Epigenetic regulation in plant abiotic stress responses
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is importan...
Saved in:
Published in | Journal of integrative plant biology Vol. 62; no. 5; pp. 563 - 580 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
China (Republic : 1949- )
Wiley Subscription Services, Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.
Epigenetic mechanisms create various chromatin states for gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed important involvements of epigenetic mechanisms in plant abiotic stress responses. This review summarizes recent progress on the cross‐talk between abiotic stress responses and epigenetic regulatory pathways in plants. |
---|---|
AbstractList | In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory. In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory. In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory. Epigenetic mechanisms create various chromatin states for gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed important involvements of epigenetic mechanisms in plant abiotic stress responses. This review summarizes recent progress on the cross‐talk between abiotic stress responses and epigenetic regulatory pathways in plants. |
Author | Jiang, Jing Duan, Cheng‐Guo Zhu, Chen Zhu, Jian‐Kang Chang, Ya‐Nan Zhang, Huiming |
Author_xml | – sequence: 1 givenname: Ya‐Nan surname: Chang fullname: Chang, Ya‐Nan organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Chen surname: Zhu fullname: Zhu, Chen organization: Chinese Academy of Sciences – sequence: 3 givenname: Jing surname: Jiang fullname: Jiang, Jing organization: Henan University – sequence: 4 givenname: Huiming surname: Zhang fullname: Zhang, Huiming organization: Henan University – sequence: 5 givenname: Jian‐Kang surname: Zhu fullname: Zhu, Jian‐Kang organization: Purdue University – sequence: 6 givenname: Cheng‐Guo surname: Duan fullname: Duan, Cheng‐Guo email: cgduan@sibs.ac.cn organization: Henan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31872527$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U9LwzAUAPAgE_dHL34AGXgRoZqXtElz1DF1MtCDnkvTvY6Mrq1Ji-zbm63TwxDNIQnJ7z2S94akV1YlEnIO9Ab8uF2ZWt8AUxSOyABkGAZSUdXzeyFZoKhkfTJ0bkUpj6lgJ6TPIZYsYnJA5LQ2SyyxMdnY4rIt0sZU5diU47pIy2acalNt71xj0TlPXF2VDt0pOc7TwuHZfh2R94fp2-QpmL88ziZ38yALFYNAxBRorqWMQIpI5xx5xhCF0CHqPFQCRL6gYeZnoODPNC4yLTlXXEGOOR-Rqy5vbauPFl2TrI3LsPCPw6p1CQu5CgGoUP9TzinnLI6Yp5cHdFW1tvQf8UpJX8OIxl5d7FWr17hIamvWqd0k39Xz4LoDma2cs5j_EKDJtjXJtjXJrjUe0wOcmWZX7campvg9BLqQT1Pg5o_kyfPs9b6L-QJY_J7G |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2023_108075 crossref_primary_10_3389_fgene_2022_811732 crossref_primary_10_3390_plants13131748 crossref_primary_10_3389_fnut_2023_1053196 crossref_primary_10_3389_fpls_2023_1120012 crossref_primary_10_1016_j_stress_2024_100552 crossref_primary_10_1007_s42994_022_00070_9 crossref_primary_10_1017_qpb_2023_14 crossref_primary_10_1016_j_plantsci_2023_111954 crossref_primary_10_3389_fimmu_2024_1481753 crossref_primary_10_1007_s11103_022_01273_w crossref_primary_10_1016_j_biosystems_2024_105181 crossref_primary_10_1002_pei3_10121 crossref_primary_10_3389_fpls_2022_1005077 crossref_primary_10_1186_s12870_024_05337_5 crossref_primary_10_3390_ijms241512065 crossref_primary_10_3390_plants10061165 crossref_primary_10_1016_j_virusres_2022_198844 crossref_primary_10_3390_plants9121729 crossref_primary_10_1016_j_ecoenv_2024_116352 crossref_primary_10_1021_acs_jafc_1c07224 crossref_primary_10_1007_s00344_024_11322_x crossref_primary_10_3390_ijms21041419 crossref_primary_10_1016_j_scienta_2023_112712 crossref_primary_10_3390_plants12020241 crossref_primary_10_1186_s12870_024_05858_z crossref_primary_10_3389_fpls_2022_1064390 crossref_primary_10_1111_pce_15406 crossref_primary_10_3390_f11090976 crossref_primary_10_1002_jcb_30315 crossref_primary_10_1111_ppl_13727 crossref_primary_10_1016_j_jgg_2023_10_001 crossref_primary_10_1016_j_cpb_2023_100282 crossref_primary_10_1007_s42994_023_00117_5 crossref_primary_10_3389_fpls_2023_1146663 crossref_primary_10_1007_s11105_025_01527_z crossref_primary_10_1111_jipb_13316 crossref_primary_10_1111_tpj_16984 crossref_primary_10_3389_fpls_2021_702303 crossref_primary_10_1016_j_stress_2021_100052 crossref_primary_10_1111_pce_14774 crossref_primary_10_1093_hr_uhae277 crossref_primary_10_3389_fpls_2021_694289 crossref_primary_10_3390_genes13071112 crossref_primary_10_1016_j_ecoenv_2024_116490 crossref_primary_10_1111_oik_09352 crossref_primary_10_1051_jbio_2020011 crossref_primary_10_1111_tpj_16183 crossref_primary_10_1016_j_plaphy_2024_109114 crossref_primary_10_1111_pbi_14426 crossref_primary_10_1111_ppl_70058 crossref_primary_10_3390_ijms25179200 crossref_primary_10_3390_plants12081712 crossref_primary_10_1093_plphys_kiab187 crossref_primary_10_3390_ijms231710049 crossref_primary_10_1007_s00425_024_04401_6 crossref_primary_10_1007_s00468_024_02577_8 crossref_primary_10_1080_07388551_2022_2053056 crossref_primary_10_1093_eep_dvab012 crossref_primary_10_1007_s00299_024_03272_1 crossref_primary_10_3389_fpls_2023_1111875 crossref_primary_10_3390_plants13141896 crossref_primary_10_1016_j_plantsci_2024_112319 crossref_primary_10_3389_fpls_2023_1131977 crossref_primary_10_3390_rs13204155 crossref_primary_10_1016_j_jplph_2022_153740 crossref_primary_10_3390_genes12091409 crossref_primary_10_1371_journal_pgen_1009549 crossref_primary_10_47612_1999_9127_2022_33_137_150 crossref_primary_10_1016_j_envexpbot_2024_105696 crossref_primary_10_1007_s11104_021_05122_5 crossref_primary_10_1016_j_jgeb_2024_100354 crossref_primary_10_1111_jipb_13423 crossref_primary_10_3389_fpls_2021_620245 crossref_primary_10_1002_ps_6241 crossref_primary_10_1038_s41598_020_73423_3 crossref_primary_10_1093_plphys_kiae167 crossref_primary_10_3390_genes13060992 crossref_primary_10_3390_genes12111818 crossref_primary_10_3389_fpls_2022_1067076 crossref_primary_10_1111_ppl_13357 crossref_primary_10_3390_ijms231911191 crossref_primary_10_1007_s10722_021_01298_y crossref_primary_10_1007_s13580_024_00627_1 crossref_primary_10_1016_j_stress_2025_100754 crossref_primary_10_3389_fpls_2020_572137 crossref_primary_10_1038_s41467_024_52114_x crossref_primary_10_3390_agronomy12051043 crossref_primary_10_1042_BST20210353 crossref_primary_10_1016_j_jprot_2024_105156 crossref_primary_10_1186_s12870_022_03797_1 crossref_primary_10_1016_j_rhisph_2022_100518 crossref_primary_10_1111_nph_19552 crossref_primary_10_3390_ijms232112793 