Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification
Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for...
Saved in:
Published in | Global change biology Vol. 17; no. 12; pp. 3655 - 3666 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.12.2011
Wiley-Blackwell Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef. |
---|---|
AbstractList | Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef. Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air-sea fluxes in the open ocean, and not for shallow-water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO(2). However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO(2) and aragonite saturation state (Omega(a)) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Omega(a) in opposing directions. Areas dominated by corals elevate pCO(2) and reduce Omega(a), thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Omega(a), potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef. Abstract Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO2. Projections of ocean acidification, however, are based on air-sea fluxes in the open ocean, and not for shallow-water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO2. However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH, pCO2 and aragonite saturation state (Ωa) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ωain opposing directions. Areas dominated by corals elevate pCO2 and reduce Ωa, thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO2 down and elevate Ωa, potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO2 scenarios (600 and 900 ppm CO2) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef. [PUBLICATION ABSTRACT] Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by increased uptake of atmospheric CO 2 . Projections of ocean acidification, however, are based on air‐sea fluxes in the open ocean, and not for shallow‐water systems such as coral reefs. Like the open ocean, reef waters are subject to the chemical forcing of increasing atmospheric pCO 2 . However, for reefs with long water residence times, we illustrate that benthic carbon fluxes can drive spatial variation in pH , pCO 2 and aragonite saturation state (Ω a ) that can mask the effects of ocean acidification in some downstream habitats. We use a carbon flux model for photosynthesis, respiration, calcification and dissolution coupled with Lagrangian transport to examine how key groups of calcifiers (zooxanthellate corals) and primary producers (macroalgae) on coral reefs contribute to changes in the seawater carbonate system as a function of water residence time. Analyses based on flume data showed that the carbon fluxes of corals and macroalgae drive Ω a in opposing directions. Areas dominated by corals elevate pCO 2 and reduce Ω a , thereby compounding ocean acidification effects in downstream habitats, whereas algal beds draw CO 2 down and elevate Ω a , potentially offsetting ocean acidification impacts at the local scale. Simulations for two CO 2 scenarios (600 and 900 ppm CO 2 ) suggested that a potential shift from coral to algal abundance under ocean acidification can lead to improved conditions for calcification in downstream habitats, depending on reef size, water residence time and circulation patterns. Although the carbon fluxes of benthic reef communities cannot significantly counter changes in carbon chemistry at the scale of oceans, they provide a significant mechanism of buffering ocean acidification impacts at the scale of habitat to reef. |
Author | Gattuso, Jean-Pierre Anthony, Kenneth R. N. A. Kleypas, Joan |
Author_xml | – sequence: 1 givenname: Kenneth R. N. surname: Anthony fullname: Anthony, Kenneth R. N. email: k.anthony@aims.gov.au organization: Australian Institute of Marine Science, PMB3, Qld, 4810, Townsville MC, Australia – sequence: 2 givenname: Joan surname: A. Kleypas fullname: A. Kleypas, Joan organization: Oceanography Section, Climate and Global Dynamics, National Centre for Atmospheric Research, Boulder, 80307-3000, CO, USA – sequence: 3 givenname: Jean-Pierre surname: Gattuso fullname: Gattuso, Jean-Pierre organization: INSU-CNRS, Laboratoire d'Océanographie de Villefranche, B.P. 28, 06234, Villefranche-sur-mer Cedex,, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24741816$$DView record in Pascal Francis https://hal.science/hal-03502007$$DView record in HAL |
BookMark | eNqNkUtvEzEUhUeoleiD_2AhsWAx6bU9nscCpBJBWilqVRXE8srjh-IwGQd7SpN_j6cTsmBVb3x173fOtXXOs5Pe9ybLCIUZTedqPaO8FDkr6nLGgNIZMJFmuzfZ2XFwMtaiyClQ_jY7j3ENAJxBeZbpuQ-yI8EYG8nGa2f3ZFgZF0g08lkOJhAlQ-t7olZm4-IQ9iQnbrPtnJKD830k1oexIdUQibfEKyN7IpVLXgfmMju1sovm3eG-yH58-_p9fpMv7xe38-tlroqGQS5so3Sr64oVykLdispoSg1TtFVa8EpqzbWlYLTlbcOKAkBVUIMpgDdlqfhF9nHyXckOt8FtZNijlw5vrpc49oALYADVH5rY9xO7Df73k4kDrv1T6NPzsIGaUiagTNCHAySjkp0NslcuHq1ZURW0piP3eeJU8DEGY1G54eXrQ5CuQwo4hoVrHDPBMRMcw8KXsHCXDOr_DP7teIX00yR9dp3Zv1qHi_mXsUr6fNKncM3uqJfhF5YVrwT-vFsg3NEH9vAoUPC_HRC8Pw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0053303 crossref_primary_10_3389_fmars_2020_567228 crossref_primary_10_1016_j_cub_2014_04_029 crossref_primary_10_1007_s10498_024_09421_y crossref_primary_10_1590_0001_3765201720160387 crossref_primary_10_3389_fmars_2017_00036 crossref_primary_10_1371_journal_pone_0087678 crossref_primary_10_1016_j_ecolind_2020_106128 crossref_primary_10_1093_icesjms_fsaa094 crossref_primary_10_3390_w5031303 crossref_primary_10_1007_s10498_021_09400_7 