Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification

Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 17; no. 12; pp. 3655 - 3666
Main Authors Anthony, Kenneth R. N., A. Kleypas, Joan, Gattuso, Jean-Pierre
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.12.2011
Wiley-Blackwell
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.
AbstractList Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.
Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air-sea fluxes in the open ocean, and not for shallow-water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO(2). However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO(2) and aragonite saturation state (Omega(a)) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Omega(a) in opposing directions. Areas dominated by corals elevate pCO(2) and reduce Omega(a), thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Omega(a), potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.
Abstract Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air-sea fluxes in the open ocean, and not for shallow-water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef. [PUBLICATION ABSTRACT]
Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO 2 . Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO 2 . However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH , pCO 2 and aragonite saturation state (Ω a ) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ω a in opposing directions. Areas dominated by corals elevate pCO 2 and reduce Ω a , thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO 2 down and elevate Ω a , potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO 2 scenarios (600 and 900 ppm CO 2 ) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef.
Author Gattuso, Jean-Pierre
Anthony, Kenneth R. N.
A. Kleypas, Joan
Author_xml – sequence: 1
  givenname: Kenneth R. N.
  surname: Anthony
  fullname: Anthony, Kenneth R. N.
  email: k.anthony@aims.gov.au
  organization: Australian Institute of Marine Science, PMB3, Qld, 4810, Townsville MC, Australia
– sequence: 2
  givenname: Joan
  surname: A. Kleypas
  fullname: A. Kleypas, Joan
  organization: Oceanography Section, Climate and Global Dynamics, National Centre for Atmospheric Research, Boulder, 80307-3000, CO, USA
– sequence: 3
  givenname: Jean-Pierre
  surname: Gattuso
  fullname: Gattuso, Jean-Pierre
  organization: INSU-CNRS, Laboratoire d'Océanographie de Villefranche, B.P. 28, 06234, Villefranche-sur-mer Cedex,, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24741816$$DView record in Pascal Francis
https://hal.science/hal-03502007$$DView record in HAL
BookMark eNqNkUtvEzEUhUeoleiD_2AhsWAx6bU9nscCpBJBWilqVRXE8srjh-IwGQd7SpN_j6cTsmBVb3x173fOtXXOs5Pe9ybLCIUZTedqPaO8FDkr6nLGgNIZMJFmuzfZ2XFwMtaiyClQ_jY7j3ENAJxBeZbpuQ-yI8EYG8nGa2f3ZFgZF0g08lkOJhAlQ-t7olZm4-IQ9iQnbrPtnJKD830k1oexIdUQibfEKyN7IpVLXgfmMju1sovm3eG-yH58-_p9fpMv7xe38-tlroqGQS5so3Sr64oVykLdispoSg1TtFVa8EpqzbWlYLTlbcOKAkBVUIMpgDdlqfhF9nHyXckOt8FtZNijlw5vrpc49oALYADVH5rY9xO7Df73k4kDrv1T6NPzsIGaUiagTNCHAySjkp0NslcuHq1ZURW0piP3eeJU8DEGY1G54eXrQ5CuQwo4hoVrHDPBMRMcw8KXsHCXDOr_DP7teIX00yR9dp3Zv1qHi_mXsUr6fNKncM3uqJfhF5YVrwT-vFsg3NEH9vAoUPC_HRC8Pw
CitedBy_id crossref_primary_10_1371_journal_pone_0053303
crossref_primary_10_3389_fmars_2020_567228
crossref_primary_10_1016_j_cub_2014_04_029
crossref_primary_10_1007_s10498_024_09421_y
crossref_primary_10_1590_0001_3765201720160387
crossref_primary_10_3389_fmars_2017_00036
crossref_primary_10_1371_journal_pone_0087678
crossref_primary_10_1016_j_ecolind_2020_106128
crossref_primary_10_1093_icesjms_fsaa094
crossref_primary_10_3390_w5031303
crossref_primary_10_1007_s10498_021_09400_7
crossref_primary_10_1016_j_ecolmodel_2018_07_007
crossref_primary_10_1071_MF12124
crossref_primary_10_3389_fmars_2017_00161
crossref_primary_10_3389_fmars_2019_00691
crossref_primary_10_1016_j_marchem_2015_06_022
crossref_primary_10_1080_08920753_2012_728123
crossref_primary_10_1007_s00227_014_2485_8
crossref_primary_10_1371_journal_pone_0097235
crossref_primary_10_3389_fmars_2020_571451
crossref_primary_10_1016_j_marpolbul_2019_06_011
crossref_primary_10_1029_2020JC016108
crossref_primary_10_1002_2017JC013231
crossref_primary_10_1142_S2010007812500029
crossref_primary_10_7717_peerj_249
crossref_primary_10_1038_s42003_023_05301_3
crossref_primary_10_1007_s00338_016_1490_4
crossref_primary_10_1016_j_ecss_2018_04_041
crossref_primary_10_1038_ncomms10732
crossref_primary_10_1007_s00267_013_0132_7
crossref_primary_10_1016_j_scitotenv_2022_159576
crossref_primary_10_1038_srep23248
crossref_primary_10_1111_1365_2435_14101
crossref_primary_10_1111_gcb_13023
crossref_primary_10_5194_bg_11_4321_2014
crossref_primary_10_1038_srep26036
crossref_primary_10_1002_lno_11084
crossref_primary_10_1038_nclimate2380
crossref_primary_10_3389_fphys_2021_656562
crossref_primary_10_1002_ece3_8579
