Expansion of human γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug

Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) ‐unrestricted fashion that is independent of the number of tumor mutatio...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 109; no. 3; pp. 587 - 599
Main Authors Tanaka, Yoshimasa, Murata‐Hirai, Kaoru, Iwasaki, Masashi, Matsumoto, Kenji, Hayashi, Kosuke, Kumagai, Asuka, Nada, Mohanad H., Wang, Hong, Kobayashi, Hirohito, Kamitakahara, Hiroshi, Okamura, Haruki, Sugie, Tomoharu, Minato, Nagahiro, Toi, Masakazu, Morita, Craig T.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.03.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) ‐unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis‐pivaloyloxymethyl 2‐(thiazole‐2‐ylamino)ethylidene‐1,1‐bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor‐α and interferon‐γ in response to PTA‐treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA‐matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses. Adoptive transfer of Vγ2Vδ2 T cells for treatment of cancer patients has been shown to be safe.In this report, we describe a method for preparing large numbers of highly enriched human Vγ2Vδ2 T cells using a new bisphosphonate prodrug. When the expanded Vγ2Vδ2 cells were administered to immunodeficient mice, the cells remained circulating in the blood for more than 2 weeks and they were functionally active.
AbstractList Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) ‐unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis‐pivaloyloxymethyl 2‐(thiazole‐2‐ylamino)ethylidene‐1,1‐bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor‐α and interferon‐γ in response to PTA‐treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA‐matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses.
Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) ‐unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis‐pivaloyloxymethyl 2‐(thiazole‐2‐ylamino)ethylidene‐1,1‐bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor‐α and interferon‐γ in response to PTA‐treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA‐matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses. Adoptive transfer of Vγ2Vδ2 T cells for treatment of cancer patients has been shown to be safe.In this report, we describe a method for preparing large numbers of highly enriched human Vγ2Vδ2 T cells using a new bisphosphonate prodrug. When the expanded Vγ2Vδ2 cells were administered to immunodeficient mice, the cells remained circulating in the blood for more than 2 weeks and they were functionally active.
Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) -unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor-α and interferon-γ in response to PTA-treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA-matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses.Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) -unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor-α and interferon-γ in response to PTA-treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA-matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses.
Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex ( MHC ) ‐unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis‐pivaloyloxymethyl 2‐(thiazole‐2‐ylamino)ethylidene‐1,1‐bisphosphonate ( PTA ). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD 25 and secreted tumor necrosis factor‐α and interferon‐γ in response to PTA ‐treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA ‐matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses.
Author Kumagai, Asuka
Minato, Nagahiro
Kamitakahara, Hiroshi
Kobayashi, Hirohito
Matsumoto, Kenji
Toi, Masakazu
Iwasaki, Masashi
Hayashi, Kosuke
Sugie, Tomoharu
Morita, Craig T.
Murata‐Hirai, Kaoru
Okamura, Haruki
Wang, Hong
Tanaka, Yoshimasa
Nada, Mohanad H.
AuthorAffiliation 4 Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology University of Iowa Carver College of Medicine Iowa City Veterans Affairs Health Care System Iowa City IA USA
7 Department of Tumor Immunology and Cell Therapy Hyogo College of Medicine Nishinomiya Hyogo Japan
5 Department of Transfusion Medicine and Cell Processing Tokyo Women's Medical University Tokyo Japan
2 Department of Immunology and Cell Biology Graduate School of Medicine Kyoto University Kyoto Japan
8 Department of Surgery Graduate School of Medicine Kyoto University Kyoto Japan
1 Center for Innovation in Immunoregulative Technology and Therapeutics Graduate School of Medicine Kyoto University Kyoto Japan
3 Center for Bioinformatics and Molecular Medicine Graduate School of Biomedical Sciences Nagasaki University Nagasaki Japan
6 Department of Forest and Biomaterials Science Graduate School of Agriculture Kyoto University Kyoto Japan
AuthorAffiliation_xml – name: 1 Center for Innovation in Immunoregulative Technology and Therapeutics Graduate School of Medicine Kyoto University Kyoto Japan
– name: 2 Department of Immunology and Cell Biology Graduate School of Medicine Kyoto University Kyoto Japan
– name: 5 Department of Transfusion Medicine and Cell Processing Tokyo Women's Medical University Tokyo Japan
– name: 7 Department of Tumor Immunology and Cell Therapy Hyogo College of Medicine Nishinomiya Hyogo Japan
– name: 4 Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology University of Iowa Carver College of Medicine Iowa City Veterans Affairs Health Care System Iowa City IA USA
– name: 3 Center for Bioinformatics and Molecular Medicine Graduate School of Biomedical Sciences Nagasaki University Nagasaki Japan
– name: 6 Department of Forest and Biomaterials Science Graduate School of Agriculture Kyoto University Kyoto Japan
– name: 8 Department of Surgery Graduate School of Medicine Kyoto University Kyoto Japan
Author_xml – sequence: 1
  givenname: Yoshimasa
  orcidid: 0000-0002-5024-0614
  surname: Tanaka
  fullname: Tanaka, Yoshimasa
  email: ystanaka@nagasaki-u.ac.jp
  organization: Nagasaki University
– sequence: 2
  givenname: Kaoru
  surname: Murata‐Hirai
  fullname: Murata‐Hirai, Kaoru
  organization: Kyoto University
– sequence: 3
  givenname: Masashi
  surname: Iwasaki
  fullname: Iwasaki, Masashi
  organization: Kyoto University
– sequence: 4
  givenname: Kenji
  surname: Matsumoto
  fullname: Matsumoto, Kenji
  organization: Kyoto University
– sequence: 5
  givenname: Kosuke
  surname: Hayashi
  fullname: Hayashi, Kosuke
  organization: Kyoto University
– sequence: 6
  givenname: Asuka
  surname: Kumagai
  fullname: Kumagai, Asuka
  organization: Nagasaki University
– sequence: 7
  givenname: Mohanad H.
  surname: Nada
  fullname: Nada, Mohanad H.
  organization: Iowa City Veterans Affairs Health Care System
– sequence: 8
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: Iowa City Veterans Affairs Health Care System
– sequence: 9
  givenname: Hirohito
  surname: Kobayashi
  fullname: Kobayashi, Hirohito
  organization: Tokyo Women's Medical University
– sequence: 10
  givenname: Hiroshi
  surname: Kamitakahara
  fullname: Kamitakahara, Hiroshi
  organization: Kyoto University
– sequence: 11
  givenname: Haruki
  surname: Okamura
  fullname: Okamura, Haruki
  organization: Hyogo College of Medicine
– sequence: 12
  givenname: Tomoharu
  surname: Sugie
  fullname: Sugie, Tomoharu
  organization: Kyoto University
– sequence: 13
  givenname: Nagahiro
  surname: Minato
  fullname: Minato, Nagahiro
  organization: Kyoto University
– sequence: 14
  givenname: Masakazu
  surname: Toi
  fullname: Toi, Masakazu
  organization: Kyoto University
– sequence: 15
  givenname: Craig T.
  surname: Morita
  fullname: Morita, Craig T.
  organization: Iowa City Veterans Affairs Health Care System
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29288540$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUhS1EVWDaBS9QWWLTLgL-S2JvkNAI2kpIXQCLriwnuZkxSuzUTijzXPAcPFM9DEWAhKWra11_OjrXZw9tO-8AoX1KDmk6R7WJh5QLRbfQ7rpnJSHF9uO9zBThbAftxXhNCC-EEh_RDlNMylyQXfT79HYwLlrvsG_xcuqNww93D_f4EtfQdRG3PmDT-GG0N4Bt30_Oj0sIZljhKVq3wAZXNg5Lvy5nRsBD8E2YFp_Qh9Z0ET4_9Rm6Oju9nP_Izn99_zk_Oc9qoRjNSlAVKaocjGglzZMxrkhraCMJFTKNoKhokRNOCGN1o0qSC4DSUF5JlUPLZ-h4oztMVQ9NDW4MptNDsL0JK-2N1a9fnF3qhb_RueRCpj-Zoa9PAsH_mSCOurdxvbxx4KeoqZJMClqIMqEHb9BrPwWX1tOMKUJKyhlP1LcNVQcfY4D22Qwleh2YToHpx8AS--Wl-2fyf0IJONoAf20Hq_eV9PzkYiP5D5Y6owM
CitedBy_id crossref_primary_10_1038_s41423_020_0504_x
crossref_primary_10_3389_fimmu_2023_1282710
crossref_primary_10_4155_fmc_2018_0591
crossref_primary_10_1111_cei_13436
crossref_primary_10_3389_fimmu_2022_920888
crossref_primary_10_1111_imr_12917
crossref_primary_10_1128_spectrum_03614_23
crossref_primary_10_1016_j_jim_2019_01_003
crossref_primary_10_1016_j_isci_2023_107802
crossref_primary_10_3390_cells13020128
crossref_primary_10_1002_cmdc_202000198
crossref_primary_10_3390_cells11182816
crossref_primary_10_3389_fimmu_2018_01246
crossref_primary_10_1039_D0MD00221F
crossref_primary_10_2174_1389201020666190206203640
crossref_primary_10_3389_fimmu_2022_1065495
crossref_primary_10_3390_cancers12041014
crossref_primary_10_3390_cancers13040598
crossref_primary_10_3389_fimmu_2020_01405
crossref_primary_10_3389_fimmu_2024_1336870
crossref_primary_10_1039_D1MD00297J
crossref_primary_10_3390_ijms241310873
crossref_primary_10_3390_ijms21144877
crossref_primary_10_3389_fimmu_2018_02528
crossref_primary_10_1016_j_lfs_2021_119066
crossref_primary_10_3389_fimmu_2022_872122
crossref_primary_10_1155_2018_5081634
crossref_primary_10_3389_fimmu_2023_1058838
crossref_primary_10_1126_scitranslmed_aaz3426
crossref_primary_10_1016_j_ejps_2023_106571
crossref_primary_10_37349_ei_2022_00066
crossref_primary_10_1080_2162402X_2021_1989789
crossref_primary_10_1002_wsbm_1643
crossref_primary_10_1016_j_htct_2021_09_007
Cites_doi 10.1056/NEJMoa1200694
10.1097/CJI.0b013e318207ecfb
10.1182/blood-2016-01-628982
10.4049/jimmunol.145.9.2827
10.1124/mol.105.020776
10.1158/1535-7163.MCT-17-0386
10.4049/jimmunol.170.7.3696
10.1002/eji.201040959
10.1007/s00262-011-1021-7
10.1056/NEJMoa1200690
10.1016/j.jcyt.2012.12.004
10.1038/375155a0
10.1158/1078-0432.CCR-17-1439
10.1097/TP.0b013e3181a5cb07
10.1038/nm.4015
10.1093/intimm/dxm031
10.1016/S0014-5793(01)03191-X
10.1111/j.1600-065X.2006.00479.x
10.1016/j.exphem.2009.04.008
10.1038/s41598-017-05553-0
10.1002/cam4.196
10.1182/blood-2012-05-430470
10.1371/journal.pone.0044219
10.5402/2012/195727
10.4049/jimmunol.1002697
10.4049/jimmunol.1300658
10.4049/jimmunol.1500314
10.3109/14653249.2010.515581
10.1074/jbc.M112.384354
10.1016/j.apsb.2015.07.003
10.1007/s00262-008-0491-8
10.1038/ni.3795
10.1084/jem.20021500
10.1038/nm0596-551
10.1002/cmdc.201700626
10.4049/jimmunol.154.3.998
10.1126/science.aaa1348
10.1186/s40425-017-0209-6
10.1038/nature12477
10.1038/bjc.2011.293
10.1111/j.1365-3083.1992.tb02946.x
10.1016/j.immuni.2014.03.003
10.1002/cmdc.201600465
10.1002/eji.1830211215
10.1073/pnas.91.17.8175
ContentType Journal Article
Copyright 2017 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2018. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/cas.13491
DatabaseName Wiley Online Library Open Access
Wiley Online Library
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate TANAKA et al
EISSN 1349-7006
EndPage 599
ExternalDocumentID 10_1111_cas_13491
29288540
CAS13491
Genre article
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Ministry of Education, Science, Culture, Sports, and Technology of Japan
  funderid: 17933802
– fundername: Platform Project for Supporting Drug Discovery and Life Science Research
– fundername: Kyoto University
  funderid: 11800121
– fundername: Department of Veterans Affairs
– fundername: Astellas Pharma
– fundername: Grants‐in‐Aid for Scientific Research
  funderid: 16K08844
– fundername: Japan Agency for Medical Research and Development
– fundername: National Cancer Institute
  funderid: 1 I01 BX000972‐01A1
– fundername: University of Iowa/Mayo Clinic Lymphoma Specialized Program of Research Excellence
  funderid: CA097274; P30CA086862
– fundername: BLRD VA
  grantid: I01 BX000972
– fundername: NCI NIH HHS
  grantid: P30 CA086862
– fundername: University of Iowa/Mayo Clinic Lymphoma Specialized Program of Research Excellence
  grantid: CA097274; P30CA086862
– fundername: Kyoto University
  grantid: 11800121
– fundername: Grants‐in‐Aid for Scientific Research
  grantid: 16K08844
– fundername: Ministry of Education, Science, Culture, Sports, and Technology of Japan
  grantid: 17933802
– fundername: National Cancer Institute
  grantid: 1 I01 BX000972‐01A1
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
36B
3O-
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABEML
ACCFJ
ACSCC
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFKRA
AFPKN
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
DU5
E3Z
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HOLLA
HYE
HZI
HZ~
IAO
IHR
IPNFZ
IX1
J0M
K.9
K48
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
MK4
N04
N05
N9A
O9-
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
PROAC
Q11
ROL
RPM
RX1
SJN
SUPJJ
SV3
TEORI
UB1
W8V
WIN
WOW
WQJ
WRC
WXI
X7M
XG1
ZXP
~IA
~WT
CGR
CUY
CVF
ECM
EIF
ITC
NPM
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4921-7e9b06b5ea4f815928390fa1d80148f81e6b165030022cd97054ee7a13b895ef3
IEDL.DBID RPM
ISSN 1347-9032
1349-7006
IngestDate Tue Sep 17 21:17:04 EDT 2024
Sat Jul 20 16:38:37 EDT 2024
Fri Sep 13 08:51:53 EDT 2024
Thu Sep 26 15:41:47 EDT 2024
Wed Oct 09 10:19:03 EDT 2024
Sat Aug 24 00:59:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Vγ2Vδ2 T cells
bisphosphonate
adoptive cancer immunotherapy
farnesyl diphosphate synthase
zoledronic acid
Language English
License Attribution-NonCommercial
2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4921-7e9b06b5ea4f815928390fa1d80148f81e6b165030022cd97054ee7a13b895ef3
Notes Funding information
This study was supported by grants from the Ministry of Education, Science, Culture, Sports, and Technology of Japan. To Y. Tanaka: Grants‐in‐Aid for Scientific Research, 16K08844, and Platform Project for Supporting Drug Discovery and Life Science Research, 17933802, from Ministry of Education, Science, Culture, Sports, and Technology of Japan and Astellas Pharma. To Y. Tanaka: “Special Coordination Funds for Promoting Science and Technologies” program through the “Formation of Center for Innovation by Fusion of Advanced Technologies”, 11800121, from Kyoto University and Japan Agency for Medical Research and Development. To Y. Tanaka: Grants‐in‐Aid for Translational Research, A48 and A90), from the Department of Veterans Affairs. To C. T. Morita: Veterans Health Administration, 1 I01 BX000972‐01A1, and from the National Cancer Institute. To C. T. Morita: CA097274 (University of Iowa/Mayo Clinic Lymphoma Specialized Program of Research Excellence) and P30CA086862 (Core Support). C. T Morita is the Kelting Family Scholar in Rheumatology.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Toi and Morita authors contributed equally to this work.
ORCID 0000-0002-5024-0614
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834800/
PMID 29288540
PQID 2290071323
PQPubID 4378882
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5834800
proquest_miscellaneous_1982841647
proquest_journals_2290071323
crossref_primary_10_1111_cas_13491
pubmed_primary_29288540
wiley_primary_10_1111_cas_13491_CAS13491
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
– name: Hoboken
PublicationTitle Cancer science
PublicationTitleAlternate Cancer Sci
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2017; 5
2007; 19
2017; 7
2012; 120
2012; 287
2012; 2012
2015; 5
2009; 87
2012; 366
2011; 60
2013; 500
2017; 23
2008; 57
2003; 170
2011; 13
2011; 34
1992; 36
2016; 127
2015; 348
1995; 375
2001; 509
1990; 145
2014; 40
1995; 154
2003; 197
2016; 11
2015; 195
2011; 105
2013; 15
2007; 215
2014; 3
1991; 21
2017; 16
2006; 69
2017; 12
2011; 41
1964; 55
2017; 18
2013; 191
1994; 91
2012; 7
1996; 2
2010; 30
2009; 37
2011; 187
2016; 22
e_1_2_6_32_1
e_1_2_6_30_1
Okawaki M (e_1_2_6_26_1) 2014; 40
e_1_2_6_19_1
Kabelitz D (e_1_2_6_47_1) 1990; 145
e_1_2_6_13_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Kobayashi H (e_1_2_6_28_1) 2010; 30
Hakomori S (e_1_2_6_36_1) 1964; 55
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Bukowski JF (e_1_2_6_18_1) 1995; 154
e_1_2_6_39_1
Kakimi K (e_1_2_6_29_1) 2014; 3
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 13
  start-page: 92
  year: 2011
  end-page: 97
  article-title: Zoledronate‐activated Vγ9γδ T cell‐based immunotherapy is feasible and restores the impairment of γδ T cells in patients with solid tumors
  publication-title: Cytotherapy
– volume: 91
  start-page: 8175
  year: 1994
  end-page: 8179
  article-title: Nonpeptide ligands for human γδ T cells
  publication-title: Proc Natl Acad Sci USA
– volume: 195
  start-page: 4583
  year: 2015
  end-page: 4594
  article-title: Sensor function for butyrophilin 3A1 in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T Cells
  publication-title: J Immunol
– volume: 36
  start-page: 107
  year: 1992
  end-page: 117
  article-title: Reactivity of γδ T cells induced by the tumour cell line RPMI 8226: functional heterogeneity of clonal populations and role of GroEL heat shock proteins
  publication-title: Scand J Immunol
– volume: 509
  start-page: 317
  year: 2001
  end-page: 322
  article-title: Identification of ( )‐4‐hydroxy‐3‐methyl‐but‐2‐enyl pyrophosphate as a major activator for human γδ T cells in
  publication-title: FEBS Lett
– volume: 21
  start-page: 2999
  year: 1991
  end-page: 3007
  article-title: Functionally distinct subsets of human γ/δ T cells
  publication-title: Eur J Immunol
– volume: 191
  start-page: 1029
  year: 2013
  end-page: 1042
  article-title: Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells
  publication-title: J Immunol
– volume: 60
  start-page: 1075
  year: 2011
  end-page: 1084
  article-title: Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL‐2 to patients with advanced renal cell carcinoma
  publication-title: Cancer Immunol Immunother
– volume: 69
  start-page: 1624
  year: 2006
  end-page: 1632
  article-title: Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid‐phase endocytosis
  publication-title: Mol Pharmacol
– volume: 16
  start-page: 2598
  year: 2017
  end-page: 2608
  article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers
  publication-title: Mol Cancer Ther
– volume: 55
  start-page: 205
  year: 1964
  end-page: 208
  article-title: A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide
  publication-title: J Biochem
– volume: 5
  start-page: 442
  year: 2015
  end-page: 453
  article-title: Insoluble drug delivery strategies: review of recent advances and business prospects
  publication-title: Acta Pharm Sin B
– volume: 215
  start-page: 59
  year: 2007
  end-page: 76
  article-title: Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens
  publication-title: Immunol Rev
– volume: 40
  start-page: 490
  year: 2014
  end-page: 500
  article-title: The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells
  publication-title: Immunity
– volume: 105
  start-page: 778
  year: 2011
  end-page: 786
  article-title: Clinical evaluation of autologous T cell‐based immunotherapy for metastatic solid tumours
  publication-title: Br J Cancer
– volume: 127
  start-page: 3331
  year: 2016
  end-page: 3340
  article-title: T cells for viral infections after allogeneic hematopoietic stem cell transplant
  publication-title: Blood
– volume: 187
  start-page: 5099
  year: 2011
  end-page: 5113
  article-title: Indirect stimulation of human Vγ2Vδ2 T cells through alterations in isoprenoid metabolism
  publication-title: J Immunol
– volume: 34
  start-page: 202
  year: 2011
  end-page: 211
  article-title: Adoptive immunotherapy for advanced non‐small cell lung cancer using zoledronate‐expanded γδ T cells: a phase I clinical study
  publication-title: J Immunother
– volume: 18
  start-page: 1046
  year: 2017
  end-page: 1057
  article-title: Translation is actively regulated during the differentiation of CD8 effector T cells
  publication-title: Nat Immunol
– volume: 500
  start-page: 415
  year: 2013
  end-page: 421
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
– volume: 375
  start-page: 155
  year: 1995
  end-page: 158
  article-title: Natural and synthetic non‐peptide antigens recognized by human γδ T cells
  publication-title: Nature
– volume: 87
  start-page: 1654
  year: 2009
  end-page: 1658
  article-title: Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice
  publication-title: Transplantation
– volume: 170
  start-page: 3696
  year: 2003
  end-page: 3706
  article-title: Conservation of nonpeptide antigen recognition by rhesus monkey Vγ2Vδ2 T cells
  publication-title: J Immunol
– volume: 366
  start-page: 2443
  year: 2012
  end-page: 2454
  article-title: Safety, activity, and immune correlates of anti‐PD‐1 antibody in cancer
  publication-title: N Engl J Med
– volume: 37
  start-page: 956
  year: 2009
  end-page: 968
  article-title: Clinical and immunological evaluation of zoledronate‐activated Vγ9γδ T‐cell‐based immunotherapy for patients with multiple myeloma
  publication-title: Exp Hematol
– volume: 287
  start-page: 32780
  year: 2012
  end-page: 32790
  article-title: The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin‐3 (BTN3A)‐specific antibodies
  publication-title: J Biol Chem
– volume: 5
  start-page: 9
  year: 2017
  article-title: Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation
  publication-title: J Immunother Cancer
– volume: 41
  start-page: 345
  year: 2011
  end-page: 355
  article-title: Expression and function of PD‐1 in human γδ T cells that recognize phosphoantigens
  publication-title: Eur J Immunol
– volume: 197
  start-page: 163
  year: 2003
  end-page: 168
  article-title: Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells
  publication-title: J Exp Med
– volume: 3
  start-page: 362
  year: 2014
  end-page: 375
  article-title: Intraperitoneal injection of in vitro expanded Vγ9Vδ2 T cells together with zoledronate for the treatment of malignant ascites due to gastric cancer
  publication-title: Cancer Med
– volume: 7
  start-page: e44219
  year: 2012
  article-title: Xenogeneic graft‐versus‐host‐disease in NOD‐scid IL‐2Rγ mice display a T‐effector memory phenotype
  publication-title: PLoS One
– volume: 3
  start-page: 23
  year: 2014
  end-page: 33
  article-title: γδ T cell therapy for the treatment of non‐small cell lung cancer
  publication-title: Transl Lung Cancer Res
– volume: 7
  start-page: 5987
  year: 2017
  article-title: Anti‐tumor activity and immunotherapeutic potential of a bisphosphonate prodrug
  publication-title: Sci Rep
– volume: 15
  start-page: 481
  year: 2013
  end-page: 491
  article-title: Ex vivo characterization of γδ T‐cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin‐2 receptor β‐chain and the common γ‐chain
  publication-title: Cytotherapy
– volume: 12
  start-page: 2006
  year: 2017
  end-page: 2013
  article-title: Live cell labeling with terpyridine derivative proligands to measure cytotoxicity mediated by immune cells
  publication-title: ChemMedChem
– volume: 23
  start-page: 5729
  year: 2017
  end-page: 5736
  article-title: Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor‐based immunotherapy
  publication-title: Clin Cancer Res
– volume: 120
  start-page: 2269
  year: 2012
  end-page: 2279
  article-title: Key implication of CD277/butyrophilin‐3 (BTN3A) in cellular stress sensing by a major human γδ T‐cell subset
  publication-title: Blood
– volume: 40
  start-page: 33
  year: 2014
  end-page: 39
  article-title: Adoptive immunotherapy using autologous lymphocytes activated ex vivo with antigen stimulation for patients with incurable cancer
  publication-title: Kawasaki Med J
– volume: 19
  start-page: 657
  year: 2007
  end-page: 673
  article-title: Preferential recognition of a microbial metabolite by human Vγ2Vδ2 T cells
  publication-title: Int Immunol
– volume: 154
  start-page: 998
  year: 1995
  end-page: 1006
  article-title: Vγ2Vδ2 TCR‐dependent recognition of non‐peptide antigens and Daudi cells analyzed by TCR gene transfer
  publication-title: J Immunol
– volume: 145
  start-page: 2827
  year: 1990
  end-page: 2832
  article-title: Human cytotoxic lymphocytes. V. Frequency and specificity of γδ cytotoxic lymphocyte precursors activated by allogeneic or autologous stimulator cells
  publication-title: J Immunol
– volume: 30
  start-page: 575
  year: 2010
  end-page: 579
  article-title: Complete remission of lung metastasis following adoptive immunotherapy using activated autologous γδ T‐cells in a patient with renal cell carcinoma
  publication-title: Anticancer Res
– volume: 348
  start-page: 124
  year: 2015
  end-page: 128
  article-title: Mutational landscape determines sensitivity to PD‐1 blockade in non‐small cell lung cancer
  publication-title: Science
– volume: 11
  start-page: 2656
  year: 2016
  end-page: 2663
  article-title: Targeting cancer cells with a bisphosphonate prodrug
  publication-title: ChemMedChem
– volume: 22
  start-page: 26
  year: 2016
  end-page: 36
  article-title: Prospects for gene‐engineered T cell immunotherapy for solid cancers
  publication-title: Nat Med
– volume: 366
  start-page: 2455
  year: 2012
  end-page: 2465
  article-title: Safety and activity of anti‐PD‐L1 antibody in patients with advanced cancer
  publication-title: N Engl J Med
– volume: 2
  start-page: 551
  year: 1996
  end-page: 555
  article-title: Long‐term restoration of immunity against Epstein‐Barr virus infection by adoptive transfer of gene‐modified virus‐specific T lymphocytes
  publication-title: Nat Med
– volume: 57
  start-page: 1599
  year: 2008
  end-page: 1609
  article-title: Phase‐I study of Innacell γδ, an autologous cell‐therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL‐2, in patients with metastatic renal cell carcinoma
  publication-title: Cancer Immunol Immunother
– volume: 2012
  start-page: 195727
  year: 2012
  article-title: Drug solubility: importance and enhancement techniques
  publication-title: ISRN Pharm
– ident: e_1_2_6_3_1
  doi: 10.1056/NEJMoa1200694
– volume: 55
  start-page: 205
  year: 1964
  ident: e_1_2_6_36_1
  article-title: A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide
  publication-title: J Biochem
  contributor:
    fullname: Hakomori S
– ident: e_1_2_6_23_1
  doi: 10.1097/CJI.0b013e318207ecfb
– ident: e_1_2_6_48_1
  doi: 10.1182/blood-2016-01-628982
– volume: 145
  start-page: 2827
  year: 1990
  ident: e_1_2_6_47_1
  article-title: Human cytotoxic lymphocytes. V. Frequency and specificity of γδ+ cytotoxic lymphocyte precursors activated by allogeneic or autologous stimulator cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.145.9.2827
  contributor:
    fullname: Kabelitz D
– ident: e_1_2_6_32_1
  doi: 10.1124/mol.105.020776
– ident: e_1_2_6_5_1
  doi: 10.1158/1535-7163.MCT-17-0386
– volume: 30
  start-page: 575
  year: 2010
  ident: e_1_2_6_28_1
  article-title: Complete remission of lung metastasis following adoptive immunotherapy using activated autologous γδ T‐cells in a patient with renal cell carcinoma
  publication-title: Anticancer Res
  contributor:
    fullname: Kobayashi H
– ident: e_1_2_6_50_1
  doi: 10.4049/jimmunol.170.7.3696
– ident: e_1_2_6_35_1
  doi: 10.1002/eji.201040959
– ident: e_1_2_6_22_1
  doi: 10.1007/s00262-011-1021-7
– ident: e_1_2_6_2_1
  doi: 10.1056/NEJMoa1200690
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jcyt.2012.12.004
– ident: e_1_2_6_10_1
  doi: 10.1038/375155a0
– ident: e_1_2_6_7_1
  doi: 10.1158/1078-0432.CCR-17-1439
– ident: e_1_2_6_46_1
  doi: 10.1097/TP.0b013e3181a5cb07
– ident: e_1_2_6_8_1
  doi: 10.1038/nm.4015
– ident: e_1_2_6_12_1
  doi: 10.1093/intimm/dxm031
– ident: e_1_2_6_11_1
  doi: 10.1016/S0014-5793(01)03191-X
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1600-065X.2006.00479.x
– ident: e_1_2_6_20_1
  doi: 10.1016/j.exphem.2009.04.008
– ident: e_1_2_6_34_1
  doi: 10.1038/s41598-017-05553-0
– ident: e_1_2_6_25_1
  doi: 10.1002/cam4.196
– ident: e_1_2_6_13_1
  doi: 10.1182/blood-2012-05-430470
– ident: e_1_2_6_45_1
  doi: 10.1371/journal.pone.0044219
– ident: e_1_2_6_39_1
  doi: 10.5402/2012/195727
– ident: e_1_2_6_31_1
  doi: 10.4049/jimmunol.1002697
– volume: 40
  start-page: 33
  year: 2014
  ident: e_1_2_6_26_1
  article-title: Adoptive immunotherapy using autologous lymphocytes activated ex vivo with antigen stimulation for patients with incurable cancer
  publication-title: Kawasaki Med J
  contributor:
    fullname: Okawaki M
– ident: e_1_2_6_14_1
  doi: 10.4049/jimmunol.1300658
– ident: e_1_2_6_17_1
  doi: 10.4049/jimmunol.1500314
– ident: e_1_2_6_27_1
  doi: 10.3109/14653249.2010.515581
– ident: e_1_2_6_15_1
  doi: 10.1074/jbc.M112.384354
– ident: e_1_2_6_40_1
  doi: 10.1016/j.apsb.2015.07.003
– ident: e_1_2_6_19_1
  doi: 10.1007/s00262-008-0491-8
– ident: e_1_2_6_44_1
  doi: 10.1038/ni.3795
– ident: e_1_2_6_30_1
  doi: 10.1084/jem.20021500
– ident: e_1_2_6_49_1
  doi: 10.1038/nm0596-551
– ident: e_1_2_6_38_1
  doi: 10.1002/cmdc.201700626
– volume: 154
  start-page: 998
  year: 1995
  ident: e_1_2_6_18_1
  article-title: Vγ2Vδ2 TCR‐dependent recognition of non‐peptide antigens and Daudi cells analyzed by TCR gene transfer
  publication-title: J Immunol
  doi: 10.4049/jimmunol.154.3.998
  contributor:
    fullname: Bukowski JF
– ident: e_1_2_6_4_1
  doi: 10.1126/science.aaa1348
– ident: e_1_2_6_37_1
  doi: 10.1186/s40425-017-0209-6
– ident: e_1_2_6_6_1
  doi: 10.1038/nature12477
– ident: e_1_2_6_21_1
  doi: 10.1038/bjc.2011.293
– ident: e_1_2_6_42_1
  doi: 10.1111/j.1365-3083.1992.tb02946.x
– ident: e_1_2_6_16_1
  doi: 10.1016/j.immuni.2014.03.003
– volume: 3
  start-page: 23
  year: 2014
  ident: e_1_2_6_29_1
  article-title: γδ T cell therapy for the treatment of non‐small cell lung cancer
  publication-title: Transl Lung Cancer Res
  contributor:
    fullname: Kakimi K
– ident: e_1_2_6_33_1
  doi: 10.1002/cmdc.201600465
– ident: e_1_2_6_41_1
  doi: 10.1002/eji.1830211215
– ident: e_1_2_6_43_1
  doi: 10.1073/pnas.91.17.8175
SSID ssj0036494
Score 2.435654
Snippet Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 587
SubjectTerms adoptive cancer immunotherapy
Adoptive immunotherapy
Adoptive transfer
Animals
bisphosphonate
Bisphosphonates
Breast cancer
Breast Neoplasms - immunology
Breast Neoplasms - therapy
Cancer immunotherapy
Cancer therapies
CD25 antigen
Clinical trials
Cytotoxicity
Diphosphonates - administration & dosage
Diphosphonates - chemistry
Diphosphonates - pharmacology
farnesyl diphosphate synthase
Female
Histocompatibility antigen HLA
Humans
Immunodeficiency
Immunotherapy
Immunotherapy, Adoptive
Interferon
Inventors
Kidney cancer
Lung cancer
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Male
Melanoma
Metabolites
Metastasis
Mice
Mutation
Original
Prodrugs - administration & dosage
Prodrugs - pharmacology
Prostate cancer
Prostatic Neoplasms - immunology
Prostatic Neoplasms - therapy
Purification
Receptors, Antigen, T-Cell, gamma-delta - metabolism
T cell receptors
T-Lymphocytes - immunology
T-Lymphocytes - transplantation
Treatment Outcome
Tumor cells
Tumors
Viral infections
Vγ2Vδ2 T cells
Xenograft Model Antitumor Assays
Zoledronic acid
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB5RkKpeKmhpCX9yKw5cot3EdmyfEKBFq0qgqoBET5GdOLCXZMvuSvBc8Bw8EzP52bJCcIgUxYkSz8Tjb8bjbwD2jOLWmyjHgRTnochNEWrr0Fnh_QJnT6l8TZJ0epYML8WvK3m1BMNuLwylVXY2sTbUeZVRjLxHvOTkUcW8Zx1FAbJp72D8L6T6UbTO2hbT-AArcSRowXblaHD2-09nlXkiTFPgVqjQ9HncsgxRVg8VFyOWvmhxbnoFOF_nTb7Es_WEdLIKn1skyQ4b1a_Bki-_wMfTdq38K_wd3OFIp2AYqwpW1-JjTw9Pj-yCUbR-whCuMptXYzJ4bET7RNrdWPeMsuGvmWVuNBnfVHSUiEkZWdvb2fU6XJ4MLo6HYVtIIcyEiaNQeeP6iZPeikKjBhBSmH5ho5yoYzRe8omLEKpxmtGz3CjEcd4rG3GnjfQF_wbLZVX6DWA8MdJkiTQO_bgoU1ZmeeESlRQS0YTWAfzsRJiOG76MtPMzUM5pLecAtjvhpu2QmaT_FRzAj3kz_uwkE1v6aoZPG3QQBVGgBfC90cX8LTF2SyP-DEAtaGl-AxFpL7aUo5uaUFtqLhA4B7Bf6_PtD0-PD8_rk833e7AFnxBY6SZXbRuWp7czv4PgZep22__yGbb67yY
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-UwEB7EB_Fl19vudr0Ql33wpXLaNE2CTyKKCPrgBRSEkrSpHhbag-cccPdvub_D37Qz6QWPIiw-FEqT0iSTmXyTTr4B-KklN05HBSpSXIRJoctQGYvOCh-UuHoK6TxJ0ulZenyVnFyL6znY687CNPwQ_YYbaYa316Tgxo5fKDmlBCNuPXJ9iEiPANF5Tx3F00Q3CW0TGeoBj1tWIYri6d-cXYveAMy3cZIv8atfgI4-w23X9Cbu5NfudGJ38z-vWB0_2Lcl-NQCU7bfzKRlmHPVCiyctr_eV-Hm8BENB-2tsbpkPrUfe356_ssuGW3-jxmiX2aKekT2kw3p2El7uOs3o-D6O2aYHY5H9zVdFUJcRsb7YXq3BldHh5cHx2GblyHMEx1HoXTaDlIrnElKhQJFhKIHpYkKYqJR-MilNkLkxwkg5IWWCAudkybiVmnhSv4F5qu6ct-A8VQLnadCW3QLo1wakRelTWVaCgQnSgXwo5NQNmroN7LObcFByvwgBbDRyS5rNXCcEY89eeAxD2C7L0bdoTExlaun-LZGfzMhRrUAvjai7r8SY7cUwtkA5Mwk6CsQL_dsSTW89_zcQvEEcXgAO17G7zc8O9i_8Dff_7_qOiwiZlNNGNwGzE8epm4TcdHEbnkF-AcR1wom
  priority: 102
  providerName: Wiley-Blackwell
Title Expansion of human γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.13491
https://www.ncbi.nlm.nih.gov/pubmed/29288540
https://www.proquest.com/docview/2290071323/abstract/
https://www.proquest.com/docview/1982841647/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC5834800
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB6yKZReStNft-milh56cXZtSZZ0TJcNobBhSRNIT0ay5WQhsZdsFtrnap8jz9QZ2V4SQi492Bj_IDEzkr4Zj74B-GIUt94kJQ6ktIxFaapYW4fOCh9XuHpK5QNJ0uwoOzwV38_k2RbIfi9MSNov3GKvvrzaqxcXIbdyeVWM-jyx0Xw2kZoLBDqjAQwU572L3k6_PBOmrWQrVGzGPO3ohCh9h6qIER0flYdJTap1iHncXY8egMyHuZJ3MWxYhA5ewPMOPbL9tpc7sOXrl_B01v0ffwU_p79wdFMAjDUVC_X32O2f27_shFGEfsUQojJbNkua5NiC9oZ0O7B-M8qAP2eWucVqedHQUSMOZTTDXq_PX8PpwfRkchh3xRPiQpg0iZU3bpw56a2oNEodYYQZVzYpiS5G4y2fuQThGadVvCiNQuzmvbIJd9pIX_E3sF03tX8HjGdGmiKTxqHvlhTKyqKsXKaySiKC0DqCz70I82XLkZH3vgWKPA8ij2C3F27eDZNVTmTz5CanPIJPm8do4CQTW_tmjV8bdAoF0Z5F8LbVxaaVXokRqHta2rxA5Nn3n6BNBRLtzoYi-Br0-XjH88n-j3Dx_r8b-QDPEGfpNnVtF7Zvrtf-I2KZGzeEQSrmQ3jybXo0Px6GiACdj9NhsOp_GHP3Zg
link.rule.ids 230,315,733,786,790,870,891,1382,11589,21416,27957,27958,33779,33780,43840,46087,46329,46511,46753,50849,50958,53827,53829,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7BVgIuqPyV0AIGceASsYnt2D6httpqge4KwVYqp8hOnHYvydLtSvBc9Dn6TMwkzsKqgkOkKE6UeCYefzMefwPwxihuvUlKHEhpGYvSVLG2Dp0VPqxw9pTKtyRJk2k2PhEfT-VpCLgtQ1plbxNbQ102BcXI3xEvOXlUKX-_-B5T1ShaXQ0lNG7DluDoqgxg62A0_fylt8U8E6YraytUbIY8DdxClMtDJcWImy_ZnJFuwMyb2ZJ_o9h2GjrahvsBP7L9TuEP4JavH8KdSVghfwTfRj9wfFMIjDUVayvwsetf11dsxihGv2QIUpktmwWZOTan3SFhD9ZPRjnwZ8wyN18uzhs6akSijGzsxersMZwcjWaH4ziUT4gLYdIkVt64Yeakt6LSKHcEEmZY2aQkwhiNl3zmEgRonObxojQK0Zv3yibcaSN9xZ_AoG5q_xQYz4w0RSaNQ-8tKZSVRVm5TGWVRAyhdQSvexHmi44lI--9C5Rz3so5gr1euHkYKMv8j1ojeLVuxl-cZGJr36zwaYNuoSDiswh2Ol2s35JitzSizgjUhpbWNxB99mZLPT9vabSl5gLhcgRvW33--8Pzw_2v7cmz__fgJdwdzybH-fGH6adduIfQSnfZanswuLxY-ecIXy7di_CP_gaV2O5Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BK1VcEP8NFDCIA5eom9iO7RMqZVflp6sKWqmcIjux270kS7crwXPBc_SZmEmchVUFh0hRnCjxzHj8jT35BuCVUdx6k9U4kPI6FbUJqbYOgxU-Cjh7SuU7kqTDaXFwIj6cytOY_7SIaZWDT-wcdd1WtEa-S7zkFFHlfDfEtIijd5M3828pVZCindZYTuMmbCpRSLTwzbfj6dHnwS_zQpi-xK1QqRnxPPIMUV4PlRcjnr5sfXa6BjmvZ07-jWi7KWlyB25HLMn2euXfhRu-uQdbh3G3_D58HX_HsU7LYawNrKvGx65-Xv1ix4zW6xcMASuzdTsnl8dm9KdI_B_rB6N8-DNmmZst5uctHQ2iUkb-9mJ59gBOJuPj_YM0llJIK2HyLFXeuFHhpLciaNQBggozCjariTxG4yVfuAzBGqc5vaqNQiTnvbIZd9pIH_hD2Gjaxm8D44WRpkIBO4zkskpZWdXBFaoIEvGE1gm8HERYznvGjHKINFDOZSfnBHYG4ZZx0CzKPypO4MWqGc2dZGIb3y7xaYMhoiAStAQe9bpYvSXHbmlEoAmoNS2tbiAq7fWWZnbeUWpLzQVC5wRed_r894eX-3tfupPH_-_Bc9hC8yw_vZ9-fAK3EGXpPnFtBzYuL5b-KSKZS_csmuhvxpnylg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expansion+of+human+%CE%B3%CE%B4+T+cells+for+adoptive+immunotherapy+using+a+bisphosphonate+prodrug&rft.jtitle=Cancer+science&rft.au=Tanaka%2C+Yoshimasa&rft.au=Kaoru+Murata%E2%80%90Hirai&rft.au=Iwasaki%2C+Masashi&rft.au=Matsumoto%2C+Kenji&rft.date=2018-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=109&rft.issue=3&rft.spage=587&rft.epage=599&rft_id=info:doi/10.1111%2Fcas.13491&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon