Tau Kinetics in Neurons and the Human Central Nervous System
We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from hu...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 97; no. 6; pp. 1284 - 1298.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.03.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology.
[Display omitted]
•Multiple forms of tau exist in the human brain, CSF, and iPSC-derived neurons•Newly synthesized tau is truncated and actively released by human neurons•Fibrillogenic forms of tau have shorter half-lives than non-fibrillogenic forms•Tau production rate positively correlates with amyloid plaque burden
Sato et al. show that stable isotope labeling kinetics enable measurement of tau in the CNS and in iPSC-derived neurons. Specific forms of tau are uniquely processed in neurons and tau production rates correlate with amyloid accumulation in human subjects. |
---|---|
AbstractList | We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology.
[Display omitted]
•Multiple forms of tau exist in the human brain, CSF, and iPSC-derived neurons•Newly synthesized tau is truncated and actively released by human neurons•Fibrillogenic forms of tau have shorter half-lives than non-fibrillogenic forms•Tau production rate positively correlates with amyloid plaque burden
Sato et al. show that stable isotope labeling kinetics enable measurement of tau in the CNS and in iPSC-derived neurons. Specific forms of tau are uniquely processed in neurons and tau production rates correlate with amyloid accumulation in human subjects. We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology.We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSCderived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Sato et al. show that stable isotope labeling kinetics enable measurement of tau in the CNS and in iPSC-derived neurons. Specific forms of tau are uniquely processed in neurons and tau production rates correlate with amyloid accumulation in human subjects. SummaryWe developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. |
Author | Patterson, Bruce W. Sullivan, Melissa Kirmess, Kristopher M. Bateman, Randall J. Kanaan, Nicholas M. Crisp, Matthew J. Mawuenyega, Kwasi G. Baker-Nigh, Alaina Benzinger, Tammie L.S. Miller, Timothy M. Gordon, Brian A. Karch, Celeste M. Sato, Chihiro Barthélemy, Nicolas R. Jockel-Balsarotti, Jennifer Kasten, Tom Yarasheski, Kevin E. |
AuthorAffiliation | 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA 4 Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine, Grand Rapids, MI 49503, USA 6 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA 2 Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA 5 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA 7 Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA 3 Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA 8 These authors contributed equally 9 Lead Contact |
AuthorAffiliation_xml | – name: 9 Lead Contact – name: 5 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 8 These authors contributed equally – name: 2 Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 6 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 3 Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 7 Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 4 Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine, Grand Rapids, MI 49503, USA |
Author_xml | – sequence: 1 givenname: Chihiro surname: Sato fullname: Sato, Chihiro email: satochihiro@wustl.edu organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 2 givenname: Nicolas R. surname: Barthélemy fullname: Barthélemy, Nicolas R. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 3 givenname: Kwasi G. surname: Mawuenyega fullname: Mawuenyega, Kwasi G. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 4 givenname: Bruce W. surname: Patterson fullname: Patterson, Bruce W. organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 5 givenname: Brian A. surname: Gordon fullname: Gordon, Brian A. organization: Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 6 givenname: Jennifer surname: Jockel-Balsarotti fullname: Jockel-Balsarotti, Jennifer organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 7 givenname: Melissa surname: Sullivan fullname: Sullivan, Melissa organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 8 givenname: Matthew J. surname: Crisp fullname: Crisp, Matthew J. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 9 givenname: Tom surname: Kasten fullname: Kasten, Tom organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 10 givenname: Kristopher M. surname: Kirmess fullname: Kirmess, Kristopher M. organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 11 givenname: Nicholas M. surname: Kanaan fullname: Kanaan, Nicholas M. organization: Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine, Grand Rapids, MI 49503, USA – sequence: 12 givenname: Kevin E. surname: Yarasheski fullname: Yarasheski, Kevin E. organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 13 givenname: Alaina surname: Baker-Nigh fullname: Baker-Nigh, Alaina organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 14 givenname: Tammie L.S. surname: Benzinger fullname: Benzinger, Tammie L.S. organization: Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 15 givenname: Timothy M. surname: Miller fullname: Miller, Timothy M. organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 16 givenname: Celeste M. surname: Karch fullname: Karch, Celeste M. email: karchc@wustl.edu organization: Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 17 givenname: Randall J. surname: Bateman fullname: Bateman, Randall J. email: batemanr@wustl.edu organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29566794$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9rFDEUxYO02G31G4gM-OLLTJNMJtmIFGSxf2jRB-tzyCZ3bJaZpCaZhX57M92taB_0KYH7u4dzzzlGBz54QOgNwQ3BhJ9uGg9TDL6hmCwbTBtMuhdoQbAUNSNSHqAFXkpecyraI3Sc0gZjwjpJXqIjKjvOhWQL9PFWT9W185CdSZXz1ZdH0VRpb6t8B9XlNGpfrcDnqIcyjdswperbQ8owvkKHvR4SvN6_J-j7-efb1WV98_XiavXppjZMklz3zEqiO2yYaFvOqG3Xoi_f4tvSznZ63YtCcC4FZm2nObPYQK8tFwZoT9sTdLbTvZ_WI1izM6Puoxt1fFBBO_X3xLs79SNsFSetEHQWeL8XiOHnBCmr0SUDw6A9lHPUHCEmgglS0HfP0E2Yoi_nzZSgZEmwKNTbPx39tvIUbAE-7AATQ0oRemVc1tmF2aAbFMFqblFt1K7FRwsKU1VaLMvs2fKT_n_W9jFB6WLrIKpkHHgD1kUwWdng_i3wCx2Ut9Q |
CitedBy_id | crossref_primary_10_3389_fnmol_2020_590896 crossref_primary_10_1038_s41467_022_34129_4 crossref_primary_10_1021_jasms_2c00341 crossref_primary_10_1016_j_ijms_2019_116194 crossref_primary_10_3389_fnins_2019_00659 crossref_primary_10_1016_j_abb_2019_108218 crossref_primary_10_1016_j_celrep_2024_115013 crossref_primary_10_1016_j_mcn_2019_103409 crossref_primary_10_1038_s43587_024_00597_0 crossref_primary_10_1001_jama_2020_12134 crossref_primary_10_1001_jamaneurol_2019_4284 crossref_primary_10_2217_epi_2021_0288 crossref_primary_10_1016_j_bbih_2021_100242 crossref_primary_10_1016_j_neures_2023_03_002 crossref_primary_10_1016_j_trci_2019_02_004 crossref_primary_10_1016_j_neuropharm_2020_108104 crossref_primary_10_4103_2045_9912_324591 crossref_primary_10_1016_j_ebiom_2022_103936 crossref_primary_10_1212_WNL_0000000000010814 crossref_primary_10_1016_j_nbd_2020_105120 crossref_primary_10_1093_braincomms_fcaa039 crossref_primary_10_1021_acschemneuro_0c00069 crossref_primary_10_3390_bios12100879 crossref_primary_10_1074_jbc_RA120_015882 crossref_primary_10_1093_bib_bbab598 crossref_primary_10_1523_JNEUROSCI_1700_18_2018 crossref_primary_10_3233_JAD_180422 crossref_primary_10_1002_alz_14360 crossref_primary_10_1002_alz_13393 crossref_primary_10_1002_ana_26048 crossref_primary_10_1007_s00259_021_05258_7 crossref_primary_10_15252_emmm_202115098 crossref_primary_10_1016_S1474_4422_19_30139_5 crossref_primary_10_3390_jpm10030116 crossref_primary_10_1134_S0006297922080089 crossref_primary_10_3390_cells11081279 crossref_primary_10_1016_j_nbd_2021_105536 crossref_primary_10_1038_s41398_018_0319_z crossref_primary_10_3233_ADR_220059 crossref_primary_10_1016_j_nbd_2023_106267 crossref_primary_10_1038_s41467_024_52075_1 crossref_primary_10_1002_alz_13119 crossref_primary_10_3233_JAD_201341 crossref_primary_10_1007_s00259_020_04758_2 crossref_primary_10_1042_EBC20210028 crossref_primary_10_1186_s13024_022_00521_3 crossref_primary_10_1186_s40478_024_01758_3 crossref_primary_10_1186_s12014_020_09285_8 crossref_primary_10_1186_s13195_020_00756_6 crossref_primary_10_3390_ijms232315230 crossref_primary_10_2174_1573405617666211126154101 crossref_primary_10_1093_brain_awaa395 crossref_primary_10_1080_14728214_2019_1609450 crossref_primary_10_3389_fnagi_2022_977999 crossref_primary_10_61186_nl_3_2_14 crossref_primary_10_1002_ana_25885 crossref_primary_10_1038_s41591_021_01455_x crossref_primary_10_1038_s41598_018_36650_3 crossref_primary_10_1093_brain_awab481 crossref_primary_10_1007_s00401_020_02195_x crossref_primary_10_1016_j_bbadis_2019_165584 crossref_primary_10_14283_jpad_2024_43 crossref_primary_10_1098_rstb_2023_0234 crossref_primary_10_1038_s42003_021_02272_1 crossref_primary_10_1016_j_seizure_2021_08_012 crossref_primary_10_3390_brainsci14090859 crossref_primary_10_1007_s10856_023_06711_9 crossref_primary_10_1038_s41591_020_0755_1 crossref_primary_10_1002_alz_14346 crossref_primary_10_1038_s41380_020_00923_z crossref_primary_10_1186_s13024_022_00578_0 crossref_primary_10_14283_jpad_2019_14 crossref_primary_10_1080_19420862_2019_1574530 crossref_primary_10_1038_s41591_022_02075_9 crossref_primary_10_1091_mbc_E19_03_0183 crossref_primary_10_1007_s10072_023_07232_7 crossref_primary_10_1002_acn3_657 crossref_primary_10_1002_ana_26620 crossref_primary_10_1186_s13024_018_0301_5 crossref_primary_10_1016_j_neulet_2020_135392 crossref_primary_10_1038_s41398_022_02274_5 crossref_primary_10_1186_s13195_022_01142_0 crossref_primary_10_1016_j_ymthe_2020_10_007 crossref_primary_10_1016_S1474_4422_20_30071_5 crossref_primary_10_1002_mds_27546 crossref_primary_10_1002_mds_27788 crossref_primary_10_1038_s41582_019_0222_0 crossref_primary_10_1038_s41591_023_02505_2 crossref_primary_10_1126_sciadv_abn4437 crossref_primary_10_1126_science_abb8255 crossref_primary_10_1016_j_neurobiolaging_2022_12_006 crossref_primary_10_1093_brain_awac158 crossref_primary_10_1177_13872877251325757 crossref_primary_10_1002_ana_25702 crossref_primary_10_1093_brain_awaa098 crossref_primary_10_1002_cpe_4836 crossref_primary_10_1111_ane_13700 crossref_primary_10_1002_acn3_51435 crossref_primary_10_1038_s41380_020_0838_x crossref_primary_10_1007_s00401_018_1948_2 crossref_primary_10_1186_s13195_020_00586_6 crossref_primary_10_3233_JAD_230419 crossref_primary_10_14283_jpad_2022_48 crossref_primary_10_1016_j_cell_2025_02_021 crossref_primary_10_1007_s00259_018_4242_6 crossref_primary_10_1016_S1474_4422_19_30161_9 crossref_primary_10_1002_acn3_51553 crossref_primary_10_1371_journal_pone_0314973 crossref_primary_10_1016_j_neuroscience_2023_01_032 crossref_primary_10_1007_s00259_021_05253_y crossref_primary_10_1111_febs_15197 crossref_primary_10_1093_braincomms_fcad343 crossref_primary_10_3389_fpsyt_2022_872594 crossref_primary_10_1016_j_nbd_2019_104707 crossref_primary_10_3390_ijms21144920 crossref_primary_10_2967_jnmt_123_265502 crossref_primary_10_3390_ijms22179207 crossref_primary_10_1007_s00401_024_02729_7 crossref_primary_10_1007_s40265_021_01546_6 crossref_primary_10_3390_ijms21165858 crossref_primary_10_1002_trc2_12264 crossref_primary_10_3389_fnmol_2018_00454 crossref_primary_10_1016_j_neuron_2023_05_017 crossref_primary_10_1186_s40478_020_01019_z crossref_primary_10_1038_s43587_023_00550_7 crossref_primary_10_1186_s40035_019_0161_0 crossref_primary_10_1016_j_neuron_2018_02_030 crossref_primary_10_3389_fnagi_2021_767322 crossref_primary_10_1016_j_arr_2024_102192 crossref_primary_10_1073_pnas_2320456121 crossref_primary_10_1186_s12987_021_00283_y crossref_primary_10_1093_brain_awab163 crossref_primary_10_1016_j_ebiom_2022_104249 crossref_primary_10_1186_s13024_024_00707_x crossref_primary_10_3390_ijms21228673 crossref_primary_10_1016_j_trci_2019_11_002 crossref_primary_10_1186_s40478_019_0823_2 crossref_primary_10_1039_D1SC03486C crossref_primary_10_1038_s41380_020_0738_0 crossref_primary_10_1111_nan_12819 crossref_primary_10_3389_fnagi_2023_1129051 crossref_primary_10_1016_j_ebiom_2022_103836 crossref_primary_10_1016_j_nbd_2023_106175 crossref_primary_10_3233_JAD_200463 crossref_primary_10_1002_alz_12518 crossref_primary_10_1038_s41467_020_15436_0 crossref_primary_10_1001_jamaneurol_2021_4654 crossref_primary_10_1186_s40478_024_01744_9 crossref_primary_10_4103_1673_5374_391329 crossref_primary_10_1126_scitranslmed_adp2564 crossref_primary_10_4103_1673_5374_360166 crossref_primary_10_1038_s41531_021_00213_7 crossref_primary_10_1093_braincomms_fcaa054 crossref_primary_10_1373_jalm_2019_030080 crossref_primary_10_1002_dad2_12204 crossref_primary_10_3390_ijms22158196 crossref_primary_10_1074_jbc_REV119_008031 crossref_primary_10_1016_j_neurobiolaging_2018_08_019 crossref_primary_10_1021_acs_jafc_9b07022 crossref_primary_10_1038_s41598_018_35130_y crossref_primary_10_1177_14690667231218912 crossref_primary_10_1038_s41591_024_03400_0 crossref_primary_10_1172_jci_insight_152012 crossref_primary_10_3390_biology10101047 crossref_primary_10_1016_j_ejmech_2023_115859 crossref_primary_10_1038_s41582_021_00541_5 crossref_primary_10_1212_WNL_0000000000012727 crossref_primary_10_15252_emmm_201911170 crossref_primary_10_3390_ijms24076528 crossref_primary_10_1001_jamanetworkopen_2019_17126 crossref_primary_10_1002_alz_13539 crossref_primary_10_1007_s10571_023_01390_0 crossref_primary_10_14283_jpad_2024_163 crossref_primary_10_3233_JAD_190504 crossref_primary_10_1016_j_celrep_2021_108843 crossref_primary_10_1186_s13024_020_00374_8 crossref_primary_10_1038_s41380_018_0342_8 crossref_primary_10_1007_s00401_021_02275_6 crossref_primary_10_1093_braincomms_fcac045 crossref_primary_10_1093_braincomms_fcac286 crossref_primary_10_1016_j_tibs_2022_08_011 crossref_primary_10_1126_sciadv_add2671 crossref_primary_10_1126_sciadv_aaz2387 crossref_primary_10_1186_s40478_024_01849_1 crossref_primary_10_4155_fmc_2021_0325 crossref_primary_10_1084_jem_20211275 crossref_primary_10_1007_s12035_023_03867_x crossref_primary_10_1111_ene_15428 crossref_primary_10_15252_emmm_202012921 crossref_primary_10_3233_JAD_220351 crossref_primary_10_3233_JAD_221202 crossref_primary_10_1038_s41582_022_00665_2 