crossref_primary_10_1016_j_csr_2020_104175
crossref_primary_10_1371_journal_pone_0190872
crossref_primary_10_1146_annurev_marine_010213_135042
crossref_primary_10_3389_fmars_2019_00282
crossref_primary_10_1038_ncomms4794
crossref_primary_10_1016_j_jenvman_2016_07_038
crossref_primary_10_1029_2022GB007577
crossref_primary_10_1242_jeb_152488
crossref_primary_10_1111_gcb_16960
crossref_primary_10_1098_rspb_2014_1856
crossref_primary_10_1007_s11356_018_1376_9
crossref_primary_10_1371_journal_pone_0094067
crossref_primary_10_1007_s10113_024_02311_7
crossref_primary_10_1016_j_ecolmodel_2014_04_004
crossref_primary_10_1007_s00338_013_1046_9
crossref_primary_10_1007_s00227_013_2239_z
crossref_primary_10_1016_j_marenvres_2025_106976
crossref_primary_10_1007_s40641_017_0082_x
crossref_primary_10_1016_j_epsl_2019_115785
crossref_primary_10_3389_fmars_2018_00175
crossref_primary_10_5194_bg_10_4897_2013
crossref_primary_10_1002_grl_50802
crossref_primary_10_1016_j_marenvres_2015_11_001
crossref_primary_10_1029_2023GB007789
crossref_primary_10_1038_s43247_021_00168_w
crossref_primary_10_3354_meps11385
crossref_primary_10_1021_es4014807
crossref_primary_10_3354_meps10690
crossref_primary_10_1111_j_1365_2486_2011_02530_x
crossref_primary_10_1098_rspb_2013_2201
crossref_primary_10_1007_s00227_014_2494_7
crossref_primary_10_1371_journal_pone_0071257
crossref_primary_10_1111_gcb_12351
crossref_primary_10_5194_bg_10_6747_2013
crossref_primary_10_1016_j_rsma_2019_100612
crossref_primary_10_1155_2011_473615
crossref_primary_10_1007_s00227_012_2034_2
crossref_primary_10_3389_fmars_2015_00052
crossref_primary_10_1016_j_jembe_2013_03_012
crossref_primary_10_1016_j_greeac_2023_100049
crossref_primary_10_1016_j_jembe_2014_03_015
crossref_primary_10_1007_s12237_017_0356_5
crossref_primary_10_1002_lno_11303
crossref_primary_10_3354_meps10844
crossref_primary_10_1007_s00338_014_1127_4
crossref_primary_10_1890_110240
crossref_primary_10_1007_s00338_012_0964_2
crossref_primary_10_1038_s41598_020_59886_4
crossref_primary_10_1016_j_ecoser_2021_101352
crossref_primary_10_1371_journal_pone_0231971
crossref_primary_10_1371_journal_pone_0312263
crossref_primary_10_1007_s00338_014_1251_1
crossref_primary_10_1007_s00227_017_3136_7
crossref_primary_10_1007_s00227_012_2023_5
crossref_primary_10_1007_s00773_021_00837_7
crossref_primary_10_3389_fmars_2022_858853
crossref_primary_10_1002_2017JC012740
crossref_primary_10_1007_s00338_014_1217_3
crossref_primary_10_1038_srep29613
crossref_primary_10_1038_s41598_017_10378_y
crossref_primary_10_3389_fmars_2021_562267
crossref_primary_10_1007_s00227_015_2691_z
crossref_primary_10_1007_s00338_012_0979_8
crossref_primary_10_1016_j_jembe_2020_151314
crossref_primary_10_1007_s00227_021_03960_6
crossref_primary_10_1007_s00709_017_1176_y
crossref_primary_10_5194_bg_20_1011_2023
crossref_primary_10_1002_lno_10621
crossref_primary_10_1098_rspb_2018_1168
crossref_primary_10_3389_fmars_2019_00150
crossref_primary_10_1371_journal_pone_0159062
crossref_primary_10_3755_jcrs_22_45
crossref_primary_10_3390_oceans4020012
crossref_primary_10_1007_s10750_024_05553_y
crossref_primary_10_1007_s12237_019_00588_0
crossref_primary_10_1038_s43247_022_00363_3
crossref_primary_10_1371_journal_pone_0142196
crossref_primary_10_1038_s41598_022_13731_y
crossref_primary_10_1007_s10498_023_09411_6
crossref_primary_10_1016_j_biocon_2023_110276
crossref_primary_10_1111_j_1365_2486_2012_02767_x
crossref_primary_10_1016_j_crvi_2013_07_003
crossref_primary_10_1111_gcb_12011
crossref_primary_10_3389_fmars_2020_00679
crossref_primary_10_1007_s12237_013_9594_3
crossref_primary_10_1007_s00227_014_2435_5
crossref_primary_10_1038_s43247_020_00054_x
crossref_primary_10_1038_ngeo1780
crossref_primary_10_1038_s41598_017_18736_6
crossref_primary_10_1038_s41598_017_03085_1
crossref_primary_10_1111_jpy_12262
crossref_primary_10_1002_2016JC011886
crossref_primary_10_1088_1748_9326_11_3_034023
crossref_primary_10_3354_meps14033
crossref_primary_10_1002_2015GL063488
crossref_primary_10_7717_peerj_378
crossref_primary_10_7717_peerj_411
crossref_primary_10_5194_bg_9_893_2012
crossref_primary_10_1088_1748_9326_7_2_024026
crossref_primary_10_1371_journal_pone_0127648
crossref_primary_10_1371_journal_pone_0149598
crossref_primary_10_1093_icesjms_fsaa195
crossref_primary_10_1073_pnas_1507021112
crossref_primary_10_2108_zs150036
crossref_primary_10_1371_journal_pone_0109092
crossref_primary_10_1098_rspb_2021_0130
crossref_primary_10_3354_meps11190
crossref_primary_10_1086_BBLv223n1p66
crossref_primary_10_3389_fmars_2016_00052
crossref_primary_10_5194_gmd_13_4503_2020
crossref_primary_10_1371_journal_pone_0138800
crossref_primary_10_1007_s00338_016_1507_z
crossref_primary_10_1021_acs_est_5b04733
crossref_primary_10_1038_nclimate2050
crossref_primary_10_1007_s10498_017_9310_1
crossref_primary_10_1007_s00338_020_01973_z
crossref_primary_10_1016_j_marenvres_2022_105861
crossref_primary_10_1093_femsre_fux018
crossref_primary_10_1371_journal_pone_0064651
crossref_primary_10_1007_s00338_024_02523_7
crossref_primary_10_1093_icesjms_fsv162
crossref_primary_10_3389_fmars_2022_1004107
crossref_primary_10_1038_s41558_019_0681_8
crossref_primary_10_1007_s00338_013_1032_2
crossref_primary_10_5194_bg_12_1339_2015
crossref_primary_10_1016_j_ecochg_2021_100016
crossref_primary_10_1016_j_rsma_2015_07_004
crossref_primary_10_5194_bg_15_31_2018
crossref_primary_10_1111_gcb_12154
crossref_primary_10_1080_1943815X_2016_1159578
Cites_doi 10.5194/bg-3-357-2006
10.5194/bg-7-2509-2010
10.1126/science.1152509
10.1016/0037-0738(95)00048-D
10.4319/lo.2000.45.1.0246
10.01029/02010GL046053
10.1126/science.269.5221.214
10.3354/meps129307
10.1111/j.1365-2486.2010.02364.x
10.1093/icb/39.1.160
10.4319/lo.1992.37.2.0261
10.4319/lo.1991.36.6.1232
10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2
10.1038/425365a
10.1007/BF00301191
10.1111/j.1461-0248.2010.01565.x
10.1029/1999GB001195
10.1017/CBO9780511535543
10.1029/2009JC006023
10.1016/S0304-4203(02)00133-0
10.1029/2004JC002576
10.4319/lo.1975.20.3.0493
10.5194/bg-6-1811-2009
10.1029/2008GL036282
10.1029/2007JC004663
10.2172/639712
10.3354/meps096259
10.1029/94JC02736
10.1029/2006JC003770
10.1029/61CE06
10.1073/pnas.0912348107
10.4319/lo.1991.36.5.0936
10.1029/92JC00188
10.1073/pnas.0804478105
10.3354/meps220153
10.1016/0022-0981(83)90036-9
10.1146/annurev.fluid.38.050304.092125
10.1111/j.1365-2486.2011.02530.x
10.1007/BF00258221
10.1111/j.1365-2486.2009.02057.x
10.1046/j.1365-2486.2003.00678.x
10.4319/lo.1978.23.5.0989
10.4319/lo.1973.18.1.0106
10.4319/lo.2001.46.4.0833
10.1016/j.ecss.2009.11.022
10.1126/science.1097403
10.4319/lo.2006.51.3.1284
10.1111/j.1461-0248.2010.01518.x
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright (c) 2011 Blackwell Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright (c) 2011 Blackwell Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
1XC
DOI 10.1111/j.1365-2486.2011.02510.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Oceanography
EISSN 1365-2486
EndPage 3666
ExternalDocumentID oai_HAL_hal_03502007v1
2526678931
24741816
10_1111_j_1365_2486_2011_02510_x
GCB2510
ark_67375_WNG_0N1Q2QS5_5
Genre article
Feature
GeographicLocations Australia
Oceania
Great Barrier Reef
GrantInformation_xml – fundername: 211384
– fundername: Australian Research Council
– fundername: GBRMPA
– fundername: European Community's Seventh Framework Programme
  funderid: FP7/2007‐2013
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SN
7UA
C1K
F1W
H97
L.G
1XC
ID FETCH-LOGICAL-c4920-5f9cdbd8724cf08b57ed11e2c1bcd537add3df10edf3b924400c7080e403966c3
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri May 09 12:16:45 EDT 2025
Fri Jul 25 11:06:17 EDT 2025
Mon Jul 21 09:16:07 EDT 2025
Tue Jul 01 03:52:47 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Wed Jan 22 16:22:14 EST 2025
Wed Oct 30 09:58:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords ocean acidification
Aragonite
aragonite saturation
Carbon dioxide
Acidification
Calcification
Ocean
Coral reef
Carbon
Seawater
Great Barrier Reef
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4920-5f9cdbd8724cf08b57ed11e2c1bcd537add3df10edf3b924400c7080e403966c3
Notes ArticleID:GCB2510
ark:/67375/WNG-0N1Q2QS5-5
211384
GBRMPA
European Community's Seventh Framework Programme - No. FP7/2007-2013
Australian Research Council
istex:25DF8119546975F4AF23B83B7CD378C614B855C6
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0002-4533-4114
OpenAccessLink https://zenodo.org/record/3436479
PQID 908112506
PQPubID 30327
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_03502007v1
proquest_journals_908112506
pascalfrancis_primary_24741816
crossref_citationtrail_10_1111_j_1365_2486_2011_02510_x
crossref_primary_10_1111_j_1365_2486_2011_02510_x
wiley_primary_10_1111_j_1365_2486_2011_02510_x_GCB2510
istex_primary_ark_67375_WNG_0N1Q2QS5_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2011
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: December 2011
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob. Change Biol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Wiley
References Black KP, Gay SL, Andrews JC (1990) Residence times of neutrally-buoyant matter such as larvae, sewage or nutrients on coral reef. Coral Reefs, 9, 105-114.
Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Science, 105, 17442-17446.
Smith SV, Key GS (1975) Carbon dioxide and metabolism in marine environments. Limnology and Oceanography, 20, 493-495.
Sabine CL, Feely , R. A. , Gruber N et al. (2004) The oceanic sink for anthropogenic CO2. Science, 305, 367-371.
Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry, 80, 185-197.
Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Science, 107, 2527-2531.
Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Cao L, Marshall PA, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 17, 1798-1808.
Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. American Zoologist, 39, 160-183.
Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography, 46, 833-846.
Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnology and Oceanography, 51, 1284-1293.
Diaz-Pulido G, Gouezo M, Tilbrook B, Dove SG, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters, 14, 156-162.
Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography, 35, 936-948.
Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research-Oceans, 112, C05004.
Monismith SG (2007) Hydrodynamics of coral reefs. Annual Review of Fluid Mechanics, 39, 37-55.
Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water coral reef water. Science, 269, 214-216.
Symonds G, Black KP, Young IR (1995) Wave-driven flow over shallow reefs. Journal of Geophysical Research, 100, 2639-2648.
Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sedimentary Geology, 99, 259-280.
Gattuso J-P, Pichon M, Frankignoulle M (1995) Biological control of air-sea CO2 fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems. Marine Ecology Progress Series, 129, 307-312.
Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research - St Petersburg report. pp. 88. NOAA, and the US Geological Survey, St. Petersburg, NSF.
McCabe RM, Estrade P, Middleton JH, Melville WK, Roughan M, Lenain L (2010) Temperature variability in a shallow, tidally isolated coral reef lagoon. Journal of Geophysical Research, 115, C12011, doi: 10.1029/2009JC006023.
Reynaud S, Leclercq N, Romaine-lioud S, Ferrier-pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology, 9, 1660-1668.
Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research-Oceans, 110, article C09S07.
Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology, 16, 1632-1644.
Falter JL, Lowe RJ, Atkinson MJ, Monismith SG, Schar DW (2008) Continuous measurements of net production over a shallow reef community using a modified Eulerian approach. Journal of Geophysical Research, 113, C07035, doi: 10.1029/2007JC004663.
Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373-7382.
Bilger RW, Atkinson MJ (1992) Anomalous mass transfer of phosphate on coral reef-flats. Limnology and Oceanography, 37, 261-272.
Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control. Geology, 15, 111-114.
Delgado O, Lapointe BE (1994) Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs, 13, 151-159.
Hopley D, Smithers SG, Parnell KE (eds) (2007) The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change. Cambridge University Press, New York.
Yates KK, Halley RB (2006) CO3 2-concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences, 3, 357-369.
Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2011) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophysical Research Letter, 38, L03604, doi: 03610.01029/02010GL046053.
Smith SV (1973) Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community. Limnology and Oceanography, 18, 106-120.
Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature, 425, 365.
Gattuso J-P, Reynaud-Vaganay S, Furla P, Romaine-Lioud S, Jaubert J (2000) Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophorapistillata. Limnology and Oceanography, 45, 246-250.
Kinsey DW (1978) Alkalinity changes and coral reef calcification. Limnology and Oceanography, 23, 989-991.
Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnology and Oceanography, 36, 1232-1239.
Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa Marine Ecology Progress Series, 220, 153-162.
Kleypas J, Gattuso J-P, Anthony KRN (2011) Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia). Global Change Biology, doi: 10.1111/j.1365-2486.2011.02530.x.
Kroeker K, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419-1434.
Barnes DJ (1983) Profiling of coral reef productivity and calcification using pH and oxygen electrodes. Journal of Experimental Marine Biology and Ecology, 66, 149-161.
Langdon C, Takahashi T, Sweeney C et al. (2000) Effects of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biochemical Cycles, 14, 639-654.
Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences, 6, 1811-1823.
Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 96, 259-267.
Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737-1742.
Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36, L05606.
Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reefsystem to seasonal changes in biological processes and ocean acidification. Biogeoscience, 7, 2509-2530.
Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science, 86, 157-164.
2007; 39
2001; 220
2010; 16
2010; 13
2010; 107
2000; 45
1973; 18
2008; 105
2011; 14
2011; 17
1992; 97
2001; 46
1978; 23
2000; 14
1990
2010; 115
2003; 9
1995; 129
1985
2008; 113
2010; 7
1983; 66
1991; 36
2003; 80
2006; 51
2005; 110
2011
1991; 35
1995; 99
1998
2007
1996; 96
2006
2006; 3
1992; 37
2011; 38
2004; 305
1987; 15
2007; 112
2009; 36
2010; 86
2003; 425
1999; 39
1994; 13
1995; 269
1975; 20
2009; 6
1995; 100
1990; 9
2007; 318
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Muscatine L (e_1_2_10_40_1) 1990
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Kinsey DW (e_1_2_10_28_1) 1985
Kleypas JA (e_1_2_10_30_1) 2006
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – reference: Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water coral reef water. Science, 269, 214-216.
– reference: Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences, 6, 1811-1823.
– reference: Kleypas J, Gattuso J-P, Anthony KRN (2011) Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia). Global Change Biology, doi: 10.1111/j.1365-2486.2011.02530.x.
– reference: Kinsey DW (1978) Alkalinity changes and coral reef calcification. Limnology and Oceanography, 23, 989-991.
– reference: Barnes DJ (1983) Profiling of coral reef productivity and calcification using pH and oxygen electrodes. Journal of Experimental Marine Biology and Ecology, 66, 149-161.
– reference: Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography, 46, 833-846.
– reference: Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa Marine Ecology Progress Series, 220, 153-162.
– reference: Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography, 35, 936-948.
– reference: Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reefsystem to seasonal changes in biological processes and ocean acidification. Biogeoscience, 7, 2509-2530.
– reference: Monismith SG (2007) Hydrodynamics of coral reefs. Annual Review of Fluid Mechanics, 39, 37-55.
– reference: Hopley D, Smithers SG, Parnell KE (eds) (2007) The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change. Cambridge University Press, New York.
– reference: Bilger RW, Atkinson MJ (1992) Anomalous mass transfer of phosphate on coral reef-flats. Limnology and Oceanography, 37, 261-272.
– reference: Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology, 16, 1632-1644.
– reference: Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36, L05606.
– reference: Gattuso J-P, Pichon M, Frankignoulle M (1995) Biological control of air-sea CO2 fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems. Marine Ecology Progress Series, 129, 307-312.
– reference: Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sedimentary Geology, 99, 259-280.
– reference: Falter JL, Lowe RJ, Atkinson MJ, Monismith SG, Schar DW (2008) Continuous measurements of net production over a shallow reef community using a modified Eulerian approach. Journal of Geophysical Research, 113, C07035, doi: 10.1029/2007JC004663.
– reference: Smith SV (1973) Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community. Limnology and Oceanography, 18, 106-120.
– reference: Yates KK, Halley RB (2006) CO3 2-concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences, 3, 357-369.
– reference: Gattuso J-P, Reynaud-Vaganay S, Furla P, Romaine-Lioud S, Jaubert J (2000) Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophorapistillata. Limnology and Oceanography, 45, 246-250.
– reference: Smith SV, Key GS (1975) Carbon dioxide and metabolism in marine environments. Limnology and Oceanography, 20, 493-495.
– reference: Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science, 86, 157-164.
– reference: Sabine CL, Feely , R. A. , Gruber N et al. (2004) The oceanic sink for anthropogenic CO2. Science, 305, 367-371.
– reference: McCabe RM, Estrade P, Middleton JH, Melville WK, Roughan M, Lenain L (2010) Temperature variability in a shallow, tidally isolated coral reef lagoon. Journal of Geophysical Research, 115, C12011, doi: 10.1029/2009JC006023.
– reference: Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Cao L, Marshall PA, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 17, 1798-1808.
– reference: Black KP, Gay SL, Andrews JC (1990) Residence times of neutrally-buoyant matter such as larvae, sewage or nutrients on coral reef. Coral Reefs, 9, 105-114.
– reference: Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnology and Oceanography, 51, 1284-1293.
– reference: Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research-Oceans, 112, C05004.
– reference: Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature, 425, 365.
– reference: Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry, 80, 185-197.
– reference: Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373-7382.
– reference: Diaz-Pulido G, Gouezo M, Tilbrook B, Dove SG, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters, 14, 156-162.
– reference: Symonds G, Black KP, Young IR (1995) Wave-driven flow over shallow reefs. Journal of Geophysical Research, 100, 2639-2648.
– reference: Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research-Oceans, 110, article C09S07.
– reference: Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research - St Petersburg report. pp. 88. NOAA, and the US Geological Survey, St. Petersburg, NSF.
– reference: Reynaud S, Leclercq N, Romaine-lioud S, Ferrier-pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology, 9, 1660-1668.
– reference: Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2011) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophysical Research Letter, 38, L03604, doi: 03610.01029/02010GL046053.
– reference: Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. American Zoologist, 39, 160-183.
– reference: Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737-1742.
– reference: Langdon C, Takahashi T, Sweeney C et al. (2000) Effects of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biochemical Cycles, 14, 639-654.
– reference: Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Science, 105, 17442-17446.
– reference: Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control. Geology, 15, 111-114.
– reference: Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Science, 107, 2527-2531.
– reference: Delgado O, Lapointe BE (1994) Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs, 13, 151-159.
– reference: Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnology and Oceanography, 36, 1232-1239.
– reference: Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 96, 259-267.
– reference: Kroeker K, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419-1434.
– volume: 14
  start-page: 156
  year: 2011
  end-page: 162
  article-title: High CO enhances the competitive strength of seaweeds over corals
  publication-title: Ecology Letters
– volume: 17
  start-page: 1798
  year: 2011
  end-page: 1808
  article-title: Ocean acidification and warming will lower coral reef resilience
  publication-title: Global Change Biology
– volume: 100
  start-page: 2639
  year: 1995
  end-page: 2648
  article-title: Wave‐driven flow over shallow reefs
  publication-title: Journal of Geophysical Research
– volume: 46
  start-page: 833
  year: 2001
  end-page: 846
  article-title: Biogeochemical and physical factors influencing seawater fCO and air‐sea CO exchange on the Bermuda coral reef
  publication-title: Limnology and Oceanography
– volume: 80
  start-page: 185
  year: 2003
  end-page: 197
  article-title: Reference materials for oceanic CO analysis: a method for the certification of total alkalinity
  publication-title: Marine Chemistry
– start-page: 75
  year: 1990
  end-page: 87
– volume: 18
  start-page: 106
  year: 1973
  end-page: 120
  article-title: Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community
  publication-title: Limnology and Oceanography
– volume: 39
  start-page: 37
  year: 2007
  end-page: 55
  article-title: Hydrodynamics of coral reefs
  publication-title: Annual Review of Fluid Mechanics
– volume: 110
  start-page: C09S07
  year: 2005
  article-title: Effect of elevated pCO on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment
  publication-title: Journal of Geophysical Research‐Oceans
– volume: 318
  start-page: 1737
  year: 2007
  end-page: 1742
  article-title: Coral reefs under rapid climate change and ocean acidification
  publication-title: Science
– volume: 23
  start-page: 989
  year: 1978
  end-page: 991
  article-title: Alkalinity changes and coral reef calcification
  publication-title: Limnology and Oceanography
– volume: 220
  start-page: 153
  year: 2001
  end-page: 162
  article-title: Dependence of calcification on light and carbonate ion concentration for the hermatypic coral
  publication-title: Marine Ecology Progress Series
– start-page: 505
  year: 1985
  end-page: 526
– volume: 15
  start-page: 111
  year: 1987
  end-page: 114
  article-title: Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control
  publication-title: Geology
– year: 1998
– start-page: 73
  year: 2006
  end-page: 110
  article-title: Coral reefs and changing seawater chemistry
– volume: 9
  start-page: 1660
  year: 2003
  end-page: 1668
  article-title: Interacting effects of CO partial pressure and temperature on photosynthesis and calcification in a scleractinian coral
  publication-title: Global Change Biology
– volume: 13
  start-page: 151
  year: 1994
  end-page: 159
  article-title: Nutrient‐limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate‐rich tropical marine environment
  publication-title: Coral Reefs
– volume: 129
  start-page: 307
  year: 1995
  end-page: 312
  article-title: Biological control of air‐sea CO fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems
  publication-title: Marine Ecology Progress Series
– volume: 97
  start-page: 7373
  year: 1992
  end-page: 7382
  article-title: Relationship between wind speed and gas exchange over the ocean
  publication-title: Journal of Geophysical Research
– volume: 39
  start-page: 160
  year: 1999
  end-page: 183
  article-title: Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry
  publication-title: American Zoologist
– volume: 20
  start-page: 493
  year: 1975
  end-page: 495
  article-title: Carbon dioxide and metabolism in marine environments
  publication-title: Limnology and Oceanography
– volume: 37
  start-page: 261
  year: 1992
  end-page: 272
  article-title: Anomalous mass transfer of phosphate on coral reef‐flats
  publication-title: Limnology and Oceanography
– volume: 96
  start-page: 259
  year: 1996
  end-page: 267
  article-title: Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air‐sea CO disequilibrium
  publication-title: Marine Ecology Progress Series
– start-page: 88
  year: 2006
– volume: 425
  start-page: 365
  year: 2003
  article-title: Anthropogenic carbon and ocean pH
  publication-title: Nature
– volume: 112
  start-page: C05004
  year: 2007
  article-title: Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef
  publication-title: Journal of Geophysical Research‐Oceans
– year: 2011
  article-title: Coral reefs modify their seawater carbon chemistry – case study from a barrier reef (Moorea, French Polynesia)
  publication-title: Global Change Biology
– volume: 105
  start-page: 17442
  year: 2008
  end-page: 17446
  article-title: Ocean acidification causes bleaching and productivity loss in coral reef builders
  publication-title: Proceedings of the National Academy of Science
– volume: 45
  start-page: 246
  year: 2000
  end-page: 250
  article-title: Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral
  publication-title: Limnology and Oceanography
– volume: 36
  start-page: 1232
  year: 1991
  end-page: 1239
  article-title: Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities
  publication-title: Limnology and Oceanography
– year: 2007
– volume: 115
  start-page: C12011
  year: 2010
  article-title: Temperature variability in a shallow, tidally isolated coral reef lagoon
  publication-title: Journal of Geophysical Research
– volume: 305
  start-page: 367
  year: 2004
  end-page: 371
  article-title: The oceanic sink for anthropogenic CO
  publication-title: Science
– volume: 38
  start-page: L03604
  year: 2011
  article-title: Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef
  publication-title: Geophysical Research Letter
– volume: 3
  start-page: 357
  year: 2006
  end-page: 369
  article-title: concentration and pCO thresholds for calcification and dissolution on the Molokai reef flat, Hawaii
  publication-title: Biogeosciences
– volume: 51
  start-page: 1284
  year: 2006
  end-page: 1293
  article-title: The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral
  publication-title: Limnology and Oceanography
– volume: 66
  start-page: 149
  year: 1983
  end-page: 161
  article-title: Profiling of coral reef productivity and calcification using pH and oxygen electrodes
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 269
  start-page: 214
  year: 1995
  end-page: 216
  article-title: Diurnal changes in the partial pressure of carbon dioxide in coral reef water coral reef water
  publication-title: Science
– volume: 113
  start-page: C07035
  year: 2008
  article-title: Continuous measurements of net production over a shallow reef community using a modified Eulerian approach
  publication-title: Journal of Geophysical Research
– volume: 86
  start-page: 157
  year: 2010
  end-page: 164
  article-title: Vulnerability of marine biodiversity to ocean acidification: a meta‐analysis
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 16
  start-page: 1632
  year: 2010
  end-page: 1644
  article-title: Effects of variations in carbonate chemistry on the calcification rates of (= sensu Wells, 1973): bicarbonate concentrations best predict calcification rates
  publication-title: Global Change Biology
– volume: 9
  start-page: 105
  year: 1990
  end-page: 114
  article-title: Residence times of neutrally‐buoyant matter such as larvae, sewage or nutrients on coral reef
  publication-title: Coral Reefs
– volume: 107
  start-page: 2527
  year: 2010
  end-page: 2531
  article-title: Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water
  publication-title: Proceedings of the National Academy of Science
– volume: 99
  start-page: 259
  year: 1995
  end-page: 280
  article-title: The mechanism of production enhancement in coral reef carbonate systems: model and empirical results
  publication-title: Sedimentary Geology
– volume: 7
  start-page: 2509
  year: 2010
  end-page: 2530
  article-title: Feedbacks and responses of coral calcification on the Bermuda reefsystem to seasonal changes in biological processes and ocean acidification
  publication-title: Biogeoscience
– volume: 13
  start-page: 1419
  year: 2010
  end-page: 1434
  article-title: Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms
  publication-title: Ecology Letters
– volume: 6
  start-page: 1811
  year: 2009
  end-page: 1823
  article-title: Net loss of CaCO from a subtropical calcifying community due to seawater acidification: mesocosm‐scale experimental evidence
  publication-title: Biogeosciences
– volume: 14
  start-page: 639
  year: 2000
  end-page: 654
  article-title: Effects of calcium carbonate saturation state on the calcification rate of an experimental coral reef
  publication-title: Global Biochemical Cycles
– volume: 35
  start-page: 936
  year: 1991
  end-page: 948
  article-title: measurements of flow effects on primary production and dark respiration in reef corals
  publication-title: Limnology and Oceanography
– volume: 36
  start-page: L05606
  year: 2009
  article-title: Coral reefs may start dissolving when atmospheric CO doubles
  publication-title: Geophysical Research Letters
– ident: e_1_2_10_53_1
  doi: 10.5194/bg-3-357-2006
– ident: e_1_2_10_7_1
  doi: 10.5194/bg-7-2509-2010
– ident: e_1_2_10_23_1
  doi: 10.1126/science.1152509
– ident: e_1_2_10_50_1
  doi: 10.1016/0037-0738(95)00048-D
– ident: e_1_2_10_21_1
  doi: 10.4319/lo.2000.45.1.0246
– ident: e_1_2_10_44_1
  doi: 10.01029/02010GL046053
– ident: e_1_2_10_26_1
  doi: 10.1126/science.269.5221.214
– ident: e_1_2_10_18_1
  doi: 10.3354/meps129307
– ident: e_1_2_10_4_1
  doi: 10.1111/j.1365-2486.2010.02364.x
– ident: e_1_2_10_20_1
  doi: 10.1093/icb/39.1.160
– ident: e_1_2_10_8_1
  doi: 10.4319/lo.1992.37.2.0261
– ident: e_1_2_10_12_1
  doi: 10.4319/lo.1991.36.6.1232
– start-page: 88
  volume-title: Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research – St Petersburg report
  year: 2006
  ident: e_1_2_10_30_1
– ident: e_1_2_10_10_1
  doi: 10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2
– ident: e_1_2_10_11_1
  doi: 10.1038/425365a
– ident: e_1_2_10_13_1
  doi: 10.1007/BF00301191
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1461-0248.2010.01565.x
– ident: e_1_2_10_34_1
  doi: 10.1029/1999GB001195
– ident: e_1_2_10_24_1
  doi: 10.1017/CBO9780511535543
– ident: e_1_2_10_38_1
  doi: 10.1029/2009JC006023
– ident: e_1_2_10_15_1
  doi: 10.1016/S0304-4203(02)00133-0
– ident: e_1_2_10_33_1
  doi: 10.1029/2004JC002576
– ident: e_1_2_10_49_1
  doi: 10.4319/lo.1975.20.3.0493
– ident: e_1_2_10_2_1
  doi: 10.5194/bg-6-1811-2009
– ident: e_1_2_10_47_1
  doi: 10.1029/2008GL036282
– ident: e_1_2_10_17_1
  doi: 10.1029/2007JC004663
– ident: e_1_2_10_35_1
  doi: 10.2172/639712
– ident: e_1_2_10_19_1
  doi: 10.3354/meps096259
– ident: e_1_2_10_51_1
  doi: 10.1029/94JC02736
– ident: e_1_2_10_46_1
  doi: 10.1029/2006JC003770
– ident: e_1_2_10_29_1
  doi: 10.1029/61CE06
– ident: e_1_2_10_37_1
  doi: 10.1073/pnas.0912348107
– ident: e_1_2_10_41_1
  doi: 10.4319/lo.1991.36.5.0936
– ident: e_1_2_10_52_1
  doi: 10.1029/92JC00188
– ident: e_1_2_10_3_1
  doi: 10.1073/pnas.0804478105
– ident: e_1_2_10_36_1
  doi: 10.3354/meps220153
– ident: e_1_2_10_5_1
  doi: 10.1016/0022-0981(83)90036-9
– ident: e_1_2_10_39_1
  doi: 10.1146/annurev.fluid.38.050304.092125
– ident: e_1_2_10_31_1
  doi: 10.1111/j.1365-2486.2011.02530.x
– start-page: 75
  volume-title: Ecosystems of the World: Coral Reefs
  year: 1990
  ident: e_1_2_10_40_1
– ident: e_1_2_10_9_1
  doi: 10.1007/BF00258221
– ident: e_1_2_10_16_1
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1365-2486.2009.02057.x
– ident: e_1_2_10_42_1
  doi: 10.1046/j.1365-2486.2003.00678.x
– ident: e_1_2_10_27_1
  doi: 10.4319/lo.1978.23.5.0989
– ident: e_1_2_10_48_1
  doi: 10.4319/lo.1973.18.1.0106
– ident: e_1_2_10_6_1
  doi: 10.4319/lo.2001.46.4.0833
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ecss.2009.11.022
– ident: e_1_2_10_43_1
  doi: 10.1126/science.1097403
– start-page: 505
  volume-title: Proceedings of the 5th International Coral Reef Congress
  year: 1985
  ident: e_1_2_10_28_1
– ident: e_1_2_10_45_1
  doi: 10.4319/lo.2006.51.3.1284
– ident: e_1_2_10_32_1
  doi: 10.1111/j.1461-0248.2010.01518.x
SSID ssj0003206
Score 2.4662244
Snippet Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by...
Abstract Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification...
SourceID hal
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3655
SubjectTerms Acidification
Algae
Animal and plant ecology
Animal, plant and microbial ecology
aragonite saturation
Biogeochemistry
Biological and medical sciences
calcification
Carbon dioxide
Chemical analysis
coral reef
Coral reefs
Earth Sciences
Fundamental and applied biological sciences. Psychology
General aspects
Great Barrier Reef
Habitats
Marine ecology
Ocean acidification
Oceanography
Oceans
Photosynthesis
Sciences of the Universe
Seawater
Shallow water
Water analysis
Title Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification
URI https://api.istex.fr/ark:/67375/WNG-0N1Q2QS5-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02510.x
https://www.proquest.com/docview/908112506
https://hal.science/hal-03502007
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BERIXfgIVplCtEOrNkdfeje1jidpGiEYqUNHbyvsnohQb2Sm0nHgH3pAnYWbtuDHiUCFycuJZy57Mznyz_naGkFeAsPPYKR46YfKQQ1AJ8ziLwpQxk-XCsYLjbuTj-WR2yt-cibOO_4R7Ydr6EP2CG84M769xgheqGU5yz9Di2aSrxAmhOhojnsQTiI_eXVeSSmLfZpMlgoPnYcmQ1PPXCw0i1e1PyJO8g6q_RP5k0YAKXdv7YgBONyGuj1GHD8hy_XQtNWU5vlipsf7-R-HH__P4D8n9DsrS_db2HpFbthyRu21zy6sR2T643kMHYp0TaUYkOAagXtVejO7R6fkCULP_9pi4KVYMoLW1rqGfK7NwV9S_y6AwJb8BLq6pLmpVlVSvO9XRXz9-0sUGMZ4CDqft7s-GVo5ChC5KWuiFQVqUl3lCTg8PPkxnYdcKItQ8hwRXuFwbZbI05tpFmRKpNYzZWDOljUhS8NKJcSyyxiUKUkrwTDoFMGx5lEBCp5NtslVWpX1KKETjKFWQWEBchtwUDpTNM7xO6uDDApKu_3apuzrp2K7jXG7kS6B6iaqXqHrpVS8vA8L6kV_aWiE3GPMSLKsXx2Lfs_23En_Dd764kvwVbmnPG14vVtRLJOSlQn6cH8lozk7ik_dCioDsDiyzHxBzrFLEJgHZWZuq7JxVI3OAhYBzIzg78SZ347uXR9PXePTsXwfukHt-kd7zg56TrVV9YV8AylupXT9_fwMd9EDp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BKwQXHoEKUygrhHpz5LW9sX0sUdsASaRCK3pbeV9q1OAgO4WWE_-Bf8gvYWbtuDHiUCF88mPWssfz-GY9O0PIa0DYWWhl7FuuMz8Gp-JnYRr4CWM6zbhleYyrkSfTwegkfnfKT5t2QLgWpq4P0U64oWY4e40KjhPSXS13KVpxOmhKcYKvDvoAKDexwbeLrz5c15KKQtdok0U8BtvDom5az1_v1PFVt88wU3ITmX-JGZR5BUy0dfeLDjxdB7nOSx08IPPV-9XJKef9i6Xsq-9_lH78Twx4SO43aJbu1eL3iNwyRY_cqftbXvXI1v71Mjoga-xI1SPeBLD6onRkdJcO5zMAzu7oMbFDLBpAS2NsRT8v9MxeUfc7g4JWfgNoXFKVl3JRULVqVkd__fhJZ2u58RSgOK0XgFZ0YSk46byguZppzIxyNE_IycH-8XDkN90gfBVnEONymyktdZqEsbJBKnliNGMmVEwqzaMEDHWkLQuMtpGEqBKMk0oAD5s4iCCmU9EW2SgWhXlKKDjkIJEQW4BrhvAUdqTJUrxPYmFjHklW312oplQ6duyYi7WQCVgvkPUCWS8c68WlR1g78ktdLuQGY16BaLXkWO97tDcWeA5_--Jk8ld4pF0neS1ZXp5jTl7CxafpoQim7Cg8-sgF98hORzTbAWGMhYrYwCPbK1kVjb2qRAbIEKBuAFcHTuZu_PTicPgG957968CX5O7oeDIW47fT99vknpuzd-lCz8nGsrwwLwD0LeWOU-bfI3xFBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BKxAXfgIVplBWCPXmyGvv-udY0qYB2ogCFb2t7F2viFLsyk6h5cQ78IY8CTNrx40RhwqRk-PMWvZkduab9bczhLwEhJ34JuOuETpxOQQVN_Fjz40Y03EiDEs57kY-nIaTY_7mRJy0_CfcC9PUh-gW3HBmWH-NE_xMm_4ktwwtHodtJU4I1d4Q8OQ6D70YLXz3_VUpqcC3fTZZIDi4Hhb0WT1_vVIvVN38jETJddT9BRIo0xp0aJrmFz10uopxbZAa3yPz5eM13JT58HyRDdX3Pyo__p_nv0_utliW7jTG94DcyIsBudV0t7wckI29q010INZ6kXpAnENA6mVlxeg2HZ3OADbbbw-JGWHJAFrluanpl1LPzCW1LzMozMlvAIwrqtIqKwuqlq3q6K8fP-lshRlPAYjTZvtnTUtDIUSnBU3VTCMvyso8IsfjvY-jidv2gnAVTyDDFSZROtNx5HNlvDgTUa4Zy33FMqVFEIGbDrRhXq5NkEFOCa5JRYCGc-4FkNGpYIOsFWWRPyYUwrEXZZBZQGCG5BQOsjyJ8TqRgQ9zSLT826VqC6Vjv45TuZIwgeolql6i6qVVvbxwCOtGnjXFQq4x5gVYVieO1b4nOwcSz-FLX1xK_gq3tG0NrxNLqzky8iIhP033pTdlR_7RByGFQ7Z6ltkN8DmWKWKhQzaXpipbb1XLBHAhAF0Pfg2tyV377uX-6BUePfnXgc_J7Xe7Y3nwevp2k9yxC_aWK_SUrC2q8_wZIL5FtmWn8m8qGUO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coral+reefs+modify+their+seawater+carbon+chemistry+%E2%80%93+implications+for+impacts+of+ocean+acidification&rft.jtitle=Global+change+biology&rft.au=Anthony%2C+Kenneth+R.+N.&rft.au=A.+Kleypas%2C+Joan&rft.au=Gattuso%2C+Jean%E2%80%90Pierre&rft.date=2011-12-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=12&rft.spage=3655&rft.epage=3666&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02510.x&rft.externalDBID=10.1111%252Fj.1365-2486.2011.02510.x&rft.externalDocID=GCB2510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon