Epigenetic regulation in plant abiotic stress responses

In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is importan...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 62; no. 5; pp. 563 - 580
Main Authors Chang, Ya‐Nan, Zhu, Chen, Jiang, Jing, Zhang, Huiming, Zhu, Jian‐Kang, Duan, Cheng‐Guo
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Wiley Subscription Services, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory. Epigenetic mechanisms create various chromatin states for gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed important involvements of epigenetic mechanisms in plant abiotic stress responses. This review summarizes recent progress on the cross‐talk between abiotic stress responses and epigenetic regulatory pathways in plants.
AbstractList In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory. Epigenetic mechanisms create various chromatin states for gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed important involvements of epigenetic mechanisms in plant abiotic stress responses. This review summarizes recent progress on the cross‐talk between abiotic stress responses and epigenetic regulatory pathways in plants.
Author Jiang, Jing
Duan, Cheng‐Guo
Zhu, Chen
Zhu, Jian‐Kang
Chang, Ya‐Nan
Zhang, Huiming
Author_xml – sequence: 1
  givenname: Ya‐Nan
  surname: Chang
  fullname: Chang, Ya‐Nan
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Chen
  surname: Zhu
  fullname: Zhu, Chen
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Jing
  surname: Jiang
  fullname: Jiang, Jing
  organization: Henan University
– sequence: 4
  givenname: Huiming
  surname: Zhang
  fullname: Zhang, Huiming
  organization: Henan University
– sequence: 5
  givenname: Jian‐Kang
  surname: Zhu
  fullname: Zhu, Jian‐Kang
  organization: Purdue University
– sequence: 6
  givenname: Cheng‐Guo
  surname: Duan
  fullname: Duan, Cheng‐Guo
  email: cgduan@sibs.ac.cn
  organization: Henan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31872527$$D View this record in MEDLINE/PubMed
BookMark eNqF0U9LwzAUAPAgE_dHL34AGXgRoZqXtElz1DF1MtCDnkvTvY6Mrq1Ji-zbm63TwxDNIQnJ7z2S94akV1YlEnIO9Ab8uF2ZWt8AUxSOyABkGAZSUdXzeyFZoKhkfTJ0bkUpj6lgJ6TPIZYsYnJA5LQ2SyyxMdnY4rIt0sZU5diU47pIy2acalNt71xj0TlPXF2VDt0pOc7TwuHZfh2R94fp2-QpmL88ziZ38yALFYNAxBRorqWMQIpI5xx5xhCF0CHqPFQCRL6gYeZnoODPNC4yLTlXXEGOOR-Rqy5vbauPFl2TrI3LsPCPw6p1CQu5CgGoUP9TzinnLI6Yp5cHdFW1tvQf8UpJX8OIxl5d7FWr17hIamvWqd0k39Xz4LoDma2cs5j_EKDJtjXJtjXJrjUe0wOcmWZX7campvg9BLqQT1Pg5o_kyfPs9b6L-QJY_J7G
CitedBy_id crossref_primary_10_1016_j_plaphy_2023_108075
crossref_primary_10_3389_fgene_2022_811732
crossref_primary_10_3390_plants13131748
crossref_primary_10_3389_fnut_2023_1053196
crossref_primary_10_3389_fpls_2023_1120012
crossref_primary_10_1016_j_stress_2024_100552
crossref_primary_10_1007_s42994_022_00070_9
crossref_primary_10_1017_qpb_2023_14
crossref_primary_10_1016_j_plantsci_2023_111954
crossref_primary_10_3389_fimmu_2024_1481753
crossref_primary_10_1007_s11103_022_01273_w
crossref_primary_10_1016_j_biosystems_2024_105181
crossref_primary_10_1002_pei3_10121
crossref_primary_10_3389_fpls_2022_1005077
crossref_primary_10_1186_s12870_024_05337_5
crossref_primary_10_3390_ijms241512065
crossref_primary_10_3390_plants10061165
crossref_primary_10_1016_j_virusres_2022_198844
crossref_primary_10_3390_plants9121729
crossref_primary_10_1016_j_ecoenv_2024_116352
crossref_primary_10_1021_acs_jafc_1c07224
crossref_primary_10_1007_s00344_024_11322_x
crossref_primary_10_3390_ijms21041419
crossref_primary_10_1016_j_scienta_2023_112712
crossref_primary_10_3390_plants12020241
crossref_primary_10_1186_s12870_024_05858_z
crossref_primary_10_3389_fpls_2022_1064390
crossref_primary_10_1111_pce_15406
crossref_primary_10_3390_f11090976
crossref_primary_10_1002_jcb_30315
crossref_primary_10_1111_ppl_13727
crossref_primary_10_1016_j_jgg_2023_10_001
crossref_primary_10_1016_j_cpb_2023_100282
crossref_primary_10_1007_s42994_023_00117_5
crossref_primary_10_3389_fpls_2023_1146663
crossref_primary_10_1007_s11105_025_01527_z
crossref_primary_10_1111_jipb_13316
crossref_primary_10_1111_tpj_16984
crossref_primary_10_3389_fpls_2021_702303
crossref_primary_10_1016_j_stress_2021_100052
crossref_primary_10_1111_pce_14774
crossref_primary_10_1093_hr_uhae277
crossref_primary_10_3389_fpls_2021_694289
crossref_primary_10_3390_genes13071112
crossref_primary_10_1016_j_ecoenv_2024_116490
crossref_primary_10_1111_oik_09352
crossref_primary_10_1051_jbio_2020011
crossref_primary_10_1111_tpj_16183
crossref_primary_10_1016_j_plaphy_2024_109114
crossref_primary_10_1111_pbi_14426
crossref_primary_10_1111_ppl_70058
crossref_primary_10_3390_ijms25179200
crossref_primary_10_3390_plants12081712
crossref_primary_10_1093_plphys_kiab187
crossref_primary_10_3390_ijms231710049
crossref_primary_10_1007_s00425_024_04401_6
crossref_primary_10_1007_s00468_024_02577_8
crossref_primary_10_1080_07388551_2022_2053056
crossref_primary_10_1093_eep_dvab012
crossref_primary_10_1007_s00299_024_03272_1
crossref_primary_10_3389_fpls_2023_1111875
crossref_primary_10_3390_plants13141896
crossref_primary_10_1016_j_plantsci_2024_112319
crossref_primary_10_3389_fpls_2023_1131977
crossref_primary_10_3390_rs13204155
crossref_primary_10_1016_j_jplph_2022_153740
crossref_primary_10_3390_genes12091409
crossref_primary_10_1371_journal_pgen_1009549
crossref_primary_10_47612_1999_9127_2022_33_137_150
crossref_primary_10_1016_j_envexpbot_2024_105696
crossref_primary_10_1007_s11104_021_05122_5
crossref_primary_10_1016_j_jgeb_2024_100354
crossref_primary_10_1111_jipb_13423
crossref_primary_10_3389_fpls_2021_620245
crossref_primary_10_1002_ps_6241
crossref_primary_10_1038_s41598_020_73423_3
crossref_primary_10_1093_plphys_kiae167
crossref_primary_10_3390_genes13060992
crossref_primary_10_3390_genes12111818
crossref_primary_10_3389_fpls_2022_1067076
crossref_primary_10_1111_ppl_13357
crossref_primary_10_3390_ijms231911191
crossref_primary_10_1007_s10722_021_01298_y
crossref_primary_10_1007_s13580_024_00627_1
crossref_primary_10_1016_j_stress_2025_100754
crossref_primary_10_3389_fpls_2020_572137
crossref_primary_10_1038_s41467_024_52114_x
crossref_primary_10_3390_agronomy12051043
crossref_primary_10_1042_BST20210353
crossref_primary_10_1016_j_jprot_2024_105156
crossref_primary_10_1186_s12870_022_03797_1
crossref_primary_10_1016_j_rhisph_2022_100518
crossref_primary_10_1111_nph_19552
crossref_primary_10_3390_ijms232112793
crossref_primary_10_1016_j_ijbiomac_2022_08_182
crossref_primary_10_1016_j_molp_2023_07_005
crossref_primary_10_1021_acs_analchem_3c04591
crossref_primary_10_1002_ffj_3750
crossref_primary_10_1007_s10142_023_01219_5
crossref_primary_10_1016_j_bbagen_2024_130748
crossref_primary_10_3389_fpls_2022_1075279
crossref_primary_10_3389_fpls_2024_1384091
crossref_primary_10_3390_plants12040940
crossref_primary_10_1111_nph_17019
crossref_primary_10_1111_pbi_14299
crossref_primary_10_3389_fpls_2022_841154
crossref_primary_10_3390_ijms232113518
crossref_primary_10_1007_s11103_024_01525_x
crossref_primary_10_29328_journal_jpsp_1001060
crossref_primary_10_3390_ijms21051819
crossref_primary_10_3390_ijms24054378
crossref_primary_10_1016_j_ijbiomac_2023_126582
crossref_primary_10_1371_journal_pgen_1010473
crossref_primary_10_3390_ijms222313048
crossref_primary_10_3390_plants10061096
crossref_primary_10_3390_plants14050719
crossref_primary_10_1007_s10725_023_01039_4
crossref_primary_10_3389_fpls_2022_910663
crossref_primary_10_1111_eva_13699
crossref_primary_10_3390_plants12020331
crossref_primary_10_1038_s41598_022_05024_1
crossref_primary_10_3389_fpls_2022_934877
crossref_primary_10_3390_ijms241612883
crossref_primary_10_3390_ijms25168976
crossref_primary_10_1016_j_plaphy_2023_107769
crossref_primary_10_3389_fpls_2020_602625
crossref_primary_10_1007_s00299_022_02858_x
crossref_primary_10_1007_s00425_021_03778_y
crossref_primary_10_1016_j_jplph_2021_153419
crossref_primary_10_1016_j_scitotenv_2022_157488
crossref_primary_10_1002_ppp3_10521
crossref_primary_10_1016_j_celrep_2023_112163
crossref_primary_10_1016_j_ijbiomac_2025_141772
crossref_primary_10_1016_j_plaphy_2022_07_001
crossref_primary_10_3390_ijms23147622
crossref_primary_10_1016_j_envexpbot_2021_104479
crossref_primary_10_1111_jipb_13079
crossref_primary_10_1038_s41576_021_00413_0
crossref_primary_10_3390_ijms21124548
crossref_primary_10_1111_nph_17593
crossref_primary_10_1111_nph_18440
crossref_primary_10_1111_wre_12559
crossref_primary_10_1007_s44154_022_00048_z
crossref_primary_10_3389_fpls_2022_1064131
crossref_primary_10_3389_fpls_2023_1265339
crossref_primary_10_3389_fpls_2021_761059
crossref_primary_10_1016_j_jplph_2022_153827
crossref_primary_10_1111_jipb_13064
crossref_primary_10_3390_plants11070922
crossref_primary_10_1111_jipb_13063
crossref_primary_10_1007_s00425_021_03694_1
crossref_primary_10_3389_fpls_2021_733846
crossref_primary_10_3390_cells11182806
crossref_primary_10_3390_ijms231912053
crossref_primary_10_3389_fgene_2020_576086
crossref_primary_10_1016_j_niox_2022_08_005
crossref_primary_10_1007_s00468_023_02468_4
crossref_primary_10_3390_f12070836
crossref_primary_10_3906_tar_2102_5
crossref_primary_10_3390_cells10123409
crossref_primary_10_1007_s10343_025_01128_6
crossref_primary_10_1016_j_postharvbio_2022_111915
crossref_primary_10_3390_plants13020163
crossref_primary_10_1007_s13258_021_01163_3
crossref_primary_10_1007_s44154_021_00012_3
crossref_primary_10_1016_j_stress_2024_100398
crossref_primary_10_3390_plants12112170
crossref_primary_10_3390_proteomes11040038
crossref_primary_10_1111_nph_17063
crossref_primary_10_1186_s12870_022_03580_2
crossref_primary_10_1007_s11033_021_06922_9
crossref_primary_10_1111_jipb_13379
crossref_primary_10_1016_j_plaphy_2024_108516
crossref_primary_10_1111_gcbb_13084
crossref_primary_10_1111_nph_17970
crossref_primary_10_1093_plcell_koac106
crossref_primary_10_1007_s13258_021_01191_z
crossref_primary_10_1016_j_ncrops_2024_100029
crossref_primary_10_3390_plants12213667
crossref_primary_10_1016_j_bbagen_2024_130661
crossref_primary_10_1016_j_stress_2024_100724
crossref_primary_10_1111_ppl_13689
crossref_primary_10_3390_agronomy14020236
crossref_primary_10_1007_s00344_023_11055_3
crossref_primary_10_1016_j_stress_2023_100303
crossref_primary_10_3390_ijms25084464
crossref_primary_10_1111_jipb_13368
crossref_primary_10_3390_ijms23074016
crossref_primary_10_1016_j_plaphy_2020_05_006
crossref_primary_10_1080_15226514_2024_2360573
crossref_primary_10_3389_fpls_2021_643403
crossref_primary_10_3389_fpls_2022_933740
crossref_primary_10_1038_s41467_023_36517_w
crossref_primary_10_1155_2022_1092894
crossref_primary_10_1016_j_bcab_2022_102288
crossref_primary_10_1038_s41467_020_20089_0
crossref_primary_10_1021_acs_jafc_2c01754
crossref_primary_10_1016_j_bcab_2020_101673
crossref_primary_10_3390_epigenomes8030030
crossref_primary_10_3390_ijms252413297
crossref_primary_10_1007_s10142_022_00906_z
crossref_primary_10_3389_fpls_2022_925688
crossref_primary_10_3390_genes12081106
crossref_primary_10_1016_j_tplants_2022_01_009
crossref_primary_10_1016_j_plantsci_2024_112265
crossref_primary_10_1093_hr_uhad104
crossref_primary_10_1111_ppl_13453
crossref_primary_10_3390_dna4010005
crossref_primary_10_3389_fgene_2024_1401011
crossref_primary_10_1111_jipb_13396
crossref_primary_10_1093_plcell_koac322
crossref_primary_10_1186_s12870_021_02953_3
crossref_primary_10_1007_s13562_021_00733_6
crossref_primary_10_3389_freae_2025_1476499
crossref_primary_10_1007_s10681_023_03278_y
crossref_primary_10_5511_plantbiotechnology_22_1219a
crossref_primary_10_1016_j_plaphy_2024_109070
crossref_primary_10_3390_ijms25052795
crossref_primary_10_1007_s13580_023_00565_4
crossref_primary_10_1093_jxb_eraf058
crossref_primary_10_3390_ijms22020787
crossref_primary_10_1093_eep_dvae009
crossref_primary_10_1111_jipb_13384
crossref_primary_10_1016_j_plgene_2021_100286
crossref_primary_10_1111_pce_14266
crossref_primary_10_3390_ijms21041480
crossref_primary_10_1111_pce_14264
crossref_primary_10_1093_plphys_kiab224
crossref_primary_10_3390_cells10010065
crossref_primary_10_3390_biology11030421
crossref_primary_10_1016_j_plaphy_2024_108423
crossref_primary_10_1007_s10709_023_00188_8
crossref_primary_10_1111_jipb_13386
crossref_primary_10_1016_j_jare_2022_12_003
crossref_primary_10_1007_s44154_021_00019_w
crossref_primary_10_3390_ijms24076326
crossref_primary_10_3389_fpls_2020_608540
crossref_primary_10_3390_plants13212997
crossref_primary_10_1186_s12870_022_03767_7
crossref_primary_10_3390_biology10121255
crossref_primary_10_1038_s44185_023_00022_6
crossref_primary_10_1186_s40659_023_00424_7
crossref_primary_10_1093_hr_uhad281
crossref_primary_10_3390_agronomy15020268
crossref_primary_10_3390_ijms242316549
crossref_primary_10_1016_j_biotechadv_2024_108447
crossref_primary_10_3390_ijms22158327
crossref_primary_10_3389_fpls_2022_845108
crossref_primary_10_1038_s41598_021_83074_7
crossref_primary_10_1186_s12864_023_09845_w
crossref_primary_10_1016_j_tplants_2020_06_008
crossref_primary_10_1111_jipb_13213
crossref_primary_10_3390_cells12050729
crossref_primary_10_1111_jipb_13451
crossref_primary_10_1007_s44279_024_00105_3
crossref_primary_10_1016_j_bbagen_2024_130580
crossref_primary_10_3390_ijms23136910
crossref_primary_10_1111_tpj_15486
crossref_primary_10_1101_gr_277931_123
crossref_primary_10_3390_agronomy15030739
crossref_primary_10_1007_s10709_023_00190_0
crossref_primary_10_1016_j_molp_2020_09_010
crossref_primary_10_1080_15592324_2024_2365576
crossref_primary_10_3389_fpls_2021_741641
crossref_primary_10_1007_s00344_023_11077_x
crossref_primary_10_32604_phyton_2024_049277
crossref_primary_10_1111_pce_15454
crossref_primary_10_1186_s12870_022_04006_9
crossref_primary_10_1093_plphys_kiad468
crossref_primary_10_1186_s12870_024_05573_9
crossref_primary_10_3390_plants13192700
crossref_primary_10_1016_j_marenvres_2022_105611
crossref_primary_10_1016_j_indcrop_2025_120560
crossref_primary_10_1016_j_xplc_2022_100417
crossref_primary_10_1016_j_aac_2024_01_005
crossref_primary_10_1016_j_bcab_2024_103414
crossref_primary_10_1093_plphys_kiab275
crossref_primary_10_1007_s40626_024_00315_6
crossref_primary_10_1016_j_cj_2023_06_002
crossref_primary_10_37427_botcro_2025_004
crossref_primary_10_1016_j_tplants_2022_09_004
crossref_primary_10_3390_ijms25094988
crossref_primary_10_1007_s13205_023_03519_w
crossref_primary_10_3390_genes14061199
crossref_primary_10_1111_ppl_13777
crossref_primary_10_3390_biology10080766
crossref_primary_10_1016_j_stress_2024_100613
crossref_primary_10_18006_2023_11_1__41_53
crossref_primary_10_1016_j_jhazmat_2024_136545
crossref_primary_10_1016_j_ygeno_2024_110871
crossref_primary_10_1186_s12302_023_00788_3
crossref_primary_10_3389_freae_2023_1188733
crossref_primary_10_1007_s13562_021_00739_0
crossref_primary_10_1093_jxb_erae205
crossref_primary_10_1016_j_jplph_2021_153363
crossref_primary_10_3390_ijms21249517
crossref_primary_10_3389_fpls_2022_1036764
crossref_primary_10_1007_s00299_024_03177_z
crossref_primary_10_1016_j_plaphy_2024_108628
crossref_primary_10_1080_07388551_2024_2344583
crossref_primary_10_3389_fpls_2021_774994
crossref_primary_10_1002_tpg2_20237
crossref_primary_10_1002_tpg2_20358
crossref_primary_10_1111_nph_17635
crossref_primary_10_1016_j_plaphy_2023_108206
crossref_primary_10_1038_s42003_023_05601_8
crossref_primary_10_1111_ppl_13421
crossref_primary_10_2139_ssrn_4193809
Cites_doi 10.1111/tpj.12380
10.1016/j.plaphy.2015.12.019
10.1093/pcp/pcy100
10.1093/mp/sst023
10.1093/jxb/erl164
10.1111/nph.15696
10.3389/fpls.2015.00999
10.1111/j.1365-313X.2007.03185.x
10.1371/journal.pgen.1004806
10.1111/tpj.12650
10.1038/ncomms9326
10.3389/fpls.2013.00548
10.1038/cr.2016.147
10.1105/tpc.112.098574
10.1038/srep32641
10.1105/tpc.107.056705
10.1016/j.pbi.2009.04.015
10.1105/tpc.19.00604
10.1093/nar/gku220
10.1111/pce.13373
10.1146/annurev.arplant.043008.091939
10.1073/pnas.241501798
10.1105/tpc.107.056614
10.1105/tpc.108.061549
10.1073/pnas.1812847115
10.1093/jxb/erq154
10.3389/fpls.2019.00900
10.1038/nrg2719
10.1038/nature05022
10.1111/tpj.12832
10.1146/annurev-arplant-050213-035811
10.1093/mp/ssq014
10.1111/j.1365-313X.2009.03938.x
10.1073/pnas.94.13.7076
10.1016/j.devcel.2017.12.002
10.1073/pnas.1320106110
10.1007/s00425-015-2323-3
10.1093/pcp/pcn101
10.1073/pnas.1721241115
10.1093/pcp/pcd010
10.1111/tpj.12548
10.1007/s00425-007-0612-1
10.1105/tpc.006130
10.1016/j.cell.2014.02.045
10.1038/srep28941
10.1111/brv.12215
10.1016/j.jgg.2018.09.004
10.1007/s11103-010-9665-9
10.1038/srep39843
10.1007/s00425-018-3022-7
10.1186/s13059-017-1263-6
10.4161/psb.5.10.13168
10.1105/tpc.111.095232
10.1038/s41588-018-0190-0
10.3389/fpls.2016.00310
10.1093/jxb/ers059
10.1105/tpc.106.049221
10.1111/j.1365-313X.2011.04534.x
10.1038/s41467-018-07500-7
10.1093/mp/sss128
10.3389/fpls.2015.00114
10.1105/tpc.15.00763
10.1038/ncomms1732
10.1038/nature05864
10.1111/tpj.14502
10.1073/pnas.1402275111
10.1186/1471-2156-15-S1-S9
10.1111/jipb.12896
10.1093/pcp/pcs004
10.1038/s41588-018-0187-8
10.1016/j.tplants.2007.07.002
10.1104/pp.18.01471
10.1111/jipb.12706
10.1038/s41580-018-0016-z
10.1073/pnas.1017863108
10.1186/s12870-019-1887-7
10.1105/tpc.18.00437
10.1016/j.cell.2016.08.029
10.1111/j.1365-313X.2008.03461.x
10.1104/pp.15.00397
10.1073/pnas.1522301112
10.1111/tpj.12533
10.1104/pp.109.145532
10.4161/psb.4.5.8543
10.1111/j.1744-7909.2008.00727.x
10.1111/pce.13547
10.1073/pnas.1315399110
10.1371/journal.pgen.1004915
10.1146/annurev-arplant-043014-115627
10.1038/ncomms5138
10.1186/gb-2013-14-6-r59
10.1073/pnas.1710683114
10.1093/pcp/pcn133
10.1007/s00299-013-1462-x
10.1111/jipb.12657
10.7554/eLife.09343
10.1038/srep15708
10.1186/s12870-018-1454-7
10.1038/nature09861
10.1093/pcp/pcq182
10.1073/pnas.1906023116
10.1111/nph.12194
10.1111/jipb.12879
10.1073/pnas.0801029105
10.1105/tpc.112.105114
10.15252/embj.201592593
10.1093/mp/ssq001
10.1016/j.tplants.2016.08.015
10.1111/nph.12613
10.1089/dna.2016.3505
10.1016/j.bbaexp.2006.02.006
10.1371/journal.pgen.1006298
10.1016/j.molp.2015.10.003
10.1016/j.pbi.2014.07.004
10.1093/jxb/erv312
10.1038/nature05915
10.1073/pnas.1308974110
10.1126/science.aan1121
10.1016/S1360-1385(03)00060-8
10.1105/tpc.17.00867
ContentType Journal Article
Copyright 2020 Institute of Botany, Chinese Academy of Sciences
2020 Institute of Botany, Chinese Academy of Sciences.
Copyright_xml – notice: 2020 Institute of Botany, Chinese Academy of Sciences
– notice: 2020 Institute of Botany, Chinese Academy of Sciences.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
DOI 10.1111/jipb.12901
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
MEDLINE - Academic
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1744-7909
EndPage 580
ExternalDocumentID 31872527
10_1111_jipb_12901
JIPB12901
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Chinese Academy of Sciences
– fundername: National Natural Science Foundation of China
GroupedDBID ---
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
5XA
5XB
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CHDYS
COF
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q--
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
U1G
U5K
UB1
W8V
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4921-68010fb7751765bf3e3c2ee66b4ebf49616fd04c6fd1014ebbedcb7339391fef3
IEDL.DBID DR2
ISSN 1672-9072
1744-7909
IngestDate Fri Jul 11 18:31:47 EDT 2025
Fri Jul 11 09:54:49 EDT 2025
Fri Jul 25 21:13:18 EDT 2025
Thu Apr 03 07:08:04 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Tue Jul 01 03:06:09 EDT 2025
Wed Jan 22 16:33:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2020 Institute of Botany, Chinese Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4921-68010fb7751765bf3e3c2ee66b4ebf49616fd04c6fd1014ebbedcb7339391fef3
Notes Feb. 23, 2020
Edited by
FA: Free Access
Online on
Zhizhong Gong, China Agricultural University, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12901
PMID 31872527
PQID 2397174508
PQPubID 2045135
PageCount 17
ParticipantIDs proquest_miscellaneous_2439411069
proquest_miscellaneous_2330332852
proquest_journals_2397174508
pubmed_primary_31872527
crossref_primary_10_1111_jipb_12901
crossref_citationtrail_10_1111_jipb_12901
wiley_primary_10_1111_jipb_12901_JIPB12901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate J Integr Plant Biol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2007; 227
2018a; 44
2019; 10
2011; 52
2019; 19
2008; 105
2018; 45
2013; 6
2016; 35
2014; 21
2011; 472
2009; 12
2018; 9
2015; 83
2014; 15
2011; 66
2017a; 27
2013a; 110
2018; 30
2013; 198
2017b; 114
2008; 20
2010; 3
2012; 24
2010; 5
2006; 442
2014; 10
2007; 19
2007; 447
2019; 31
2009; 60
2015; 242
2016; 167
2008; 54
2016; 91
2020; 32
2008; 50
2007; 12
2019; 100
2019; 222
2016; 12
2014; 157
2014; 42
2018; 19
2016; 6
2016; 7
2019; 42
2015; 112
2008; 49
2015; 66
2018; 115
2019; 179
2016; 28
2016; 9
2017; 7
2020; 62
2018b; 50
2000; 41
2003; 15
2016; 100
2019; 249
2017; 357
2012; 53
2014; 65
2010; 61
2014; 5
1997; 94
2013; 14
2014; 4
2017; 36
2006; 1759
2003; 8
2019; 116
2010; 152
2014; 202
2010; 74
2012; 63
2001; 98
2015; 6
2013b; 110
2015; 5
2015; 4
2009; 21
2015; 168
2017; 22
2015; 11
2007; 51
2018; 60
2014; 111
2007; 58
2018a; 18
2012; 3
2014; 80
2011; 108
2013; 32
2018b; 60
2014; 79
2017; 18
2018; 50
2009; 4
2018; 59
2014; 77
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 60
  start-page: 780
  year: 2018b
  end-page: 795
  article-title: Insights into the regulation of C‐repeat binding factors in plant cold signaling
  publication-title: J Integr Plant Biol
– volume: 32
  start-page: 1151
  year: 2013
  end-page: 1159
  article-title: Epigenetic mechanisms of plant stress responses and adaptation
  publication-title: Plant Cell Rep
– volume: 80
  start-page: 503
  year: 2014
  end-page: 515
  article-title: inositol pentakisphosphate 2‐kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level
  publication-title: Plant J
– volume: 15
  start-page: S9
  issue: Suppl 1
  year: 2014
  article-title: Single‐base‐resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress.
  publication-title: BMC Genet
– volume: 442
  start-page: 1046
  year: 2006
  end-page: 1049
  article-title: Transgeneration memory of stress in plants
  publication-title: Nature
– volume: 24
  start-page: 1242
  year: 2012
  end-page: 1255
  article-title: Retrotransposons control fruit‐specific, cold‐dependent accumulation of anthocyanins in blood oranges
  publication-title: Plant Cell
– volume: 42
  start-page: 5556
  year: 2014
  end-page: 5566
  article-title: Different gene‐specific mechanisms determine the 'revised‐response' memory transcription patterns of a subset of dehydration stress responding genes
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 226
  year: 2018a
  article-title: Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean
  publication-title: BMC Plant Biol
– volume: 3
  start-page: 740
  year: 2012
  article-title: Multiple exposures to drought ‘train’ transcriptional responses in
  publication-title: Nat Commun
– volume: 31
  start-page: 663
  year: 2019
  end-page: 686
  article-title: The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in
  publication-title: Plant Cell
– volume: 198
  start-page: 709
  year: 2013
  end-page: 720
  article-title: ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in
  publication-title: New Phytol
– volume: 19
  start-page: 489
  year: 2018
  end-page: 506
  article-title: Dynamics and function of DNA methylation in plants
  publication-title: Nat Rev Mol Cell Biol
– volume: 9
  start-page: 5056
  year: 2018
  article-title: Global identification of lncRNAs reveals the regulation of MAF4 by a natural antisense RNA
  publication-title: Nat Commun
– volume: 21
  start-page: 386
  year: 2009
  end-page: 402
  article-title: Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in
  publication-title: Plant Cell
– volume: 79
  start-page: 28
  year: 2014
  end-page: 43
  article-title: The STRESS RESPONSE SUPPRESSOR DEAD‐box RNA helicases are nucleolar‐ and chromocenter‐localized proteins that undergo stress‐mediated relocalization and are involved in epigenetic gene silencing
  publication-title: Plant J
– volume: 6
  year: 2016
  article-title: Genome‐wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress
  publication-title: Sci Rep
– volume: 6
  start-page: 686
  year: 2013
  end-page: 703
  article-title: MYC2: The master in action
  publication-title: Mol Plant
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat Rev Genet
– volume: 11
  year: 2015
  article-title: Transposable elements contribute to activation of maize genes in response to abiotic stress
  publication-title: PLoS Genet
– volume: 35
  start-page: 162
  year: 2016
  end-page: 175
  article-title: A hit‐and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory
  publication-title: EMBO J
– volume: 10
  year: 2014
  article-title: Heat‐induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene
  publication-title: PLoS Genet
– volume: 7
  start-page: 310
  year: 2016
  article-title: gene plays a role in plant growth, development, and response to abiotic stresses in
  publication-title: Front Plant Sci
– volume: 7
  year: 2017
  article-title: Transgenerational epimutations induced by multi‐generation drought imposition mediate rice plant's adaptation to drought condition
  publication-title: Sci Rep
– volume: 60
  start-page: 745
  year: 2018
  end-page: 756
  article-title: Cold signaling in plants: Insights into mechanisms and regulation
  publication-title: J Integr Plant Biol
– volume: 4
  start-page: 464
  year: 2009
  end-page: 466
  article-title: The RHA2a‐interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response
  publication-title: Plant Signal Behav
– volume: 8
  start-page: 213
  year: 2003
  end-page: 217
  article-title: ABA action and interactions in seeds
  publication-title: Trends Plant Sci
– volume: 12
  start-page: 444
  year: 2007
  end-page: 451
  article-title: Cold stress regulation of gene expression in plants
  publication-title: Trends Plant Sci
– volume: 63
  start-page: 3297
  year: 2012
  end-page: 3306
  article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in
  publication-title: J Exp Bot
– volume: 5
  start-page: 1318
  year: 2010
  end-page: 1320
  article-title: Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response
  publication-title: Plant Signal Behav
– volume: 49
  start-page: 1135
  year: 2008
  end-page: 1149
  article-title: Arabidopsis transcriptome analysis under drought, cold, high‐salinity and ABA treatment conditions using a tiling array
  publication-title: Plant Cell Physiol
– volume: 19
  start-page: 282
  year: 2019
  article-title: Transgenerational memory of gene expression changes induced by heavy metal stress in rice ( L.)
  publication-title: BMC Plant Biol
– volume: 15
  start-page: 63
  year: 2003
  end-page: 78
  article-title: AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling
  publication-title: Plant Cell
– volume: 10
  start-page: 900
  year: 2019
  article-title: A role for PICKLE in the regulation of cold and salt stress tolerance in
  publication-title: Front Plant Sci
– volume: 4
  year: 2015
  article-title: Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements
  publication-title: Elife
– volume: 24
  start-page: 2483
  year: 2012
  end-page: 2496
  article-title: PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid
  publication-title: Plant Cell
– volume: 74
  start-page: 183
  year: 2010
  end-page: 200
  article-title: Histone dynamics and roles of histone acetyltransferases during cold‐induced gene regulation in
  publication-title: Plant Mol Biol
– volume: 114
  start-page: E7377
  year: 2017b
  end-page: E7384
  article-title: A protein complex regulates RNA processing of intronic heterochromatin‐containing genes in
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 8326
  year: 2015
  article-title: A transposable element in a gene is associated with drought tolerance in maize seedlings
  publication-title: Nat Commun
– volume: 61
  start-page: 3345
  year: 2010
  end-page: 3353
  article-title: Involvement of histone deacetylase HDA6 in ABA and salt stress response
  publication-title: J Exp Bot
– volume: 447
  start-page: 735
  year: 2007
  end-page: 738
  article-title: Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination
  publication-title: Nature
– volume: 110
  start-page: 11205
  year: 2013a
  end-page: 11210
  article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
  publication-title: Proc Natl Acad Sci USA
– volume: 115
  start-page: E9962
  year: 2018
  end-page: E9970
  article-title: DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 328
  year: 2009
  end-page: 338
  article-title: Root uptake regulation: A central process for NPS homeostasis in plants
  publication-title: Curr Opin Plant Biol
– volume: 22
  start-page: 53
  year: 2017
  end-page: 65
  article-title: Transcriptional regulatory network of plant heat stress response
  publication-title: Trends Plant Sci
– volume: 179
  start-page: 1810
  year: 2019
  end-page: 1821
  article-title: ROS1‐dependent DNA demethylation is required for ABA‐inducible NIC3 expression
  publication-title: Plant Physiol
– volume: 227
  start-page: 245
  year: 2007
  end-page: 254
  article-title: Up‐regulation of stress‐inducible genes in tobacco and cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications
  publication-title: Planta
– volume: 152
  start-page: 217
  year: 2010
  end-page: 225
  article-title: Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator
  publication-title: Plant Physiol
– volume: 51
  start-page: 874
  year: 2007
  end-page: 885
  article-title: The SWI/SNF chromatin‐remodeling gene AtCHR12 mediates temporary growth arrest in upon perceiving environmental stress
  publication-title: Plant J
– volume: 58
  start-page: 221
  year: 2007
  end-page: 227
  article-title: Gene networks involved in drought stress response and tolerance
  publication-title: J Exp Bot
– volume: 3
  start-page: 314
  year: 2010
  end-page: 325
  article-title: Regulation of sulfate uptake and assimilation–the same or not the same?
  publication-title: Mol Plant
– volume: 12
  year: 2016
  article-title: Nuclear localised MORE SULPHUR ACCUMULATION1 epigenetically regulates sulphur homeostasis in
  publication-title: PLoS Genet
– volume: 65
  start-page: 505
  year: 2014
  end-page: 530
  article-title: The contributions of transposable elements to the structure, function, and evolution of plant genomes
  publication-title: Annu Rev Plant Biol
– volume: 91
  start-page: 1118
  year: 2016
  end-page: 1133
  article-title: Priming and memory of stress responses in organisms lacking a nervous system
  publication-title: Biol Rev Camb Philos Soc
– volume: 54
  start-page: 608
  year: 2008
  end-page: 620
  article-title: Deciphering gene regulatory networks that control seed development and maturation in
  publication-title: Plant J
– volume: 98
  start-page: 14150
  year: 2001
  end-page: 14155
  article-title: AtHKT1 is a salt tolerance determinant that controls Na(+) entry into plant roots
  publication-title: Proc Natl Acad Sci USA
– volume: 100
  start-page: 37
  year: 2016
  end-page: 46
  article-title: Histone acetylation influences the transcriptional activation of POX in L. and L. under salt stress
  publication-title: Plant Physiol Biochem
– volume: 32
  start-page: 703
  year: 2020
  end-page: 721
  article-title: The nodulin homeobox factor atndx interacts with AtRING1A/B and negatively regulates abscisic acid signaling
  publication-title: Plant Cell
– volume: 28
  start-page: 42
  year: 2016
  end-page: 54
  article-title: The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine‐tune abscisic acid signaling
  publication-title: Plant Cell
– volume: 50
  start-page: 1187
  year: 2008
  end-page: 1195
  article-title: Abscisic acid‐mediated epigenetic processes in plant development and stress responses
  publication-title: J Integr Plant Biol
– volume: 79
  start-page: 150
  year: 2014
  end-page: 161
  article-title: ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in
  publication-title: Plant J
– volume: 27
  start-page: 226
  year: 2017a
  end-page: 240
  article-title: A pair of transposon‐derived proteins function in a histone acetyltransferase complex for active DNA demethylation
  publication-title: Cell Res
– volume: 6
  year: 2016
  article-title: An ABA‐increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: A putative link of ABA and JA signaling
  publication-title: Sci Rep
– volume: 357
  start-page: 1142
  year: 2017
  end-page: 1145
  article-title: Distinct phases of Polycomb silencing to hold epigenetic memory of cold in
  publication-title: Science
– volume: 3
  start-page: 594
  year: 2010
  end-page: 602
  article-title: Transgenerational inheritance and resetting of stress‐induced loss of epigenetic gene silencing in
  publication-title: Mol Plant
– volume: 447
  start-page: 407
  year: 2007
  end-page: 412
  article-title: The complex language of chromatin regulation during transcription
  publication-title: Nature
– volume: 115
  start-page: E5400
  year: 2018
  end-page: E5409
  article-title: Epigenetic switch from repressive to permissive chromatin in response to cold stress
  publication-title: Proc Natl Acad Sci USA
– volume: 108
  start-page: 13329
  year: 2011
  end-page: 13334
  article-title: High nitrogen insensitive 9 (HNI9)‐mediated systemic repression of root NO3‐ uptake is associated with changes in histone methylation
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  year: 2015
  article-title: The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in
  publication-title: Sci Rep
– volume: 20
  start-page: 2972
  year: 2008
  end-page: 2988
  article-title: HAB1‐SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin‐remodeling complexes in
  publication-title: Plant Cell
– volume: 53
  start-page: 794
  year: 2012
  end-page: 800
  article-title: An epigenetic integrator: New insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6
  publication-title: Plant Cell Physiol
– volume: 4
  start-page: 548
  year: 2014
  article-title: Epigenetic regulation of gene responsiveness in
  publication-title: Front Plant Sci
– volume: 52
  start-page: 149
  year: 2011
  end-page: 161
  article-title: Regulated gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance
  publication-title: Plant Cell Physiol
– volume: 14
  start-page: R59
  year: 2013
  article-title: Hyperosmotic priming of seedlings establishes a long‐term somatic memory accompanied by specific changes of the epigenome
  publication-title: Genome Biol
– volume: 21
  start-page: 75
  year: 2014
  end-page: 82
  article-title: ATX1/AtCOMPASS and the H3K4me3 marks: How do they activate genes?
  publication-title: Curr Opin Plant Biol
– volume: 105
  start-page: 4945
  year: 2008
  end-page: 4950
  article-title: Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 999
  year: 2015
  article-title: Multi‐level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat
  publication-title: Front Plant Sci
– volume: 42
  start-page: 2198
  year: 2019
  end-page: 2214
  article-title: Abscisic acid‐dependent histone demethylation during postgermination growth arrest in
  publication-title: Plant Cell Environ
– volume: 242
  start-page: 869
  year: 2015
  end-page: 879
  article-title: Deciphering UV‐B‐induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in L
  publication-title: Planta
– volume: 9
  start-page: 136
  year: 2016
  end-page: 147
  article-title: A direct link between abscisic acid sensing and the chromatin‐remodeling ATPase BRAHMA via core ABA signaling pathway components
  publication-title: Mol Plant
– volume: 44
  start-page: 348.e7
  year: 2018a
  end-page: 361.e7
  article-title: ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses
  publication-title: Dev Cell
– volume: 110
  start-page: 15467
  year: 2013b
  end-page: 15472
  article-title: RNA‐binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin‐containing gene IBM1
  publication-title: Proc Natl Acad Sci USA
– volume: 62
  start-page: 148
  year: 2020
  end-page: 159
  article-title: The mechanism and function of active DNA demethylation in plants
  publication-title: J Integr Plant Biol
– volume: 61
  start-page: 395
  year: 2010
  end-page: 420
  article-title: Histone methylation in higher plants
  publication-title: Annu Rev Plant Biol
– volume: 83
  start-page: 149
  year: 2015
  end-page: 159
  article-title: Transcriptional ‘memory’ of a stress: Transient chromatin and memory (epigenetic) marks at stress‐response genes
  publication-title: Plant J
– volume: 50
  start-page: 1254
  year: 2018
  end-page: 1261
  article-title: Polycomb‐mediated gene silencing by the BAH‐EMF1 complex in plants
  publication-title: Nat Genet
– volume: 77
  start-page: 209
  year: 2014
  end-page: 221
  article-title: SKB1/PRMT5‐mediated histone H4R3 dimethylation of Ib subgroup bHLH genes negatively regulates iron homeostasis in
  publication-title: Plant J
– volume: 18
  start-page: 124
  year: 2017
  article-title: Epigenetic and chromatin‐based mechanisms in environmental stress adaptation and stress memory in plants
  publication-title: Genome Biol
– volume: 5
  start-page: 4138
  year: 2014
  article-title: Control of early seedling development by BES1/TPL/HDA19‐mediated epigenetic regulation of ABI3
  publication-title: Nat Commun
– volume: 6
  start-page: 396
  year: 2013
  end-page: 410
  article-title: The RdDM pathway is required for basal heat tolerance in
  publication-title: Mol Plant
– volume: 19
  start-page: 433
  year: 2007
  end-page: 444
  article-title: The absence of histone H2B monoubiquitination in the hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy
  publication-title: Plant Cell
– volume: 45
  start-page: 621
  year: 2018
  end-page: 638
  article-title: Retrospective and perspective of plant epigenetics in China
  publication-title: J Genet Genomics
– volume: 30
  start-page: 1337
  year: 2018
  end-page: 1352
  article-title: The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in
  publication-title: Plant Cell
– volume: 66
  start-page: 735
  year: 2011
  end-page: 744
  article-title: The trithorax‐like factor ATX1 functions in dehydration stress responses via ABA‐dependent and ABA‐independent pathways
  publication-title: Plant J
– volume: 112
  start-page: E7293
  year: 2015
  end-page: E7302
  article-title: Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation
  publication-title: Proc Natl Acad Sci USA
– volume: 116
  start-page: 16641
  year: 2019
  end-page: 16650
  article-title: Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in
  publication-title: Proc Natl Acad Sci USA
– volume: 249
  start-page: 497
  year: 2019
  end-page: 514
  article-title: Epigenetic control of UV‐B‐induced flavonoid accumulation in L
  publication-title: Planta
– volume: 6
  start-page: 114
  year: 2015
  article-title: Chromatin changes in response to drought, salinity, heat, and cold stresses in plants
  publication-title: Front Plant Sci
– volume: 59
  start-page: 1790
  year: 2018
  end-page: 1802
  article-title: Plasticity of DNA methylation and gene expression under zinc deficiency in roots
  publication-title: Plant Cell Physiol
– volume: 66
  start-page: 269
  year: 2015
  end-page: 296
  article-title: The polycomb group protein regulatory network
  publication-title: Annu Rev Plant Biol
– volume: 168
  start-page: 1309
  year: 2015
  end-page: 1320
  article-title: GENERAL CONTROL NONREPRESSED PROTEIN5‐mediated histone acetylation of FERRIC REDUCTASE DEFECTIVE3 contributes to iron homeostasis in
  publication-title: Plant Physiol
– volume: 42
  start-page: 762
  year: 2019
  end-page: 770
  article-title: Chromatin‐based mechanisms of temperature memory in plants
  publication-title: Plant Cell Environ
– volume: 50
  start-page: 1247
  year: 2018b
  end-page: 1253
  article-title: EBS is a bivalent histone reader that regulates floral phase transition in
  publication-title: Nat Genet
– volume: 60
  start-page: 112
  year: 2009
  end-page: 121
  article-title: Histone occupancy‐dependent and ‐independent removal of H3K27 trimethylation at cold‐responsive genes in
  publication-title: Plant J
– volume: 472
  start-page: 115
  year: 2011
  end-page: 119
  article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress
  publication-title: Nature
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 94
  start-page: 7076
  year: 1997
  end-page: 7081
  article-title: The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in
  publication-title: Proc Natl Acad Sci USA
– volume: 111
  start-page: 8547
  year: 2014
  end-page: 8552
  article-title: Identification of genes preventing transgenerational transmission of stress‐induced epigenetic states
  publication-title: Proc Natl Acad Sci USA
– volume: 1759
  start-page: 69
  year: 2006
  end-page: 79
  article-title: Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold‐induced transcription factor CBF1
  publication-title: Biochim Biophys Acta
– volume: 202
  start-page: 35
  year: 2014
  end-page: 49
  article-title: ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity
  publication-title: New Phytol
– volume: 100
  start-page: 1118
  year: 2019
  end-page: 1131
  article-title: The Polycomb protein LHP1 regulates stress responses through the repression of the MYC2‐dependent branch of immunity
  publication-title: Plant J
– volume: 66
  start-page: 5997
  year: 2015
  end-page: 6008
  article-title: Salt‐induced transcription factor MYB74 is regulated by the RNA‐directed DNA methylation pathway in
  publication-title: J Exp Bot
– volume: 62
  start-page: 104
  year: 2020
  end-page: 117
  article-title: Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization
  publication-title: J Integr Plant Biol
– volume: 157
  start-page: 95
  year: 2014
  end-page: 109
  article-title: Transgenerational epigenetic inheritance: Myths and mechanisms
  publication-title: Cell
– volume: 20
  start-page: 568
  year: 2008
  end-page: 579
  article-title: The highly similar homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions
  publication-title: Plant Cell
– volume: 222
  start-page: 1690
  year: 2019
  end-page: 1704
  article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants
  publication-title: New Phytol
– volume: 111
  start-page: 527
  year: 2014
  end-page: 532
  article-title: EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 4892
  year: 2012
  end-page: 4906
  article-title: The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in
  publication-title: Plant Cell
– volume: 36
  start-page: 283
  year: 2017
  end-page: 294
  article-title: Salt‐induced tissue‐specific cytosine methylation downregulates expression of genes in contrasting wheat ( L.) genotypes
  publication-title: DNA Cell Biol
– volume: 49
  start-page: 1580
  year: 2008
  end-page: 1588
  article-title: Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in thaliana
  publication-title: Plant Cell Physiol
– volume: 41
  start-page: 898
  year: 2000
  end-page: 903
  article-title: An gene encoding a Ca ‐binding protein is induced by abscisic acid during dehydration
  publication-title: Plant Cell Physiol
– ident: e_1_2_10_26_1
  doi: 10.1111/tpj.12380
– ident: e_1_2_10_113_1
  doi: 10.1016/j.plaphy.2015.12.019
– ident: e_1_2_10_14_1
  doi: 10.1093/pcp/pcy100
– ident: e_1_2_10_83_1
  doi: 10.1093/mp/sst023
– ident: e_1_2_10_94_1
  doi: 10.1093/jxb/erl164
– ident: e_1_2_10_21_1
  doi: 10.1111/nph.15696
– ident: e_1_2_10_22_1
  doi: 10.3389/fpls.2015.00999
– ident: e_1_2_10_70_1
  doi: 10.1111/j.1365-313X.2007.03185.x
– ident: e_1_2_10_90_1
  doi: 10.1371/journal.pgen.1004806
– ident: e_1_2_10_47_1
  doi: 10.1111/tpj.12650
– ident: e_1_2_10_66_1
  doi: 10.1038/ncomms9326
– ident: e_1_2_10_100_1
  doi: 10.3389/fpls.2013.00548
– ident: e_1_2_10_23_1
  doi: 10.1038/cr.2016.147
– ident: e_1_2_10_30_1
  doi: 10.1105/tpc.112.098574
– ident: e_1_2_10_95_1
  doi: 10.1038/srep32641
– ident: e_1_2_10_87_1
  doi: 10.1105/tpc.107.056705
– ident: e_1_2_10_29_1
  doi: 10.1016/j.pbi.2009.04.015
– ident: e_1_2_10_121_1
  doi: 10.1105/tpc.19.00604
– ident: e_1_2_10_60_1
  doi: 10.1093/nar/gku220
– ident: e_1_2_10_27_1
  doi: 10.1111/pce.13373
– ident: e_1_2_10_57_1
  doi: 10.1146/annurev.arplant.043008.091939
– ident: e_1_2_10_85_1
  doi: 10.1073/pnas.241501798
– ident: e_1_2_10_89_1
  doi: 10.1105/tpc.107.056614
– ident: e_1_2_10_112_1
  doi: 10.1105/tpc.108.061549
– ident: e_1_2_10_118_1
  doi: 10.1073/pnas.1812847115
– ident: e_1_2_10_12_1
  doi: 10.1093/jxb/erq154
– ident: e_1_2_10_110_1
  doi: 10.3389/fpls.2019.00900
– ident: e_1_2_10_52_1
  doi: 10.1038/nrg2719
– ident: e_1_2_10_71_1
  doi: 10.1038/nature05022
– ident: e_1_2_10_4_1
  doi: 10.1111/tpj.12832
– ident: e_1_2_10_6_1
  doi: 10.1146/annurev-arplant-050213-035811
– ident: e_1_2_10_51_1
  doi: 10.1093/mp/ssq014
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1365-313X.2009.03938.x
– ident: e_1_2_10_76_1
  doi: 10.1073/pnas.94.13.7076
– ident: e_1_2_10_58_1
  doi: 10.1016/j.devcel.2017.12.002
– ident: e_1_2_10_53_1
  doi: 10.1073/pnas.1320106110
– ident: e_1_2_10_79_1
  doi: 10.1007/s00425-015-2323-3
– ident: e_1_2_10_68_1
  doi: 10.1093/pcp/pcn101
– ident: e_1_2_10_80_1
  doi: 10.1073/pnas.1721241115
– ident: e_1_2_10_99_1
  doi: 10.1093/pcp/pcd010
– ident: e_1_2_10_101_1
  doi: 10.1111/tpj.12548
– ident: e_1_2_10_97_1
  doi: 10.1007/s00425-007-0612-1
– ident: e_1_2_10_2_1
  doi: 10.1105/tpc.006130
– ident: e_1_2_10_34_1
  doi: 10.1016/j.cell.2014.02.045
– ident: e_1_2_10_3_1
  doi: 10.1038/srep28941
– ident: e_1_2_10_35_1
  doi: 10.1111/brv.12215
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jgg.2018.09.004
– ident: e_1_2_10_81_1
  doi: 10.1007/s11103-010-9665-9
– ident: e_1_2_10_117_1
  doi: 10.1038/srep39843
– ident: e_1_2_10_78_1
  doi: 10.1007/s00425-018-3022-7
– ident: e_1_2_10_49_1
  doi: 10.1186/s13059-017-1263-6
– ident: e_1_2_10_13_1
  doi: 10.4161/psb.5.10.13168
– ident: e_1_2_10_8_1
  doi: 10.1105/tpc.111.095232
– ident: e_1_2_10_55_1
  doi: 10.1038/s41588-018-0190-0
– ident: e_1_2_10_33_1
  doi: 10.3389/fpls.2016.00310
– ident: e_1_2_10_63_1
  doi: 10.1093/jxb/ers059
– ident: e_1_2_10_62_1
  doi: 10.1105/tpc.106.049221
– ident: e_1_2_10_19_1
  doi: 10.1111/j.1365-313X.2011.04534.x
– ident: e_1_2_10_116_1
  doi: 10.1038/s41467-018-07500-7
– ident: e_1_2_10_40_1
  doi: 10.1093/mp/sss128
– ident: e_1_2_10_42_1
  doi: 10.3389/fpls.2015.00114
– ident: e_1_2_10_69_1
  doi: 10.1105/tpc.15.00763
– ident: e_1_2_10_20_1
  doi: 10.1038/ncomms1732
– ident: e_1_2_10_98_1
  doi: 10.1038/nature05864
– ident: e_1_2_10_84_1
  doi: 10.1111/tpj.14502
– ident: e_1_2_10_38_1
  doi: 10.1073/pnas.1402275111
– ident: e_1_2_10_56_1
  doi: 10.1186/1471-2156-15-S1-S9
– ident: e_1_2_10_64_1
  doi: 10.1111/jipb.12896
– ident: e_1_2_10_44_1
  doi: 10.1093/pcp/pcs004
– ident: e_1_2_10_111_1
  doi: 10.1038/s41588-018-0187-8
– ident: e_1_2_10_16_1
  doi: 10.1016/j.tplants.2007.07.002
– ident: e_1_2_10_45_1
  doi: 10.1104/pp.18.01471
– ident: e_1_2_10_31_1
  doi: 10.1111/jipb.12706
– ident: e_1_2_10_115_1
  doi: 10.1038/s41580-018-0016-z
– ident: e_1_2_10_104_1
  doi: 10.1073/pnas.1017863108
– ident: e_1_2_10_17_1
  doi: 10.1186/s12870-019-1887-7
– ident: e_1_2_10_54_1
  doi: 10.1105/tpc.18.00437
– ident: e_1_2_10_120_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_10_92_1
  doi: 10.1111/j.1365-313X.2008.03461.x
– ident: e_1_2_10_106_1
  doi: 10.1104/pp.15.00397
– ident: e_1_2_10_114_1
  doi: 10.1073/pnas.1522301112
– ident: e_1_2_10_41_1
  doi: 10.1111/tpj.12533
– ident: e_1_2_10_96_1
  doi: 10.1104/pp.109.145532
– ident: e_1_2_10_39_1
  doi: 10.4161/psb.4.5.8543
– ident: e_1_2_10_15_1
  doi: 10.1111/j.1744-7909.2008.00727.x
– ident: e_1_2_10_105_1
  doi: 10.1111/pce.13547
– ident: e_1_2_10_103_1
  doi: 10.1073/pnas.1315399110
– ident: e_1_2_10_65_1
  doi: 10.1371/journal.pgen.1004915
– ident: e_1_2_10_72_1
  doi: 10.1146/annurev-arplant-043014-115627
– ident: e_1_2_10_86_1
  doi: 10.1038/ncomms5138
– ident: e_1_2_10_91_1
  doi: 10.1186/gb-2013-14-6-r59
– ident: e_1_2_10_24_1
  doi: 10.1073/pnas.1710683114
– ident: e_1_2_10_43_1
  doi: 10.1093/pcp/pcn133
– ident: e_1_2_10_88_1
  doi: 10.1007/s00299-013-1462-x
– ident: e_1_2_10_59_1
  doi: 10.1111/jipb.12657
– ident: e_1_2_10_93_1
  doi: 10.7554/eLife.09343
– ident: e_1_2_10_11_1
  doi: 10.1038/srep15708
– ident: e_1_2_10_108_1
  doi: 10.1186/s12870-018-1454-7
– ident: e_1_2_10_37_1
  doi: 10.1038/nature09861
– ident: e_1_2_10_5_1
  doi: 10.1093/pcp/pcq182
– ident: e_1_2_10_74_1
  doi: 10.1073/pnas.1906023116
– ident: e_1_2_10_10_1
  doi: 10.1111/nph.12194
– ident: e_1_2_10_61_1
  doi: 10.1111/jipb.12879
– ident: e_1_2_10_119_1
  doi: 10.1073/pnas.0801029105
– ident: e_1_2_10_32_1
  doi: 10.1105/tpc.112.105114
– ident: e_1_2_10_50_1
  doi: 10.15252/embj.201592593
– ident: e_1_2_10_18_1
  doi: 10.1093/mp/ssq001
– ident: e_1_2_10_75_1
  doi: 10.1016/j.tplants.2016.08.015
– ident: e_1_2_10_77_1
  doi: 10.1111/nph.12613
– ident: e_1_2_10_46_1
  doi: 10.1089/dna.2016.3505
– ident: e_1_2_10_67_1
  doi: 10.1016/j.bbaexp.2006.02.006
– ident: e_1_2_10_36_1
  doi: 10.1371/journal.pgen.1006298
– ident: e_1_2_10_82_1
  doi: 10.1016/j.molp.2015.10.003
– ident: e_1_2_10_28_1
  doi: 10.1016/j.pbi.2014.07.004
– ident: e_1_2_10_107_1
  doi: 10.1093/jxb/erv312
– ident: e_1_2_10_7_1
  doi: 10.1038/nature05915
– ident: e_1_2_10_102_1
  doi: 10.1073/pnas.1308974110
– ident: e_1_2_10_109_1
  doi: 10.1126/science.aan1121
– ident: e_1_2_10_73_1
  doi: 10.1016/S1360-1385(03)00060-8
– ident: e_1_2_10_9_1
  doi: 10.1105/tpc.17.00867
SSID ssj0038062
Score 2.6571426
SecondaryResourceType review_article
Snippet In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 563
SubjectTerms Abiotic stress
Abscisic acid
Cellular stress response
Chromatin
Chromatin Assembly and Disassembly - genetics
Chromatin Assembly and Disassembly - physiology
Deoxyribonucleic acid
DNA
Drought
Environmental conditions
environmental factors
Epigenesis, Genetic - genetics
Epigenetics
eukaryotic cells
Gene expression
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
histones
plant response
salt stress
stress response
Stress, Physiological - genetics
Stress, Physiological - physiology
thermal stress
water stress
Title Epigenetic regulation in plant abiotic stress responses
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12901
https://www.ncbi.nlm.nih.gov/pubmed/31872527
https://www.proquest.com/docview/2397174508
https://www.proquest.com/docview/2330332852
https://www.proquest.com/docview/2439411069
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4W8eDF96O-qOhFocs2aZMWvKgoq6CIKHiR0kkTWFy6i7t70F_vJO0WXwh6KW0zhTSTyXyTzAPgQAmpC81J0sIEg6gweZB3DD1qlmCUp7JIbIDz9Y3oPkRXj_FjC46nsTBVfohmw81KhluvrYDnOPoo5L0htu0uirV9rLOWRUR3Te4onnRcNdFQSBaQBcjq3KTOjaf59LM2-gYxPyNWp3IuFuBp2tnK0-S5PRljW719yeP4379ZhPkai_on1eRZgpYul2H2dEB48XUF5PnQZuq0QY7-S1Wxnnjo90p_2Cd2-Dn2BratijYhEudsq0er8HBxfn_WDeoyC4GKUhYGgpRUx6CUcShFjIZrrpjWQmCk0USpCIUpOpGiqy3sqxF1oVBynvI0NNrwNZgpB6XeAD9VhFfoJSrS-iE3CfIUBde5QAISinlwOB3uTNU5yG0pjH7W2CI0DpkbBw_2G9phlXnjR6rtKdeyWvpGGSOQRZYWYU8P9ppmkht7GJKXejCxNKS8OUti9guNDRsmfCRSD9arGdF0hdZCyWImPThyfP2lj9nV5e2pu9v8C_EWzDFr3Dvvym2YGb9M9A4hoDHuupn-DtYmAJo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXypvQAkHAAaSsNnZiJwcOlLba7UsItVJvacYZoxVVdtXdFSr_ib_S39Sxk40ooEoceuASJfEossYz48-TeQC8MUpTRZI1Lc4wSipbRmXf8iOJDJMy11XmEpz39tXgMNk-So-W4OciF6apD9E53JxmeHvtFNw5pH_V8tEEe86NErcxlTt09p1PbNMPww1e3rdCbG0efBpEbVOByCS5iCPFJrlvUes01ipFK0kaQaQUJoQ2yVWsbNVPDF9dG1tCpMqgljKXeWzJSv7uDbjpWoi7Uv0bX7pqVTLr-_6lsdIi4jOnaKuh-sChbq6X978_QO1ljOw3ua0VOF-wp4lt-dabz7BnfvxWOfK_4d89uNvC7fBjox_3YYnqB3BrfcyQ-Owh6M2JK0bq8jjDU_radjILR3U4OWGJC0scjd1Yk1DDJD6emKaP4PBaJv0YlutxTU8hzA1DMn6JhoFNLG2GMkclqVTIWMmIAN4t1rcwbZl11-3jpOiOW8z3wvM9gNcd7aQpLvJXqrWFmBStgZkWgnEkHyYZXgfwqhtm0-D-95Q1jeeOhvGJFFkqrqBxmdEMAVUewJNGBLupsLnXIhU6gPdekK6YY7E9_Lzu7579C_FLuD042Nstdof7O6twRzhfhg8mXYPl2emcnjPgm-ELr2YhHF-3XF4AT9hflg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXyj-hBYKAA0hZJXZixwcOlO2q20JVISr1lsbOGK2oslF3V6g8E6_Sd-rYyUYUUCUOPXCJkngUjeyZ8TfO_AC8MkJihZw0Lcl1lFa2jMrY0iOyXKelklXuEpw_7Yntg3TnMDtcgZ_LXJi2PkR_4OY0w9trp-BNZX9V8kmjB-4UJelCKnfx9Ds5bLN34yGt7mvGRltfPmxHXU-ByKSKJZEgixxbLWWWSJFpy5EbhiiETlHbVIlE2CpODV1dF1vUGiujJeeKq8Si5fTda3A9FbFyjSKGn_tiVTyPffvSREgWkcvJumKoPm6o5_Xi9vcHpr0Ikf0eN1qDs-XstKEt3waLuR6YH78Vjvxfpu8O3O7Advi-1Y67sIL1PbixOSVAfHof5FbjSpG6LM7wBL92fczCSR02xyRvYaknUzfWptMQiY8mxtkDOLgSph_Caj2t8TGEyhAgo5faEKxJuM01V1pwLIUmpGRYAG-Wy1uYrsi66_VxXPTOFs174ec9gJc9bdOWFvkr1cZSSorOvMwKRiiSXEkC1wG86IfJMLi_PWWN04WjIXTCWZ6xS2hcXjQBQKECeNRKYM8KGXvJMiYDeOvl6BIei53x_qa_e_IvxM_h5v5wVHwc7-2uwy3mDjJ8JOkGrM5PFviU0N5cP_NKFsLRVYvlObrPXkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+regulation+in+plant+abiotic+stress+responses&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Chang%2C+Ya%E2%80%90Nan&rft.au=Zhu%2C+Chen&rft.au=Jiang%2C+Jing&rft.au=Zhang%2C+Huiming&rft.date=2020-05-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=62&rft.issue=5&rft.spage=563&rft.epage=580&rft_id=info:doi/10.1111%2Fjipb.12901&rft.externalDBID=10.1111%252Fjipb.12901&rft.externalDocID=JIPB12901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-9072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-9072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-9072&client=summon