crossref_primary_10_1007_s00401_021_02264_9 crossref_primary_10_1038_s43587_023_00526_7 crossref_primary_10_1038_s41582_018_0116_6 crossref_primary_10_1039_D1CS00127B crossref_primary_10_1186_s13195_023_01180_2 crossref_primary_10_3233_JAD_230180 crossref_primary_10_1016_j_dadm_2018_10_003 crossref_primary_10_1074_mcp_RA119_001702 crossref_primary_10_3389_fnagi_2023_1199434 crossref_primary_10_1186_s12974_018_1331_1 crossref_primary_10_1016_j_praneu_2021_03_014 crossref_primary_10_1007_s00401_018_1911_2 crossref_primary_10_3233_JAD_191130 crossref_primary_10_1093_brain_awad151 crossref_primary_10_1186_s13195_020_00596_4 crossref_primary_10_3233_JAD_231238 crossref_primary_10_1038_s41598_022_20305_5 crossref_primary_10_1016_j_stem_2022_04_018 crossref_primary_10_1016_j_conb_2021_03_003 crossref_primary_10_52586_S550 crossref_primary_10_1186_s40478_018_0649_3 crossref_primary_10_3389_fnagi_2022_1055170 crossref_primary_10_1186_s40478_019_0682_x crossref_primary_10_1002_1873_3468_70022 crossref_primary_10_1523_JNEUROSCI_0082_23_2023 crossref_primary_10_1021_acschembio_0c00380 crossref_primary_10_1136_jnnp_2018_319266 crossref_primary_10_1093_braincomms_fcac026 crossref_primary_10_61186_nl_3_2_8 crossref_primary_10_1016_j_nbd_2019_03_010 crossref_primary_10_1016_j_neurobiolaging_2021_09_013 crossref_primary_10_2174_0115680266292514240404040341 crossref_primary_10_3233_JAD_200544 crossref_primary_10_3390_cells12030420 crossref_primary_10_1002_pcn5_65 crossref_primary_10_1001_jamaneurol_2023_2338 crossref_primary_10_1096_fj_201901895 crossref_primary_10_1016_j_semcdb_2021_12_002 crossref_primary_10_1186_s13195_020_00713_3 crossref_primary_10_3390_bios15020085 crossref_primary_10_1038_s41591_020_0797_4 crossref_primary_10_1002_dad2_12001 crossref_primary_10_1093_protein_gzz010 crossref_primary_10_1002_alz_12321 crossref_primary_10_1002_dad2_12241 crossref_primary_10_1016_j_bcp_2022_114979 crossref_primary_10_1016_j_chroma_2021_462299 crossref_primary_10_1093_braincomms_fcae333 crossref_primary_10_1186_s13024_025_00822_3 crossref_primary_10_1016_j_nbd_2019_03_022 crossref_primary_10_14283_jpad_2019_21 crossref_primary_10_1016_j_nbd_2020_105031 crossref_primary_10_1080_14737159_2022_2104639 crossref_primary_10_1177_1756286419888819 crossref_primary_10_1186_s40478_023_01562_5 crossref_primary_10_1021_acs_jproteome_2c00822 crossref_primary_10_3390_diagnostics12051165 crossref_primary_10_1007_s11011_024_01371_2 crossref_primary_10_1038_s41467_023_39328_1 crossref_primary_10_3389_fphar_2022_867457 crossref_primary_10_1016_j_jare_2021_09_005 crossref_primary_10_1021_acs_jproteome_8b00920 crossref_primary_10_1002_alz_14317 crossref_primary_10_1126_science_adl2992 crossref_primary_10_1073_pnas_2402117122 crossref_primary_10_1126_scitranslmed_abb2639 crossref_primary_10_1371_journal_pcbi_1008267 crossref_primary_10_1016_j_cell_2019_09_001 crossref_primary_10_1002_alz_14550 crossref_primary_10_1093_brain_awaa373 crossref_primary_10_1016_j_biopsych_2019_09_019 crossref_primary_10_1038_s41591_023_02443_z crossref_primary_10_1152_physiol_00015_2022 crossref_primary_10_3390_biomedicines10092261 crossref_primary_10_1016_j_mcn_2024_103982 crossref_primary_10_3390_molecules25071659 crossref_primary_10_1371_journal_pone_0269157 crossref_primary_10_1126_sciadv_aau3333 crossref_primary_10_3233_JAD_215639 crossref_primary_10_3233_JAD_200047 crossref_primary_10_4155_bio_2020_0147 crossref_primary_10_3143_geriatrics_61_28 crossref_primary_10_1002_alz_13907 crossref_primary_10_3389_fnins_2021_679199 crossref_primary_10_1001_jamaneurol_2022_4485 crossref_primary_10_1016_j_cell_2021_07_003 crossref_primary_10_1186_s13024_024_00741_9 crossref_primary_10_1016_j_stemcr_2019_09_006 crossref_primary_10_1002_trc2_12073 crossref_primary_10_1038_s41467_024_54878_8 crossref_primary_10_14283_jpad_2024_126 crossref_primary_10_1038_s41467_023_44374_w crossref_primary_10_1073_pnas_2309221120 crossref_primary_10_1016_j_neurot_2024_e00499 crossref_primary_10_1084_jem_20200861 crossref_primary_10_1042_BST20230596 crossref_primary_10_3389_fnagi_2024_1380237 crossref_primary_10_3390_antiox11112287 crossref_primary_10_1177_25424823241289804 crossref_primary_10_3390_ijms252312916 crossref_primary_10_1038_s41582_023_00883_2 crossref_primary_10_1002_alz_14528 crossref_primary_10_1093_jnen_nlac026 crossref_primary_10_1016_j_slasd_2022_05_001 crossref_primary_10_3390_ijms21030703 crossref_primary_10_1021_acssensors_2c01804 crossref_primary_10_1038_s41380_023_02237_2 crossref_primary_10_1002_alz_12236 crossref_primary_10_3390_ijms22073521 crossref_primary_10_1007_s00421_022_04892_9 crossref_primary_10_3233_JAD_240150 crossref_primary_10_3389_fcell_2022_999061 crossref_primary_10_1016_j_arr_2024_102594 crossref_primary_10_1016_j_bja_2020_08_061 crossref_primary_10_1016_j_neurobiolaging_2018_06_014 crossref_primary_10_1055_s_0044_1779296 crossref_primary_10_3390_biom14070827 crossref_primary_10_1089_neu_2020_7130 crossref_primary_10_1038_s41380_023_02324_4 crossref_primary_10_1016_j_ymthe_2021_09_020 crossref_primary_10_1186_s13195_021_00834_3 crossref_primary_10_3390_ijms23137307 crossref_primary_10_1007_s00401_019_02087_9 crossref_primary_10_1186_s12883_020_01849_3 crossref_primary_10_1186_s40364_021_00325_5 crossref_primary_10_1093_jnen_nlab047 crossref_primary_10_1016_j_medj_2024_08_004 crossref_primary_10_1097_MD_0000000000031637 crossref_primary_10_1111_joim_13332 crossref_primary_10_1016_j_neurobiolaging_2019_03_016 crossref_primary_10_1038_s41591_021_01348_z crossref_primary_10_3390_biom12111676 crossref_primary_10_3390_brainsci11020215 crossref_primary_10_3233_JAD_215662 crossref_primary_10_3390_bioengineering9110612 crossref_primary_10_1002_alz_12245 crossref_primary_10_3389_fnagi_2022_838223 crossref_primary_10_1016_j_reth_2024_12_009 crossref_primary_10_2174_1568026622666220907114443 crossref_primary_10_1016_j_arr_2023_102046 crossref_primary_10_1093_brain_awaa468 crossref_primary_10_1016_j_ymthe_2024_01_033 crossref_primary_10_1016_j_mcn_2020_103553 |
Cites_doi | 10.1021/bi061325g 10.1038/nn.4328 10.1021/acs.jproteome.5b01001 10.1021/pr7008669 10.1038/nrn.2015.1 10.1016/0197-4580(95)00021-6 10.1002/ana.24454 10.1126/scitranslmed.3005615 10.1002/jnr.490340315 10.1007/s12031-011-9589-0 10.1371/journal.pone.0073377 10.1007/s00401-007-0237-2 10.1038/srep09659 10.1093/brain/aww139 10.1074/jbc.M117.784702 10.1038/embor.2013.15 10.1016/j.neuron.2011.11.033 10.1523/JNEUROSCI.2107-13.2013 10.1093/hmg/ddv246 10.1093/clinchem/47.10.1776 10.1016/j.bbadis.2004.06.017 10.1186/s13024-015-0052-5 10.1093/hmg/8.4.711 10.1016/j.nbd.2016.05.016 10.1523/JNEUROSCI.2642-12.2013 10.1373/clinchem.2013.216515 10.1016/j.exger.2009.10.010 10.1038/nm1438 10.1016/j.neurobiolaging.2007.05.009 10.1038/srep11161 10.1016/j.stemcr.2016.08.001 10.1007/s00401-013-1151-4 10.1084/jem.20131685 10.1074/jbc.M112.380642 10.1016/j.neurobiolaging.2003.04.007 10.1016/j.neurobiolaging.2014.09.007 10.1002/cm.970080303 10.1016/j.neurobiolaging.2004.09.019 10.1016/0896-6273(93)90279-Z 10.1126/scitranslmed.aag0481 10.1074/jbc.M109.008177 10.1016/j.cell.2006.07.024 10.1523/JNEUROSCI.0387-15.2015 10.1371/journal.pone.0031302 10.1074/jbc.M115.657924 10.1002/jnr.490340212 10.1172/JCI80705 10.1093/hmg/dds238 10.1074/jbc.271.51.32789 10.1007/s00401-017-1693-y 10.1073/pnas.92.22.10369 10.1074/jbc.M112.346072 10.1073/pnas.1006551107 10.1038/nature23002 10.1046/j.1471-4159.2003.02287.x 10.1074/jbc.M115.641902 10.1038/mp.2015.6 10.1126/scitranslmed.3007901 10.1126/scitranslmed.aaf2362 10.1016/j.stemcr.2015.06.001 10.1021/acs.analchem.5b04509 10.1371/journal.pone.0076523 10.1523/JNEUROSCI.11-02-00392.1991 10.1016/S0165-0173(00)00019-9 10.1074/jbc.M808759200 10.1016/S0896-6273(02)00569-X 10.1016/j.nbd.2012.05.021 10.1016/j.neuroimage.2014.11.058 10.1046/j.1471-4159.1998.71062465.x 10.1523/JNEUROSCI.1988-04.2004 10.1016/j.neuron.2014.04.047 10.1016/j.neuroimage.2017.07.050 10.1021/bi900602h 10.1056/NEJMoa1202753 10.1016/S0304-3940(00)01697-9 10.1016/j.neuropharm.2013.09.018 10.1073/pnas.1103509108 10.1523/JNEUROSCI.2569-11.2011 10.1016/j.neuron.2013.07.046 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. 2018. Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: 2018. Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2018.02.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 1298.e7 |
ExternalDocumentID | PMC6137722 29566794 10_1016_j_neuron_2018_02_015 S0896627318301363 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NIA NIH HHS grantid: K01 AG046374 – fundername: NINDS NIH HHS grantid: R01 NS095773 – fundername: NIGMS NIH HHS grantid: P41 GM103422 – fundername: NCATS NIH HHS grantid: UL1 TR002345 – fundername: NIA NIH HHS grantid: K01 AG053474 – fundername: NINDS NIH HHS grantid: P30 NS048056 – fundername: NIA NIH HHS grantid: P01 AG026276 – fundername: NCATS NIH HHS grantid: UL1 TR000448 – fundername: NIA NIH HHS grantid: P50 AG005681 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG AKRWK ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c491t-f4d91a50c4733642d3b7f733018d25d5abf7d9166970435a64d0cefad67ce2f23 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 13:42:36 EDT 2025 Thu Jul 10 23:36:40 EDT 2025 Fri Jul 25 11:13:31 EDT 2025 Thu Apr 03 07:02:24 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Tue Jul 01 01:16:17 EDT 2025 Sat Mar 30 16:19:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | SILK amyloid Alzheimer’s disease induced pluripotent stem cell stable isotope labeling kinetics production rate tau positron emission tomography phosphorylation human isoform PET |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-f4d91a50c4733642d3b7f733018d25d5abf7d9166970435a64d0cefad67ce2f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS R.J.B., T.M.M., C.S., and C.M.K. conceived the project. R.J.B., C.S., M.J.C., T.M.M., J.J.-B., M.S., and B.W.P. designed the long-term labeling protocol. J.J.-B. and M.S. recruited the participants. C.S., N.R.B., K.G.M., T.K., and R.J.B. designed and developed the tau SILK method. B.W.P. designed and performed compartmental modeling. K.M.K., K.E.Y., A.B.-N., and B.W.P. conducted the plasma and CSF free 13C6-leucine quantitation. B.A.G. and T.L.S.B. obtained amyloid and tau PET imaging. N.M.K. generated Tau1, Tau12, Tau5, and Tau7 antibodies. C.M.K. generated the iPSC lines and C.S., C.M.K., and N.R.B. designed and performed iPSC-derived neuron SILK experiments. N.R.B. designed and performed MS experiments. N.R.B. and C.S. analyzed and interpreted data and prepared figures. C.S., R.J.B., N.R.B., C.M.K., K.G.M., B.W.P., N.M.K., T.K., T.M.M., and K.E.Y. wrote the paper. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627318301363 |
PMID | 29566794 |
PQID | 2017218107 |
PQPubID | 2031076 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137722 proquest_miscellaneous_2018017471 proquest_journals_2017218107 pubmed_primary_29566794 crossref_citationtrail_10_1016_j_neuron_2018_02_015 crossref_primary_10_1016_j_neuron_2018_02_015 elsevier_sciencedirect_doi_10_1016_j_neuron_2018_02_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-21 |
PublicationDateYYYYMMDD | 2018-03-21 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Potter, Patterson, Elbert, Ovod, Kasten, Sigurdson, Mawuenyega, Blazey, Goate, Chott (bib58) 2013; 5 Silva, Cheng, Mair, Almeida, Fong, Biswas, Zhang, Huang, Temple, Coppola (bib62) 2016; 7 Barthélemy, Fenaille, Hirtz, Sergeant, Schraen-Maschke, Vialaret, Buée, Gabelle, Junot, Lehmann, Becher (bib3) 2016; 15 Buée, Bussière, Buée-Scherrer, Delacourte, Hof (bib12) 2000; 33 DeVos, Goncharoff, Chen, Kebodeaux, Yamada, Stewart, Schuler, Maloney, Wozniak, Rigo (bib21) 2013; 33 Hanger, Betts, Loviny, Blackstock, Anderton (bib35) 1998; 71 Derisbourg, Leghay, Chiappetta, Fernandez-Gomez, Laurent, Demeyer, Carrier, Buée-Scherrer, Blum, Vinh (bib19) 2015; 5 McAvoy, Lassman, Spellman, Ke, Howell, Wong, Zhu, Tanen, Struyk, Laterza (bib49) 2014; 60 Papasozomenos, Binder (bib53) 1987; 8 Mandelkow, Stamer, Vogel, Thies, Mandelkow (bib48) 2003; 24 Dickson, Kouri, Murray, Josephs (bib23) 2011; 45 Hampel, Blennow, Shaw, Hoessler, Zetterberg, Trojanowski (bib34) 2010; 45 Yamada, Cirrito, Stewart, Jiang, Finn, Holmes, Binder, Mandelkow, Diamond, Lee, Holtzman (bib75) 2011; 31 Mair, Muntel, Tepper, Tang, Biernat, Seeley, Kosik, Mandelkow, Steen, Steen (bib47) 2016; 88 Cairns, Bigio, Mackenzie, Neumann, Lee, Hatanpaa, White, Schneider, Grinberg, Halliday (bib13) 2007; 114 DeVos, Miller, Schoch, Holmes, Kebodeaux, Wegener, Chen, Shen, Tran, Nichols (bib22) 2017; 9 Hesse, Rosengren, Andreasen, Davidsson, Vanderstichele, Vanmechelen, Blennow (bib36) 2001; 297 Brier, Gordon, Friedrichsen, McCarthy, Stern, Christensen, Owen, Aldea, Su, Hassenstab (bib10) 2016; 8 Meredith, Sankaranarayanan, Guss, Lanzetti, Berisha, Neely, Slemmon, Portelius, Zetterberg, Blennow (bib50) 2013; 8 LoPresti, Szuchet, Papasozomenos, Zinkowski, Binder (bib81) 1995; 92 Sun, Gamblin (bib68) 2009; 48 Trabzuni, Wray, Vandrovcova, Ramasamy, Walker, Smith, Luk, Gibbs, Dillman, Hernandez (bib72) 2012; 21 Toledo, Xie, Trojanowski, Shaw (bib71) 2013; 126 Liu, Moore, Williams, Hall, Yen (bib43) 1993; 34 Pooler, Phillips, Lau, Noble, Hanger (bib55) 2013; 14 Sjögren, Vanderstichele, Ågren, Zachrisson, Edsbagge, Wikkelsø, Skoog, Wallin, Wahlund, Marcusson (bib63) 2001; 47 Yanamandra, Kfoury, Jiang, Mahan, Ma, Maloney, Wozniak, Diamond, Holtzman (bib78) 2013; 80 Horowitz, Patterson, Guillozet-Bongaarts, Reynolds, Carroll, Weintraub, Bennett, Cryns, Berry, Binder (bib37) 2004; 24 Liu, Drouet, Wu, Witter, Small, Clelland, Duff (bib44) 2012; 7 Yamada, Holth, Liao, Stewart, Mahan, Jiang, Cirrito, Patel, Hochgräfe, Mandelkow, Holtzman (bib76) 2014; 211 Patterson, Elbert, Mawuenyega, Kasten, Ovod, Ma, Xiong, Chott, Yarasheski, Sigurdson (bib54) 2015; 78 Price, Guan, Burlingame, Prusiner, Ghaemmaghami (bib59) 2010; 107 Yamada, Patel, Hochgräfe, Mahan, Jiang, Stewart, Mandelkow, Holtzman (bib77) 2015; 10 Portelius, Hansson, Tran, Zetterberg, Grognet, Vanmechelen, Höglund, Brinkmalm, Westman-Brinkmalm, Nordhoff (bib57) 2008; 7 Wang, Mandelkow (bib73) 2016; 17 Liu, Song, Nisbet, Götz (bib45) 2016; 291 Braak, Braak (bib9) 1995; 16 Horowitz, LaPointe, Guillozet-Bongaarts, Berry, Binder (bib38) 2006; 45 Kfoury, Holmes, Jiang, Holtzman, Diamond (bib42) 2012; 287 