On the Inertial Single Phase Flow in 2D Model Porous Media: Role of Microscopic Structural Disorder
In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regime...
Saved in:
Published in | Transport in porous media Vol. 128; no. 1; pp. 201 - 220 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2019
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0169-3913 1573-1634 |
DOI | 10.1007/s11242-019-01241-x |
Cover
Abstract | In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regimes observed before the flow becomes unsteady. For this purpose, six globally disordered pore structures were generated and the values of the critical Reynolds number at which the flow becomes unsteady corresponding to the first Hopf bifurcation were determined. Numerical simulations of steady laminar single-phase flow were then carried out to investigate the effects of the microstructures on the inertial correction to Darcy’s law. Different flow regimes, namely weak inertia, strong inertia and the regime beyond strong inertia, are identified. Comparisons are made with results presented in the literature which were restricted to ordered and locally disordered structures. The critical Reynolds number decreases and inertia intensity increases as more disorder is introduced into the pore structure. Results on flow inertia widely extend some previous studies on the subject and show that it is mainly influenced by the shape of the obstacles (either circular or square), slightly affected by the inclination of the square cylinders and hardly disturbed by the size distribution of the obstacles. |
---|---|
AbstractList | In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regimes observed before the flow becomes unsteady. For this purpose, six globally disordered pore structures were generated and the values of the critical Reynolds number at which the flow becomes unsteady corresponding to the first Hopf bifurcation were determined. Numerical simulations of steady laminar single-phase flow were then carried out to investigate the effects of the microstructures on the inertial correction to Darcy’s law. Different flow regimes, namely weak inertia, strong inertia and the regime beyond strong inertia, are identified. Comparisons are made with results presented in the literature which were restricted to ordered and locally disordered structures. The critical Reynolds number decreases and inertia intensity increases as more disorder is introduced into the pore structure. Results on flow inertia widely extend some previous studies on the subject and show that it is mainly influenced by the shape of the obstacles (either circular or square), slightly affected by the inclination of the square cylinders and hardly disturbed by the size distribution of the obstacles. In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regimes observed before the flow becomes unsteady. For this purpose, six globally disordered pore structures were generated and the values of the critical Reynolds number at which the flow becomes unsteady corresponding to the first Hopf bifurcation were determined. Numerical simulations of steady laminar single-phase flow were then carried out to investigate the effects of the microstructures on the inertial correction to Darcy’s law. Different flow regimes, namely weak inertia, strong inertia and the regime beyond strong inertia, are identified. Comparisons are made with results presented in the literature which were restricted to ordered and locally disordered structures. The critical Reynolds number decreases and inertia intensity increases as more disorder is introduced into the pore structure. Results on flow inertia widely extend some previous studies on the subject and show that it is mainly influenced by the shape of the obstacles (either circular or square), slightly affected by the inclination of the square cylinders and hardly disturbed by the size distribution of theobstacles. |
Author | Ahmadi, Azita Wang, Yibiao Lasseux, Didier |
Author_xml | – sequence: 1 givenname: Yibiao surname: Wang fullname: Wang, Yibiao organization: Arts et Métiers, CNRS, I2M – sequence: 2 givenname: Azita surname: Ahmadi fullname: Ahmadi, Azita organization: Arts et Métiers, CNRS, I2M – sequence: 3 givenname: Didier orcidid: 0000-0002-6080-8226 surname: Lasseux fullname: Lasseux, Didier email: didier.lasseux@u-bordeaux.fr organization: CNRS, I2M, UMR 5295 |
BackLink | https://hal.science/hal-02180936$$DView record in HAL |
BookMark | eNp9kU1rHSEUhqWk0Ju0f6AroassJvGo82F3Id9wLwlNuxavOrmGqd6o0yb_Pk4mNNDFXRyEw_Occ_DdR3s-eIvQVyBHQEh7nAAopxUBUYpyqJ4-oAXULaugYXwPLQg0omIC2Ce0n9IDIUXr-ALpG4_zxuJrb2N2asB3zt8PFt9uVLL4Ygh_sfOYnuFVMHbAtyGGMeGVNU59xz9CIUOPV07HkHTYOo3vchx1HmMZdeZSiMbGz-hjr4Zkv7y9B-jXxfnP06tqeXN5fXqyrDQXkKu-0cJw3nLFBTPd2jTQtIqYNeUdsRoMs0wwbSagY3oNxoqWdNr0nWoaWLMDdDjP3ahBbqP7reKzDMrJq5OlnHqEQkcEa_5AYb_N7DaGx9GmLB_CGH05T1LGeV3XAHwnRUlLmajFRNGZmn4hRdv_Ww5ETvHIOR5Z4pGv8cinInX_SdpllV3wOSo37FbZrKayx9_b-H7VDusF5X2kZg |
CitedBy_id | crossref_primary_10_1017_jfm_2023_1083 crossref_primary_10_1115_1_4049689 |
Cites_doi | 10.1002/fld.1650140306 10.1115/IMECE2010-37689 10.1137/S0895479899358194 10.1016/S0169-5983(03)00016-9 10.1016/j.advwatres.2004.02.021 10.1063/1.3615514 10.5942/jawwa.2016.108.0141 10.1017/S0022112095000255 10.1007/BF00141261 10.1016/j.compfluid.2016.05.030 10.1063/1.869365 10.1017/S002211200100684X 10.1143/JPSJ.10.694 10.1016/j.energy.2011.10.033 10.1017/S0022112087002234 10.1016/j.ijheatfluidflow.2008.02.016 10.1016/j.ijheatmasstransfer.2014.02.069 10.1007/s11242-006-9096-x 10.1103/PhysRevE.95.023101 10.1017/S0022112008001924 10.1017/S002211209700671X 10.1016/j.jcrysgro.2017.11.019 10.1063/1.857691 10.1021/ie50720a004 10.1016/S0889-9746(94)90020-5 10.1016/S0017-9310(96)00347-X 10.1016/j.compfluid.2010.07.012 10.1007/978-1-4612-6374-6 10.1063/1.168744 10.1016/S0997-7546(99)80010-7 10.1103/PhysRevLett.82.5249 10.1016/0009-2509(75)80010-8 10.1016/j.advwatres.2017.07.004 10.1016/j.crme.2017.06.005 10.1016/0167-6105(90)90219-3 10.1016/j.cma.2005.10.009 10.1103/PhysRevE.96.043105 10.1016/j.advwatres.2016.02.012 10.1017/S0022112091001258 10.1007/978-94-017-3389-2 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 Copyright Springer Nature B.V. 2019 Transport in Porous Media is a copyright of Springer, (2019). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Copyright Springer Nature B.V. 2019 – notice: Transport in Porous Media is a copyright of Springer, (2019). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES |
DOI | 10.1007/s11242-019-01241-x |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1573-1634 |
EndPage | 220 |
ExternalDocumentID | oai_HAL_hal_02180936v1 10_1007_s11242_019_01241_x |
GroupedDBID | -5A -5G -5~ -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV L6V LAK LLZTM M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PDBOC PF- PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z8M Z8N Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z ZMTXR ~02 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RIG RNI RZC RZE RZK S1Z S26 S28 SCK SCLPG T16 TEORI W4F WK6 ABRTQ PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 1XC VOOES |
ID | FETCH-LOGICAL-c491t-f6c9d4474a493d8bd6167a0db2480ec1d3e393cd74a483cb1de9708cdf8a661b3 |
IEDL.DBID | U2A |
ISSN | 0169-3913 |
IngestDate | Fri Jul 04 06:49:10 EDT 2025 Thu Aug 21 17:39:58 EDT 2025 Fri Jul 25 11:01:15 EDT 2025 Tue Jul 01 03:58:20 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Fri Feb 21 02:36:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Darcy–Forchheimer Non-Darcy flow Flow regimes Inertial one-phase flow General Chemical Engineering Catalysis |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-f6c9d4474a493d8bd6167a0db2480ec1d3e393cd74a483cb1de9708cdf8a661b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6080-8226 0000-0001-6865-7541 |
OpenAccessLink | https://hal.science/hal-02180936 |
PQID | 2344555114 |
PQPubID | 2043596 |
PageCount | 20 |
ParticipantIDs | hal_primary_oai_HAL_hal_02180936v1 proquest_journals_2344555114 proquest_journals_2207239594 crossref_primary_10_1007_s11242_019_01241_x crossref_citationtrail_10_1007_s11242_019_01241_x springer_journals_10_1007_s11242_019_01241_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Transport in porous media |
PublicationTitleAbbrev | Transp Porous Med |
PublicationYear | 2019 |
Publisher | Springer Netherlands Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer Verlag |
References | JacksonCPA finite-element study of the onset of vortex shedding in flow past variously shaped bodiesJ. Fluid Mech.1987182234510.1017/S0022112087002234 EdwardsDAShapiroMBar-YosephPShapiraMThe influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylindersPhys. Fluids A199021455510.1063/1.857691 AgnaouMLasseuxDAhmadiAOrigin of the inertial deviation from Darcy’s law: an investigation from a microscopic flow analysis on two-dimensional model structuresPhys. Rev. E201796043,10510.1103/PhysRevE.96.043105 AuriaultJLGeindreauCOrgéasLUpscaling Forchheimer lawTransp. Porous Media200770221322910.1007/s11242-006-9096-x LankadasuAVengadesanSOnset of vortex shedding in planar shear flow past a square cylinderInt. J. Heat Fluid Flow20082941054105910.1016/j.ijheatfluidflow.2008.02.016 Abbasian Arani, A.A.: Sur quelques aspects des écoulements inertiels mono- et diphasique en milieu poreux. PhD thesis, Université de Bordeaux I (2006) LasseuxDAbbasian AraniAAAhmadiAOn the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous mediaPhys. Fluids201123707310310.1063/1.3615514 LeeSYangJModeling of Darcy–Forchheimer drag for fluid flow across a bank of circular cylindersInt. J. Heat Mass Transf.199740133149315510.1016/S0017-9310(96)00347-X AmestoyPRDuffISL’ExcellentJKosterJA fully asynchronous multifrontal solver using distributed dynamic schedulingSIAM J. Matrix Anal. Appl.2001231154110.1137/S0895479899358194 KawagutiMThe critical Reynolds number for the flow past a sphereJ. Phys. Soc. Jpn.19551069469910.1143/JPSJ.10.694 WhitakerSAdvances in theory of fluid motion in porous mediaInd. Eng. Chem.19696112142810.1021/ie50720a004 COMSOL Multiphysics: Comsol multiphysics user’s guide version 4.3a (2012) SkjetneEAuriaultJLNew insights on steady, non-linear flow in porous mediaEur. J. Mech. B/Fluids199918113114510.1016/S0997-7546(99)80010-7 Amaral SoutoHPMoyneCDispersion in two-dimensional periodic porous media. Part I. hydrodynamicsPhys. Fluids1997982243225210.1063/1.869365 LasseuxDValdés-ParadaFJOn the developments of Darcy’s law to include inertial and slip effects. A century of fluid mechanics: 1870–1970C. R. Méc.2017345966066910.1016/j.crme.2017.06.005 Clavier, R.: Etude expérimentale et modélisation des pertes de pression lors du renoyage d’un lit de débris. PhD thesis, Université de Toulouse (2015) AndradeJSCostaUMSAlmeidaMPMakseHAStanleyHEInertial effects on fluid flow through disordered porous mediaPhys. Rev. Lett.1999825249525210.1103/PhysRevLett.82.5249 KumarBMittalSPrediction of the critical Reynolds number for flow past a circular cylinderComput. Methods Appl. Mech. Eng.200619544–476046605810.1016/j.cma.2005.10.009 ChaiZHShiBCLuJHGuoZLNon-Darcy flow in disordered porous media: a lattice-Boltzmann studyComput. Fluids201039102069207710.1016/j.compfluid.2010.07.012 WhitakerSThe Method of Volume Averaging: Theory and Applications of Transport in Porous Media1999DordrechtKluwer Academic10.1007/978-94-017-3389-2 EnayatiHBraunMChandyANumerical simulations of porous medium with different permeabilities and positions in a laterally-heated cylindrical enclosure for crystal growthJ. Cryst. Growth2018483658010.1016/j.jcrysgro.2017.11.019 MarsdenJEMcCrackenMThe Hopf Bifurcation and Its Applications1976New YorkSpringer Barrère, J.: Modélisation des écoulements de Stokes et Navier–Stokes en milieu poreux. PhD thesis, Université de Bordeaux I (1990) WhitakerSThe Forchheimer equation: a theoretical developmentTransp. Porous Media1996251276110.1007/BF00141261 HillRJKochDLModerate-Reynolds-number flow in a wall-bounded porous mediumJ. Fluid Mech.200245331534410.1017/S002211200100684X Sohankar, A., Norberg, C., Davidson, L.: Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. Int. J. Numer. Methods Fluids 26(1), 39–56 (1998). https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}39::AID-FLD623>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document}3.0.CO;2-P SoulaineCQuintardMOn the use of a Darcy–Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packingsInt. J. Heat Mass Transf.2014748810010.1016/j.ijheatmasstransfer.2014.02.069 GrayWGA derivation of the equations for multi-phase transportChem. Eng. Sci.197530222923310.1016/0009-2509(75)80010-8 ForchheimerPWasserbewgung durch BodenVereines Deutscher Ingenieure1901XXXXV4517821788 FrankeRRodiWSchnungBNumerical calculation of laminar vortex-shedding flow past cylindersJ. Wind Eng. Ind. Aerodyn.19903523725710.1016/0167-6105(90)90219-3 YuceMIKareemDAA numerical analysis of fluid flow around circular and square cylindersJ. Am. Water Works Assoc.20161081054655410.5942/jawwa.2016.108.0141 Agnaou, M.: Une étude numérique des écoulements mono et diphasique inertiels en milieux poreux. PhD thesis, Arts et Métiers ParisTech, Centre de Bordeaux, Talence (2015) MeiCCAuriaultJLThe effect of weak inertia on flow through a porous mediumJ. Fluid Mech.199122264766310.1017/S0022112091001258 WellerHGTaborGJasakHFurebyCA tensorial approach to computational continuum mechanics using object-oriented techniquesComput. Phys.199812662063110.1063/1.168744 ZakiTGSenMGad-El-HakMNumerical and experimental investigation of flow past a freely rotatable square cylinderJ. Fluids Struct.19948755558210.1016/S0889-9746(94)90020-5 AgnaouMLasseuxDAhmadiAFrom steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcationComput. Fluids2016136678210.1016/j.compfluid.2016.05.030 Valdés-ParadaFJLasseuxDBelletFA new formulation of the dispersion tensor in homogeneous porous mediaAdv. Water Resour.201690708210.1016/j.advwatres.2016.02.012 FourarMRadillaGLenormandRMoyneCOn the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous mediaAdv. Water Resour.200427666967710.1016/j.advwatres.2004.02.021 LiuMChenYZhanHHuRZhouCA generalized forchheimer radial flow model for constant-rate testsAdv. Water Resour.201710731732510.1016/j.advwatres.2017.07.004 MizushimaJAkinagaTVortex shedding from a row of square barsFluid Dyn. Res.200332417919110.1016/S0169-5983(03)00016-9 KelkarKMPatankarSVNumerical prediction of vortex shedding behind a square cylinderInt. J. Numer. Methods Fluids199214332734110.1002/fld.1650140306 KumarSRSharmaAAgrawalASimulation of flow around a row of square cylindersJ. Fluid Mech.200860636939710.1017/S0022112008001924 ChenJHPritchardWGTavenerSJBifurcation for flow past a cylinder between parallel planesJ. Fluid Mech.1995284234110.1017/S0022112095000255 PayriFBroatchASerranoJPiquerasPExperimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (dpfs)Energy201136126731674410.1016/j.energy.2011.10.033 GeraBSharmaPKSinghRKCFD analysis of 2D unsteady flow around a square cylinderInt. J. Appl. Eng. Res.201013602 KochDLLaddAJCModerate Reynolds number flows through periodic and random arrays of aligned cylindersJ. Fluid Mech.1997349316610.1017/S002211209700671X Paéz-GarcíaCTValdés-ParadaEJLasseuxDMacroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous mediaPhys. Rev. E201795202310110.1103/PhysRevE.95.023101 YazdchiKSrivastavaSLudingSOn the transition from creeping to inertial flow in arrays of cylindersMech. Solids Struct. Fluids2010976777210.1115/IMECE2010-37689 JE Marsden (1241_CR33) 1976 E Skjetne (1241_CR38) 1999; 18 HG Weller (1241_CR42) 1998; 12 S Whitaker (1241_CR45) 1999 JS Andrade (1241_CR7) 1999; 82 M Fourar (1241_CR17) 2004; 27 C Soulaine (1241_CR40) 2014; 74 CC Mei (1241_CR34) 1991; 222 DA Edwards (1241_CR14) 1990; 2 K Yazdchi (1241_CR46) 2010; 9 S Whitaker (1241_CR43) 1969; 61 B Kumar (1241_CR26) 2006; 195 M Agnaou (1241_CR4) 2017; 96 M Liu (1241_CR32) 2017; 107 S Lee (1241_CR31) 1997; 40 MI Yuce (1241_CR47) 2016; 108 HP Amaral Souto (1241_CR5) 1997; 9 F Payri (1241_CR37) 2011; 36 R Franke (1241_CR18) 1990; 35 CT Paéz-García (1241_CR36) 2017; 95 ZH Chai (1241_CR10) 2010; 39 P Forchheimer (1241_CR16) 1901; XXXXV TG Zaki (1241_CR48) 1994; 8 1241_CR39 A Lankadasu (1241_CR28) 2008; 29 1241_CR13 1241_CR12 B Gera (1241_CR19) 2010; 1 1241_CR9 H Enayati (1241_CR15) 2018; 483 JH Chen (1241_CR11) 1995; 284 1241_CR2 1241_CR1 M Agnaou (1241_CR3) 2016; 136 FJ Valdés-Parada (1241_CR41) 2016; 90 M Kawaguti (1241_CR23) 1955; 10 D Lasseux (1241_CR30) 2017; 345 S Whitaker (1241_CR44) 1996; 25 SR Kumar (1241_CR27) 2008; 606 KM Kelkar (1241_CR24) 1992; 14 DL Koch (1241_CR25) 1997; 349 CP Jackson (1241_CR22) 1987; 182 J Mizushima (1241_CR35) 2003; 32 JL Auriault (1241_CR8) 2007; 70 RJ Hill (1241_CR21) 2002; 453 D Lasseux (1241_CR29) 2011; 23 WG Gray (1241_CR20) 1975; 30 PR Amestoy (1241_CR6) 2001; 23 |
References_xml | – reference: WhitakerSAdvances in theory of fluid motion in porous mediaInd. Eng. Chem.19696112142810.1021/ie50720a004 – reference: AgnaouMLasseuxDAhmadiAFrom steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcationComput. Fluids2016136678210.1016/j.compfluid.2016.05.030 – reference: EdwardsDAShapiroMBar-YosephPShapiraMThe influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylindersPhys. Fluids A199021455510.1063/1.857691 – reference: LiuMChenYZhanHHuRZhouCA generalized forchheimer radial flow model for constant-rate testsAdv. Water Resour.201710731732510.1016/j.advwatres.2017.07.004 – reference: Sohankar, A., Norberg, C., Davidson, L.: Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. Int. J. Numer. Methods Fluids 26(1), 39–56 (1998). https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}39::AID-FLD623>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document}3.0.CO;2-P – reference: WellerHGTaborGJasakHFurebyCA tensorial approach to computational continuum mechanics using object-oriented techniquesComput. Phys.199812662063110.1063/1.168744 – reference: AmestoyPRDuffISL’ExcellentJKosterJA fully asynchronous multifrontal solver using distributed dynamic schedulingSIAM J. Matrix Anal. Appl.2001231154110.1137/S0895479899358194 – reference: PayriFBroatchASerranoJPiquerasPExperimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (dpfs)Energy201136126731674410.1016/j.energy.2011.10.033 – reference: FourarMRadillaGLenormandRMoyneCOn the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous mediaAdv. Water Resour.200427666967710.1016/j.advwatres.2004.02.021 – reference: LeeSYangJModeling of Darcy–Forchheimer drag for fluid flow across a bank of circular cylindersInt. J. Heat Mass Transf.199740133149315510.1016/S0017-9310(96)00347-X – reference: MarsdenJEMcCrackenMThe Hopf Bifurcation and Its Applications1976New YorkSpringer – reference: Barrère, J.: Modélisation des écoulements de Stokes et Navier–Stokes en milieu poreux. PhD thesis, Université de Bordeaux I (1990) – reference: Amaral SoutoHPMoyneCDispersion in two-dimensional periodic porous media. Part I. hydrodynamicsPhys. Fluids1997982243225210.1063/1.869365 – reference: KumarSRSharmaAAgrawalASimulation of flow around a row of square cylindersJ. Fluid Mech.200860636939710.1017/S0022112008001924 – reference: YuceMIKareemDAA numerical analysis of fluid flow around circular and square cylindersJ. Am. Water Works Assoc.20161081054655410.5942/jawwa.2016.108.0141 – reference: MeiCCAuriaultJLThe effect of weak inertia on flow through a porous mediumJ. Fluid Mech.199122264766310.1017/S0022112091001258 – reference: GeraBSharmaPKSinghRKCFD analysis of 2D unsteady flow around a square cylinderInt. J. Appl. Eng. Res.201013602 – reference: Clavier, R.: Etude expérimentale et modélisation des pertes de pression lors du renoyage d’un lit de débris. PhD thesis, Université de Toulouse (2015) – reference: HillRJKochDLModerate-Reynolds-number flow in a wall-bounded porous mediumJ. Fluid Mech.200245331534410.1017/S002211200100684X – reference: FrankeRRodiWSchnungBNumerical calculation of laminar vortex-shedding flow past cylindersJ. Wind Eng. Ind. Aerodyn.19903523725710.1016/0167-6105(90)90219-3 – reference: JacksonCPA finite-element study of the onset of vortex shedding in flow past variously shaped bodiesJ. Fluid Mech.1987182234510.1017/S0022112087002234 – reference: Agnaou, M.: Une étude numérique des écoulements mono et diphasique inertiels en milieux poreux. PhD thesis, Arts et Métiers ParisTech, Centre de Bordeaux, Talence (2015) – reference: KochDLLaddAJCModerate Reynolds number flows through periodic and random arrays of aligned cylindersJ. Fluid Mech.1997349316610.1017/S002211209700671X – reference: AuriaultJLGeindreauCOrgéasLUpscaling Forchheimer lawTransp. Porous Media200770221322910.1007/s11242-006-9096-x – reference: ForchheimerPWasserbewgung durch BodenVereines Deutscher Ingenieure1901XXXXV4517821788 – reference: SkjetneEAuriaultJLNew insights on steady, non-linear flow in porous mediaEur. J. Mech. B/Fluids199918113114510.1016/S0997-7546(99)80010-7 – reference: AndradeJSCostaUMSAlmeidaMPMakseHAStanleyHEInertial effects on fluid flow through disordered porous mediaPhys. Rev. Lett.1999825249525210.1103/PhysRevLett.82.5249 – reference: Abbasian Arani, A.A.: Sur quelques aspects des écoulements inertiels mono- et diphasique en milieu poreux. PhD thesis, Université de Bordeaux I (2006) – reference: AgnaouMLasseuxDAhmadiAOrigin of the inertial deviation from Darcy’s law: an investigation from a microscopic flow analysis on two-dimensional model structuresPhys. Rev. E201796043,10510.1103/PhysRevE.96.043105 – reference: ChenJHPritchardWGTavenerSJBifurcation for flow past a cylinder between parallel planesJ. Fluid Mech.1995284234110.1017/S0022112095000255 – reference: GrayWGA derivation of the equations for multi-phase transportChem. Eng. Sci.197530222923310.1016/0009-2509(75)80010-8 – reference: ChaiZHShiBCLuJHGuoZLNon-Darcy flow in disordered porous media: a lattice-Boltzmann studyComput. Fluids201039102069207710.1016/j.compfluid.2010.07.012 – reference: KelkarKMPatankarSVNumerical prediction of vortex shedding behind a square cylinderInt. J. Numer. Methods Fluids199214332734110.1002/fld.1650140306 – reference: MizushimaJAkinagaTVortex shedding from a row of square barsFluid Dyn. Res.200332417919110.1016/S0169-5983(03)00016-9 – reference: EnayatiHBraunMChandyANumerical simulations of porous medium with different permeabilities and positions in a laterally-heated cylindrical enclosure for crystal growthJ. Cryst. Growth2018483658010.1016/j.jcrysgro.2017.11.019 – reference: WhitakerSThe Method of Volume Averaging: Theory and Applications of Transport in Porous Media1999DordrechtKluwer Academic10.1007/978-94-017-3389-2 – reference: Paéz-GarcíaCTValdés-ParadaEJLasseuxDMacroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous mediaPhys. Rev. E201795202310110.1103/PhysRevE.95.023101 – reference: WhitakerSThe Forchheimer equation: a theoretical developmentTransp. Porous Media1996251276110.1007/BF00141261 – reference: LasseuxDAbbasian AraniAAAhmadiAOn the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous mediaPhys. Fluids201123707310310.1063/1.3615514 – reference: LasseuxDValdés-ParadaFJOn the developments of Darcy’s law to include inertial and slip effects. A century of fluid mechanics: 1870–1970C. R. Méc.2017345966066910.1016/j.crme.2017.06.005 – reference: Valdés-ParadaFJLasseuxDBelletFA new formulation of the dispersion tensor in homogeneous porous mediaAdv. Water Resour.201690708210.1016/j.advwatres.2016.02.012 – reference: ZakiTGSenMGad-El-HakMNumerical and experimental investigation of flow past a freely rotatable square cylinderJ. Fluids Struct.19948755558210.1016/S0889-9746(94)90020-5 – reference: KumarBMittalSPrediction of the critical Reynolds number for flow past a circular cylinderComput. Methods Appl. Mech. Eng.200619544–476046605810.1016/j.cma.2005.10.009 – reference: COMSOL Multiphysics: Comsol multiphysics user’s guide version 4.3a (2012) – reference: LankadasuAVengadesanSOnset of vortex shedding in planar shear flow past a square cylinderInt. J. Heat Fluid Flow20082941054105910.1016/j.ijheatfluidflow.2008.02.016 – reference: KawagutiMThe critical Reynolds number for the flow past a sphereJ. Phys. Soc. Jpn.19551069469910.1143/JPSJ.10.694 – reference: YazdchiKSrivastavaSLudingSOn the transition from creeping to inertial flow in arrays of cylindersMech. Solids Struct. Fluids2010976777210.1115/IMECE2010-37689 – reference: SoulaineCQuintardMOn the use of a Darcy–Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packingsInt. J. Heat Mass Transf.2014748810010.1016/j.ijheatmasstransfer.2014.02.069 – volume: 14 start-page: 327 issue: 3 year: 1992 ident: 1241_CR24 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650140306 – volume: 9 start-page: 767 year: 2010 ident: 1241_CR46 publication-title: Mech. Solids Struct. Fluids doi: 10.1115/IMECE2010-37689 – ident: 1241_CR39 – volume: 23 start-page: 15 issue: 1 year: 2001 ident: 1241_CR6 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479899358194 – volume: 32 start-page: 179 issue: 4 year: 2003 ident: 1241_CR35 publication-title: Fluid Dyn. Res. doi: 10.1016/S0169-5983(03)00016-9 – volume: 27 start-page: 669 issue: 6 year: 2004 ident: 1241_CR17 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2004.02.021 – volume: 23 start-page: 073103 issue: 7 year: 2011 ident: 1241_CR29 publication-title: Phys. Fluids doi: 10.1063/1.3615514 – volume: 108 start-page: 546 issue: 10 year: 2016 ident: 1241_CR47 publication-title: J. Am. Water Works Assoc. doi: 10.5942/jawwa.2016.108.0141 – volume: 284 start-page: 23 year: 1995 ident: 1241_CR11 publication-title: J. Fluid Mech. doi: 10.1017/S0022112095000255 – ident: 1241_CR1 – volume: 25 start-page: 27 issue: 1 year: 1996 ident: 1241_CR44 publication-title: Transp. Porous Media doi: 10.1007/BF00141261 – volume: 136 start-page: 67 year: 2016 ident: 1241_CR3 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.05.030 – volume: 9 start-page: 2243 issue: 8 year: 1997 ident: 1241_CR5 publication-title: Phys. Fluids doi: 10.1063/1.869365 – ident: 1241_CR9 – volume: 453 start-page: 315 year: 2002 ident: 1241_CR21 publication-title: J. Fluid Mech. doi: 10.1017/S002211200100684X – volume: 10 start-page: 694 year: 1955 ident: 1241_CR23 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.10.694 – volume: 1 start-page: 602 issue: 3 year: 2010 ident: 1241_CR19 publication-title: Int. J. Appl. Eng. Res. – volume: 36 start-page: 6731 issue: 12 year: 2011 ident: 1241_CR37 publication-title: Energy doi: 10.1016/j.energy.2011.10.033 – volume: 182 start-page: 23 year: 1987 ident: 1241_CR22 publication-title: J. Fluid Mech. doi: 10.1017/S0022112087002234 – volume: XXXXV start-page: 1782 issue: 45 year: 1901 ident: 1241_CR16 publication-title: Vereines Deutscher Ingenieure – volume: 29 start-page: 1054 issue: 4 year: 2008 ident: 1241_CR28 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2008.02.016 – volume: 74 start-page: 88 year: 2014 ident: 1241_CR40 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.02.069 – volume: 70 start-page: 213 issue: 2 year: 2007 ident: 1241_CR8 publication-title: Transp. Porous Media doi: 10.1007/s11242-006-9096-x – volume: 95 start-page: 023101 issue: 2 year: 2017 ident: 1241_CR36 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.023101 – ident: 1241_CR13 – ident: 1241_CR2 – volume: 606 start-page: 369 year: 2008 ident: 1241_CR27 publication-title: J. Fluid Mech. doi: 10.1017/S0022112008001924 – volume: 349 start-page: 31 year: 1997 ident: 1241_CR25 publication-title: J. Fluid Mech. doi: 10.1017/S002211209700671X – volume: 483 start-page: 65 year: 2018 ident: 1241_CR15 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2017.11.019 – volume: 2 start-page: 45 issue: 1 year: 1990 ident: 1241_CR14 publication-title: Phys. Fluids A doi: 10.1063/1.857691 – volume: 61 start-page: 14 issue: 12 year: 1969 ident: 1241_CR43 publication-title: Ind. Eng. Chem. doi: 10.1021/ie50720a004 – volume: 8 start-page: 555 issue: 7 year: 1994 ident: 1241_CR48 publication-title: J. Fluids Struct. doi: 10.1016/S0889-9746(94)90020-5 – volume: 40 start-page: 3149 issue: 13 year: 1997 ident: 1241_CR31 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(96)00347-X – volume: 39 start-page: 2069 issue: 10 year: 2010 ident: 1241_CR10 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2010.07.012 – volume-title: The Hopf Bifurcation and Its Applications year: 1976 ident: 1241_CR33 doi: 10.1007/978-1-4612-6374-6 – volume: 12 start-page: 620 issue: 6 year: 1998 ident: 1241_CR42 publication-title: Comput. Phys. doi: 10.1063/1.168744 – volume: 18 start-page: 131 issue: 1 year: 1999 ident: 1241_CR38 publication-title: Eur. J. Mech. B/Fluids doi: 10.1016/S0997-7546(99)80010-7 – volume: 82 start-page: 5249 year: 1999 ident: 1241_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.5249 – volume: 30 start-page: 229 issue: 2 year: 1975 ident: 1241_CR20 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(75)80010-8 – volume: 107 start-page: 317 year: 2017 ident: 1241_CR32 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.07.004 – volume: 345 start-page: 660 issue: 9 year: 2017 ident: 1241_CR30 publication-title: C. R. Méc. doi: 10.1016/j.crme.2017.06.005 – ident: 1241_CR12 – volume: 35 start-page: 237 year: 1990 ident: 1241_CR18 publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(90)90219-3 – volume: 195 start-page: 6046 issue: 44–47 year: 2006 ident: 1241_CR26 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.10.009 – volume: 96 start-page: 043,105 year: 2017 ident: 1241_CR4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.043105 – volume: 90 start-page: 70 year: 2016 ident: 1241_CR41 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.02.012 – volume: 222 start-page: 647 year: 1991 ident: 1241_CR34 publication-title: J. Fluid Mech. doi: 10.1017/S0022112091001258 – volume-title: The Method of Volume Averaging: Theory and Applications of Transport in Porous Media year: 1999 ident: 1241_CR45 doi: 10.1007/978-94-017-3389-2 |
SSID | ssj0010084 |
Score | 2.2277994 |
Snippet | In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 201 |
SubjectTerms | Barriers Civil Engineering Classical and Continuum Physics Computational fluid dynamics Computer simulation Cylinders Earth and Environmental Science Earth Sciences Engineering Sciences Fluid flow Geotechnical Engineering & Applied Earth Sciences Hopf bifurcation Hydrogeology Hydrology/Water Resources Inclination Incompressible flow Industrial Chemistry/Chemical Engineering Inertia Laminar flow Mathematical models Porosity Porous media Reactive fluid environment Reynolds number Single-phase flow Size distribution Two dimensional flow Two dimensional models |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZT9wwEB5xCNEX1HKIBVpZFW9gER85zEuFaLfbqhwqReItio9okVYJZRHw85nJJssh4DUeW9HMxDPxfP4GYLssjTM-xFyGMnBt45RbH-FmaEwwhNFxDZfe0XEyONe_L-KL9sBt3MIquz2x2ah97eiMfE8qrWMM70J_u_rPqWsUVVfbFhqzMC8w0pCfZ_2f0yoCkcVPuL0NV0ao9tLM5OocBjYCJRBaCKMYv38WmGaHBIt8knO-KJM20af_EZbatJEdTOz8CWZCtQyLh123tmVYaKCcbrwC7qRimNWxXxVBpnHSGa44Cux0iAGL9Uf1HbusmPzOqA3aiJ3W1_jzz6hgU-yzvzVK1iU7Ipwe3Vi5dOysoZgleg7WcXWuwnn_x7_DAW9bKXDUtbjhZYIW0TrVhTbKZ9YnIkmLyFupsyg44VVQRjlPAplyVvhg0ihzvswKjOBWrcFcVVdhHVgZMkwTMhe5FFOD1FkZF0QxEyzlBrLsgej0mLuWZ5zaXYzyR4Zk0n2Ous8b3ef3PdiZzrmasGy8K_0VzTMVJILswcGfnJ5RxhIZldyKHmx11svbz3KcSxmlUpnY6NeHpz7Wg93O4I_Db7_RxvurbcIH2Xga4SS3YA7NFj5jLnNjvzQO-wCK9OwF priority: 102 providerName: ProQuest |
Title | On the Inertial Single Phase Flow in 2D Model Porous Media: Role of Microscopic Structural Disorder |
URI | https://link.springer.com/article/10.1007/s11242-019-01241-x https://www.proquest.com/docview/2207239594 https://www.proquest.com/docview/2344555114 https://hal.science/hal-02180936 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54QXZfFq_s7OoQxDe30CbpJb6NOuPoru6gDuhTaS5FYWjFkdWf7zmddkZFhX0qNCehnJPkfOV8-QKwk-fKKOtCj7vceVKHsaetj5uhUk4RR8dUWnqnZ1F_KE-uwqv6UNi4Ybs3Jclqp54ddsNURDQC4vdg3vEQOS6G-O9Oy3HIO9PaAUnETxS9lSdUIOqjMu-P8Sodzd8QGfIF0nxTHK1yTm8ZvtVgkXUm0V2BOVeswpeD5o62VViqCJxmvAbmb8EQy7HjgojS2OkCRxw5NrjBNMV6o_KR3RaMHzK6_GzEBuU9_vIzKtNke-y8RMsyZ6fEzqNzKreGXVTCsiTKwRqFznUY9rqXB32vvkDBQw8HD14eYRykjGUmlbCJtlEQxZlvNZeJ70xghRNKGEsGiTA6sE7FfmJsnmSYt7XYgIWiLNx3YLlLEBwkxjcxAoLYaB5mJCzjNCECnrcgaPyYmlpdnC65GKUzXWTyfYq-Tyvfp08t2J32uZtoa3xqvY3hmRqSLHa_8yeld4RTfCWif0ELNpvopfViHKec-zEXKlTy_WYhZYjAMcDmX03AZ80ff9GP_zP_CV95NfOILbkJCxhGt4WI5kG3YT7pHbVhsXN0_buLz_3u2eC8XU3rZ5Mc7YA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RQEJ7AEoMvBlDjKuCJ0SdtbM85vRwTQxDY7MruuuGS8FZ6Lg0kmxZdFPxT_kZnelnQKG-89lzazEzPTDvffAPwOs-VUdaFHne586QOY09bHw9DpZwijI6puPRG46h_LD-fhCcL8KuthSFYZXsmVge1LQ39I3_PhZQhuvdAbl189ahrFGVX2xYatVnsu59X-Mk2-zjYRf2-4by3d7TT95quAh7eNrj08ggfTspYZlIJm2gbBVGc-VZzmfjOBFY4oYSxNCERRgfWqdhPjM2TDJ2ZFrjvIixJqmjtwNKnvfHkYJ63IHr6mk1ceUIFoinTqYv10JUSDILwSeg3ves_XOHiGQExb0W5fyVmK3_XW4FHTaDKtmvLWoUFV6zB8k7bH24NHlTgUTN7DOZLwTCOZIOCQNq46BB3nDo2OUMXyXrT8oqdF4zvMmq8NmWT8lv5fcYoRZR9YAclzixzNiJkINXInBt2WJHaEiEIa9lBn8DxvYj5KXSKsnDPgOUuwcAkMb6JMRiJjeZhRqQ2TlM0wvMuBK0cU9Mwm1ODjWl6w8lMsk9R9mkl-_S6C2_nay5qXo87Z79C9cwnEiV3f3uY0jWKkXwloh9BF9Zb7aXNQTBLOfdjLlSo5L-H51bdhXetwm-G__9Ez-_e7SUs949Gw3Q4GO-_gIe8sjpCaa5DB1XoNjCSutSbjfkyOL3vN-Y3W0IrAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwELZaEC0vCGgRSzksxFsbER853LcVsFruFXQl3qz4EkirBJUV9Od3JpvsAqJIfY3HVjTjeL7I33xDyF4Iyirnk4j74CNpkiwyLobDUCmvkKNjay2984u0P5QnN8nNsyr-mu3eXklOahpQpakc79-7sD8rfIO0hJQC5PpADooARc7Dccxwpw95d3qPgHLxE3VvFQnFRFM28_YaL1LTx1skRj5Dna8uSuv801smSw1wpN1JpFfIB1-uks8Hbb-2VbJQkzntwxdiL0sKuI4el0iahknXsOLI08EtpCzaG1VP9K6k_JBiI7QRHVS_4fef4pVN8ZNeVWBZBXqOTD2sWbmz9LoWmUWBDtqqdX4lw97Rr4N-1DRTiMDbbByFFGIiZSYLqYTLjUtZmhWxM1zmsbfMCS-UsA4NcmENc15lcW5dyAvI4UaskbmyKv06ocHnABRyG9sMwEFmDU8KFJnxBtEBDx3CWj9q2yiNY8OLkZ5pJKPvNfhe177Xfzrk-3TO_URn413rXQjP1BAlsvvdM43PELPESqSPrEM22-jp5sN80JzHGRcqUfLtYSFlAiCSwfCPNuCz4X-_0cb_me-QT4PDnj47vjj9RhZ5vQmRRLlJ5iCifguAzths13v5L1Xx8Js |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Inertial+Single+Phase+Flow+in+2D+Model+Porous+Media%3A+Role+of+Microscopic+Structural+Disorder&rft.jtitle=Transport+in+porous+media&rft.au=Wang%2C+Yibiao&rft.au=Ahmadi%2C+Azita&rft.au=Lasseux%2C+Didier&rft.date=2019-05-01&rft.issn=0169-3913&rft.eissn=1573-1634&rft.volume=128&rft.issue=1&rft.spage=201&rft.epage=220&rft_id=info:doi/10.1007%2Fs11242-019-01241-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11242_019_01241_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-3913&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-3913&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-3913&client=summon |