onset and maintenance of hyperactivated motility of spermatozoa from the mouse publication-title: Gamete Res – volume: 137 start-page: 403 year: 2009 end-page: 414 article-title: The endocannabinoid system in bull sperm and bovine oviductal epithelium: Role of anandamide in sperm‐oviduct interaction publication-title: Reproduction – volume: 94 start-page: 80 year: 2016 article-title: Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization publication-title: Biol Reprod – volume: 288 start-page: 35307 year: 2013 end-page: 35320 article-title: Compartmentalization of distinct cAMP signaling pathways in mammalian sperm publication-title: J Biol Chem – volume: 260 start-page: 9699 year: 1985 end-page: 9705 article-title: Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase publication-title: J Biol Chem – volume: 88 start-page: 123 year: 2013 article-title: Prss37 is required for male fertility in the mouse publication-title: Biol Reprod – volume: 13 start-page: 75 year: 1992 end-page: 80 article-title: Movement characteristics of boar sperm obtained from the oviduct or hyperactivated in vitro publication-title: J Androl – volume: 14 start-page: 816 year: 2012 end-page: 821 article-title: Mechanism of sperm capacitation and the acrosome reaction: Role of protein kinases publication-title: Asian J Androl – volume: 13 start-page: 153 year: 1984 end-page: 165 article-title: Characterization of hyperactivated motility by human‐spermatozoa during Capacitation—Comparison of fertile and oligozoospermic sperm populations publication-title: Arch Androl – volume: 18 start-page: 229 year: 1978 end-page: 233 article-title: Correlation between sea urchin sperm respiratory rates and cyclic AMP concentrations as a function of cell dilution publication-title: Biol Reprod – volume: 83 start-page: 507 year: 2010 end-page: 513 article-title: Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm publication-title: Biol Reprod – volume: 168 start-page: 697 year: 1951 end-page: 698 article-title: Fertilizing capacity of spermatozoa deposited into the fallopian tubes publication-title: Nature – volume: 44 start-page: 102 year: 1991 end-page: 107 article-title: Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells publication-title: Biol Reprod – volume: 23 start-page: 193 year: 1970 end-page: 196 article-title: The movement of golden hamster spermatozoa before and after capacitation publication-title: J Reprod Fertil – volume: 228 start-page: 121 year: 1983 end-page: 128 article-title: Transport of spermatozoa in the sheep oviduct: Preovulatory sequestering of cells in the caudal isthmus publication-title: J Exp Zool – volume: 19 start-page: 570 year: 2013 end-page: 580 article-title: Functional human sperm capacitation requires both bicarbonate‐dependent PKA activation and down‐regulation of Ser/Thr phosphatases by Src family kinases publication-title: Mol Hum Reprod – volume: 8 start-page: e60578 year: 2013 article-title: Ion permeabilities in mouse sperm reveal an external trigger for SLO3‐dependent hyperpolarization publication-title: PLoS ONE – volume: 449 start-page: 277 year: 1999 end-page: 283 article-title: Real‐time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein publication-title: FEBS Lett – volume: 53 start-page: 1280 year: 1995 end-page: 1285 article-title: Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida publication-title: Biol Reprod – volume: 5 start-page: 323 year: 1982 end-page: 344 article-title: Requirement of extracellular calcium‐Ions for various stages of fertilization and fertilization‐related phenomena in the hamster publication-title: Gamete Res – volume: 110 start-page: 18543 year: 2013 end-page: 18548 article-title: Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP‐dependent phosphorylation pathways publication-title: Proc Natl Acad Sci USA – volume: 289 start-page: 625 year: 2000 end-page: 628 article-title: Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor publication-title: Science – volume: 72 start-page: 384 year: 2005 end-page: 392 article-title: Changes in intracellular distribution and activity of protein phosphatase PP1gamma2 and its regulating proteins in spermatozoa lacking AKAP4 publication-title: Biol Reprod – volume: 157 start-page: 808 year: 2014 end-page: 822 article-title: Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility publication-title: Cell – volume: 21 start-page: 973 year: 1968b end-page: 980 article-title: The influence of the female genital tract on the metabolism of rabbit spermatozoa. II. Effect of storage with glucose, lactate, bicarbonate, and female genital tract fluids publication-title: Aust J Biol Sci – volume: 88 start-page: 2840 year: 1991 end-page: 2844 article-title: Sperm attraction to a follicular factor(s) correlates with human egg fertilizability publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 1119 year: 1984 end-page: 1128 article-title: Binding of mouse spermatozoa to the zonae pellucidae of mouse eggs in cumulus: Evidence that the acrosomes remain substantially intact publication-title: Biol Reprod – volume: 173 start-page: 510 year: 1996 end-page: 520 article-title: PH regulation in mouse sperm: Identification of Na(+)‐, Cl(−)‐, and HCO3(−)‐dependent and arylaminobenzoate‐dependent regulatory mechanisms and characterization of their roles in sperm capacitation publication-title: Dev Biol – volume: 37 start-page: 140 year: 2002 end-page: 143 article-title: Formation of a reservoir of sperm in the oviduct publication-title: Reprod Domest Anim – volume: 59 start-page: 105 year: 2010 end-page: 107 article-title: Transgenic mouse sperm that have green acrosome and red mitochondria allow visualization of sperm and their acrosome reaction in vivo publication-title: Exp Anim – volume: 25 start-page: 165 year: 2010 end-page: 175 article-title: Calcium signaling through CatSper channels in mammalian fertilization publication-title: Physiology (Bethesda) – volume: 149 start-page: 241 year: 1958 end-page: 248 article-title: Role of the rodent acrosome and perforatorium in fertilization publication-title: Proc R Soc Lond B Biol Sci – volume: 24 start-page: 597 year: 1984 end-page: 608 article-title: Sperm transport in the cow: Peri‐ovulatory redistribution of viable cells within the oviduct publication-title: Reprod Nutr Dev – volume: 238 start-page: 844 year: 1954 end-page: 845 article-title: Fecundation in vitro of rabbit egg publication-title: C R Hebd Seances Acad des Sci – volume: 23 start-page: 2671 year: 2012 end-page: 2679 article-title: Mice expressing aberrant sperm‐specific protein PMIS2 produce normal‐looking but fertilization‐incompetent spermatozoa publication-title: Mol Biol Cell – volume: 109 start-page: 3850 year: 2012 end-page: 3855 article-title: Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected] publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 23 year: 2006 end-page: 37 article-title: Sperm transport in the female reproductive tract publication-title: Hum Reprod Update – start-page: 105 year: 1991 end-page: 132 – volume: 285 start-page: 7977 year: 2010 end-page: 7985 article-title: Inhibition of Ser/Thr phosphatases induces capacitation‐associated signaling in the presence of Src kinase inhibitors publication-title: J Biol Chem – volume: 212 start-page: 753 year: 2007 end-page: 763 article-title: Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: An evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice publication-title: J Cell Physiol – volume: 1830 start-page: 5305 year: 2013 end-page: 5315 article-title: Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co‐purify with low density detergent‐insoluble membranes and are PKA or PKC‐substrates possibly involved in sperm motility regulation publication-title: Biochim Biophys Acta – volume: 230 start-page: 1758 year: 2015 end-page: 1769 article-title: Biphasic role of calcium in mouse sperm capacitation signaling pathways publication-title: J Cell Physiol – volume: 25 start-page: 231 year: 1971 end-page: 242 article-title: Studies of the stimulating effect of bicarbonate on the metabolism of ram spermatozoa publication-title: J Reprod Fertil – volume: 76 start-page: 728 year: 2007 end-page: 735 article-title: Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium publication-title: Biol Reprod – volume: 169 start-page: 725 year: 2005 end-page: 731 article-title: Real‐time analysis of the role of Ca(2+) in flagellar movement and motility in single sea urchin sperm publication-title: J Cell Biol – volume: 4 start-page: e05161 year: 2015 article-title: Controlling fertilization and cAMP signaling in sperm by optogenetics publication-title: Elife – volume: 95 start-page: 2552 year: 1998 end-page: 2557 article-title: Angiotensin‐converting enzyme and male fertility publication-title: Proc Natl Acad Sci USA – volume: 130 start-page: 81 year: 1959 end-page: 83 article-title: Effectiveness of an oral contraceptive; effects of a progestin‐estrogen combination upon fertility, menstrual phenomena, and health publication-title: Science – volume: 170 start-page: 326 year: 1952 article-title: The capacitation of the mammalian sperm publication-title: Nature – volume: 14 start-page: 647 year: 2008a end-page: 657 article-title: Control of hyperactivation in sperm publication-title: Hum Reprod Update – volume: 52 start-page: 455 year: 2008b end-page: 462 article-title: Regulation of sperm storage and movement in the mammalian oviduct publication-title: Int J Dev Biol – volume: 96 start-page: 175 year: 1999 end-page: 183 article-title: Mammalian fertilization: Molecular aspects of gamete adhesion, exocytosis, and fusion publication-title: Cell – volume: 8 start-page: 441 year: 1973 end-page: 450 article-title: Relationship between sperm transport and penetration of eggs in the rabbit oviduct publication-title: Biol Reprod – volume: 48 start-page: 1131 year: 1972 end-page: 1138 article-title: Cyclic AMP‐dependent protein kinases of bovine epididymal spermatozoa publication-title: Biochem Biophys Res Commun – volume: 101 start-page: 2993 year: 2004 end-page: 2998 article-title: Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm‐motility defect publication-title: Proc Natl Acad Sci USA – volume: 124 start-page: 115 year: 2004 end-page: 124 article-title: Revisiting the role of H+ in chemotactic signaling of sperm publication-title: J Gen Physiol – volume: 248 start-page: 331 year: 2002 end-page: 342 article-title: Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility publication-title: Dev Biol – volume: 37 start-page: 131 year: 1974 end-page: 133 article-title: Cyclic adenosine 3':5'‐monophosphate and protein kinase levels in developing bovine spermatozoa publication-title: J Reprod Fertil – start-page: 81 year: 1981 end-page: 182 – volume: 4 start-page: 3 year: 1971 end-page: 15 article-title: Second annual Carl G. Hartman Lecture. Experimental studies of mammalian spermatozoa and eggs publication-title: Biol Reprod – volume: 20 start-page: 121 year: 1934 end-page: 122 article-title: Can mammalian eggs undergo normal development in vitro publication-title: Proc Natl Acad Sci USA – volume: 286 start-page: 13060 year: 2011 end-page: 13070 article-title: Lack of tyrosylprotein sulfotransferase‐2 activity results in altered sperm‐egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm publication-title: J Biol Chem – volume: 6 start-page: 7 year: 2006 article-title: Distinct short‐range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro publication-title: BMC Plant Biol – volume: 114 start-page: 119 year: 1986 end-page: 131 article-title: In vitro studies of the golden hamster sperm acrosome reaction: Completion on the zona pellucida and induction by homologous soluble zonae pellucidae publication-title: Dev Biol – volume: 68 start-page: 800 year: 2011 end-page: 815 article-title: Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils publication-title: Plant J – volume: 80 start-page: 1327 year: 1983 end-page: 1331 article-title: Potassium‐dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 961 year: 1968a end-page: 972 article-title: The influence of the female genital tract on the metabolism of rabbit spermatozoa. I. Direct effect of tubal and uterine fluids, bicarbonate, and other factors publication-title: Aust J Biol Sci – volume: 73 start-page: 796 year: 2010 end-page: 801 article-title: Molecules involved in sperm‐oviduct adhesion and release publication-title: Theriogenology – volume: 16 start-page: 145 year: 1971 end-page: 157 article-title: Studies on the fertilization of mouse eggs publication-title: Jpn J Anim Reprod – volume: 3 start-page: E59 year: 2001 end-page: E64 article-title: A profile of fertilization in mammals publication-title: Nat Cell Biol – volume: 61 start-page: 76 year: 1999 end-page: 84 article-title: Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm publication-title: Biol Reprod – volume: 35 start-page: 187 year: 1995 end-page: 208 article-title: Regulation of human sperm motility and hyperactivation components by calcium, calmodulin, and protein phosphatases publication-title: Arch Androl – volume: 196 start-page: 653 year: 2012 end-page: 663 article-title: The rate of change in Ca(2+) concentration controls sperm chemotaxis publication-title: J Cell Biol – volume: 229 start-page: 1378 year: 2014 end-page: 1386 article-title: Calcineurin regulates progressive motility activation of rhinella (Bufo) arenarum sperm through dephosphorylation of PKC substrates publication-title: J Cell Physiol – volume: 87 start-page: 244 year: 2012 end-page: 255 article-title: Components of oviduct physiology in eutherian mammals publication-title: Biol Rev Camb Philos Soc – volume: 104 start-page: 1219 year: 2007 end-page: 1223 article-title: All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility publication-title: Proc Natl Acad Sci USA – volume: 584 start-page: 1041 year: 2010 end-page: 1046 article-title: The SLO3 sperm‐specific potassium channel plays a vital role in male fertility publication-title: FEBS Lett – volume: 276 start-page: 17332 year: 2001 end-page: 17338 article-title: Identification of sperm‐specific proteins that interact with A‐kinase anchoring proteins in a manner similar to the type II regulatory subunit of PKA publication-title: J Biol Chem – volume: 329 start-page: 216 year: 2010 end-page: 219 article-title: Gamete recognition in mice depends on the cleavage status of an egg's zona pellucida protein publication-title: Science – volume: 198 start-page: 1075 year: 2012 end-page: 1091 article-title: Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm publication-title: J Cell Biol – volume: 5 start-page: 365 year: 1956 end-page: 393 article-title: The acrosome reaction publication-title: Int Rev Cytol – volume: 144 start-page: 649 year: 2012 end-page: 660 article-title: Roles of the oviduct in mammalian fertilization publication-title: Reproduction – volume: 26 start-page: 4198 year: 2012 end-page: 4209 article-title: Epididymal protein Rnase10 is required for post‐testicular sperm maturation and male fertility publication-title: FASEB J – volume: 1842 start-page: 2610 year: 2014 end-page: 2620 article-title: Central role of soluble adenylyl cyclase and cAMP in sperm physiology publication-title: Biochi Biophys Acta – volume: 110 start-page: 8111 year: 2013 end-page: 8116 article-title: Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa publication-title: Proc Natl Acad Sci USA – volume: 103 start-page: 54 year: 1952 end-page: 56 article-title: Studies on the acrosome I. Reaction to egg‐water and other stimuli publication-title: Biol Bull – volume: 108 start-page: 644 year: 2011 end-page: 649 article-title: Na,K‐ATPase alpha4 isoform is essential for sperm fertility publication-title: Proc Natl Acad Sci USA – volume: 88 start-page: 41 year: 2013 article-title: Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity publication-title: Biol Reprod – volume: 104 start-page: 9325 year: 2007 end-page: 9330 article-title: A sperm‐specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC) publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: e30671 year: 2012 article-title: Anandamide induces sperm release from oviductal epithelia through nitric oxide pathway in bovines publication-title: PLoS ONE – volume: 10 start-page: 2603 year: 1995 end-page: 2609 article-title: Hyperactivation may assist human spermatozoa to detach from intimate association with the endosalpinx publication-title: Hum Reprod – volume: 15 start-page: 21 year: 1983 end-page: 27 article-title: Studies on the roles of cyclic AMP and calcium in the development of bovine sperm motility publication-title: J Submicrosc Cytol – volume: 6 start-page: e16993 year: 2011 article-title: Anandamide capacitates bull spermatozoa through CB1 and TRPV1 activation publication-title: PLoS ONE – volume: 140 start-page: 327 year: 2010 end-page: 337 article-title: Acid extrusion from human spermatozoa is mediated by flagellar voltage‐gated proton channel publication-title: Cell – volume: 59 start-page: 286 year: 2007 end-page: 292 article-title: Acrosomal exocytosis, a special type of regulated secretion publication-title: IUBMB Life – volume: 89 start-page: 161 year: 1974 end-page: 174 article-title: Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa publication-title: Exp Cell Res – volume: 106 start-page: 667 year: 2009 end-page: 668 article-title: Understanding the molecular basis of sperm capacitation through kinase design publication-title: Proc Natl Acad Sci USA – volume: 126 start-page: 1477 year: 2013 end-page: 1487 article-title: Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients publication-title: J Cell Sci – volume: 9 start-page: 249 year: 2005 end-page: 259 article-title: The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization publication-title: Dev Cell – volume: 74 start-page: 453 year: 2012 end-page: 475 article-title: The control of male fertility by spermatozoan ion channels publication-title: Annu Rev Physiol – volume: 102 start-page: 385 year: 2013 end-page: 421 article-title: K+ and Cl‐ channels and transporters in sperm function publication-title: Curr Top Dev Biol – volume: 91 start-page: 567 year: 1991 end-page: 573 article-title: Attachment and release of spermatozoa from the caudal isthmus of the hamster oviduct publication-title: J Reprod Fertil – volume: 46 start-page: 419 year: 1992 end-page: 424 article-title: A quantitative comparison of the passage of capacitated and uncapacitated hamster spermatozoa through the uterotubal junction publication-title: Biol Reprod – volume: 64 start-page: 491 year: 2001 end-page: 498 article-title: Sulfated glycoconjugates are powerful modulators of bovine sperm adhesion and release from the oviductal epithelium in vitro publication-title: Biol Reprod – volume: 96 start-page: 79 year: 1999 end-page: 84 article-title: Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals publication-title: Proc Natl Acad Sci USA – volume: 140 start-page: 4471 year: 2013 end-page: 4479 article-title: The cell biology of mammalian fertilization publication-title: Development – volume: 413 start-page: 603 year: 2001 end-page: 609 article-title: A sperm ion channel required for sperm motility and male fertility publication-title: Nature – volume: 1842 start-page: 1942 year: 2014 end-page: 1950 article-title: Endonucleases: New tools to edit the mouse genome publication-title: Biochim Biophys Acta – volume: 65 start-page: 245 year: 2007 end-page: 259 article-title: Signalling pathways involved in sperm capacitation publication-title: Soc Reprod Fertil Suppl – volume: 200 start-page: 281 year: 1963 end-page: 282 article-title: Fertilization of hamster eggs in vitro publication-title: Nature – volume: 2 start-page: 128 year: 1970 end-page: 158 article-title: Sperm capacitation and fertilization in mammals publication-title: Biol Reprod – volume: 278 start-page: 7001 year: 2003 end-page: 7009 article-title: Involvement of a Na+/HCO‐3 cotransporter in mouse sperm capacitation publication-title: J Biol Chem – volume: 106 start-page: 7642 year: 2009 end-page: 7647 article-title: Hv1 proton channels are required for high‐level NADPH oxidase‐dependent superoxide production during the phagocyte respiratory burst publication-title: Proc Natl Acad Sci USA – ident: e_1_2_4_82_1 doi: 10.1016/j.bbagen.2013.07.029 – ident: e_1_2_4_75_1 doi: 10.1002/jcp.24571 – ident: e_1_2_4_110_1 doi: 10.1016/0002-9378(58)90722-1 – ident: e_1_2_4_86_1 doi: 10.1177/26.2.24069 – ident: e_1_2_4_6_1 doi: 10.1038/170326a0 – ident: e_1_2_4_117_1 doi: 10.1073/pnas.0902761106 – ident: e_1_2_4_146_1 doi: 10.1073/pnas.1317113110 – ident: e_1_2_4_139_1 doi: 10.1046/j.1439-0531.2002.00346.x – ident: e_1_2_4_40_1 doi: 10.1073/pnas.0400050101 – ident: e_1_2_4_127_1 doi: 10.1095/biolreprod37.1.225 – ident: e_1_2_4_163_1 doi: 10.1016/j.ydbio.2006.05.038 – ident: e_1_2_4_138_1 doi: 10.1002/j.1939-4640.1992.tb01631.x – ident: e_1_2_4_123_1 doi: 10.1016/B978-0-12-416024-8.00014-3 – ident: e_1_2_4_85_1 doi: 10.1080/15216540701222872 – ident: e_1_2_4_88_1 doi: 10.1095/biolreprod.108.075242 – ident: e_1_2_4_113_1 doi: 10.1073/pnas.0610286104 – ident: e_1_2_4_70_1 doi: 10.1073/pnas.1018202108 – ident: e_1_2_4_130_1 doi: 10.1085/jgp.200409030 – ident: e_1_2_4_143_1 doi: 10.1095/biolreprod64.2.491 – ident: e_1_2_4_49_1 doi: 10.1242/jcs.121442 – ident: e_1_2_4_69_1 doi: 10.1073/pnas.1016902108 – ident: e_1_2_4_79_1 doi: 10.1016/j.cell.2009.12.053 – ident: e_1_2_4_50_1 doi: 10.1073/pnas.95.5.2552 – ident: e_1_2_4_14_1 doi: 10.1016/0012-1606(83)90032-5 – ident: e_1_2_4_29_1 doi: 10.1016/j.devcel.2014.01.005 – ident: e_1_2_4_80_1 doi: 10.1146/annurev-physiol-020911-153258 – ident: e_1_2_4_63_1 doi: 10.1038/aja.2012.81 – ident: e_1_2_4_99_1 doi: 10.1073/pnas.0405580101 – ident: e_1_2_4_57_1 doi: 10.1530/jrf.0.0370131 – ident: e_1_2_4_136_1 doi: 10.1002/jez.1402440218 – ident: e_1_2_4_156_1 doi: 10.1038/ncb1072 – ident: e_1_2_4_159_1 doi: 10.1038/35055178 – ident: e_1_2_4_108_1 doi: 10.1073/pnas.20.2.121 – volume: 8 start-page: 599 year: 1973 ident: e_1_2_4_45_1 article-title: The effects of cyclic nucleotide phosphodiesterase inhibitors on ejaculated porcine spermatozoan metabolism publication-title: Biol Reprod doi: 10.1093/biolreprod/8.5.599 – ident: e_1_2_4_97_1 doi: 10.1002/cm.20279 – ident: e_1_2_4_137_1 doi: 10.1095/biolreprod36.5.1191 – volume: 4 start-page: 3 year: 1971 ident: e_1_2_4_22_1 article-title: Second annual Carl G. Hartman Lecture. Experimental studies of mammalian spermatozoa and eggs publication-title: Biol Reprod doi: 10.1093/biolreprod/4.1.3 – ident: e_1_2_4_145_1 doi: 10.1016/j.theriogenology.2009.07.005 – ident: e_1_2_4_93_1 doi: 10.1095/biolreprod.115.135368 – ident: e_1_2_4_157_1 doi: 10.1073/pnas.0611296104 – ident: e_1_2_4_21_1 doi: 10.1038/184466a0 – ident: e_1_2_4_149_1 doi: 10.1371/journal.pone.0091181 – ident: e_1_2_4_168_1 doi: 10.1007/978-1-4684-4016-4_6 – ident: e_1_2_4_10_1 doi: 10.3109/19396368.2010.512377 – ident: e_1_2_4_116_1 doi: 10.1073/pnas.88.7.2840 – ident: e_1_2_4_20_1 doi: 10.1038/168697b0 – ident: e_1_2_4_36_1 doi: 10.1074/jbc.M206284200 – ident: e_1_2_4_12_1 doi: 10.1095/biolreprod2.Supplement_2.128 – volume: 3 start-page: 177 year: 1953 ident: e_1_2_4_109_1 article-title: The effects of progesterone and related compounds on ovulation and early development in the rabbit publication-title: Acta Physiol Lat Am – ident: e_1_2_4_90_1 doi: 10.1071/BI9680961 – ident: e_1_2_4_94_1 doi: 10.1016/S0014-5793(99)00433-0 – ident: e_1_2_4_105_1 doi: 10.1093/oxfordjournals.humrep.a135754 – volume: 16 start-page: 145 year: 1971 ident: e_1_2_4_148_1 article-title: Studies on the fertilization of mouse eggs in vitro publication-title: Jpn J Anim Reprod doi: 10.1262/jrd1955.16.152 – ident: e_1_2_4_140_1 doi: 10.1093/humupd/dmi047 – ident: e_1_2_4_68_1 doi: 10.7554/eLife.05161 – ident: e_1_2_4_54_1 doi: 10.1002/mrd.21234 – ident: e_1_2_4_132_1 doi: 10.1095/biolreprod53.6.1280 – ident: e_1_2_4_59_1 doi: 10.1530/jrf.0.0630109 – ident: e_1_2_4_120_1 doi: 10.1152/physiol.00049.2009 – ident: e_1_2_4_25_1 doi: 10.1126/science.289.5479.625 – ident: e_1_2_4_47_1 doi: 10.1371/journal.pone.0016993 – ident: e_1_2_4_41_1 doi: 10.1095/biolreprod.112.105262 – ident: e_1_2_4_48_1 doi: 10.1530/rep.1.00374 – ident: e_1_2_4_65_1 doi: 10.1074/jbc.M110.140152 – ident: e_1_2_4_83_1 doi: 10.1074/jbc.M110.175463 – ident: e_1_2_4_60_1 doi: 10.1002/jez.1402280113 – ident: e_1_2_4_166_1 doi: 10.1530/jrf.0.0230193 – ident: e_1_2_4_3_1 doi: 10.1093/molehr/gat067 – ident: e_1_2_4_16_1 doi: 10.1016/j.bbadis.2014.07.013 – ident: e_1_2_4_129_1 doi: 10.1530/jrf.0.0910567 – ident: e_1_2_4_67_1 doi: 10.1073/pnas.1116965108 – ident: e_1_2_4_89_1 doi: 10.7554/eLife.14052 – ident: e_1_2_4_62_1 doi: 10.1111/j.1469-185X.2011.00196.x – ident: e_1_2_4_172_1 doi: 10.1006/dbio.1996.0044 – ident: e_1_2_4_46_1 doi: 10.1530/REP-08-0204 – ident: e_1_2_4_77_1 doi: 10.1016/j.ydbio.2016.02.006 – ident: e_1_2_4_167_1 doi: 10.1016/0014-4827(74)90199-2 – ident: e_1_2_4_171_1 doi: 10.1006/dbio.1995.1304 – ident: e_1_2_4_95_1 doi: 10.1006/dbio.2001.0353 – ident: e_1_2_4_52_1 doi: 10.1538/expanim.59.105 – ident: e_1_2_4_92_1 doi: 10.1530/jrf.0.0250231 – ident: e_1_2_4_135_1 doi: 10.1095/biolreprod36.1.203 – ident: e_1_2_4_107_1 doi: 10.1042/BST0380593 – ident: e_1_2_4_76_1 doi: 10.1096/fj.12-205211 – ident: e_1_2_4_18_1 doi: 10.1074/jbc.M011252200 – ident: e_1_2_4_98_1 doi: 10.1074/jbc.M314249200 – ident: e_1_2_4_112_1 doi: 10.1095/biolreprod44.1.102 – ident: e_1_2_4_162_1 doi: 10.1083/jcb.200411001 – ident: e_1_2_4_151_1 doi: 10.1095/biolreprod61.1.76 – ident: e_1_2_4_44_1 doi: 10.1126/science.1188178 – ident: e_1_2_4_119_1 doi: 10.1038/35098027 – ident: e_1_2_4_147_1 doi: 10.1073/pnas.1117963109 – ident: e_1_2_4_142_1 doi: 10.1387/ijdb.072527ss – ident: e_1_2_4_51_1 doi: 10.1093/biolreprod/8.4.441 – ident: e_1_2_4_101_1 doi: 10.1242/dev.090613 – ident: e_1_2_4_19_1 doi: 10.1095/biolreprod.109.083113 – ident: e_1_2_4_33_1 doi: 10.1016/S0074-7696(08)62576-0 – start-page: 105 volume-title: Elements of mammalian fertilization: Basic concepts year: 1991 ident: e_1_2_4_42_1 – ident: e_1_2_4_26_1 doi: 10.1016/0012-1606(86)90388-X – ident: e_1_2_4_17_1 doi: 10.3109/01485018408987514 – ident: e_1_2_4_154_1 doi: 10.1038/aja.2010.69 – ident: e_1_2_4_73_1 doi: 10.1095/biolreprod18.2.229 – ident: e_1_2_4_87_1 doi: 10.1006/dbio.2002.0728 – ident: e_1_2_4_158_1 doi: 10.1016/S0092-8674(00)80558-9 – ident: e_1_2_4_31_1 doi: 10.1530/REP-12-0279 – ident: e_1_2_4_7_1 doi: 10.1098/rspb.1958.0066 – ident: e_1_2_4_2_1 doi: 10.3109/01485019508987871 – ident: e_1_2_4_61_1 doi: 10.1051/rnd:19840508 – ident: e_1_2_4_71_1 doi: 10.1083/jcb.201204024 – ident: e_1_2_4_28_1 doi: 10.1016/j.cell.2014.02.056 – ident: e_1_2_4_126_1 doi: 10.1095/biolreprod.112.107086 – ident: e_1_2_4_27_1 doi: 10.1126/science.281.5384.1857 – ident: e_1_2_4_37_1 doi: 10.1002/jemt.10320 – ident: e_1_2_4_160_1 doi: 10.1074/jbc.M113.489476 – start-page: 189 volume-title: The physiology of reproduction. Vol. 1 year: 1994 ident: e_1_2_4_170_1 – ident: e_1_2_4_23_1 doi: 10.1002/j.1939-4640.1984.tb00775.x – ident: e_1_2_4_38_1 doi: 10.1002/jcp.21075 – ident: e_1_2_4_56_1 doi: 10.1016/0006-291X(72)90858-3 – ident: e_1_2_4_64_1 doi: 10.1038/42484 – ident: e_1_2_4_118_1 doi: 10.1242/dev.125.13.2415 – ident: e_1_2_4_39_1 doi: 10.1095/biolreprod.114.127266 – ident: e_1_2_4_169_1 doi: 10.1002/mrd.1120050404 – ident: e_1_2_4_43_1 doi: 10.1073/pnas.1222166110 – volume: 238 start-page: 844 year: 1954 ident: e_1_2_4_34_1 article-title: Fecundation in vitro of rabbit egg publication-title: C R Hebd Seances Acad des Sci – ident: e_1_2_4_13_1 doi: 10.1095/biolreprod28.1.108 – ident: e_1_2_4_91_1 doi: 10.1071/BI9680973 – ident: e_1_2_4_15_1 doi: 10.1073/pnas.96.1.79 – ident: e_1_2_4_150_1 doi: 10.1242/dev.121.4.1129 – ident: e_1_2_4_161_1 doi: 10.1016/j.bbadis.2014.04.020 – ident: e_1_2_4_164_1 doi: 10.1091/mbc.E11-12-1025 – ident: e_1_2_4_74_1 doi: 10.1074/jbc.M109.085845 – ident: e_1_2_4_155_1 doi: 10.1002/mrd.1080400413 – volume: 258 start-page: 13056 year: 1983 ident: e_1_2_4_102_1 article-title: Activation of spermatozoan adenylate cyclase by a low molecular weight factor in porcine seminal plasma publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)44079-8 – ident: e_1_2_4_104_1 doi: 10.1371/journal.pone.0030671 – ident: e_1_2_4_4_1 doi: 10.1083/jcb.201106096 – ident: e_1_2_4_111_1 doi: 10.1126/science.130.3367.81 – ident: e_1_2_4_72_1 doi: 10.1038/nature04417 – ident: e_1_2_4_173_1 doi: 10.1073/pnas.1100240108 – ident: e_1_2_4_128_1 doi: 10.1095/biolreprod42.3.450 – ident: e_1_2_4_8_1 doi: 10.1083/jcb.201404025 – ident: e_1_2_4_103_1 doi: 10.1016/S0021-9258(17)39295-5 – ident: e_1_2_4_24_1 doi: 10.1371/journal.pone.0060578 – ident: e_1_2_4_153_1 doi: 10.1126/scisignal.3142pe35 – ident: e_1_2_4_100_1 doi: 10.1016/0165-0378(87)90014-3 – ident: e_1_2_4_152_1 doi: 10.1073/pnas.0811895106 – ident: e_1_2_4_124_1 doi: 10.1095/biolreprod46.3.419 – ident: e_1_2_4_96_1 doi: 10.1002/jcp.24873 – ident: e_1_2_4_30_1 doi: 10.1002/mrd.1120090106 – ident: e_1_2_4_35_1 doi: 10.1074/jbc.M112.393488 – volume: 65 start-page: 245 year: 2007 ident: e_1_2_4_121_1 article-title: Signalling pathways involved in sperm capacitation publication-title: Soc Reprod Fertil Suppl – ident: e_1_2_4_122_1 doi: 10.1016/j.febslet.2010.02.005 – ident: e_1_2_4_115_1 doi: 10.1073/pnas.2136654100 – ident: e_1_2_4_165_1 doi: 10.1038/200281b0 – ident: e_1_2_4_9_1 doi: 10.1073/pnas.80.5.1327 – ident: e_1_2_4_11_1 doi: 10.1093/molehr/gat033 – ident: e_1_2_4_32_1 doi: 10.2307/1538405 – ident: e_1_2_4_125_1 doi: 10.1095/biolreprod61.6.1445 – volume: 15 start-page: 21 year: 1983 ident: e_1_2_4_55_1 article-title: Studies on the roles of cyclic AMP and calcium in the development of bovine sperm motility publication-title: J Submicrosc Cytol – ident: e_1_2_4_131_1 doi: 10.1242/jcs.047225 – ident: e_1_2_4_134_1 doi: 10.1095/biolreprod31.5.1119 – ident: e_1_2_4_58_1 doi: 10.1095/biolreprod.104.034140 – ident: e_1_2_4_144_1 doi: 10.1095/biolreprod.106.056028 – ident: e_1_2_4_53_1 doi: 10.1016/j.devcel.2005.06.007 – ident: e_1_2_4_106_1 doi: 10.1186/1471-2229-6-7 – ident: e_1_2_4_133_1 doi: 10.1016/S0140-6736(78)92957-4 – ident: e_1_2_4_84_1 doi: 10.1095/biolreprod.106.055038 – ident: e_1_2_4_5_1 doi: 10.1071/BI9510581 – ident: e_1_2_4_141_1 doi: 10.1093/humupd/dmn029 – ident: e_1_2_4_66_1 doi: 10.1038/nature03362 – ident: e_1_2_4_114_1 doi: 10.1111/j.1365-313X.2011.04729.x – ident: e_1_2_4_81_1 doi: 10.1093/molehr/gau029 – ident: e_1_2_4_78_1 doi: 10.1095/biolreprod34.2.349 |
SSID | ssj0009980 |
Score | 2.5063875 |
SecondaryResourceType | review_article |
Snippet | SUMMARY
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro... Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization.... SUMMARY Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 860 |
SubjectTerms | Animals Female Fertilization in Vitro - history Fertilization in Vitro - methods Fertilization in Vitro - trends History, 20th Century History, 21st Century Humans Male Sperm Capacitation |
Title | Chang's meaning of capacitation: A molecular perspective |
URI | https://api.istex.fr/ark:/67375/WNG-3JMK5D9F-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrd.22663 https://www.ncbi.nlm.nih.gov/pubmed/27256723 https://www.proquest.com/docview/1831859677 https://www.proquest.com/docview/1826696088 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9Ki-iL1daPbatEkdqXve5tkt2sPp2tZ6lcwWLxECEk2exLvb1yH9D61zvJbvaoVBDfluwsySYzmV-SmV8A3ghBqyyhKraMZrHjlIqVKNCuvLdnJVXC5Q6PzrKTC3Y65uM1eB9yYRp-iG7DzVmGn6-dgSs9P1yRhk5mZQ-xQ-aYPl2slgNE5yvqKFxGtEwEScx4Og6sQkl62H15yxdtuG69vgto3sat3vEMN-FHaHITb3LZWy50z_z6g83xP__pETxsASkZNBr0GNZsvQXbgxoX45Mbsk98iKjfe9-Cex_C0_2jcFEcln6f-tJtED5X4e2cTKxy-y1kWhGD3ti0RODvyIBMwn285GqV5_kELoYfvx6dxO3VDLFxjG4xF0Yk3Ba2pKU_meWVMVRnFhGVyG0fQU5RUcOt1qJIFeWVoJm2rLC50Kqv6FNYr6e1fQ6kEJnNTR-RQslYqrQqDWOo34U2SaJ5GcFBGCQZmuuuz_gpG8blVGKvSd9rEbzuRK8aso67hPb9SHcSanbpottyLr-dfZL0dPSZHxdD-SWCvaAKsjXsucQZEBFOkeV5BK-619jh7pxF1Xa6dDJYD64MhYjgWaNCXWVpjhgzT7EVB14R_t5OOTo_9g87_y66Cw8Q0GVNsOEerC9mS_sCQdNCv_TW8RvIWA5_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTWh74WMDFhhgEBp7SZfGseMgXspGKdtaiWnTKiRk2Y7zMppOXSsBfz1n56MaGhLiLXIusmPf2T_bd78DeCMELXhEVWgTykPHKRUqkaFd-dU-yakSLnZ4OOKD8-RozMYr8L6Jhan4IdoDN2cZfr52Bu4OpPeXrKGTWd5B8MDpHVhzGb39hup0SR6FG4maiyAKExaPG16hKN5vP72xGq25jv1xG9S8iVz90tO_D9-aRlceJ5edxVx3zK8_-Bz_968ewL0ak5JepUQPYcWWm7DVK3E_PvlJdon3EvXH75tw90PztH7Q5IrD0q9TX7oFwocrvL0mE6vckQuZFsTggmxqLvB3pEcmTUpecrUM9XwE5_2PZweDsM7OEBpH6hYyYUTEbGZzmvvLWVYYQzW3CKpEaruIc7KCGma1FlmsKCsE5dommU2FVl1FH8NqOS3tNpBMcJuaLoKFPElipVVukgRVPNMmijTLA9hrRkk2zXUZNL7LinQ5lthr0vdaAK9b0auKr-M2oV0_1K2Eml06B7eUyYvRJ0mPhsfsMOvLLwHsNLoga9u-ljgJIsjJeJoG8Kp9jR3urlpUaacLJ4P14OZQiACeVDrUVhanCDPTGFux5zXh7-2Uw9ND__D030VfwvrgbHgiTz6Pjp_BBuI7Xvke7sDqfLawzxFDzfULbyq_AakYEpo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7i8cNkYBAYEhMZe0qXxJQ48lZUyNlrBxESFJlm247yMplXXSsCv59i5VENDQrxFzonsHJ_j8_lyPgO8FIIUPCYqspTwyHFKRUpk6Fc-2tOcKOFyh4cjfnhKj8ZsvAZvmlyYih-iXXBznuHHa-fgs7zYX5GGTuZ5B7EDJ9dgg_JYOJPun6y4o3AeUVMRxBFlybihFYqT_fbTS8Fow-n1x1VI8zJw9ZFncAfOmjZXB07OO8uF7phff9A5_udP3YXbNSINe5UJ3YM1W27CVq_E2fjkZ7gb-jOifvF9E66_bZ5uHjQ3xWHpt6kv3QLhkxVeXYQTq9yCSzgtQoPh2NRM4K_DXjhpLuQNZ6tEz_twOnj35eAwqu9miIyjdIuYMCJmNrM5yf3WLCuMIZpbhFQitV1EOVlBDLNaiyxRhBWCcG1pZlOhVVeRbVgvp6V9CGEmuE1NF6FCTmmitMoNpWjgmTZxrFkewF7TSbJprrs_47usKJcTiVqTXmsBvGhFZxVbx1VCu76nWwk1P3fH21Imv47eS3I0PGb9bCA_B7DTmIKsPftC4hCIECfjaRrA8_Y1KtxttKjSTpdOBuvBqaEQATyoTKitLEkRZKYJtmLPG8Lf2ymHJ33_8OjfRZ_BjU_9gfz4YXT8GG4huOPVwcMdWF_Ml_YJAqiFfuod5Td7SRFS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chang%27s+meaning+of+capacitation%3A+A+molecular+perspective&rft.jtitle=Molecular+reproduction+and+development&rft.au=Gervasi%2C+Maria+Gracia&rft.au=Visconti%2C+Pablo+E.&rft.date=2016-10-01&rft.issn=1040-452X&rft.eissn=1098-2795&rft.volume=83&rft.issue=10&rft.spage=860&rft.epage=874&rft_id=info:doi/10.1002%2Fmrd.22663&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrd_22663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-452X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-452X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-452X&client=summon |