crossref_primary_10_1016_j_ecolmodel_2018_07_007 crossref_primary_10_1071_MF12124 crossref_primary_10_3389_fmars_2017_00161 crossref_primary_10_3389_fmars_2019_00691 crossref_primary_10_1016_j_marchem_2015_06_022 crossref_primary_10_1080_08920753_2012_728123 crossref_primary_10_1007_s00227_014_2485_8 crossref_primary_10_1371_journal_pone_0097235 crossref_primary_10_3389_fmars_2020_571451 crossref_primary_10_1016_j_marpolbul_2019_06_011 crossref_primary_10_1029_2020JC016108 crossref_primary_10_1002_2017JC013231 crossref_primary_10_1142_S2010007812500029 crossref_primary_10_7717_peerj_249 crossref_primary_10_1038_s42003_023_05301_3 crossref_primary_10_1007_s00338_016_1490_4 crossref_primary_10_1016_j_ecss_2018_04_041 crossref_primary_10_1038_ncomms10732 crossref_primary_10_1007_s00267_013_0132_7 crossref_primary_10_1016_j_scitotenv_2022_159576 crossref_primary_10_1038_srep23248 crossref_primary_10_1111_1365_2435_14101 crossref_primary_10_1111_gcb_13023 crossref_primary_10_5194_bg_11_4321_2014 crossref_primary_10_1038_srep26036 crossref_primary_10_1002_lno_11084 crossref_primary_10_1038_nclimate2380 crossref_primary_10_3389_fphys_2021_656562 crossref_primary_10_1002_ece3_8579 crossref_primary_10_1016_j_csr_2020_104175 crossref_primary_10_1371_journal_pone_0190872 crossref_primary_10_1146_annurev_marine_010213_135042 crossref_primary_10_3389_fmars_2019_00282 crossref_primary_10_1038_ncomms4794 crossref_primary_10_1016_j_jenvman_2016_07_038 crossref_primary_10_1029_2022GB007577 crossref_primary_10_1242_jeb_152488 crossref_primary_10_1111_gcb_16960 crossref_primary_10_1098_rspb_2014_1856 crossref_primary_10_1007_s11356_018_1376_9 crossref_primary_10_1371_journal_pone_0094067 crossref_primary_10_1007_s10113_024_02311_7 crossref_primary_10_1016_j_ecolmodel_2014_04_004 crossref_primary_10_1007_s00338_013_1046_9 crossref_primary_10_1007_s00227_013_2239_z crossref_primary_10_1016_j_marenvres_2025_106976 crossref_primary_10_1007_s40641_017_0082_x crossref_primary_10_1016_j_epsl_2019_115785 crossref_primary_10_3389_fmars_2018_00175 crossref_primary_10_5194_bg_10_4897_2013 crossref_primary_10_1002_grl_50802 crossref_primary_10_1016_j_marenvres_2015_11_001 crossref_primary_10_1029_2023GB007789 crossref_primary_10_1038_s43247_021_00168_w crossref_primary_10_3354_meps11385 crossref_primary_10_1021_es4014807 crossref_primary_10_3354_meps10690 crossref_primary_10_1111_j_1365_2486_2011_02530_x crossref_primary_10_1098_rspb_2013_2201 crossref_primary_10_1007_s00227_014_2494_7 crossref_primary_10_1371_journal_pone_0071257 crossref_primary_10_1111_gcb_12351 crossref_primary_10_5194_bg_10_6747_2013 crossref_primary_10_1016_j_rsma_2019_100612 crossref_primary_10_1155_2011_473615 crossref_primary_10_1007_s00227_012_2034_2 crossref_primary_10_3389_fmars_2015_00052 crossref_primary_10_1016_j_jembe_2013_03_012 crossref_primary_10_1016_j_greeac_2023_100049 crossref_primary_10_1016_j_jembe_2014_03_015 crossref_primary_10_1007_s12237_017_0356_5 crossref_primary_10_1002_lno_11303 crossref_primary_10_3354_meps10844 crossref_primary_10_1007_s00338_014_1127_4 crossref_primary_10_1890_110240 crossref_primary_10_1007_s00338_012_0964_2 crossref_primary_10_1038_s41598_020_59886_4 crossref_primary_10_1016_j_ecoser_2021_101352 crossref_primary_10_1371_journal_pone_0231971 crossref_primary_10_1371_journal_pone_0312263 crossref_primary_10_1007_s00338_014_1251_1 crossref_primary_10_1007_s00227_017_3136_7 crossref_primary_10_1007_s00227_012_2023_5 crossref_primary_10_1007_s00773_021_00837_7 crossref_primary_10_3389_fmars_2022_858853 crossref_primary_10_1002_2017JC012740 crossref_primary_10_1007_s00338_014_1217_3 crossref_primary_10_1038_srep29613 crossref_primary_10_1038_s41598_017_10378_y crossref_primary_10_3389_fmars_2021_562267 crossref_primary_10_1007_s00227_015_2691_z crossref_primary_10_1007_s00338_012_0979_8 crossref_primary_10_1016_j_jembe_2020_151314 crossref_primary_10_1007_s00227_021_03960_6 crossref_primary_10_1007_s00709_017_1176_y crossref_primary_10_5194_bg_20_1011_2023 crossref_primary_10_1002_lno_10621 crossref_primary_10_1098_rspb_2018_1168 crossref_primary_10_3389_fmars_2019_00150 crossref_primary_10_1371_journal_pone_0159062 crossref_primary_10_3755_jcrs_22_45 crossref_primary_10_3390_oceans4020012 crossref_primary_10_1007_s10750_024_05553_y crossref_primary_10_1007_s12237_019_00588_0 crossref_primary_10_1038_s43247_022_00363_3 crossref_primary_10_1371_journal_pone_0142196 crossref_primary_10_1038_s41598_022_13731_y crossref_primary_10_1007_s10498_023_09411_6 crossref_primary_10_1016_j_biocon_2023_110276 crossref_primary_10_1111_j_1365_2486_2012_02767_x crossref_primary_10_1016_j_crvi_2013_07_003 crossref_primary_10_1111_gcb_12011 crossref_primary_10_3389_fmars_2020_00679 crossref_primary_10_1007_s12237_013_9594_3 crossref_primary_10_1007_s00227_014_2435_5 crossref_primary_10_1038_s43247_020_00054_x crossref_primary_10_1038_ngeo1780 crossref_primary_10_1038_s41598_017_18736_6 crossref_primary_10_1038_s41598_017_03085_1 crossref_primary_10_1111_jpy_12262 crossref_primary_10_1002_2016JC011886 crossref_primary_10_1088_1748_9326_11_3_034023 crossref_primary_10_3354_meps14033 crossref_primary_10_1002_2015GL063488 crossref_primary_10_7717_peerj_378 crossref_primary_10_7717_peerj_411 crossref_primary_10_5194_bg_9_893_2012 crossref_primary_10_1088_1748_9326_7_2_024026 crossref_primary_10_1371_journal_pone_0127648 crossref_primary_10_1371_journal_pone_0149598 crossref_primary_10_1093_icesjms_fsaa195 crossref_primary_10_1073_pnas_1507021112 crossref_primary_10_2108_zs150036 crossref_primary_10_1371_journal_pone_0109092 crossref_primary_10_1098_rspb_2021_0130 crossref_primary_10_3354_meps11190 crossref_primary_10_1086_BBLv223n1p66 crossref_primary_10_3389_fmars_2016_00052 crossref_primary_10_5194_gmd_13_4503_2020 crossref_primary_10_1371_journal_pone_0138800 crossref_primary_10_1007_s00338_016_1507_z crossref_primary_10_1021_acs_est_5b04733 crossref_primary_10_1038_nclimate2050 crossref_primary_10_1007_s10498_017_9310_1 crossref_primary_10_1007_s00338_020_01973_z crossref_primary_10_1016_j_marenvres_2022_105861 crossref_primary_10_1093_femsre_fux018 crossref_primary_10_1371_journal_pone_0064651 crossref_primary_10_1007_s00338_024_02523_7 crossref_primary_10_1093_icesjms_fsv162 crossref_primary_10_3389_fmars_2022_1004107 crossref_primary_10_1038_s41558_019_0681_8 crossref_primary_10_1007_s00338_013_1032_2 crossref_primary_10_5194_bg_12_1339_2015 crossref_primary_10_1016_j_ecochg_2021_100016 crossref_primary_10_1016_j_rsma_2015_07_004 crossref_primary_10_5194_bg_15_31_2018 crossref_primary_10_1111_gcb_12154 crossref_primary_10_1080_1943815X_2016_1159578 |
Cites_doi | 10.5194/bg-3-357-2006 10.5194/bg-7-2509-2010 10.1126/science.1152509 10.1016/0037-0738(95)00048-D 10.4319/lo.2000.45.1.0246 10.01029/02010GL046053 10.1126/science.269.5221.214 10.3354/meps129307 10.1111/j.1365-2486.2010.02364.x 10.1093/icb/39.1.160 10.4319/lo.1992.37.2.0261 10.4319/lo.1991.36.6.1232 10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2 10.1038/425365a 10.1007/BF00301191 10.1111/j.1461-0248.2010.01565.x 10.1029/1999GB001195 10.1017/CBO9780511535543 10.1029/2009JC006023 10.1016/S0304-4203(02)00133-0 10.1029/2004JC002576 10.4319/lo.1975.20.3.0493 10.5194/bg-6-1811-2009 10.1029/2008GL036282 10.1029/2007JC004663 10.2172/639712 10.3354/meps096259 10.1029/94JC02736 10.1029/2006JC003770 10.1029/61CE06 10.1073/pnas.0912348107 10.4319/lo.1991.36.5.0936 10.1029/92JC00188 10.1073/pnas.0804478105 10.3354/meps220153 10.1016/0022-0981(83)90036-9 10.1146/annurev.fluid.38.050304.092125 10.1111/j.1365-2486.2011.02530.x 10.1007/BF00258221 10.1111/j.1365-2486.2009.02057.x 10.1046/j.1365-2486.2003.00678.x 10.4319/lo.1978.23.5.0989 10.4319/lo.1973.18.1.0106 10.4319/lo.2001.46.4.0833 10.1016/j.ecss.2009.11.022 10.1126/science.1097403 10.4319/lo.2006.51.3.1284 10.1111/j.1461-0248.2010.01518.x |
ContentType | Journal Article |
Copyright | 2011 Blackwell Publishing Ltd 2015 INIST-CNRS Copyright (c) 2011 Blackwell Publishing Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2011 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: Copyright (c) 2011 Blackwell Publishing Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 1XC |
DOI | 10.1111/j.1365-2486.2011.02510.x |
DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Oceanography |
EISSN | 1365-2486 |
EndPage | 3666 |
ExternalDocumentID | oai_HAL_hal_03502007v1 2526678931 24741816 10_1111_j_1365_2486_2011_02510_x GCB2510 ark_67375_WNG_0N1Q2QS5_5 |
Genre | article Feature |
GeographicLocations | Australia Oceania Great Barrier Reef |
GrantInformation_xml | – fundername: 211384 – fundername: Australian Research Council – fundername: GBRMPA – fundername: European Community's Seventh Framework Programme funderid: FP7/2007‐2013 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SN 7UA C1K F1W H97 L.G 1XC |
ID | FETCH-LOGICAL-c4920-5f9cdbd8724cf08b57ed11e2c1bcd537add3df10edf3b924400c7080e403966c3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri May 09 12:16:45 EDT 2025 Fri Jul 25 11:06:17 EDT 2025 Mon Jul 21 09:16:07 EDT 2025 Tue Jul 01 03:52:47 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Wed Jan 22 16:22:14 EST 2025 Wed Oct 30 09:58:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | ocean acidification Aragonite aragonite saturation Carbon dioxide Acidification Calcification Ocean Coral reef Carbon Seawater Great Barrier Reef |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4920-5f9cdbd8724cf08b57ed11e2c1bcd537add3df10edf3b924400c7080e403966c3 |
Notes | ArticleID:GCB2510 ark:/67375/WNG-0N1Q2QS5-5 211384 GBRMPA European Community's Seventh Framework Programme - No. FP7/2007-2013 Australian Research Council istex:25DF8119546975F4AF23B83B7CD378C614B855C6 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ORCID | 0000-0002-4533-4114 |
OpenAccessLink | https://zenodo.org/record/3436479 |
PQID | 908112506 |
PQPubID | 30327 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_03502007v1 proquest_journals_908112506 pascalfrancis_primary_24741816 crossref_citationtrail_10_1111_j_1365_2486_2011_02510_x crossref_primary_10_1111_j_1365_2486_2011_02510_x wiley_primary_10_1111_j_1365_2486_2011_02510_x_GCB2510 istex_primary_ark_67375_WNG_0N1Q2QS5_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2011 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: December 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob. Change Biol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Wiley |
References | Black KP, Gay SL, Andrews JC (1990) Residence times of neutrally-buoyant matter such as larvae, sewage or nutrients on coral reef. Coral Reefs, 9, 105-114. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Science, 105, 17442-17446. Smith SV, Key GS (1975) Carbon dioxide and metabolism in marine environments. Limnology and Oceanography, 20, 493-495. Sabine CL, Feely , R. A. , Gruber N et al. (2004) The oceanic sink for anthropogenic CO2. Science, 305, 367-371. Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry, 80, 185-197. Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Science, 107, 2527-2531. Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Cao L, Marshall PA, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 17, 1798-1808. Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. American Zoologist, 39, 160-183. Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography, 46, 833-846. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnology and Oceanography, 51, 1284-1293. Diaz-Pulido G, Gouezo M, Tilbrook B, Dove SG, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters, 14, 156-162. Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography, 35, 936-948. Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research-Oceans, 112, C05004. Monismith SG (2007) Hydrodynamics of coral reefs. Annual Review of Fluid Mechanics, 39, 37-55. Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water coral reef water. Science, 269, 214-216. Symonds G, Black KP, Young IR (1995) Wave-driven flow over shallow reefs. Journal of Geophysical Research, 100, 2639-2648. Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sedimentary Geology, 99, 259-280. Gattuso J-P, Pichon M, Frankignoulle M (1995) Biological control of air-sea CO2 fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems. Marine Ecology Progress Series, 129, 307-312. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research - St Petersburg report. pp. 88. NOAA, and the US Geological Survey, St. Petersburg, NSF. McCabe RM, Estrade P, Middleton JH, Melville WK, Roughan M, Lenain L (2010) Temperature variability in a shallow, tidally isolated coral reef lagoon. Journal of Geophysical Research, 115, C12011, doi: 10.1029/2009JC006023. Reynaud S, Leclercq N, Romaine-lioud S, Ferrier-pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology, 9, 1660-1668. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research-Oceans, 110, article C09S07. Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology, 16, 1632-1644. Falter JL, Lowe RJ, Atkinson MJ, Monismith SG, Schar DW (2008) Continuous measurements of net production over a shallow reef community using a modified Eulerian approach. Journal of Geophysical Research, 113, C07035, doi: 10.1029/2007JC004663. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373-7382. Bilger RW, Atkinson MJ (1992) Anomalous mass transfer of phosphate on coral reef-flats. Limnology and Oceanography, 37, 261-272. Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control. Geology, 15, 111-114. Delgado O, Lapointe BE (1994) Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs, 13, 151-159. Hopley D, Smithers SG, Parnell KE (eds) (2007) The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change. Cambridge University Press, New York. Yates KK, Halley RB (2006) CO3 2-concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences, 3, 357-369. Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2011) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophysical Research Letter, 38, L03604, doi: 03610.01029/02010GL046053. Smith SV (1973) Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community. Limnology and Oceanography, 18, 106-120. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature, 425, 365. Gattuso J-P, Reynaud-Vaganay S, Furla P, Romaine-Lioud S, Jaubert J (2000) Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophorapistillata. Limnology and Oceanography, 45, 246-250. Kinsey DW (1978) Alkalinity changes and coral reef calcification. Limnology and Oceanography, 23, 989-991. Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnology and Oceanography, 36, 1232-1239. Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa Marine Ecology Progress Series, 220, 153-162. Kleypas J, Gattuso J-P, Anthony KRN (2011) Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia). Global Change Biology, doi: 10.1111/j.1365-2486.2011.02530.x. Kroeker K, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419-1434. Barnes DJ (1983) Profiling of coral reef productivity and calcification using pH and oxygen electrodes. Journal of Experimental Marine Biology and Ecology, 66, 149-161. Langdon C, Takahashi T, Sweeney C et al. (2000) Effects of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biochemical Cycles, 14, 639-654. Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences, 6, 1811-1823. Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 96, 259-267. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737-1742. Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36, L05606. Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reefsystem to seasonal changes in biological processes and ocean acidification. Biogeoscience, 7, 2509-2530. Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science, 86, 157-164. 2007; 39 2001; 220 2010; 16 2010; 13 2010; 107 2000; 45 1973; 18 2008; 105 2011; 14 2011; 17 1992; 97 2001; 46 1978; 23 2000; 14 1990 2010; 115 2003; 9 1995; 129 1985 2008; 113 2010; 7 1983; 66 1991; 36 2003; 80 2006; 51 2005; 110 2011 1991; 35 1995; 99 1998 2007 1996; 96 2006 2006; 3 1992; 37 2011; 38 2004; 305 1987; 15 2007; 112 2009; 36 2010; 86 2003; 425 1999; 39 1994; 13 1995; 269 1975; 20 2009; 6 1995; 100 1990; 9 2007; 318 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Muscatine L (e_1_2_10_40_1) 1990 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Kinsey DW (e_1_2_10_28_1) 1985 Kleypas JA (e_1_2_10_30_1) 2006 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – reference: Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water coral reef water. Science, 269, 214-216. – reference: Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences, 6, 1811-1823. – reference: Kleypas J, Gattuso J-P, Anthony KRN (2011) Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia). Global Change Biology, doi: 10.1111/j.1365-2486.2011.02530.x. – reference: Kinsey DW (1978) Alkalinity changes and coral reef calcification. Limnology and Oceanography, 23, 989-991. – reference: Barnes DJ (1983) Profiling of coral reef productivity and calcification using pH and oxygen electrodes. Journal of Experimental Marine Biology and Ecology, 66, 149-161. – reference: Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography, 46, 833-846. – reference: Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa Marine Ecology Progress Series, 220, 153-162. – reference: Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography, 35, 936-948. – reference: Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reefsystem to seasonal changes in biological processes and ocean acidification. Biogeoscience, 7, 2509-2530. – reference: Monismith SG (2007) Hydrodynamics of coral reefs. Annual Review of Fluid Mechanics, 39, 37-55. – reference: Hopley D, Smithers SG, Parnell KE (eds) (2007) The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change. Cambridge University Press, New York. – reference: Bilger RW, Atkinson MJ (1992) Anomalous mass transfer of phosphate on coral reef-flats. Limnology and Oceanography, 37, 261-272. – reference: Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology, 16, 1632-1644. – reference: Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36, L05606. – reference: Gattuso J-P, Pichon M, Frankignoulle M (1995) Biological control of air-sea CO2 fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems. Marine Ecology Progress Series, 129, 307-312. – reference: Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sedimentary Geology, 99, 259-280. – reference: Falter JL, Lowe RJ, Atkinson MJ, Monismith SG, Schar DW (2008) Continuous measurements of net production over a shallow reef community using a modified Eulerian approach. Journal of Geophysical Research, 113, C07035, doi: 10.1029/2007JC004663. – reference: Smith SV (1973) Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community. Limnology and Oceanography, 18, 106-120. – reference: Yates KK, Halley RB (2006) CO3 2-concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences, 3, 357-369. – reference: Gattuso J-P, Reynaud-Vaganay S, Furla P, Romaine-Lioud S, Jaubert J (2000) Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophorapistillata. Limnology and Oceanography, 45, 246-250. – reference: Smith SV, Key GS (1975) Carbon dioxide and metabolism in marine environments. Limnology and Oceanography, 20, 493-495. – reference: Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science, 86, 157-164. – reference: Sabine CL, Feely , R. A. , Gruber N et al. (2004) The oceanic sink for anthropogenic CO2. Science, 305, 367-371. – reference: McCabe RM, Estrade P, Middleton JH, Melville WK, Roughan M, Lenain L (2010) Temperature variability in a shallow, tidally isolated coral reef lagoon. Journal of Geophysical Research, 115, C12011, doi: 10.1029/2009JC006023. – reference: Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Cao L, Marshall PA, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 17, 1798-1808. – reference: Black KP, Gay SL, Andrews JC (1990) Residence times of neutrally-buoyant matter such as larvae, sewage or nutrients on coral reef. Coral Reefs, 9, 105-114. – reference: Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnology and Oceanography, 51, 1284-1293. – reference: Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research-Oceans, 112, C05004. – reference: Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature, 425, 365. – reference: Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry, 80, 185-197. – reference: Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373-7382. – reference: Diaz-Pulido G, Gouezo M, Tilbrook B, Dove SG, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters, 14, 156-162. – reference: Symonds G, Black KP, Young IR (1995) Wave-driven flow over shallow reefs. Journal of Geophysical Research, 100, 2639-2648. – reference: Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research-Oceans, 110, article C09S07. – reference: Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research - St Petersburg report. pp. 88. NOAA, and the US Geological Survey, St. Petersburg, NSF. – reference: Reynaud S, Leclercq N, Romaine-lioud S, Ferrier-pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology, 9, 1660-1668. – reference: Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2011) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophysical Research Letter, 38, L03604, doi: 03610.01029/02010GL046053. – reference: Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. American Zoologist, 39, 160-183. – reference: Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737-1742. – reference: Langdon C, Takahashi T, Sweeney C et al. (2000) Effects of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biochemical Cycles, 14, 639-654. – reference: Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Science, 105, 17442-17446. – reference: Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control. Geology, 15, 111-114. – reference: Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Science, 107, 2527-2531. – reference: Delgado O, Lapointe BE (1994) Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs, 13, 151-159. – reference: Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnology and Oceanography, 36, 1232-1239. – reference: Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 96, 259-267. – reference: Kroeker K, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419-1434. – volume: 14 start-page: 156 year: 2011 end-page: 162 article-title: High CO enhances the competitive strength of seaweeds over corals publication-title: Ecology Letters – volume: 17 start-page: 1798 year: 2011 end-page: 1808 article-title: Ocean acidification and warming will lower coral reef resilience publication-title: Global Change Biology – volume: 100 start-page: 2639 year: 1995 end-page: 2648 article-title: Wave‐driven flow over shallow reefs publication-title: Journal of Geophysical Research – volume: 46 start-page: 833 year: 2001 end-page: 846 article-title: Biogeochemical and physical factors influencing seawater fCO and air‐sea CO exchange on the Bermuda coral reef publication-title: Limnology and Oceanography – volume: 80 start-page: 185 year: 2003 end-page: 197 article-title: Reference materials for oceanic CO analysis: a method for the certification of total alkalinity publication-title: Marine Chemistry – start-page: 75 year: 1990 end-page: 87 – volume: 18 start-page: 106 year: 1973 end-page: 120 article-title: Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community publication-title: Limnology and Oceanography – volume: 39 start-page: 37 year: 2007 end-page: 55 article-title: Hydrodynamics of coral reefs publication-title: Annual Review of Fluid Mechanics – volume: 110 start-page: C09S07 year: 2005 article-title: Effect of elevated pCO on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment publication-title: Journal of Geophysical Research‐Oceans – volume: 318 start-page: 1737 year: 2007 end-page: 1742 article-title: Coral reefs under rapid climate change and ocean acidification publication-title: Science – volume: 23 start-page: 989 year: 1978 end-page: 991 article-title: Alkalinity changes and coral reef calcification publication-title: Limnology and Oceanography – volume: 220 start-page: 153 year: 2001 end-page: 162 article-title: Dependence of calcification on light and carbonate ion concentration for the hermatypic coral publication-title: Marine Ecology Progress Series – start-page: 505 year: 1985 end-page: 526 – volume: 15 start-page: 111 year: 1987 end-page: 114 article-title: Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control publication-title: Geology – year: 1998 – start-page: 73 year: 2006 end-page: 110 article-title: Coral reefs and changing seawater chemistry – volume: 9 start-page: 1660 year: 2003 end-page: 1668 article-title: Interacting effects of CO partial pressure and temperature on photosynthesis and calcification in a scleractinian coral publication-title: Global Change Biology – volume: 13 start-page: 151 year: 1994 end-page: 159 article-title: Nutrient‐limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate‐rich tropical marine environment publication-title: Coral Reefs – volume: 129 start-page: 307 year: 1995 end-page: 312 article-title: Biological control of air‐sea CO fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems publication-title: Marine Ecology Progress Series – volume: 97 start-page: 7373 year: 1992 end-page: 7382 article-title: Relationship between wind speed and gas exchange over the ocean publication-title: Journal of Geophysical Research – volume: 39 start-page: 160 year: 1999 end-page: 183 article-title: Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry publication-title: American Zoologist – volume: 20 start-page: 493 year: 1975 end-page: 495 article-title: Carbon dioxide and metabolism in marine environments publication-title: Limnology and Oceanography – volume: 37 start-page: 261 year: 1992 end-page: 272 article-title: Anomalous mass transfer of phosphate on coral reef‐flats publication-title: Limnology and Oceanography – volume: 96 start-page: 259 year: 1996 end-page: 267 article-title: Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air‐sea CO disequilibrium publication-title: Marine Ecology Progress Series – start-page: 88 year: 2006 – volume: 425 start-page: 365 year: 2003 article-title: Anthropogenic carbon and ocean pH publication-title: Nature – volume: 112 start-page: C05004 year: 2007 article-title: Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef publication-title: Journal of Geophysical Research‐Oceans – year: 2011 article-title: Coral reefs modify their seawater carbon chemistry – case study from a barrier reef (Moorea, French Polynesia) publication-title: Global Change Biology – volume: 105 start-page: 17442 year: 2008 end-page: 17446 article-title: Ocean acidification causes bleaching and productivity loss in coral reef builders publication-title: Proceedings of the National Academy of Science – volume: 45 start-page: 246 year: 2000 end-page: 250 article-title: Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral publication-title: Limnology and Oceanography – volume: 36 start-page: 1232 year: 1991 end-page: 1239 article-title: Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities publication-title: Limnology and Oceanography – year: 2007 – volume: 115 start-page: C12011 year: 2010 article-title: Temperature variability in a shallow, tidally isolated coral reef lagoon publication-title: Journal of Geophysical Research – volume: 305 start-page: 367 year: 2004 end-page: 371 article-title: The oceanic sink for anthropogenic CO publication-title: Science – volume: 38 start-page: L03604 year: 2011 article-title: Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef publication-title: Geophysical Research Letter – volume: 3 start-page: 357 year: 2006 end-page: 369 article-title: concentration and pCO thresholds for calcification and dissolution on the Molokai reef flat, Hawaii publication-title: Biogeosciences – volume: 51 start-page: 1284 year: 2006 end-page: 1293 article-title: The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral publication-title: Limnology and Oceanography – volume: 66 start-page: 149 year: 1983 end-page: 161 article-title: Profiling of coral reef productivity and calcification using pH and oxygen electrodes publication-title: Journal of Experimental Marine Biology and Ecology – volume: 269 start-page: 214 year: 1995 end-page: 216 article-title: Diurnal changes in the partial pressure of carbon dioxide in coral reef water coral reef water publication-title: Science – volume: 113 start-page: C07035 year: 2008 article-title: Continuous measurements of net production over a shallow reef community using a modified Eulerian approach publication-title: Journal of Geophysical Research – volume: 86 start-page: 157 year: 2010 end-page: 164 article-title: Vulnerability of marine biodiversity to ocean acidification: a meta‐analysis publication-title: Estuarine, Coastal and Shelf Science – volume: 16 start-page: 1632 year: 2010 end-page: 1644 article-title: Effects of variations in carbonate chemistry on the calcification rates of (= sensu Wells, 1973): bicarbonate concentrations best predict calcification rates publication-title: Global Change Biology – volume: 9 start-page: 105 year: 1990 end-page: 114 article-title: Residence times of neutrally‐buoyant matter such as larvae, sewage or nutrients on coral reef publication-title: Coral Reefs – volume: 107 start-page: 2527 year: 2010 end-page: 2531 article-title: Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water publication-title: Proceedings of the National Academy of Science – volume: 99 start-page: 259 year: 1995 end-page: 280 article-title: The mechanism of production enhancement in coral reef carbonate systems: model and empirical results publication-title: Sedimentary Geology – volume: 7 start-page: 2509 year: 2010 end-page: 2530 article-title: Feedbacks and responses of coral calcification on the Bermuda reefsystem to seasonal changes in biological processes and ocean acidification publication-title: Biogeoscience – volume: 13 start-page: 1419 year: 2010 end-page: 1434 article-title: Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms publication-title: Ecology Letters – volume: 6 start-page: 1811 year: 2009 end-page: 1823 article-title: Net loss of CaCO from a subtropical calcifying community due to seawater acidification: mesocosm‐scale experimental evidence publication-title: Biogeosciences – volume: 14 start-page: 639 year: 2000 end-page: 654 article-title: Effects of calcium carbonate saturation state on the calcification rate of an experimental coral reef publication-title: Global Biochemical Cycles – volume: 35 start-page: 936 year: 1991 end-page: 948 article-title: measurements of flow effects on primary production and dark respiration in reef corals publication-title: Limnology and Oceanography – volume: 36 start-page: L05606 year: 2009 article-title: Coral reefs may start dissolving when atmospheric CO doubles publication-title: Geophysical Research Letters – ident: e_1_2_10_53_1 doi: 10.5194/bg-3-357-2006 – ident: e_1_2_10_7_1 doi: 10.5194/bg-7-2509-2010 – ident: e_1_2_10_23_1 doi: 10.1126/science.1152509 – ident: e_1_2_10_50_1 doi: 10.1016/0037-0738(95)00048-D – ident: e_1_2_10_21_1 doi: 10.4319/lo.2000.45.1.0246 – ident: e_1_2_10_44_1 doi: 10.01029/02010GL046053 – ident: e_1_2_10_26_1 doi: 10.1126/science.269.5221.214 – ident: e_1_2_10_18_1 doi: 10.3354/meps129307 – ident: e_1_2_10_4_1 doi: 10.1111/j.1365-2486.2010.02364.x – ident: e_1_2_10_20_1 doi: 10.1093/icb/39.1.160 – ident: e_1_2_10_8_1 doi: 10.4319/lo.1992.37.2.0261 – ident: e_1_2_10_12_1 doi: 10.4319/lo.1991.36.6.1232 – start-page: 88 volume-title: Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research – St Petersburg report year: 2006 ident: e_1_2_10_30_1 – ident: e_1_2_10_10_1 doi: 10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2 – ident: e_1_2_10_11_1 doi: 10.1038/425365a – ident: e_1_2_10_13_1 doi: 10.1007/BF00301191 – ident: e_1_2_10_14_1 doi: 10.1111/j.1461-0248.2010.01565.x – ident: e_1_2_10_34_1 doi: 10.1029/1999GB001195 – ident: e_1_2_10_24_1 doi: 10.1017/CBO9780511535543 – ident: e_1_2_10_38_1 doi: 10.1029/2009JC006023 – ident: e_1_2_10_15_1 doi: 10.1016/S0304-4203(02)00133-0 – ident: e_1_2_10_33_1 doi: 10.1029/2004JC002576 – ident: e_1_2_10_49_1 doi: 10.4319/lo.1975.20.3.0493 – ident: e_1_2_10_2_1 doi: 10.5194/bg-6-1811-2009 – ident: e_1_2_10_47_1 doi: 10.1029/2008GL036282 – ident: e_1_2_10_17_1 doi: 10.1029/2007JC004663 – ident: e_1_2_10_35_1 doi: 10.2172/639712 – ident: e_1_2_10_19_1 doi: 10.3354/meps096259 – ident: e_1_2_10_51_1 doi: 10.1029/94JC02736 – ident: e_1_2_10_46_1 doi: 10.1029/2006JC003770 – ident: e_1_2_10_29_1 doi: 10.1029/61CE06 – ident: e_1_2_10_37_1 doi: 10.1073/pnas.0912348107 – ident: e_1_2_10_41_1 doi: 10.4319/lo.1991.36.5.0936 – ident: e_1_2_10_52_1 doi: 10.1029/92JC00188 – ident: e_1_2_10_3_1 doi: 10.1073/pnas.0804478105 – ident: e_1_2_10_36_1 doi: 10.3354/meps220153 – ident: e_1_2_10_5_1 doi: 10.1016/0022-0981(83)90036-9 – ident: e_1_2_10_39_1 doi: 10.1146/annurev.fluid.38.050304.092125 – ident: e_1_2_10_31_1 doi: 10.1111/j.1365-2486.2011.02530.x – start-page: 75 volume-title: Ecosystems of the World: Coral Reefs year: 1990 ident: e_1_2_10_40_1 – ident: e_1_2_10_9_1 doi: 10.1007/BF00258221 – ident: e_1_2_10_16_1 – ident: e_1_2_10_25_1 doi: 10.1111/j.1365-2486.2009.02057.x – ident: e_1_2_10_42_1 doi: 10.1046/j.1365-2486.2003.00678.x – ident: e_1_2_10_27_1 doi: 10.4319/lo.1978.23.5.0989 – ident: e_1_2_10_48_1 doi: 10.4319/lo.1973.18.1.0106 – ident: e_1_2_10_6_1 doi: 10.4319/lo.2001.46.4.0833 – ident: e_1_2_10_22_1 doi: 10.1016/j.ecss.2009.11.022 – ident: e_1_2_10_43_1 doi: 10.1126/science.1097403 – start-page: 505 volume-title: Proceedings of the 5th International Coral Reef Congress year: 1985 ident: e_1_2_10_28_1 – ident: e_1_2_10_45_1 doi: 10.4319/lo.2006.51.3.1284 – ident: e_1_2_10_32_1 doi: 10.1111/j.1461-0248.2010.01518.x |
SSID | ssj0003206 |
Score | 2.4662244 |
Snippet | Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification caused by... Abstract Reviews suggest that that the biogeochemical threshold for sustained coral reef growth will be reached during this century due to ocean acidification... |
SourceID | hal proquest pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3655 |
SubjectTerms | Acidification Algae Animal and plant ecology Animal, plant and microbial ecology aragonite saturation Biogeochemistry Biological and medical sciences calcification Carbon dioxide Chemical analysis coral reef Coral reefs Earth Sciences Fundamental and applied biological sciences. Psychology General aspects Great Barrier Reef Habitats Marine ecology Ocean acidification Oceanography Oceans Photosynthesis Sciences of the Universe Seawater Shallow water Water analysis |
Title | Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification |
URI | https://api.istex.fr/ark:/67375/WNG-0N1Q2QS5-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02510.x https://www.proquest.com/docview/908112506 https://hal.science/hal-03502007 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BERIXfgIVplCtEOrNkdfeje1jidpGiEYqUNHbyvsnohQb2Sm0nHgH3pAnYWbtuDHiUCFycuJZy57Mznyz_naGkFeAsPPYKR46YfKQQ1AJ8ziLwpQxk-XCsYLjbuTj-WR2yt-cibOO_4R7Ydr6EP2CG84M769xgheqGU5yz9Di2aSrxAmhOhojnsQTiI_eXVeSSmLfZpMlgoPnYcmQ1PPXCw0i1e1PyJO8g6q_RP5k0YAKXdv7YgBONyGuj1GHD8hy_XQtNWU5vlipsf7-R-HH__P4D8n9DsrS_db2HpFbthyRu21zy6sR2T643kMHYp0TaUYkOAagXtVejO7R6fkCULP_9pi4KVYMoLW1rqGfK7NwV9S_y6AwJb8BLq6pLmpVlVSvO9XRXz9-0sUGMZ4CDqft7s-GVo5ChC5KWuiFQVqUl3lCTg8PPkxnYdcKItQ8hwRXuFwbZbI05tpFmRKpNYzZWDOljUhS8NKJcSyyxiUKUkrwTDoFMGx5lEBCp5NtslVWpX1KKETjKFWQWEBchtwUDpTNM7xO6uDDApKu_3apuzrp2K7jXG7kS6B6iaqXqHrpVS8vA8L6kV_aWiE3GPMSLKsXx2Lfs_23En_Dd764kvwVbmnPG14vVtRLJOSlQn6cH8lozk7ik_dCioDsDiyzHxBzrFLEJgHZWZuq7JxVI3OAhYBzIzg78SZ347uXR9PXePTsXwfukHt-kd7zg56TrVV9YV8AylupXT9_fwMd9EDp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BKwQXHoEKUygrhHpz5LW9sX0sUdsASaRCK3pbeV9q1OAgO4WWE_-Bf8gvYWbtuDHiUCF88mPWssfz-GY9O0PIa0DYWWhl7FuuMz8Gp-JnYRr4CWM6zbhleYyrkSfTwegkfnfKT5t2QLgWpq4P0U64oWY4e40KjhPSXS13KVpxOmhKcYKvDvoAKDexwbeLrz5c15KKQtdok0U8BtvDom5az1_v1PFVt88wU3ITmX-JGZR5BUy0dfeLDjxdB7nOSx08IPPV-9XJKef9i6Xsq-9_lH78Twx4SO43aJbu1eL3iNwyRY_cqftbXvXI1v71Mjoga-xI1SPeBLD6onRkdJcO5zMAzu7oMbFDLBpAS2NsRT8v9MxeUfc7g4JWfgNoXFKVl3JRULVqVkd__fhJZ2u58RSgOK0XgFZ0YSk46byguZppzIxyNE_IycH-8XDkN90gfBVnEONymyktdZqEsbJBKnliNGMmVEwqzaMEDHWkLQuMtpGEqBKMk0oAD5s4iCCmU9EW2SgWhXlKKDjkIJEQW4BrhvAUdqTJUrxPYmFjHklW312oplQ6duyYi7WQCVgvkPUCWS8c68WlR1g78ktdLuQGY16BaLXkWO97tDcWeA5_--Jk8ld4pF0neS1ZXp5jTl7CxafpoQim7Cg8-sgF98hORzTbAWGMhYrYwCPbK1kVjb2qRAbIEKBuAFcHTuZu_PTicPgG957968CX5O7oeDIW47fT99vknpuzd-lCz8nGsrwwLwD0LeWOU-bfI3xFBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BKxAXfgIVplBWCPXmyGvv-udY0qYB2ogCFb2t7F2viFLsyk6h5cQ78IY8CTNrx40RhwqRk-PMWvZkduab9bczhLwEhJ34JuOuETpxOQQVN_Fjz40Y03EiDEs57kY-nIaTY_7mRJy0_CfcC9PUh-gW3HBmWH-NE_xMm_4ktwwtHodtJU4I1d4Q8OQ6D70YLXz3_VUpqcC3fTZZIDi4Hhb0WT1_vVIvVN38jETJddT9BRIo0xp0aJrmFz10uopxbZAa3yPz5eM13JT58HyRDdX3Pyo__p_nv0_utliW7jTG94DcyIsBudV0t7wckI29q010INZ6kXpAnENA6mVlxeg2HZ3OADbbbw-JGWHJAFrluanpl1LPzCW1LzMozMlvAIwrqtIqKwuqlq3q6K8fP-lshRlPAYjTZvtnTUtDIUSnBU3VTCMvyso8IsfjvY-jidv2gnAVTyDDFSZROtNx5HNlvDgTUa4Zy33FMqVFEIGbDrRhXq5NkEFOCa5JRYCGc-4FkNGpYIOsFWWRPyYUwrEXZZBZQGCG5BQOsjyJ8TqRgQ9zSLT826VqC6Vjv45TuZIwgeolql6i6qVVvbxwCOtGnjXFQq4x5gVYVieO1b4nOwcSz-FLX1xK_gq3tG0NrxNLqzky8iIhP033pTdlR_7RByGFQ7Z6ltkN8DmWKWKhQzaXpipbb1XLBHAhAF0Pfg2tyV377uX-6BUePfnXgc_J7Xe7Y3nwevp2k9yxC_aWK_SUrC2q8_wZIL5FtmWn8m8qGUO8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coral+reefs+modify+their+seawater+carbon+chemistry+%E2%80%93+implications+for+impacts+of+ocean+acidification&rft.jtitle=Global+change+biology&rft.au=Anthony%2C+Kenneth+R.+N.&rft.au=A.+Kleypas%2C+Joan&rft.au=Gattuso%2C+Jean%E2%80%90Pierre&rft.date=2011-12-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=12&rft.spage=3655&rft.epage=3666&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02510.x&rft.externalDBID=10.1111%252Fj.1365-2486.2011.02510.x&rft.externalDocID=GCB2510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |