On the Inertial Single Phase Flow in 2D Model Porous Media: Role of Microscopic Structural Disorder

In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regime...

Full description

Saved in:
Bibliographic Details
Published inTransport in porous media Vol. 128; no. 1; pp. 201 - 220
Main Authors Wang, Yibiao, Ahmadi, Azita, Lasseux, Didier
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2019
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0169-3913
1573-1634
DOI10.1007/s11242-019-01241-x

Cover

Abstract In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regimes observed before the flow becomes unsteady. For this purpose, six globally disordered pore structures were generated and the values of the critical Reynolds number at which the flow becomes unsteady corresponding to the first Hopf bifurcation were determined. Numerical simulations of steady laminar single-phase flow were then carried out to investigate the effects of the microstructures on the inertial correction to Darcy’s law. Different flow regimes, namely weak inertia, strong inertia and the regime beyond strong inertia, are identified. Comparisons are made with results presented in the literature which were restricted to ordered and locally disordered structures. The critical Reynolds number decreases and inertia intensity increases as more disorder is introduced into the pore structure. Results on flow inertia widely extend some previous studies on the subject and show that it is mainly influenced by the shape of the obstacles (either circular or square), slightly affected by the inclination of the square cylinders and hardly disturbed by the size distribution of the obstacles.
AbstractList In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regimes observed before the flow becomes unsteady. For this purpose, six globally disordered pore structures were generated and the values of the critical Reynolds number at which the flow becomes unsteady corresponding to the first Hopf bifurcation were determined. Numerical simulations of steady laminar single-phase flow were then carried out to investigate the effects of the microstructures on the inertial correction to Darcy’s law. Different flow regimes, namely weak inertia, strong inertia and the regime beyond strong inertia, are identified. Comparisons are made with results presented in the literature which were restricted to ordered and locally disordered structures. The critical Reynolds number decreases and inertia intensity increases as more disorder is introduced into the pore structure. Results on flow inertia widely extend some previous studies on the subject and show that it is mainly influenced by the shape of the obstacles (either circular or square), slightly affected by the inclination of the square cylinders and hardly disturbed by the size distribution of the obstacles.
In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regimes observed before the flow becomes unsteady. For this purpose, six globally disordered pore structures were generated and the values of the critical Reynolds number at which the flow becomes unsteady corresponding to the first Hopf bifurcation were determined. Numerical simulations of steady laminar single-phase flow were then carried out to investigate the effects of the microstructures on the inertial correction to Darcy’s law. Different flow regimes, namely weak inertia, strong inertia and the regime beyond strong inertia, are identified. Comparisons are made with results presented in the literature which were restricted to ordered and locally disordered structures. The critical Reynolds number decreases and inertia intensity increases as more disorder is introduced into the pore structure. Results on flow inertia widely extend some previous studies on the subject and show that it is mainly influenced by the shape of the obstacles (either circular or square), slightly affected by the inclination of the square cylinders and hardly disturbed by the size distribution of theobstacles.
Author Ahmadi, Azita
Wang, Yibiao
Lasseux, Didier
Author_xml – sequence: 1
  givenname: Yibiao
  surname: Wang
  fullname: Wang, Yibiao
  organization: Arts et Métiers, CNRS, I2M
– sequence: 2
  givenname: Azita
  surname: Ahmadi
  fullname: Ahmadi, Azita
  organization: Arts et Métiers, CNRS, I2M
– sequence: 3
  givenname: Didier
  orcidid: 0000-0002-6080-8226
  surname: Lasseux
  fullname: Lasseux, Didier
  email: didier.lasseux@u-bordeaux.fr
  organization: CNRS, I2M, UMR 5295
BackLink https://hal.science/hal-02180936$$DView record in HAL
BookMark eNp9kU1rHSEUhqWk0Ju0f6AroassJvGo82F3Id9wLwlNuxavOrmGqd6o0yb_Pk4mNNDFXRyEw_Occ_DdR3s-eIvQVyBHQEh7nAAopxUBUYpyqJ4-oAXULaugYXwPLQg0omIC2Ce0n9IDIUXr-ALpG4_zxuJrb2N2asB3zt8PFt9uVLL4Ygh_sfOYnuFVMHbAtyGGMeGVNU59xz9CIUOPV07HkHTYOo3vchx1HmMZdeZSiMbGz-hjr4Zkv7y9B-jXxfnP06tqeXN5fXqyrDQXkKu-0cJw3nLFBTPd2jTQtIqYNeUdsRoMs0wwbSagY3oNxoqWdNr0nWoaWLMDdDjP3ahBbqP7reKzDMrJq5OlnHqEQkcEa_5AYb_N7DaGx9GmLB_CGH05T1LGeV3XAHwnRUlLmajFRNGZmn4hRdv_Ww5ETvHIOR5Z4pGv8cinInX_SdpllV3wOSo37FbZrKayx9_b-H7VDusF5X2kZg
CitedBy_id crossref_primary_10_1017_jfm_2023_1083
crossref_primary_10_1115_1_4049689
Cites_doi 10.1002/fld.1650140306
10.1115/IMECE2010-37689
10.1137/S0895479899358194
10.1016/S0169-5983(03)00016-9
10.1016/j.advwatres.2004.02.021
10.1063/1.3615514
10.5942/jawwa.2016.108.0141
10.1017/S0022112095000255
10.1007/BF00141261
10.1016/j.compfluid.2016.05.030
10.1063/1.869365
10.1017/S002211200100684X
10.1143/JPSJ.10.694
10.1016/j.energy.2011.10.033
10.1017/S0022112087002234
10.1016/j.ijheatfluidflow.2008.02.016
10.1016/j.ijheatmasstransfer.2014.02.069
10.1007/s11242-006-9096-x
10.1103/PhysRevE.95.023101
10.1017/S0022112008001924
10.1017/S002211209700671X
10.1016/j.jcrysgro.2017.11.019
10.1063/1.857691
10.1021/ie50720a004
10.1016/S0889-9746(94)90020-5
10.1016/S0017-9310(96)00347-X
10.1016/j.compfluid.2010.07.012
10.1007/978-1-4612-6374-6
10.1063/1.168744
10.1016/S0997-7546(99)80010-7
10.1103/PhysRevLett.82.5249
10.1016/0009-2509(75)80010-8
10.1016/j.advwatres.2017.07.004
10.1016/j.crme.2017.06.005
10.1016/0167-6105(90)90219-3
10.1016/j.cma.2005.10.009
10.1103/PhysRevE.96.043105
10.1016/j.advwatres.2016.02.012
10.1017/S0022112091001258
10.1007/978-94-017-3389-2
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Copyright Springer Nature B.V. 2019
Transport in Porous Media is a copyright of Springer, (2019). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Copyright Springer Nature B.V. 2019
– notice: Transport in Porous Media is a copyright of Springer, (2019). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOI 10.1007/s11242-019-01241-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList ProQuest Materials Science Collection



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1573-1634
EndPage 220
ExternalDocumentID oai_HAL_hal_02180936v1
10_1007_s11242_019_01241_x
GroupedDBID -5A
-5G
-5~
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
L6V
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PDBOC
PF-
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8N
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
ZMTXR
~02
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RIG
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCK
SCLPG
T16
TEORI
W4F
WK6
ABRTQ
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c491t-f6c9d4474a493d8bd6167a0db2480ec1d3e393cd74a483cb1de9708cdf8a661b3
IEDL.DBID U2A
ISSN 0169-3913
IngestDate Fri Jul 04 06:49:10 EDT 2025
Thu Aug 21 17:39:58 EDT 2025
Fri Jul 25 11:01:15 EDT 2025
Tue Jul 01 03:58:20 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Fri Feb 21 02:36:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Darcy–Forchheimer
Non-Darcy flow
Flow regimes
Inertial one-phase flow
General Chemical Engineering
Catalysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-f6c9d4474a493d8bd6167a0db2480ec1d3e393cd74a483cb1de9708cdf8a661b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6080-8226
0000-0001-6865-7541
OpenAccessLink https://hal.science/hal-02180936
PQID 2344555114
PQPubID 2043596
PageCount 20
ParticipantIDs hal_primary_oai_HAL_hal_02180936v1
proquest_journals_2344555114
proquest_journals_2207239594
crossref_primary_10_1007_s11242_019_01241_x
crossref_citationtrail_10_1007_s11242_019_01241_x
springer_journals_10_1007_s11242_019_01241_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Transport in porous media
PublicationTitleAbbrev Transp Porous Med
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer Verlag
References JacksonCPA finite-element study of the onset of vortex shedding in flow past variously shaped bodiesJ. Fluid Mech.1987182234510.1017/S0022112087002234
EdwardsDAShapiroMBar-YosephPShapiraMThe influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylindersPhys. Fluids A199021455510.1063/1.857691
AgnaouMLasseuxDAhmadiAOrigin of the inertial deviation from Darcy’s law: an investigation from a microscopic flow analysis on two-dimensional model structuresPhys. Rev. E201796043,10510.1103/PhysRevE.96.043105
AuriaultJLGeindreauCOrgéasLUpscaling Forchheimer lawTransp. Porous Media200770221322910.1007/s11242-006-9096-x
LankadasuAVengadesanSOnset of vortex shedding in planar shear flow past a square cylinderInt. J. Heat Fluid Flow20082941054105910.1016/j.ijheatfluidflow.2008.02.016
Abbasian Arani, A.A.: Sur quelques aspects des écoulements inertiels mono- et diphasique en milieu poreux. PhD thesis, Université de Bordeaux I (2006)
LasseuxDAbbasian AraniAAAhmadiAOn the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous mediaPhys. Fluids201123707310310.1063/1.3615514
LeeSYangJModeling of Darcy–Forchheimer drag for fluid flow across a bank of circular cylindersInt. J. Heat Mass Transf.199740133149315510.1016/S0017-9310(96)00347-X
AmestoyPRDuffISL’ExcellentJKosterJA fully asynchronous multifrontal solver using distributed dynamic schedulingSIAM J. Matrix Anal. Appl.2001231154110.1137/S0895479899358194
KawagutiMThe critical Reynolds number for the flow past a sphereJ. Phys. Soc. Jpn.19551069469910.1143/JPSJ.10.694
WhitakerSAdvances in theory of fluid motion in porous mediaInd. Eng. Chem.19696112142810.1021/ie50720a004
COMSOL Multiphysics: Comsol multiphysics user’s guide version 4.3a (2012)
SkjetneEAuriaultJLNew insights on steady, non-linear flow in porous mediaEur. J. Mech. B/Fluids199918113114510.1016/S0997-7546(99)80010-7
Amaral SoutoHPMoyneCDispersion in two-dimensional periodic porous media. Part I. hydrodynamicsPhys. Fluids1997982243225210.1063/1.869365
LasseuxDValdés-ParadaFJOn the developments of Darcy’s law to include inertial and slip effects. A century of fluid mechanics: 1870–1970C. R. Méc.2017345966066910.1016/j.crme.2017.06.005
Clavier, R.: Etude expérimentale et modélisation des pertes de pression lors du renoyage d’un lit de débris. PhD thesis, Université de Toulouse (2015)
AndradeJSCostaUMSAlmeidaMPMakseHAStanleyHEInertial effects on fluid flow through disordered porous mediaPhys. Rev. Lett.1999825249525210.1103/PhysRevLett.82.5249
KumarBMittalSPrediction of the critical Reynolds number for flow past a circular cylinderComput. Methods Appl. Mech. Eng.200619544–476046605810.1016/j.cma.2005.10.009
ChaiZHShiBCLuJHGuoZLNon-Darcy flow in disordered porous media: a lattice-Boltzmann studyComput. Fluids201039102069207710.1016/j.compfluid.2010.07.012
WhitakerSThe Method of Volume Averaging: Theory and Applications of Transport in Porous Media1999DordrechtKluwer Academic10.1007/978-94-017-3389-2
EnayatiHBraunMChandyANumerical simulations of porous medium with different permeabilities and positions in a laterally-heated cylindrical enclosure for crystal growthJ. Cryst. Growth2018483658010.1016/j.jcrysgro.2017.11.019
MarsdenJEMcCrackenMThe Hopf Bifurcation and Its Applications1976New YorkSpringer
Barrère, J.: Modélisation des écoulements de Stokes et Navier–Stokes en milieu poreux. PhD thesis, Université de Bordeaux I (1990)
WhitakerSThe Forchheimer equation: a theoretical developmentTransp. Porous Media1996251276110.1007/BF00141261
HillRJKochDLModerate-Reynolds-number flow in a wall-bounded porous mediumJ. Fluid Mech.200245331534410.1017/S002211200100684X
Sohankar, A., Norberg, C., Davidson, L.: Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. Int. J. Numer. Methods Fluids 26(1), 39–56 (1998). https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}39::AID-FLD623>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document}3.0.CO;2-P
SoulaineCQuintardMOn the use of a Darcy–Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packingsInt. J. Heat Mass Transf.2014748810010.1016/j.ijheatmasstransfer.2014.02.069
GrayWGA derivation of the equations for multi-phase transportChem. Eng. Sci.197530222923310.1016/0009-2509(75)80010-8
ForchheimerPWasserbewgung durch BodenVereines Deutscher Ingenieure1901XXXXV4517821788
FrankeRRodiWSchnungBNumerical calculation of laminar vortex-shedding flow past cylindersJ. Wind Eng. Ind. Aerodyn.19903523725710.1016/0167-6105(90)90219-3
YuceMIKareemDAA numerical analysis of fluid flow around circular and square cylindersJ. Am. Water Works Assoc.20161081054655410.5942/jawwa.2016.108.0141
Agnaou, M.: Une étude numérique des écoulements mono et diphasique inertiels en milieux poreux. PhD thesis, Arts et Métiers ParisTech, Centre de Bordeaux, Talence (2015)
MeiCCAuriaultJLThe effect of weak inertia on flow through a porous mediumJ. Fluid Mech.199122264766310.1017/S0022112091001258
WellerHGTaborGJasakHFurebyCA tensorial approach to computational continuum mechanics using object-oriented techniquesComput. Phys.199812662063110.1063/1.168744
ZakiTGSenMGad-El-HakMNumerical and experimental investigation of flow past a freely rotatable square cylinderJ. Fluids Struct.19948755558210.1016/S0889-9746(94)90020-5
AgnaouMLasseuxDAhmadiAFrom steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcationComput. Fluids2016136678210.1016/j.compfluid.2016.05.030
Valdés-ParadaFJLasseuxDBelletFA new formulation of the dispersion tensor in homogeneous porous mediaAdv. Water Resour.201690708210.1016/j.advwatres.2016.02.012
FourarMRadillaGLenormandRMoyneCOn the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous mediaAdv. Water Resour.200427666967710.1016/j.advwatres.2004.02.021
LiuMChenYZhanHHuRZhouCA generalized forchheimer radial flow model for constant-rate testsAdv. Water Resour.201710731732510.1016/j.advwatres.2017.07.004
MizushimaJAkinagaTVortex shedding from a row of square barsFluid Dyn. Res.200332417919110.1016/S0169-5983(03)00016-9
KelkarKMPatankarSVNumerical prediction of vortex shedding behind a square cylinderInt. J. Numer. Methods Fluids199214332734110.1002/fld.1650140306
KumarSRSharmaAAgrawalASimulation of flow around a row of square cylindersJ. Fluid Mech.200860636939710.1017/S0022112008001924
ChenJHPritchardWGTavenerSJBifurcation for flow past a cylinder between parallel planesJ. Fluid Mech.1995284234110.1017/S0022112095000255
PayriFBroatchASerranoJPiquerasPExperimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (dpfs)Energy201136126731674410.1016/j.energy.2011.10.033
GeraBSharmaPKSinghRKCFD analysis of 2D unsteady flow around a square cylinderInt. J. Appl. Eng. Res.201013602
KochDLLaddAJCModerate Reynolds number flows through periodic and random arrays of aligned cylindersJ. Fluid Mech.1997349316610.1017/S002211209700671X
Paéz-GarcíaCTValdés-ParadaEJLasseuxDMacroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous mediaPhys. Rev. E201795202310110.1103/PhysRevE.95.023101
YazdchiKSrivastavaSLudingSOn the transition from creeping to inertial flow in arrays of cylindersMech. Solids Struct. Fluids2010976777210.1115/IMECE2010-37689
JE Marsden (1241_CR33) 1976
E Skjetne (1241_CR38) 1999; 18
HG Weller (1241_CR42) 1998; 12
S Whitaker (1241_CR45) 1999
JS Andrade (1241_CR7) 1999; 82
M Fourar (1241_CR17) 2004; 27
C Soulaine (1241_CR40) 2014; 74
CC Mei (1241_CR34) 1991; 222
DA Edwards (1241_CR14) 1990; 2
K Yazdchi (1241_CR46) 2010; 9
S Whitaker (1241_CR43) 1969; 61
B Kumar (1241_CR26) 2006; 195
M Agnaou (1241_CR4) 2017; 96
M Liu (1241_CR32) 2017; 107
S Lee (1241_CR31) 1997; 40
MI Yuce (1241_CR47) 2016; 108
HP Amaral Souto (1241_CR5) 1997; 9
F Payri (1241_CR37) 2011; 36
R Franke (1241_CR18) 1990; 35
CT Paéz-García (1241_CR36) 2017; 95
ZH Chai (1241_CR10) 2010; 39
P Forchheimer (1241_CR16) 1901; XXXXV
TG Zaki (1241_CR48) 1994; 8
1241_CR39
A Lankadasu (1241_CR28) 2008; 29
1241_CR13
1241_CR12
B Gera (1241_CR19) 2010; 1
1241_CR9
H Enayati (1241_CR15) 2018; 483
JH Chen (1241_CR11) 1995; 284
1241_CR2
1241_CR1
M Agnaou (1241_CR3) 2016; 136
FJ Valdés-Parada (1241_CR41) 2016; 90
M Kawaguti (1241_CR23) 1955; 10
D Lasseux (1241_CR30) 2017; 345
S Whitaker (1241_CR44) 1996; 25
SR Kumar (1241_CR27) 2008; 606
KM Kelkar (1241_CR24) 1992; 14
DL Koch (1241_CR25) 1997; 349
CP Jackson (1241_CR22) 1987; 182
J Mizushima (1241_CR35) 2003; 32
JL Auriault (1241_CR8) 2007; 70
RJ Hill (1241_CR21) 2002; 453
D Lasseux (1241_CR29) 2011; 23
WG Gray (1241_CR20) 1975; 30
PR Amestoy (1241_CR6) 2001; 23
References_xml – reference: WhitakerSAdvances in theory of fluid motion in porous mediaInd. Eng. Chem.19696112142810.1021/ie50720a004
– reference: AgnaouMLasseuxDAhmadiAFrom steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcationComput. Fluids2016136678210.1016/j.compfluid.2016.05.030
– reference: EdwardsDAShapiroMBar-YosephPShapiraMThe influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylindersPhys. Fluids A199021455510.1063/1.857691
– reference: LiuMChenYZhanHHuRZhouCA generalized forchheimer radial flow model for constant-rate testsAdv. Water Resour.201710731732510.1016/j.advwatres.2017.07.004
– reference: Sohankar, A., Norberg, C., Davidson, L.: Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. Int. J. Numer. Methods Fluids 26(1), 39–56 (1998). https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}39::AID-FLD623>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document}3.0.CO;2-P
– reference: WellerHGTaborGJasakHFurebyCA tensorial approach to computational continuum mechanics using object-oriented techniquesComput. Phys.199812662063110.1063/1.168744
– reference: AmestoyPRDuffISL’ExcellentJKosterJA fully asynchronous multifrontal solver using distributed dynamic schedulingSIAM J. Matrix Anal. Appl.2001231154110.1137/S0895479899358194
– reference: PayriFBroatchASerranoJPiquerasPExperimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (dpfs)Energy201136126731674410.1016/j.energy.2011.10.033
– reference: FourarMRadillaGLenormandRMoyneCOn the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous mediaAdv. Water Resour.200427666967710.1016/j.advwatres.2004.02.021
– reference: LeeSYangJModeling of Darcy–Forchheimer drag for fluid flow across a bank of circular cylindersInt. J. Heat Mass Transf.199740133149315510.1016/S0017-9310(96)00347-X
– reference: MarsdenJEMcCrackenMThe Hopf Bifurcation and Its Applications1976New YorkSpringer
– reference: Barrère, J.: Modélisation des écoulements de Stokes et Navier–Stokes en milieu poreux. PhD thesis, Université de Bordeaux I (1990)
– reference: Amaral SoutoHPMoyneCDispersion in two-dimensional periodic porous media. Part I. hydrodynamicsPhys. Fluids1997982243225210.1063/1.869365
– reference: KumarSRSharmaAAgrawalASimulation of flow around a row of square cylindersJ. Fluid Mech.200860636939710.1017/S0022112008001924
– reference: YuceMIKareemDAA numerical analysis of fluid flow around circular and square cylindersJ. Am. Water Works Assoc.20161081054655410.5942/jawwa.2016.108.0141
– reference: MeiCCAuriaultJLThe effect of weak inertia on flow through a porous mediumJ. Fluid Mech.199122264766310.1017/S0022112091001258
– reference: GeraBSharmaPKSinghRKCFD analysis of 2D unsteady flow around a square cylinderInt. J. Appl. Eng. Res.201013602
– reference: Clavier, R.: Etude expérimentale et modélisation des pertes de pression lors du renoyage d’un lit de débris. PhD thesis, Université de Toulouse (2015)
– reference: HillRJKochDLModerate-Reynolds-number flow in a wall-bounded porous mediumJ. Fluid Mech.200245331534410.1017/S002211200100684X
– reference: FrankeRRodiWSchnungBNumerical calculation of laminar vortex-shedding flow past cylindersJ. Wind Eng. Ind. Aerodyn.19903523725710.1016/0167-6105(90)90219-3
– reference: JacksonCPA finite-element study of the onset of vortex shedding in flow past variously shaped bodiesJ. Fluid Mech.1987182234510.1017/S0022112087002234
– reference: Agnaou, M.: Une étude numérique des écoulements mono et diphasique inertiels en milieux poreux. PhD thesis, Arts et Métiers ParisTech, Centre de Bordeaux, Talence (2015)
– reference: KochDLLaddAJCModerate Reynolds number flows through periodic and random arrays of aligned cylindersJ. Fluid Mech.1997349316610.1017/S002211209700671X
– reference: AuriaultJLGeindreauCOrgéasLUpscaling Forchheimer lawTransp. Porous Media200770221322910.1007/s11242-006-9096-x
– reference: ForchheimerPWasserbewgung durch BodenVereines Deutscher Ingenieure1901XXXXV4517821788
– reference: SkjetneEAuriaultJLNew insights on steady, non-linear flow in porous mediaEur. J. Mech. B/Fluids199918113114510.1016/S0997-7546(99)80010-7
– reference: AndradeJSCostaUMSAlmeidaMPMakseHAStanleyHEInertial effects on fluid flow through disordered porous mediaPhys. Rev. Lett.1999825249525210.1103/PhysRevLett.82.5249
– reference: Abbasian Arani, A.A.: Sur quelques aspects des écoulements inertiels mono- et diphasique en milieu poreux. PhD thesis, Université de Bordeaux I (2006)
– reference: AgnaouMLasseuxDAhmadiAOrigin of the inertial deviation from Darcy’s law: an investigation from a microscopic flow analysis on two-dimensional model structuresPhys. Rev. E201796043,10510.1103/PhysRevE.96.043105
– reference: ChenJHPritchardWGTavenerSJBifurcation for flow past a cylinder between parallel planesJ. Fluid Mech.1995284234110.1017/S0022112095000255
– reference: GrayWGA derivation of the equations for multi-phase transportChem. Eng. Sci.197530222923310.1016/0009-2509(75)80010-8
– reference: ChaiZHShiBCLuJHGuoZLNon-Darcy flow in disordered porous media: a lattice-Boltzmann studyComput. Fluids201039102069207710.1016/j.compfluid.2010.07.012
– reference: KelkarKMPatankarSVNumerical prediction of vortex shedding behind a square cylinderInt. J. Numer. Methods Fluids199214332734110.1002/fld.1650140306
– reference: MizushimaJAkinagaTVortex shedding from a row of square barsFluid Dyn. Res.200332417919110.1016/S0169-5983(03)00016-9
– reference: EnayatiHBraunMChandyANumerical simulations of porous medium with different permeabilities and positions in a laterally-heated cylindrical enclosure for crystal growthJ. Cryst. Growth2018483658010.1016/j.jcrysgro.2017.11.019
– reference: WhitakerSThe Method of Volume Averaging: Theory and Applications of Transport in Porous Media1999DordrechtKluwer Academic10.1007/978-94-017-3389-2
– reference: Paéz-GarcíaCTValdés-ParadaEJLasseuxDMacroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous mediaPhys. Rev. E201795202310110.1103/PhysRevE.95.023101
– reference: WhitakerSThe Forchheimer equation: a theoretical developmentTransp. Porous Media1996251276110.1007/BF00141261
– reference: LasseuxDAbbasian AraniAAAhmadiAOn the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous mediaPhys. Fluids201123707310310.1063/1.3615514
– reference: LasseuxDValdés-ParadaFJOn the developments of Darcy’s law to include inertial and slip effects. A century of fluid mechanics: 1870–1970C. R. Méc.2017345966066910.1016/j.crme.2017.06.005
– reference: Valdés-ParadaFJLasseuxDBelletFA new formulation of the dispersion tensor in homogeneous porous mediaAdv. Water Resour.201690708210.1016/j.advwatres.2016.02.012
– reference: ZakiTGSenMGad-El-HakMNumerical and experimental investigation of flow past a freely rotatable square cylinderJ. Fluids Struct.19948755558210.1016/S0889-9746(94)90020-5
– reference: KumarBMittalSPrediction of the critical Reynolds number for flow past a circular cylinderComput. Methods Appl. Mech. Eng.200619544–476046605810.1016/j.cma.2005.10.009
– reference: COMSOL Multiphysics: Comsol multiphysics user’s guide version 4.3a (2012)
– reference: LankadasuAVengadesanSOnset of vortex shedding in planar shear flow past a square cylinderInt. J. Heat Fluid Flow20082941054105910.1016/j.ijheatfluidflow.2008.02.016
– reference: KawagutiMThe critical Reynolds number for the flow past a sphereJ. Phys. Soc. Jpn.19551069469910.1143/JPSJ.10.694
– reference: YazdchiKSrivastavaSLudingSOn the transition from creeping to inertial flow in arrays of cylindersMech. Solids Struct. Fluids2010976777210.1115/IMECE2010-37689
– reference: SoulaineCQuintardMOn the use of a Darcy–Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packingsInt. J. Heat Mass Transf.2014748810010.1016/j.ijheatmasstransfer.2014.02.069
– volume: 14
  start-page: 327
  issue: 3
  year: 1992
  ident: 1241_CR24
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650140306
– volume: 9
  start-page: 767
  year: 2010
  ident: 1241_CR46
  publication-title: Mech. Solids Struct. Fluids
  doi: 10.1115/IMECE2010-37689
– ident: 1241_CR39
– volume: 23
  start-page: 15
  issue: 1
  year: 2001
  ident: 1241_CR6
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479899358194
– volume: 32
  start-page: 179
  issue: 4
  year: 2003
  ident: 1241_CR35
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/S0169-5983(03)00016-9
– volume: 27
  start-page: 669
  issue: 6
  year: 2004
  ident: 1241_CR17
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2004.02.021
– volume: 23
  start-page: 073103
  issue: 7
  year: 2011
  ident: 1241_CR29
  publication-title: Phys. Fluids
  doi: 10.1063/1.3615514
– volume: 108
  start-page: 546
  issue: 10
  year: 2016
  ident: 1241_CR47
  publication-title: J. Am. Water Works Assoc.
  doi: 10.5942/jawwa.2016.108.0141
– volume: 284
  start-page: 23
  year: 1995
  ident: 1241_CR11
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095000255
– ident: 1241_CR1
– volume: 25
  start-page: 27
  issue: 1
  year: 1996
  ident: 1241_CR44
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00141261
– volume: 136
  start-page: 67
  year: 2016
  ident: 1241_CR3
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.05.030
– volume: 9
  start-page: 2243
  issue: 8
  year: 1997
  ident: 1241_CR5
  publication-title: Phys. Fluids
  doi: 10.1063/1.869365
– ident: 1241_CR9
– volume: 453
  start-page: 315
  year: 2002
  ident: 1241_CR21
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200100684X
– volume: 10
  start-page: 694
  year: 1955
  ident: 1241_CR23
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.10.694
– volume: 1
  start-page: 602
  issue: 3
  year: 2010
  ident: 1241_CR19
  publication-title: Int. J. Appl. Eng. Res.
– volume: 36
  start-page: 6731
  issue: 12
  year: 2011
  ident: 1241_CR37
  publication-title: Energy
  doi: 10.1016/j.energy.2011.10.033
– volume: 182
  start-page: 23
  year: 1987
  ident: 1241_CR22
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087002234
– volume: XXXXV
  start-page: 1782
  issue: 45
  year: 1901
  ident: 1241_CR16
  publication-title: Vereines Deutscher Ingenieure
– volume: 29
  start-page: 1054
  issue: 4
  year: 2008
  ident: 1241_CR28
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.02.016
– volume: 74
  start-page: 88
  year: 2014
  ident: 1241_CR40
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.02.069
– volume: 70
  start-page: 213
  issue: 2
  year: 2007
  ident: 1241_CR8
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-006-9096-x
– volume: 95
  start-page: 023101
  issue: 2
  year: 2017
  ident: 1241_CR36
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.023101
– ident: 1241_CR13
– ident: 1241_CR2
– volume: 606
  start-page: 369
  year: 2008
  ident: 1241_CR27
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008001924
– volume: 349
  start-page: 31
  year: 1997
  ident: 1241_CR25
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211209700671X
– volume: 483
  start-page: 65
  year: 2018
  ident: 1241_CR15
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2017.11.019
– volume: 2
  start-page: 45
  issue: 1
  year: 1990
  ident: 1241_CR14
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857691
– volume: 61
  start-page: 14
  issue: 12
  year: 1969
  ident: 1241_CR43
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50720a004
– volume: 8
  start-page: 555
  issue: 7
  year: 1994
  ident: 1241_CR48
  publication-title: J. Fluids Struct.
  doi: 10.1016/S0889-9746(94)90020-5
– volume: 40
  start-page: 3149
  issue: 13
  year: 1997
  ident: 1241_CR31
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(96)00347-X
– volume: 39
  start-page: 2069
  issue: 10
  year: 2010
  ident: 1241_CR10
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.07.012
– volume-title: The Hopf Bifurcation and Its Applications
  year: 1976
  ident: 1241_CR33
  doi: 10.1007/978-1-4612-6374-6
– volume: 12
  start-page: 620
  issue: 6
  year: 1998
  ident: 1241_CR42
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
– volume: 18
  start-page: 131
  issue: 1
  year: 1999
  ident: 1241_CR38
  publication-title: Eur. J. Mech. B/Fluids
  doi: 10.1016/S0997-7546(99)80010-7
– volume: 82
  start-page: 5249
  year: 1999
  ident: 1241_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.5249
– volume: 30
  start-page: 229
  issue: 2
  year: 1975
  ident: 1241_CR20
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(75)80010-8
– volume: 107
  start-page: 317
  year: 2017
  ident: 1241_CR32
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.07.004
– volume: 345
  start-page: 660
  issue: 9
  year: 2017
  ident: 1241_CR30
  publication-title: C. R. Méc.
  doi: 10.1016/j.crme.2017.06.005
– ident: 1241_CR12
– volume: 35
  start-page: 237
  year: 1990
  ident: 1241_CR18
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(90)90219-3
– volume: 195
  start-page: 6046
  issue: 44–47
  year: 2006
  ident: 1241_CR26
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.10.009
– volume: 96
  start-page: 043,105
  year: 2017
  ident: 1241_CR4
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.043105
– volume: 90
  start-page: 70
  year: 2016
  ident: 1241_CR41
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.02.012
– volume: 222
  start-page: 647
  year: 1991
  ident: 1241_CR34
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112091001258
– volume-title: The Method of Volume Averaging: Theory and Applications of Transport in Porous Media
  year: 1999
  ident: 1241_CR45
  doi: 10.1007/978-94-017-3389-2
SSID ssj0010084
Score 2.2277994
Snippet In this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms Barriers
Civil Engineering
Classical and Continuum Physics
Computational fluid dynamics
Computer simulation
Cylinders
Earth and Environmental Science
Earth Sciences
Engineering Sciences
Fluid flow
Geotechnical Engineering & Applied Earth Sciences
Hopf bifurcation
Hydrogeology
Hydrology/Water Resources
Inclination
Incompressible flow
Industrial Chemistry/Chemical Engineering
Inertia
Laminar flow
Mathematical models
Porosity
Porous media
Reactive fluid environment
Reynolds number
Single-phase flow
Size distribution
Two dimensional flow
Two dimensional models
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZT9wwEB5xCNEX1HKIBVpZFW9gER85zEuFaLfbqhwqReItio9okVYJZRHw85nJJssh4DUeW9HMxDPxfP4GYLssjTM-xFyGMnBt45RbH-FmaEwwhNFxDZfe0XEyONe_L-KL9sBt3MIquz2x2ah97eiMfE8qrWMM70J_u_rPqWsUVVfbFhqzMC8w0pCfZ_2f0yoCkcVPuL0NV0ao9tLM5OocBjYCJRBaCKMYv38WmGaHBIt8knO-KJM20af_EZbatJEdTOz8CWZCtQyLh123tmVYaKCcbrwC7qRimNWxXxVBpnHSGa44Cux0iAGL9Uf1HbusmPzOqA3aiJ3W1_jzz6hgU-yzvzVK1iU7Ipwe3Vi5dOysoZgleg7WcXWuwnn_x7_DAW9bKXDUtbjhZYIW0TrVhTbKZ9YnIkmLyFupsyg44VVQRjlPAplyVvhg0ihzvswKjOBWrcFcVVdhHVgZMkwTMhe5FFOD1FkZF0QxEyzlBrLsgej0mLuWZ5zaXYzyR4Zk0n2Ous8b3ef3PdiZzrmasGy8K_0VzTMVJILswcGfnJ5RxhIZldyKHmx11svbz3KcSxmlUpnY6NeHpz7Wg93O4I_Db7_RxvurbcIH2Xga4SS3YA7NFj5jLnNjvzQO-wCK9OwF
  priority: 102
  providerName: ProQuest
Title On the Inertial Single Phase Flow in 2D Model Porous Media: Role of Microscopic Structural Disorder
URI https://link.springer.com/article/10.1007/s11242-019-01241-x
https://www.proquest.com/docview/2207239594
https://www.proquest.com/docview/2344555114
https://hal.science/hal-02180936
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54QXZfFq_s7OoQxDe30CbpJb6NOuPoru6gDuhTaS5FYWjFkdWf7zmddkZFhX0qNCehnJPkfOV8-QKwk-fKKOtCj7vceVKHsaetj5uhUk4RR8dUWnqnZ1F_KE-uwqv6UNi4Ybs3Jclqp54ddsNURDQC4vdg3vEQOS6G-O9Oy3HIO9PaAUnETxS9lSdUIOqjMu-P8Sodzd8QGfIF0nxTHK1yTm8ZvtVgkXUm0V2BOVeswpeD5o62VViqCJxmvAbmb8EQy7HjgojS2OkCRxw5NrjBNMV6o_KR3RaMHzK6_GzEBuU9_vIzKtNke-y8RMsyZ6fEzqNzKreGXVTCsiTKwRqFznUY9rqXB32vvkDBQw8HD14eYRykjGUmlbCJtlEQxZlvNZeJ70xghRNKGEsGiTA6sE7FfmJsnmSYt7XYgIWiLNx3YLlLEBwkxjcxAoLYaB5mJCzjNCECnrcgaPyYmlpdnC65GKUzXWTyfYq-Tyvfp08t2J32uZtoa3xqvY3hmRqSLHa_8yeld4RTfCWif0ELNpvopfViHKec-zEXKlTy_WYhZYjAMcDmX03AZ80ff9GP_zP_CV95NfOILbkJCxhGt4WI5kG3YT7pHbVhsXN0_buLz_3u2eC8XU3rZ5Mc7YA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RQEJ7AEoMvBlDjKuCJ0SdtbM85vRwTQxDY7MruuuGS8FZ6Lg0kmxZdFPxT_kZnelnQKG-89lzazEzPTDvffAPwOs-VUdaFHne586QOY09bHw9DpZwijI6puPRG46h_LD-fhCcL8KuthSFYZXsmVge1LQ39I3_PhZQhuvdAbl189ahrFGVX2xYatVnsu59X-Mk2-zjYRf2-4by3d7TT95quAh7eNrj08ggfTspYZlIJm2gbBVGc-VZzmfjOBFY4oYSxNCERRgfWqdhPjM2TDJ2ZFrjvIixJqmjtwNKnvfHkYJ63IHr6mk1ceUIFoinTqYv10JUSDILwSeg3ves_XOHiGQExb0W5fyVmK3_XW4FHTaDKtmvLWoUFV6zB8k7bH24NHlTgUTN7DOZLwTCOZIOCQNq46BB3nDo2OUMXyXrT8oqdF4zvMmq8NmWT8lv5fcYoRZR9YAclzixzNiJkINXInBt2WJHaEiEIa9lBn8DxvYj5KXSKsnDPgOUuwcAkMb6JMRiJjeZhRqQ2TlM0wvMuBK0cU9Mwm1ODjWl6w8lMsk9R9mkl-_S6C2_nay5qXo87Z79C9cwnEiV3f3uY0jWKkXwloh9BF9Zb7aXNQTBLOfdjLlSo5L-H51bdhXetwm-G__9Ez-_e7SUs949Gw3Q4GO-_gIe8sjpCaa5DB1XoNjCSutSbjfkyOL3vN-Y3W0IrAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwELZaEC0vCGgRSzksxFsbER853LcVsFruFXQl3qz4EkirBJUV9Od3JpvsAqJIfY3HVjTjeL7I33xDyF4Iyirnk4j74CNpkiwyLobDUCmvkKNjay2984u0P5QnN8nNsyr-mu3eXklOahpQpakc79-7sD8rfIO0hJQC5PpADooARc7Dccxwpw95d3qPgHLxE3VvFQnFRFM28_YaL1LTx1skRj5Dna8uSuv801smSw1wpN1JpFfIB1-uks8Hbb-2VbJQkzntwxdiL0sKuI4el0iahknXsOLI08EtpCzaG1VP9K6k_JBiI7QRHVS_4fef4pVN8ZNeVWBZBXqOTD2sWbmz9LoWmUWBDtqqdX4lw97Rr4N-1DRTiMDbbByFFGIiZSYLqYTLjUtZmhWxM1zmsbfMCS-UsA4NcmENc15lcW5dyAvI4UaskbmyKv06ocHnABRyG9sMwEFmDU8KFJnxBtEBDx3CWj9q2yiNY8OLkZ5pJKPvNfhe177Xfzrk-3TO_URn413rXQjP1BAlsvvdM43PELPESqSPrEM22-jp5sN80JzHGRcqUfLtYSFlAiCSwfCPNuCz4X-_0cb_me-QT4PDnj47vjj9RhZ5vQmRRLlJ5iCifguAzths13v5L1Xx8Js
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Inertial+Single+Phase+Flow+in+2D+Model+Porous+Media%3A+Role+of+Microscopic+Structural+Disorder&rft.jtitle=Transport+in+porous+media&rft.au=Wang%2C+Yibiao&rft.au=Ahmadi%2C+Azita&rft.au=Lasseux%2C+Didier&rft.date=2019-05-01&rft.issn=0169-3913&rft.eissn=1573-1634&rft.volume=128&rft.issue=1&rft.spage=201&rft.epage=220&rft_id=info:doi/10.1007%2Fs11242-019-01241-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11242_019_01241_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-3913&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-3913&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-3913&client=summon