crossref_primary_10_1016_j_ijbiomac_2022_08_182 crossref_primary_10_1016_j_molp_2023_07_005 crossref_primary_10_1021_acs_analchem_3c04591 crossref_primary_10_1002_ffj_3750 crossref_primary_10_1007_s10142_023_01219_5 crossref_primary_10_1016_j_bbagen_2024_130748 crossref_primary_10_3389_fpls_2022_1075279 crossref_primary_10_3389_fpls_2024_1384091 crossref_primary_10_3390_plants12040940 crossref_primary_10_1111_nph_17019 crossref_primary_10_1111_pbi_14299 crossref_primary_10_3389_fpls_2022_841154 crossref_primary_10_3390_ijms232113518 crossref_primary_10_1007_s11103_024_01525_x crossref_primary_10_29328_journal_jpsp_1001060 crossref_primary_10_3390_ijms21051819 crossref_primary_10_3390_ijms24054378 crossref_primary_10_1016_j_ijbiomac_2023_126582 crossref_primary_10_1371_journal_pgen_1010473 crossref_primary_10_3390_ijms222313048 crossref_primary_10_3390_plants10061096 crossref_primary_10_3390_plants14050719 crossref_primary_10_1007_s10725_023_01039_4 crossref_primary_10_3389_fpls_2022_910663 crossref_primary_10_1111_eva_13699 crossref_primary_10_3390_plants12020331 crossref_primary_10_1038_s41598_022_05024_1 crossref_primary_10_3389_fpls_2022_934877 crossref_primary_10_3390_ijms241612883 crossref_primary_10_3390_ijms25168976 crossref_primary_10_1016_j_plaphy_2023_107769 crossref_primary_10_3389_fpls_2020_602625 crossref_primary_10_1007_s00299_022_02858_x crossref_primary_10_1007_s00425_021_03778_y crossref_primary_10_1016_j_jplph_2021_153419 crossref_primary_10_1016_j_scitotenv_2022_157488 crossref_primary_10_1002_ppp3_10521 crossref_primary_10_1016_j_celrep_2023_112163 crossref_primary_10_1016_j_ijbiomac_2025_141772 crossref_primary_10_1016_j_plaphy_2022_07_001 crossref_primary_10_3390_ijms23147622 crossref_primary_10_1016_j_envexpbot_2021_104479 crossref_primary_10_1111_jipb_13079 crossref_primary_10_1038_s41576_021_00413_0 crossref_primary_10_3390_ijms21124548 crossref_primary_10_1111_nph_17593 crossref_primary_10_1111_nph_18440 crossref_primary_10_1111_wre_12559 crossref_primary_10_1007_s44154_022_00048_z crossref_primary_10_3389_fpls_2022_1064131 crossref_primary_10_3389_fpls_2023_1265339 crossref_primary_10_3389_fpls_2021_761059 crossref_primary_10_1016_j_jplph_2022_153827 crossref_primary_10_1111_jipb_13064 crossref_primary_10_3390_plants11070922 crossref_primary_10_1111_jipb_13063 crossref_primary_10_1007_s00425_021_03694_1 crossref_primary_10_3389_fpls_2021_733846 crossref_primary_10_3390_cells11182806 crossref_primary_10_3390_ijms231912053 crossref_primary_10_3389_fgene_2020_576086 crossref_primary_10_1016_j_niox_2022_08_005 crossref_primary_10_1007_s00468_023_02468_4 crossref_primary_10_3390_f12070836 crossref_primary_10_3906_tar_2102_5 crossref_primary_10_3390_cells10123409 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_1016_j_postharvbio_2022_111915 crossref_primary_10_3390_plants13020163 crossref_primary_10_1007_s13258_021_01163_3 crossref_primary_10_1007_s44154_021_00012_3 crossref_primary_10_1016_j_stress_2024_100398 crossref_primary_10_3390_plants12112170 crossref_primary_10_3390_proteomes11040038 crossref_primary_10_1111_nph_17063 crossref_primary_10_1186_s12870_022_03580_2 crossref_primary_10_1007_s11033_021_06922_9 crossref_primary_10_1111_jipb_13379 crossref_primary_10_1016_j_plaphy_2024_108516 crossref_primary_10_1111_gcbb_13084 crossref_primary_10_1111_nph_17970 crossref_primary_10_1093_plcell_koac106 crossref_primary_10_1007_s13258_021_01191_z crossref_primary_10_1016_j_ncrops_2024_100029 crossref_primary_10_3390_plants12213667 crossref_primary_10_1016_j_bbagen_2024_130661 crossref_primary_10_1016_j_stress_2024_100724 crossref_primary_10_1111_ppl_13689 crossref_primary_10_3390_agronomy14020236 crossref_primary_10_1007_s00344_023_11055_3 crossref_primary_10_1016_j_stress_2023_100303 crossref_primary_10_3390_ijms25084464 crossref_primary_10_1111_jipb_13368 crossref_primary_10_3390_ijms23074016 crossref_primary_10_1016_j_plaphy_2020_05_006 crossref_primary_10_1080_15226514_2024_2360573 crossref_primary_10_3389_fpls_2021_643403 crossref_primary_10_3389_fpls_2022_933740 crossref_primary_10_1038_s41467_023_36517_w crossref_primary_10_1155_2022_1092894 crossref_primary_10_1016_j_bcab_2022_102288 crossref_primary_10_1038_s41467_020_20089_0 crossref_primary_10_1021_acs_jafc_2c01754 crossref_primary_10_1016_j_bcab_2020_101673 crossref_primary_10_3390_epigenomes8030030 crossref_primary_10_3390_ijms252413297 crossref_primary_10_1007_s10142_022_00906_z crossref_primary_10_3389_fpls_2022_925688 crossref_primary_10_3390_genes12081106 crossref_primary_10_1016_j_tplants_2022_01_009 crossref_primary_10_1016_j_plantsci_2024_112265 crossref_primary_10_1093_hr_uhad104 crossref_primary_10_1111_ppl_13453 crossref_primary_10_3390_dna4010005 crossref_primary_10_3389_fgene_2024_1401011 crossref_primary_10_1111_jipb_13396 crossref_primary_10_1093_plcell_koac322 crossref_primary_10_1186_s12870_021_02953_3 crossref_primary_10_1007_s13562_021_00733_6 crossref_primary_10_3389_freae_2025_1476499 crossref_primary_10_1007_s10681_023_03278_y crossref_primary_10_5511_plantbiotechnology_22_1219a crossref_primary_10_1016_j_plaphy_2024_109070 crossref_primary_10_3390_ijms25052795 crossref_primary_10_1007_s13580_023_00565_4 crossref_primary_10_1093_jxb_eraf058 crossref_primary_10_3390_ijms22020787 crossref_primary_10_1093_eep_dvae009 crossref_primary_10_1111_jipb_13384 crossref_primary_10_1016_j_plgene_2021_100286 crossref_primary_10_1111_pce_14266 crossref_primary_10_3390_ijms21041480 crossref_primary_10_1111_pce_14264 crossref_primary_10_1093_plphys_kiab224 crossref_primary_10_3390_cells10010065 crossref_primary_10_3390_biology11030421 crossref_primary_10_1016_j_plaphy_2024_108423 crossref_primary_10_1007_s10709_023_00188_8 crossref_primary_10_1111_jipb_13386 crossref_primary_10_1016_j_jare_2022_12_003 crossref_primary_10_1007_s44154_021_00019_w crossref_primary_10_3390_ijms24076326 crossref_primary_10_3389_fpls_2020_608540 crossref_primary_10_3390_plants13212997 crossref_primary_10_1186_s12870_022_03767_7 crossref_primary_10_3390_biology10121255 crossref_primary_10_1038_s44185_023_00022_6 crossref_primary_10_1186_s40659_023_00424_7 crossref_primary_10_1093_hr_uhad281 crossref_primary_10_3390_agronomy15020268 crossref_primary_10_3390_ijms242316549 crossref_primary_10_1016_j_biotechadv_2024_108447 crossref_primary_10_3390_ijms22158327 crossref_primary_10_3389_fpls_2022_845108 crossref_primary_10_1038_s41598_021_83074_7 crossref_primary_10_1186_s12864_023_09845_w crossref_primary_10_1016_j_tplants_2020_06_008 crossref_primary_10_1111_jipb_13213 crossref_primary_10_3390_cells12050729 crossref_primary_10_1111_jipb_13451 crossref_primary_10_1007_s44279_024_00105_3 crossref_primary_10_1016_j_bbagen_2024_130580 crossref_primary_10_3390_ijms23136910 crossref_primary_10_1111_tpj_15486 crossref_primary_10_1101_gr_277931_123 crossref_primary_10_3390_agronomy15030739 crossref_primary_10_1007_s10709_023_00190_0 crossref_primary_10_1016_j_molp_2020_09_010 crossref_primary_10_1080_15592324_2024_2365576 crossref_primary_10_3389_fpls_2021_741641 crossref_primary_10_1007_s00344_023_11077_x crossref_primary_10_32604_phyton_2024_049277 crossref_primary_10_1111_pce_15454 crossref_primary_10_1186_s12870_022_04006_9 crossref_primary_10_1093_plphys_kiad468 crossref_primary_10_1186_s12870_024_05573_9 crossref_primary_10_3390_plants13192700 crossref_primary_10_1016_j_marenvres_2022_105611 crossref_primary_10_1016_j_indcrop_2025_120560 crossref_primary_10_1016_j_xplc_2022_100417 crossref_primary_10_1016_j_aac_2024_01_005 crossref_primary_10_1016_j_bcab_2024_103414 crossref_primary_10_1093_plphys_kiab275 crossref_primary_10_1007_s40626_024_00315_6 crossref_primary_10_1016_j_cj_2023_06_002 crossref_primary_10_37427_botcro_2025_004 crossref_primary_10_1016_j_tplants_2022_09_004 crossref_primary_10_3390_ijms25094988 crossref_primary_10_1007_s13205_023_03519_w crossref_primary_10_3390_genes14061199 crossref_primary_10_1111_ppl_13777 crossref_primary_10_3390_biology10080766 crossref_primary_10_1016_j_stress_2024_100613 crossref_primary_10_18006_2023_11_1__41_53 crossref_primary_10_1016_j_jhazmat_2024_136545 crossref_primary_10_1016_j_ygeno_2024_110871 crossref_primary_10_1186_s12302_023_00788_3 crossref_primary_10_3389_freae_2023_1188733 crossref_primary_10_1007_s13562_021_00739_0 crossref_primary_10_1093_jxb_erae205 crossref_primary_10_1016_j_jplph_2021_153363 crossref_primary_10_3390_ijms21249517 crossref_primary_10_3389_fpls_2022_1036764 crossref_primary_10_1007_s00299_024_03177_z crossref_primary_10_1016_j_plaphy_2024_108628 crossref_primary_10_1080_07388551_2024_2344583 crossref_primary_10_3389_fpls_2021_774994 crossref_primary_10_1002_tpg2_20237 crossref_primary_10_1002_tpg2_20358 crossref_primary_10_1111_nph_17635 crossref_primary_10_1016_j_plaphy_2023_108206 crossref_primary_10_1038_s42003_023_05601_8 crossref_primary_10_1111_ppl_13421 crossref_primary_10_2139_ssrn_4193809 |
Cites_doi | 10.1111/tpj.12380 10.1016/j.plaphy.2015.12.019 10.1093/pcp/pcy100 10.1093/mp/sst023 10.1093/jxb/erl164 10.1111/nph.15696 10.3389/fpls.2015.00999 10.1111/j.1365-313X.2007.03185.x 10.1371/journal.pgen.1004806 10.1111/tpj.12650 10.1038/ncomms9326 10.3389/fpls.2013.00548 10.1038/cr.2016.147 10.1105/tpc.112.098574 10.1038/srep32641 10.1105/tpc.107.056705 10.1016/j.pbi.2009.04.015 10.1105/tpc.19.00604 10.1093/nar/gku220 10.1111/pce.13373 10.1146/annurev.arplant.043008.091939 10.1073/pnas.241501798 10.1105/tpc.107.056614 10.1105/tpc.108.061549 10.1073/pnas.1812847115 10.1093/jxb/erq154 10.3389/fpls.2019.00900 10.1038/nrg2719 10.1038/nature05022 10.1111/tpj.12832 10.1146/annurev-arplant-050213-035811 10.1093/mp/ssq014 10.1111/j.1365-313X.2009.03938.x 10.1073/pnas.94.13.7076 10.1016/j.devcel.2017.12.002 10.1073/pnas.1320106110 10.1007/s00425-015-2323-3 10.1093/pcp/pcn101 10.1073/pnas.1721241115 10.1093/pcp/pcd010 10.1111/tpj.12548 10.1007/s00425-007-0612-1 10.1105/tpc.006130 10.1016/j.cell.2014.02.045 10.1038/srep28941 10.1111/brv.12215 10.1016/j.jgg.2018.09.004 10.1007/s11103-010-9665-9 10.1038/srep39843 10.1007/s00425-018-3022-7 10.1186/s13059-017-1263-6 10.4161/psb.5.10.13168 10.1105/tpc.111.095232 10.1038/s41588-018-0190-0 10.3389/fpls.2016.00310 10.1093/jxb/ers059 10.1105/tpc.106.049221 10.1111/j.1365-313X.2011.04534.x 10.1038/s41467-018-07500-7 10.1093/mp/sss128 10.3389/fpls.2015.00114 10.1105/tpc.15.00763 10.1038/ncomms1732 10.1038/nature05864 10.1111/tpj.14502 10.1073/pnas.1402275111 10.1186/1471-2156-15-S1-S9 10.1111/jipb.12896 10.1093/pcp/pcs004 10.1038/s41588-018-0187-8 10.1016/j.tplants.2007.07.002 10.1104/pp.18.01471 10.1111/jipb.12706 10.1038/s41580-018-0016-z 10.1073/pnas.1017863108 10.1186/s12870-019-1887-7 10.1105/tpc.18.00437 10.1016/j.cell.2016.08.029 10.1111/j.1365-313X.2008.03461.x 10.1104/pp.15.00397 10.1073/pnas.1522301112 10.1111/tpj.12533 10.1104/pp.109.145532 10.4161/psb.4.5.8543 10.1111/j.1744-7909.2008.00727.x 10.1111/pce.13547 10.1073/pnas.1315399110 10.1371/journal.pgen.1004915 10.1146/annurev-arplant-043014-115627 10.1038/ncomms5138 10.1186/gb-2013-14-6-r59 10.1073/pnas.1710683114 10.1093/pcp/pcn133 10.1007/s00299-013-1462-x 10.1111/jipb.12657 10.7554/eLife.09343 10.1038/srep15708 10.1186/s12870-018-1454-7 10.1038/nature09861 10.1093/pcp/pcq182 10.1073/pnas.1906023116 10.1111/nph.12194 10.1111/jipb.12879 10.1073/pnas.0801029105 10.1105/tpc.112.105114 10.15252/embj.201592593 10.1093/mp/ssq001 10.1016/j.tplants.2016.08.015 10.1111/nph.12613 10.1089/dna.2016.3505 10.1016/j.bbaexp.2006.02.006 10.1371/journal.pgen.1006298 10.1016/j.molp.2015.10.003 10.1016/j.pbi.2014.07.004 10.1093/jxb/erv312 10.1038/nature05915 10.1073/pnas.1308974110 10.1126/science.aan1121 10.1016/S1360-1385(03)00060-8 10.1105/tpc.17.00867 |
ContentType | Journal Article |
Copyright | 2020 Institute of Botany, Chinese Academy of Sciences 2020 Institute of Botany, Chinese Academy of Sciences. |
Copyright_xml | – notice: 2020 Institute of Botany, Chinese Academy of Sciences – notice: 2020 Institute of Botany, Chinese Academy of Sciences. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/jipb.12901 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1744-7909 |
EndPage | 580 |
ExternalDocumentID | 31872527 10_1111_jipb_12901 JIPB12901 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Chinese Academy of Sciences – fundername: National Natural Science Foundation of China |
GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4921-68010fb7751765bf3e3c2ee66b4ebf49616fd04c6fd1014ebbedcb7339391fef3 |
IEDL.DBID | DR2 |
ISSN | 1672-9072 1744-7909 |
IngestDate | Fri Jul 11 18:31:47 EDT 2025 Fri Jul 11 09:54:49 EDT 2025 Fri Jul 25 21:13:18 EDT 2025 Thu Apr 03 07:08:04 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 Tue Jul 01 03:06:09 EDT 2025 Wed Jan 22 16:33:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2020 Institute of Botany, Chinese Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4921-68010fb7751765bf3e3c2ee66b4ebf49616fd04c6fd1014ebbedcb7339391fef3 |
Notes | Feb. 23, 2020 Edited by FA: Free Access Online on Zhizhong Gong, China Agricultural University, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12901 |
PMID | 31872527 |
PQID | 2397174508 |
PQPubID | 2045135 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2439411069 proquest_miscellaneous_2330332852 proquest_journals_2397174508 pubmed_primary_31872527 crossref_primary_10_1111_jipb_12901 crossref_citationtrail_10_1111_jipb_12901 wiley_primary_10_1111_jipb_12901_JIPB12901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitleAlternate | J Integr Plant Biol |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2007; 227 2018a; 44 2019; 10 2011; 52 2019; 19 2008; 105 2018; 45 2013; 6 2016; 35 2014; 21 2011; 472 2009; 12 2018; 9 2015; 83 2014; 15 2011; 66 2017a; 27 2013a; 110 2018; 30 2013; 198 2017b; 114 2008; 20 2010; 3 2012; 24 2010; 5 2006; 442 2014; 10 2007; 19 2007; 447 2019; 31 2009; 60 2015; 242 2016; 167 2008; 54 2016; 91 2020; 32 2008; 50 2007; 12 2019; 100 2019; 222 2016; 12 2014; 157 2014; 42 2018; 19 2016; 6 2016; 7 2019; 42 2015; 112 2008; 49 2015; 66 2018; 115 2019; 179 2016; 28 2016; 9 2017; 7 2020; 62 2018b; 50 2000; 41 2003; 15 2016; 100 2019; 249 2017; 357 2012; 53 2014; 65 2010; 61 2014; 5 1997; 94 2013; 14 2014; 4 2017; 36 2006; 1759 2003; 8 2019; 116 2010; 152 2014; 202 2010; 74 2012; 63 2001; 98 2015; 6 2013b; 110 2015; 5 2015; 4 2009; 21 2015; 168 2017; 22 2015; 11 2007; 51 2018; 60 2014; 111 2007; 58 2018a; 18 2012; 3 2014; 80 2011; 108 2013; 32 2018b; 60 2014; 79 2017; 18 2018; 50 2009; 4 2018; 59 2014; 77 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 60 start-page: 780 year: 2018b end-page: 795 article-title: Insights into the regulation of C‐repeat binding factors in plant cold signaling publication-title: J Integr Plant Biol – volume: 32 start-page: 1151 year: 2013 end-page: 1159 article-title: Epigenetic mechanisms of plant stress responses and adaptation publication-title: Plant Cell Rep – volume: 80 start-page: 503 year: 2014 end-page: 515 article-title: inositol pentakisphosphate 2‐kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level publication-title: Plant J – volume: 15 start-page: S9 issue: Suppl 1 year: 2014 article-title: Single‐base‐resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. publication-title: BMC Genet – volume: 442 start-page: 1046 year: 2006 end-page: 1049 article-title: Transgeneration memory of stress in plants publication-title: Nature – volume: 24 start-page: 1242 year: 2012 end-page: 1255 article-title: Retrotransposons control fruit‐specific, cold‐dependent accumulation of anthocyanins in blood oranges publication-title: Plant Cell – volume: 42 start-page: 5556 year: 2014 end-page: 5566 article-title: Different gene‐specific mechanisms determine the 'revised‐response' memory transcription patterns of a subset of dehydration stress responding genes publication-title: Nucleic Acids Res – volume: 18 start-page: 226 year: 2018a article-title: Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean publication-title: BMC Plant Biol – volume: 3 start-page: 740 year: 2012 article-title: Multiple exposures to drought ‘train’ transcriptional responses in publication-title: Nat Commun – volume: 31 start-page: 663 year: 2019 end-page: 686 article-title: The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in publication-title: Plant Cell – volume: 198 start-page: 709 year: 2013 end-page: 720 article-title: ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in publication-title: New Phytol – volume: 19 start-page: 489 year: 2018 end-page: 506 article-title: Dynamics and function of DNA methylation in plants publication-title: Nat Rev Mol Cell Biol – volume: 9 start-page: 5056 year: 2018 article-title: Global identification of lncRNAs reveals the regulation of MAF4 by a natural antisense RNA publication-title: Nat Commun – volume: 21 start-page: 386 year: 2009 end-page: 402 article-title: Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in publication-title: Plant Cell – volume: 79 start-page: 28 year: 2014 end-page: 43 article-title: The STRESS RESPONSE SUPPRESSOR DEAD‐box RNA helicases are nucleolar‐ and chromocenter‐localized proteins that undergo stress‐mediated relocalization and are involved in epigenetic gene silencing publication-title: Plant J – volume: 6 year: 2016 article-title: Genome‐wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress publication-title: Sci Rep – volume: 6 start-page: 686 year: 2013 end-page: 703 article-title: MYC2: The master in action publication-title: Mol Plant – volume: 11 start-page: 204 year: 2010 end-page: 220 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat Rev Genet – volume: 11 year: 2015 article-title: Transposable elements contribute to activation of maize genes in response to abiotic stress publication-title: PLoS Genet – volume: 35 start-page: 162 year: 2016 end-page: 175 article-title: A hit‐and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory publication-title: EMBO J – volume: 10 year: 2014 article-title: Heat‐induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene publication-title: PLoS Genet – volume: 7 start-page: 310 year: 2016 article-title: gene plays a role in plant growth, development, and response to abiotic stresses in publication-title: Front Plant Sci – volume: 7 year: 2017 article-title: Transgenerational epimutations induced by multi‐generation drought imposition mediate rice plant's adaptation to drought condition publication-title: Sci Rep – volume: 60 start-page: 745 year: 2018 end-page: 756 article-title: Cold signaling in plants: Insights into mechanisms and regulation publication-title: J Integr Plant Biol – volume: 4 start-page: 464 year: 2009 end-page: 466 article-title: The RHA2a‐interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response publication-title: Plant Signal Behav – volume: 8 start-page: 213 year: 2003 end-page: 217 article-title: ABA action and interactions in seeds publication-title: Trends Plant Sci – volume: 12 start-page: 444 year: 2007 end-page: 451 article-title: Cold stress regulation of gene expression in plants publication-title: Trends Plant Sci – volume: 63 start-page: 3297 year: 2012 end-page: 3306 article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in publication-title: J Exp Bot – volume: 5 start-page: 1318 year: 2010 end-page: 1320 article-title: Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response publication-title: Plant Signal Behav – volume: 49 start-page: 1135 year: 2008 end-page: 1149 article-title: Arabidopsis transcriptome analysis under drought, cold, high‐salinity and ABA treatment conditions using a tiling array publication-title: Plant Cell Physiol – volume: 19 start-page: 282 year: 2019 article-title: Transgenerational memory of gene expression changes induced by heavy metal stress in rice ( L.) publication-title: BMC Plant Biol – volume: 15 start-page: 63 year: 2003 end-page: 78 article-title: AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling publication-title: Plant Cell – volume: 10 start-page: 900 year: 2019 article-title: A role for PICKLE in the regulation of cold and salt stress tolerance in publication-title: Front Plant Sci – volume: 4 year: 2015 article-title: Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements publication-title: Elife – volume: 24 start-page: 2483 year: 2012 end-page: 2496 article-title: PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid publication-title: Plant Cell – volume: 74 start-page: 183 year: 2010 end-page: 200 article-title: Histone dynamics and roles of histone acetyltransferases during cold‐induced gene regulation in publication-title: Plant Mol Biol – volume: 114 start-page: E7377 year: 2017b end-page: E7384 article-title: A protein complex regulates RNA processing of intronic heterochromatin‐containing genes in publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 8326 year: 2015 article-title: A transposable element in a gene is associated with drought tolerance in maize seedlings publication-title: Nat Commun – volume: 61 start-page: 3345 year: 2010 end-page: 3353 article-title: Involvement of histone deacetylase HDA6 in ABA and salt stress response publication-title: J Exp Bot – volume: 447 start-page: 735 year: 2007 end-page: 738 article-title: Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination publication-title: Nature – volume: 110 start-page: 11205 year: 2013a end-page: 11210 article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action publication-title: Proc Natl Acad Sci USA – volume: 115 start-page: E9962 year: 2018 end-page: E9970 article-title: DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 328 year: 2009 end-page: 338 article-title: Root uptake regulation: A central process for NPS homeostasis in plants publication-title: Curr Opin Plant Biol – volume: 22 start-page: 53 year: 2017 end-page: 65 article-title: Transcriptional regulatory network of plant heat stress response publication-title: Trends Plant Sci – volume: 179 start-page: 1810 year: 2019 end-page: 1821 article-title: ROS1‐dependent DNA demethylation is required for ABA‐inducible NIC3 expression publication-title: Plant Physiol – volume: 227 start-page: 245 year: 2007 end-page: 254 article-title: Up‐regulation of stress‐inducible genes in tobacco and cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications publication-title: Planta – volume: 152 start-page: 217 year: 2010 end-page: 225 article-title: Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator publication-title: Plant Physiol – volume: 51 start-page: 874 year: 2007 end-page: 885 article-title: The SWI/SNF chromatin‐remodeling gene AtCHR12 mediates temporary growth arrest in upon perceiving environmental stress publication-title: Plant J – volume: 58 start-page: 221 year: 2007 end-page: 227 article-title: Gene networks involved in drought stress response and tolerance publication-title: J Exp Bot – volume: 3 start-page: 314 year: 2010 end-page: 325 article-title: Regulation of sulfate uptake and assimilation–the same or not the same? publication-title: Mol Plant – volume: 12 year: 2016 article-title: Nuclear localised MORE SULPHUR ACCUMULATION1 epigenetically regulates sulphur homeostasis in publication-title: PLoS Genet – volume: 65 start-page: 505 year: 2014 end-page: 530 article-title: The contributions of transposable elements to the structure, function, and evolution of plant genomes publication-title: Annu Rev Plant Biol – volume: 91 start-page: 1118 year: 2016 end-page: 1133 article-title: Priming and memory of stress responses in organisms lacking a nervous system publication-title: Biol Rev Camb Philos Soc – volume: 54 start-page: 608 year: 2008 end-page: 620 article-title: Deciphering gene regulatory networks that control seed development and maturation in publication-title: Plant J – volume: 98 start-page: 14150 year: 2001 end-page: 14155 article-title: AtHKT1 is a salt tolerance determinant that controls Na(+) entry into plant roots publication-title: Proc Natl Acad Sci USA – volume: 100 start-page: 37 year: 2016 end-page: 46 article-title: Histone acetylation influences the transcriptional activation of POX in L. and L. under salt stress publication-title: Plant Physiol Biochem – volume: 32 start-page: 703 year: 2020 end-page: 721 article-title: The nodulin homeobox factor atndx interacts with AtRING1A/B and negatively regulates abscisic acid signaling publication-title: Plant Cell – volume: 28 start-page: 42 year: 2016 end-page: 54 article-title: The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine‐tune abscisic acid signaling publication-title: Plant Cell – volume: 50 start-page: 1187 year: 2008 end-page: 1195 article-title: Abscisic acid‐mediated epigenetic processes in plant development and stress responses publication-title: J Integr Plant Biol – volume: 79 start-page: 150 year: 2014 end-page: 161 article-title: ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in publication-title: Plant J – volume: 27 start-page: 226 year: 2017a end-page: 240 article-title: A pair of transposon‐derived proteins function in a histone acetyltransferase complex for active DNA demethylation publication-title: Cell Res – volume: 6 year: 2016 article-title: An ABA‐increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: A putative link of ABA and JA signaling publication-title: Sci Rep – volume: 357 start-page: 1142 year: 2017 end-page: 1145 article-title: Distinct phases of Polycomb silencing to hold epigenetic memory of cold in publication-title: Science – volume: 3 start-page: 594 year: 2010 end-page: 602 article-title: Transgenerational inheritance and resetting of stress‐induced loss of epigenetic gene silencing in publication-title: Mol Plant – volume: 447 start-page: 407 year: 2007 end-page: 412 article-title: The complex language of chromatin regulation during transcription publication-title: Nature – volume: 115 start-page: E5400 year: 2018 end-page: E5409 article-title: Epigenetic switch from repressive to permissive chromatin in response to cold stress publication-title: Proc Natl Acad Sci USA – volume: 108 start-page: 13329 year: 2011 end-page: 13334 article-title: High nitrogen insensitive 9 (HNI9)‐mediated systemic repression of root NO3‐ uptake is associated with changes in histone methylation publication-title: Proc Natl Acad Sci USA – volume: 5 year: 2015 article-title: The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in publication-title: Sci Rep – volume: 20 start-page: 2972 year: 2008 end-page: 2988 article-title: HAB1‐SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin‐remodeling complexes in publication-title: Plant Cell – volume: 53 start-page: 794 year: 2012 end-page: 800 article-title: An epigenetic integrator: New insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6 publication-title: Plant Cell Physiol – volume: 4 start-page: 548 year: 2014 article-title: Epigenetic regulation of gene responsiveness in publication-title: Front Plant Sci – volume: 52 start-page: 149 year: 2011 end-page: 161 article-title: Regulated gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance publication-title: Plant Cell Physiol – volume: 14 start-page: R59 year: 2013 article-title: Hyperosmotic priming of seedlings establishes a long‐term somatic memory accompanied by specific changes of the epigenome publication-title: Genome Biol – volume: 21 start-page: 75 year: 2014 end-page: 82 article-title: ATX1/AtCOMPASS and the H3K4me3 marks: How do they activate genes? publication-title: Curr Opin Plant Biol – volume: 105 start-page: 4945 year: 2008 end-page: 4950 article-title: Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 999 year: 2015 article-title: Multi‐level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat publication-title: Front Plant Sci – volume: 42 start-page: 2198 year: 2019 end-page: 2214 article-title: Abscisic acid‐dependent histone demethylation during postgermination growth arrest in publication-title: Plant Cell Environ – volume: 242 start-page: 869 year: 2015 end-page: 879 article-title: Deciphering UV‐B‐induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in L publication-title: Planta – volume: 9 start-page: 136 year: 2016 end-page: 147 article-title: A direct link between abscisic acid sensing and the chromatin‐remodeling ATPase BRAHMA via core ABA signaling pathway components publication-title: Mol Plant – volume: 44 start-page: 348.e7 year: 2018a end-page: 361.e7 article-title: ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses publication-title: Dev Cell – volume: 110 start-page: 15467 year: 2013b end-page: 15472 article-title: RNA‐binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin‐containing gene IBM1 publication-title: Proc Natl Acad Sci USA – volume: 62 start-page: 148 year: 2020 end-page: 159 article-title: The mechanism and function of active DNA demethylation in plants publication-title: J Integr Plant Biol – volume: 61 start-page: 395 year: 2010 end-page: 420 article-title: Histone methylation in higher plants publication-title: Annu Rev Plant Biol – volume: 83 start-page: 149 year: 2015 end-page: 159 article-title: Transcriptional ‘memory’ of a stress: Transient chromatin and memory (epigenetic) marks at stress‐response genes publication-title: Plant J – volume: 50 start-page: 1254 year: 2018 end-page: 1261 article-title: Polycomb‐mediated gene silencing by the BAH‐EMF1 complex in plants publication-title: Nat Genet – volume: 77 start-page: 209 year: 2014 end-page: 221 article-title: SKB1/PRMT5‐mediated histone H4R3 dimethylation of Ib subgroup bHLH genes negatively regulates iron homeostasis in publication-title: Plant J – volume: 18 start-page: 124 year: 2017 article-title: Epigenetic and chromatin‐based mechanisms in environmental stress adaptation and stress memory in plants publication-title: Genome Biol – volume: 5 start-page: 4138 year: 2014 article-title: Control of early seedling development by BES1/TPL/HDA19‐mediated epigenetic regulation of ABI3 publication-title: Nat Commun – volume: 6 start-page: 396 year: 2013 end-page: 410 article-title: The RdDM pathway is required for basal heat tolerance in publication-title: Mol Plant – volume: 19 start-page: 433 year: 2007 end-page: 444 article-title: The absence of histone H2B monoubiquitination in the hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy publication-title: Plant Cell – volume: 45 start-page: 621 year: 2018 end-page: 638 article-title: Retrospective and perspective of plant epigenetics in China publication-title: J Genet Genomics – volume: 30 start-page: 1337 year: 2018 end-page: 1352 article-title: The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in publication-title: Plant Cell – volume: 66 start-page: 735 year: 2011 end-page: 744 article-title: The trithorax‐like factor ATX1 functions in dehydration stress responses via ABA‐dependent and ABA‐independent pathways publication-title: Plant J – volume: 112 start-page: E7293 year: 2015 end-page: E7302 article-title: Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation publication-title: Proc Natl Acad Sci USA – volume: 116 start-page: 16641 year: 2019 end-page: 16650 article-title: Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in publication-title: Proc Natl Acad Sci USA – volume: 249 start-page: 497 year: 2019 end-page: 514 article-title: Epigenetic control of UV‐B‐induced flavonoid accumulation in L publication-title: Planta – volume: 6 start-page: 114 year: 2015 article-title: Chromatin changes in response to drought, salinity, heat, and cold stresses in plants publication-title: Front Plant Sci – volume: 59 start-page: 1790 year: 2018 end-page: 1802 article-title: Plasticity of DNA methylation and gene expression under zinc deficiency in roots publication-title: Plant Cell Physiol – volume: 66 start-page: 269 year: 2015 end-page: 296 article-title: The polycomb group protein regulatory network publication-title: Annu Rev Plant Biol – volume: 168 start-page: 1309 year: 2015 end-page: 1320 article-title: GENERAL CONTROL NONREPRESSED PROTEIN5‐mediated histone acetylation of FERRIC REDUCTASE DEFECTIVE3 contributes to iron homeostasis in publication-title: Plant Physiol – volume: 42 start-page: 762 year: 2019 end-page: 770 article-title: Chromatin‐based mechanisms of temperature memory in plants publication-title: Plant Cell Environ – volume: 50 start-page: 1247 year: 2018b end-page: 1253 article-title: EBS is a bivalent histone reader that regulates floral phase transition in publication-title: Nat Genet – volume: 60 start-page: 112 year: 2009 end-page: 121 article-title: Histone occupancy‐dependent and ‐independent removal of H3K27 trimethylation at cold‐responsive genes in publication-title: Plant J – volume: 472 start-page: 115 year: 2011 end-page: 119 article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress publication-title: Nature – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 94 start-page: 7076 year: 1997 end-page: 7081 article-title: The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in publication-title: Proc Natl Acad Sci USA – volume: 111 start-page: 8547 year: 2014 end-page: 8552 article-title: Identification of genes preventing transgenerational transmission of stress‐induced epigenetic states publication-title: Proc Natl Acad Sci USA – volume: 1759 start-page: 69 year: 2006 end-page: 79 article-title: Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold‐induced transcription factor CBF1 publication-title: Biochim Biophys Acta – volume: 202 start-page: 35 year: 2014 end-page: 49 article-title: ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity publication-title: New Phytol – volume: 100 start-page: 1118 year: 2019 end-page: 1131 article-title: The Polycomb protein LHP1 regulates stress responses through the repression of the MYC2‐dependent branch of immunity publication-title: Plant J – volume: 66 start-page: 5997 year: 2015 end-page: 6008 article-title: Salt‐induced transcription factor MYB74 is regulated by the RNA‐directed DNA methylation pathway in publication-title: J Exp Bot – volume: 62 start-page: 104 year: 2020 end-page: 117 article-title: Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization publication-title: J Integr Plant Biol – volume: 157 start-page: 95 year: 2014 end-page: 109 article-title: Transgenerational epigenetic inheritance: Myths and mechanisms publication-title: Cell – volume: 20 start-page: 568 year: 2008 end-page: 579 article-title: The highly similar homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions publication-title: Plant Cell – volume: 222 start-page: 1690 year: 2019 end-page: 1704 article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants publication-title: New Phytol – volume: 111 start-page: 527 year: 2014 end-page: 532 article-title: EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 4892 year: 2012 end-page: 4906 article-title: The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in publication-title: Plant Cell – volume: 36 start-page: 283 year: 2017 end-page: 294 article-title: Salt‐induced tissue‐specific cytosine methylation downregulates expression of genes in contrasting wheat ( L.) genotypes publication-title: DNA Cell Biol – volume: 49 start-page: 1580 year: 2008 end-page: 1588 article-title: Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in thaliana publication-title: Plant Cell Physiol – volume: 41 start-page: 898 year: 2000 end-page: 903 article-title: An gene encoding a Ca ‐binding protein is induced by abscisic acid during dehydration publication-title: Plant Cell Physiol – ident: e_1_2_10_26_1 doi: 10.1111/tpj.12380 – ident: e_1_2_10_113_1 doi: 10.1016/j.plaphy.2015.12.019 – ident: e_1_2_10_14_1 doi: 10.1093/pcp/pcy100 – ident: e_1_2_10_83_1 doi: 10.1093/mp/sst023 – ident: e_1_2_10_94_1 doi: 10.1093/jxb/erl164 – ident: e_1_2_10_21_1 doi: 10.1111/nph.15696 – ident: e_1_2_10_22_1 doi: 10.3389/fpls.2015.00999 – ident: e_1_2_10_70_1 doi: 10.1111/j.1365-313X.2007.03185.x – ident: e_1_2_10_90_1 doi: 10.1371/journal.pgen.1004806 – ident: e_1_2_10_47_1 doi: 10.1111/tpj.12650 – ident: e_1_2_10_66_1 doi: 10.1038/ncomms9326 – ident: e_1_2_10_100_1 doi: 10.3389/fpls.2013.00548 – ident: e_1_2_10_23_1 doi: 10.1038/cr.2016.147 – ident: e_1_2_10_30_1 doi: 10.1105/tpc.112.098574 – ident: e_1_2_10_95_1 doi: 10.1038/srep32641 – ident: e_1_2_10_87_1 doi: 10.1105/tpc.107.056705 – ident: e_1_2_10_29_1 doi: 10.1016/j.pbi.2009.04.015 – ident: e_1_2_10_121_1 doi: 10.1105/tpc.19.00604 – ident: e_1_2_10_60_1 doi: 10.1093/nar/gku220 – ident: e_1_2_10_27_1 doi: 10.1111/pce.13373 – ident: e_1_2_10_57_1 doi: 10.1146/annurev.arplant.043008.091939 – ident: e_1_2_10_85_1 doi: 10.1073/pnas.241501798 – ident: e_1_2_10_89_1 doi: 10.1105/tpc.107.056614 – ident: e_1_2_10_112_1 doi: 10.1105/tpc.108.061549 – ident: e_1_2_10_118_1 doi: 10.1073/pnas.1812847115 – ident: e_1_2_10_12_1 doi: 10.1093/jxb/erq154 – ident: e_1_2_10_110_1 doi: 10.3389/fpls.2019.00900 – ident: e_1_2_10_52_1 doi: 10.1038/nrg2719 – ident: e_1_2_10_71_1 doi: 10.1038/nature05022 – ident: e_1_2_10_4_1 doi: 10.1111/tpj.12832 – ident: e_1_2_10_6_1 doi: 10.1146/annurev-arplant-050213-035811 – ident: e_1_2_10_51_1 doi: 10.1093/mp/ssq014 – ident: e_1_2_10_48_1 doi: 10.1111/j.1365-313X.2009.03938.x – ident: e_1_2_10_76_1 doi: 10.1073/pnas.94.13.7076 – ident: e_1_2_10_58_1 doi: 10.1016/j.devcel.2017.12.002 – ident: e_1_2_10_53_1 doi: 10.1073/pnas.1320106110 – ident: e_1_2_10_79_1 doi: 10.1007/s00425-015-2323-3 – ident: e_1_2_10_68_1 doi: 10.1093/pcp/pcn101 – ident: e_1_2_10_80_1 doi: 10.1073/pnas.1721241115 – ident: e_1_2_10_99_1 doi: 10.1093/pcp/pcd010 – ident: e_1_2_10_101_1 doi: 10.1111/tpj.12548 – ident: e_1_2_10_97_1 doi: 10.1007/s00425-007-0612-1 – ident: e_1_2_10_2_1 doi: 10.1105/tpc.006130 – ident: e_1_2_10_34_1 doi: 10.1016/j.cell.2014.02.045 – ident: e_1_2_10_3_1 doi: 10.1038/srep28941 – ident: e_1_2_10_35_1 doi: 10.1111/brv.12215 – ident: e_1_2_10_25_1 doi: 10.1016/j.jgg.2018.09.004 – ident: e_1_2_10_81_1 doi: 10.1007/s11103-010-9665-9 – ident: e_1_2_10_117_1 doi: 10.1038/srep39843 – ident: e_1_2_10_78_1 doi: 10.1007/s00425-018-3022-7 – ident: e_1_2_10_49_1 doi: 10.1186/s13059-017-1263-6 – ident: e_1_2_10_13_1 doi: 10.4161/psb.5.10.13168 – ident: e_1_2_10_8_1 doi: 10.1105/tpc.111.095232 – ident: e_1_2_10_55_1 doi: 10.1038/s41588-018-0190-0 – ident: e_1_2_10_33_1 doi: 10.3389/fpls.2016.00310 – ident: e_1_2_10_63_1 doi: 10.1093/jxb/ers059 – ident: e_1_2_10_62_1 doi: 10.1105/tpc.106.049221 – ident: e_1_2_10_19_1 doi: 10.1111/j.1365-313X.2011.04534.x – ident: e_1_2_10_116_1 doi: 10.1038/s41467-018-07500-7 – ident: e_1_2_10_40_1 doi: 10.1093/mp/sss128 – ident: e_1_2_10_42_1 doi: 10.3389/fpls.2015.00114 – ident: e_1_2_10_69_1 doi: 10.1105/tpc.15.00763 – ident: e_1_2_10_20_1 doi: 10.1038/ncomms1732 – ident: e_1_2_10_98_1 doi: 10.1038/nature05864 – ident: e_1_2_10_84_1 doi: 10.1111/tpj.14502 – ident: e_1_2_10_38_1 doi: 10.1073/pnas.1402275111 – ident: e_1_2_10_56_1 doi: 10.1186/1471-2156-15-S1-S9 – ident: e_1_2_10_64_1 doi: 10.1111/jipb.12896 – ident: e_1_2_10_44_1 doi: 10.1093/pcp/pcs004 – ident: e_1_2_10_111_1 doi: 10.1038/s41588-018-0187-8 – ident: e_1_2_10_16_1 doi: 10.1016/j.tplants.2007.07.002 – ident: e_1_2_10_45_1 doi: 10.1104/pp.18.01471 – ident: e_1_2_10_31_1 doi: 10.1111/jipb.12706 – ident: e_1_2_10_115_1 doi: 10.1038/s41580-018-0016-z – ident: e_1_2_10_104_1 doi: 10.1073/pnas.1017863108 – ident: e_1_2_10_17_1 doi: 10.1186/s12870-019-1887-7 – ident: e_1_2_10_54_1 doi: 10.1105/tpc.18.00437 – ident: e_1_2_10_120_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_10_92_1 doi: 10.1111/j.1365-313X.2008.03461.x – ident: e_1_2_10_106_1 doi: 10.1104/pp.15.00397 – ident: e_1_2_10_114_1 doi: 10.1073/pnas.1522301112 – ident: e_1_2_10_41_1 doi: 10.1111/tpj.12533 – ident: e_1_2_10_96_1 doi: 10.1104/pp.109.145532 – ident: e_1_2_10_39_1 doi: 10.4161/psb.4.5.8543 – ident: e_1_2_10_15_1 doi: 10.1111/j.1744-7909.2008.00727.x – ident: e_1_2_10_105_1 doi: 10.1111/pce.13547 – ident: e_1_2_10_103_1 doi: 10.1073/pnas.1315399110 – ident: e_1_2_10_65_1 doi: 10.1371/journal.pgen.1004915 – ident: e_1_2_10_72_1 doi: 10.1146/annurev-arplant-043014-115627 – ident: e_1_2_10_86_1 doi: 10.1038/ncomms5138 – ident: e_1_2_10_91_1 doi: 10.1186/gb-2013-14-6-r59 – ident: e_1_2_10_24_1 doi: 10.1073/pnas.1710683114 – ident: e_1_2_10_43_1 doi: 10.1093/pcp/pcn133 – ident: e_1_2_10_88_1 doi: 10.1007/s00299-013-1462-x – ident: e_1_2_10_59_1 doi: 10.1111/jipb.12657 – ident: e_1_2_10_93_1 doi: 10.7554/eLife.09343 – ident: e_1_2_10_11_1 doi: 10.1038/srep15708 – ident: e_1_2_10_108_1 doi: 10.1186/s12870-018-1454-7 – ident: e_1_2_10_37_1 doi: 10.1038/nature09861 – ident: e_1_2_10_5_1 doi: 10.1093/pcp/pcq182 – ident: e_1_2_10_74_1 doi: 10.1073/pnas.1906023116 – ident: e_1_2_10_10_1 doi: 10.1111/nph.12194 – ident: e_1_2_10_61_1 doi: 10.1111/jipb.12879 – ident: e_1_2_10_119_1 doi: 10.1073/pnas.0801029105 – ident: e_1_2_10_32_1 doi: 10.1105/tpc.112.105114 – ident: e_1_2_10_50_1 doi: 10.15252/embj.201592593 – ident: e_1_2_10_18_1 doi: 10.1093/mp/ssq001 – ident: e_1_2_10_75_1 doi: 10.1016/j.tplants.2016.08.015 – ident: e_1_2_10_77_1 doi: 10.1111/nph.12613 – ident: e_1_2_10_46_1 doi: 10.1089/dna.2016.3505 – ident: e_1_2_10_67_1 doi: 10.1016/j.bbaexp.2006.02.006 – ident: e_1_2_10_36_1 doi: 10.1371/journal.pgen.1006298 – ident: e_1_2_10_82_1 doi: 10.1016/j.molp.2015.10.003 – ident: e_1_2_10_28_1 doi: 10.1016/j.pbi.2014.07.004 – ident: e_1_2_10_107_1 doi: 10.1093/jxb/erv312 – ident: e_1_2_10_7_1 doi: 10.1038/nature05915 – ident: e_1_2_10_102_1 doi: 10.1073/pnas.1308974110 – ident: e_1_2_10_109_1 doi: 10.1126/science.aan1121 – ident: e_1_2_10_73_1 doi: 10.1016/S1360-1385(03)00060-8 – ident: e_1_2_10_9_1 doi: 10.1105/tpc.17.00867 |
SSID | ssj0038062 |
Score | 2.6571426 |
SecondaryResourceType | review_article |
Snippet | In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 563 |
SubjectTerms | Abiotic stress Abscisic acid Cellular stress response Chromatin Chromatin Assembly and Disassembly - genetics Chromatin Assembly and Disassembly - physiology Deoxyribonucleic acid DNA Drought Environmental conditions environmental factors Epigenesis, Genetic - genetics Epigenetics eukaryotic cells Gene expression Gene Expression Regulation, Plant - genetics Gene Expression Regulation, Plant - physiology histones plant response salt stress stress response Stress, Physiological - genetics Stress, Physiological - physiology thermal stress water stress |
Title | Epigenetic regulation in plant abiotic stress responses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12901 https://www.ncbi.nlm.nih.gov/pubmed/31872527 https://www.proquest.com/docview/2397174508 https://www.proquest.com/docview/2330332852 https://www.proquest.com/docview/2439411069 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4W8eDF96O-qOhFocs2aZMWvKgoq6CIKHiR0kkTWFy6i7t70F_vJO0WXwh6KW0zhTSTyXyTzAPgQAmpC81J0sIEg6gweZB3DD1qlmCUp7JIbIDz9Y3oPkRXj_FjC46nsTBVfohmw81KhluvrYDnOPoo5L0htu0uirV9rLOWRUR3Te4onnRcNdFQSBaQBcjq3KTOjaf59LM2-gYxPyNWp3IuFuBp2tnK0-S5PRljW719yeP4379ZhPkai_on1eRZgpYul2H2dEB48XUF5PnQZuq0QY7-S1Wxnnjo90p_2Cd2-Dn2BratijYhEudsq0er8HBxfn_WDeoyC4GKUhYGgpRUx6CUcShFjIZrrpjWQmCk0USpCIUpOpGiqy3sqxF1oVBynvI0NNrwNZgpB6XeAD9VhFfoJSrS-iE3CfIUBde5QAISinlwOB3uTNU5yG0pjH7W2CI0DpkbBw_2G9phlXnjR6rtKdeyWvpGGSOQRZYWYU8P9ppmkht7GJKXejCxNKS8OUti9guNDRsmfCRSD9arGdF0hdZCyWImPThyfP2lj9nV5e2pu9v8C_EWzDFr3Dvvym2YGb9M9A4hoDHuupn-DtYmAJo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXypvQAkHAAaSsNnZiJwcOlLba7UsItVJvacYZoxVVdtXdFSr_ib_S39Sxk40ooEoceuASJfEossYz48-TeQC8MUpTRZI1Lc4wSipbRmXf8iOJDJMy11XmEpz39tXgMNk-So-W4OciF6apD9E53JxmeHvtFNw5pH_V8tEEe86NErcxlTt09p1PbNMPww1e3rdCbG0efBpEbVOByCS5iCPFJrlvUes01ipFK0kaQaQUJoQ2yVWsbNVPDF9dG1tCpMqgljKXeWzJSv7uDbjpWoi7Uv0bX7pqVTLr-_6lsdIi4jOnaKuh-sChbq6X978_QO1ljOw3ua0VOF-wp4lt-dabz7BnfvxWOfK_4d89uNvC7fBjox_3YYnqB3BrfcyQ-Owh6M2JK0bq8jjDU_radjILR3U4OWGJC0scjd1Yk1DDJD6emKaP4PBaJv0YlutxTU8hzA1DMn6JhoFNLG2GMkclqVTIWMmIAN4t1rcwbZl11-3jpOiOW8z3wvM9gNcd7aQpLvJXqrWFmBStgZkWgnEkHyYZXgfwqhtm0-D-95Q1jeeOhvGJFFkqrqBxmdEMAVUewJNGBLupsLnXIhU6gPdekK6YY7E9_Lzu7579C_FLuD042Nstdof7O6twRzhfhg8mXYPl2emcnjPgm-ELr2YhHF-3XF4AT9hflg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXyj-hBYKAA0hZJXZixwcOlO2q20JVISr1lsbOGK2oslF3V6g8E6_Sd-rYyUYUUCUOPXCJkngUjeyZ8TfO_AC8MkJihZw0Lcl1lFa2jMrY0iOyXKelklXuEpw_7Yntg3TnMDtcgZ_LXJi2PkR_4OY0w9trp-BNZX9V8kmjB-4UJelCKnfx9Ds5bLN34yGt7mvGRltfPmxHXU-ByKSKJZEgixxbLWWWSJFpy5EbhiiETlHbVIlE2CpODV1dF1vUGiujJeeKq8Si5fTda3A9FbFyjSKGn_tiVTyPffvSREgWkcvJumKoPm6o5_Xi9vcHpr0Ikf0eN1qDs-XstKEt3waLuR6YH78Vjvxfpu8O3O7Advi-1Y67sIL1PbixOSVAfHof5FbjSpG6LM7wBL92fczCSR02xyRvYaknUzfWptMQiY8mxtkDOLgSph_Caj2t8TGEyhAgo5faEKxJuM01V1pwLIUmpGRYAG-Wy1uYrsi66_VxXPTOFs174ec9gJc9bdOWFvkr1cZSSorOvMwKRiiSXEkC1wG86IfJMLi_PWWN04WjIXTCWZ6xS2hcXjQBQKECeNRKYM8KGXvJMiYDeOvl6BIei53x_qa_e_IvxM_h5v5wVHwc7-2uwy3mDjJ8JOkGrM5PFviU0N5cP_NKFsLRVYvlObrPXkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+regulation+in+plant+abiotic+stress+responses&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Chang%2C+Ya%E2%80%90Nan&rft.au=Zhu%2C+Chen&rft.au=Jiang%2C+Jing&rft.au=Zhang%2C+Huiming&rft.date=2020-05-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=62&rft.issue=5&rft.spage=563&rft.epage=580&rft_id=info:doi/10.1111%2Fjipb.12901&rft.externalDBID=10.1111%252Fjipb.12901&rft.externalDocID=JIPB12901 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-9072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-9072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-9072&client=summon |