Sposito, Preza, Mahoney, Setó-Salvia, Ryan, Morris, Arber, Devine, Houlden, Warner (bib64) 2015; 24 Mishra, Gordon, Su, Christensen, Friedrichsen, Jackson, Hornbeck, Balota, Cairns, Morris (bib51) 2017; 161 Sanders, Kaufman, DeVos, Sharma, Mirbaha, Li, Barker, Foley, Thorpe, Serpell (bib61) 2014; 82 Baker, Litvan, Houlden, Adamson, Dickson, Perez-Tur, Hardy, Lynch, Bigio, Hutton (bib1) 1999; 8 Ehrlich, Hallmann, Reinhardt, Araúzo-Bravo, Korr, Röpke, Psathaki, Ehling, Meuth, Oblak (bib24) 2015; 5 Biernat, Gustke, Drewes, Mandelkow, Mandelkow (bib7) 1993; 11 Crisp, Mawuenyega, Patterson, Reddy, Chott, Self, Weihl, Jockel-Balsarotti, Varadhachary, Bucelli (bib17) 2015; 125 de Calignon, Polydoro, Suárez-Calvet, William, Adamowicz, Kopeikina, Pitstick, Sahara, Ashe, Carlson (bib18) 2012; 73 Fagan, Xiong, Jasielec, Bateman, Goate, Benzinger, Ghetti, Martins, Masters, Mayeux (bib25) 2014; 6 Karch, Jeng, Goate (bib41) 2012; 287 Rousset, Ma, Evans (bib60) 1998; 39 Su, D’Angelo, Vlassenko, Zhou, Snyder, Marcus, Blazey, Christensen, Vora, Morris (bib66) 2013; 8 Combs, Hamel, Kanaan (bib16) 2016; 94 Borroni, Gardoni, Parnetti, Magno, Malinverno, Saggese, Calabresi, Spillantini, Padovani, Di Luca (bib8) 2009; 30 Stoothoff, Johnson (bib65) 2005; 1739 Barthélemy, Bateman, Marin, Becher, Sato, Lehmann, Gabelle (bib4) 2017 Guillozet-Bongaarts, Garcia-Sierra, Reynolds, Horowitz, Fu, Wang, Cahill, Bigio, Berry, Binder (bib32) 2005; 26 Takahashi, Yamanaka (bib70) 2006; 126 Bateman, Xiong, Benzinger, Fagan, Goate, Fox, Marcus, Cairns, Xie, Blazey (bib6) 2012; 367 Carmel, Mager, Binder, Kuret (bib14) 1996; 271 Pooler, Noble, Hanger (bib56) 2014; 76 Funk, Mirbaha, Jiang, Holtzman, Diamond (bib30) 2015; 290 Su, Blazey, Snyder, Raichle, Marcus, Ances, Bateman, Cairns, Aldea, Cash (bib67) 2015; 107 Bateman, Munsell, Morris, Swarm, Yarasheski, Holtzman (bib5) 2006; 12 Luo, Liu, Hu, Hanna, Caravaca, Paul (bib46) 2015; 5 Frost, Jacks, Diamond (bib29) 2009; 284 Desikan, Schork, Wang, Witoelar, Sharma, McEvoy, Holland, Brewer, Chen, Thompson (bib20) 2015; 20 Wu, Hussaini, Bastille, Rodriguez, Mrejeru, Rilett, Sanders, Cook, Fu, Boonen (bib74) 2016; 19 Ban, Nishishita, Fusaki, Tabata, Saeki, Shikamura, Takada, Inoue, Hasegawa, Kawamata, Nishikawa (bib2) 2011; 108 Szendrei, Lee, Otvos (bib69) 1993; 34 Yokoyama, Karch, Fan, Bonham, Kouri, Ross, Rademakers, Kim, Wang, Höglinger (bib79) 2017; 133 Ferreira, Caceres (bib26) 1991; 11 Iba, Guo, McBride, Zhang, Trojanowski, Lee (bib39) 2013; 33 Kanmert, Cantlon, Muratore, Jin, O’Malley, Lee, Young-Pearse, Selkoe, Walsh (bib40) 2015; 35 Haase, Stieler, Arendt, Holzer (bib33) 2004; 88 Fitzpatrick, Falcon, He, Murzin, Murshudov, Garringer, Crowther, Ghetti, Goedert, Scheres (bib28) 2017; 547 Gordon, Friedrichsen, Brier, Blazey, Su, Christensen, Aldea, McConathy, Holtzman, Cairns (bib31) 2016; 139 Morita, Sobue (bib52) 2009; 284 Zempel, Dennissen, Kumar, Luedtke, Biernat, Mandelkow, Mandelkow (bib80) 2017; 292 Bright, Hussain, Dang, Wright, Cooper, Byun, Ramos, Singh, Parry, Stagliano, Griswold-Prenner (bib11) 2015; 36 Chai, Dage, Citron (bib15) 2012; 48 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness (bib27) 2002; 33 Sjögren (10.1016/j.neuron.2018.02.015_bib63) 2001; 47 Yamada (10.1016/j.neuron.2018.02.015_bib77) 2015; 10 Su (10.1016/j.neuron.2018.02.015_bib66) 2013; 8 Bateman (10.1016/j.neuron.2018.02.015_bib5) 2006; 12 Kanmert (10.1016/j.neuron.2018.02.015_bib40) 2015; 35 Crisp (10.1016/j.neuron.2018.02.015_bib17) 2015; 125 Silva (10.1016/j.neuron.2018.02.015_bib62) 2016; 7 DeVos (10.1016/j.neuron.2018.02.015_bib21) 2013; 33 Wu (10.1016/j.neuron.2018.02.015_bib74) 2016; 19 Bright (10.1016/j.neuron.2018.02.015_bib11) 2015; 36 Hampel (10.1016/j.neuron.2018.02.015_bib34) 2010; 45 Hesse (10.1016/j.neuron.2018.02.015_bib36) 2001; 297 Price (10.1016/j.neuron.2018.02.015_bib59) 2010; 107 Iba (10.1016/j.neuron.2018.02.015_bib39) 2013; 33 Luo (10.1016/j.neuron.2018.02.015_bib46) 2015; 5 Mair (10.1016/j.neuron.2018.02.015_bib47) 2016; 88 Fagan (10.1016/j.neuron.2018.02.015_bib25) 2014; 6 Brier (10.1016/j.neuron.2018.02.015_bib10) 2016; 8 Cairns (10.1016/j.neuron.2018.02.015_bib13) 2007; 114 Ehrlich (10.1016/j.neuron.2018.02.015_bib24) 2015; 5 Horowitz (10.1016/j.neuron.2018.02.015_bib38) 2006; 45 Sanders (10.1016/j.neuron.2018.02.015_bib61) 2014; 82 Horowitz (10.1016/j.neuron.2018.02.015_bib37) 2004; 24 Fitzpatrick (10.1016/j.neuron.2018.02.015_bib28) 2017; 547 Pooler (10.1016/j.neuron.2018.02.015_bib55) 2013; 14 Toledo (10.1016/j.neuron.2018.02.015_bib71) 2013; 126 Bateman (10.1016/j.neuron.2018.02.015_bib6) 2012; 367 Mandelkow (10.1016/j.neuron.2018.02.015_bib48) 2003; 24 Morita (10.1016/j.neuron.2018.02.015_bib52) 2009; 284 Su (10.1016/j.neuron.2018.02.015_bib67) 2015; 107 Ferreira (10.1016/j.neuron.2018.02.015_bib26) 1991; 11 Liu (10.1016/j.neuron.2018.02.015_bib45) 2016; 291 Haase (10.1016/j.neuron.2018.02.015_bib33) 2004; 88 Zempel (10.1016/j.neuron.2018.02.015_bib80) 2017; 292 Desikan (10.1016/j.neuron.2018.02.015_bib20) 2015; 20 McAvoy (10.1016/j.neuron.2018.02.015_bib49) 2014; 60 Mishra (10.1016/j.neuron.2018.02.015_bib51) 2017; 161 DeVos (10.1016/j.neuron.2018.02.015_bib22) 2017; 9 Barthélemy (10.1016/j.neuron.2018.02.015_bib4) 2017 Sun (10.1016/j.neuron.2018.02.015_bib68) 2009; 48 Wang (10.1016/j.neuron.2018.02.015_bib73) 2016; 17 Yanamandra (10.1016/j.neuron.2018.02.015_bib78) 2013; 80 Yamada (10.1016/j.neuron.2018.02.015_bib75) 2011; 31 Borroni (10.1016/j.neuron.2018.02.015_bib8) 2009; 30 Stoothoff (10.1016/j.neuron.2018.02.015_bib65) 2005; 1739 Hanger (10.1016/j.neuron.2018.02.015_bib35) 1998; 71 Derisbourg (10.1016/j.neuron.2018.02.015_bib19) 2015; 5 Meredith (10.1016/j.neuron.2018.02.015_bib50) 2013; 8 Sposito (10.1016/j.neuron.2018.02.015_bib64) 2015; 24 Rousset (10.1016/j.neuron.2018.02.015_bib60) 1998; 39 Takahashi (10.1016/j.neuron.2018.02.015_bib70) 2006; 126 Karch (10.1016/j.neuron.2018.02.015_bib41) 2012; 287 Pooler (10.1016/j.neuron.2018.02.015_bib56) 2014; 76 Portelius (10.1016/j.neuron.2018.02.015_bib57) 2008; 7 Funk (10.1016/j.neuron.2018.02.015_bib30) 2015; 290 Yokoyama (10.1016/j.neuron.2018.02.015_bib79) 2017; 133 Buée (10.1016/j.neuron.2018.02.015_bib12) 2000; 33 Fischl (10.1016/j.neuron.2018.02.015_bib27) 2002; 33 Liu (10.1016/j.neuron.2018.02.015_bib44) 2012; 7 Patterson (10.1016/j.neuron.2018.02.015_bib54) 2015; 78 Chai (10.1016/j.neuron.2018.02.015_bib15) 2012; 48 Potter (10.1016/j.neuron.2018.02.015_bib58) 2013; 5 Trabzuni (10.1016/j.neuron.2018.02.015_bib72) 2012; 21 Barthélemy (10.1016/j.neuron.2018.02.015_bib3) 2016; 15 Biernat (10.1016/j.neuron.2018.02.015_bib7) 1993; 11 Carmel (10.1016/j.neuron.2018.02.015_bib14) 1996; 271 Guillozet-Bongaarts (10.1016/j.neuron.2018.02.015_bib32) 2005; 26 de Calignon (10.1016/j.neuron.2018.02.015_bib18) 2012; 73 LoPresti (10.1016/j.neuron.2018.02.015_bib81) 1995; 92 Baker (10.1016/j.neuron.2018.02.015_bib1) 1999; 8 Liu (10.1016/j.neuron.2018.02.015_bib43) 1993; 34 Szendrei (10.1016/j.neuron.2018.02.015_bib69) 1993; 34 Combs (10.1016/j.neuron.2018.02.015_bib16) 2016; 94 Kfoury (10.1016/j.neuron.2018.02.015_bib42) 2012; 287 Papasozomenos (10.1016/j.neuron.2018.02.015_bib53) 1987; 8 Braak (10.1016/j.neuron.2018.02.015_bib9) 1995; 16 Gordon (10.1016/j.neuron.2018.02.015_bib31) 2016; 139 Yamada (10.1016/j.neuron.2018.02.015_bib76) 2014; 211 Dickson (10.1016/j.neuron.2018.02.015_bib23) 2011; 45 Frost (10.1016/j.neuron.2018.02.015_bib29) 2009; 284 Ban (10.1016/j.neuron.2018.02.015_bib2) 2011; 108 29772204 - Neuron. 2018 May 16;98 (4):861-864 29566788 - Neuron. 2018 Mar 21;97(6):1202-1205 |
References_xml | – volume: 133 start-page: 825 year: 2017 end-page: 837 ident: bib79 article-title: Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia publication-title: Acta Neuropathol. – volume: 8 start-page: 210 year: 1987 end-page: 226 ident: bib53 article-title: Phosphorylation determines two distinct species of Tau in the central nervous system publication-title: Cell Motil. Cytoskeleton – volume: 60 start-page: 683 year: 2014 end-page: 689 ident: bib49 article-title: Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry publication-title: Clin. Chem. – volume: 47 start-page: 1776 year: 2001 end-page: 1781 ident: bib63 article-title: Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values publication-title: Clin. Chem. – volume: 126 start-page: 659 year: 2013 end-page: 670 ident: bib71 article-title: Longitudinal change in CSF Tau and Aβ biomarkers for up to 48 months in ADNI publication-title: Acta Neuropathol. – volume: 21 start-page: 4094 year: 2012 end-page: 4103 ident: bib72 article-title: MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies publication-title: Hum. Mol. Genet. – volume: 125 start-page: 2772 year: 2015 end-page: 2780 ident: bib17 article-title: In vivo kinetic approach reveals slow SOD1 turnover in the CNS publication-title: J. Clin. Invest. – volume: 33 start-page: 1024 year: 2013 end-page: 1037 ident: bib39 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy publication-title: J. Neurosci. – volume: 88 start-page: 3704 year: 2016 end-page: 3714 ident: bib47 article-title: FLEXITau: quantifying post-translational modifications of Tau protein in vitro and in human disease publication-title: Anal. Chem. – volume: 19 start-page: 1085 year: 2016 end-page: 1092 ident: bib74 article-title: Neuronal activity enhances tau propagation and tau pathology publication-title: Nat. Neurosci. – volume: 16 start-page: 271 year: 1995 end-page: 278 ident: bib9 article-title: Staging of Alzheimer’s disease-related neurofibrillary changes publication-title: Neurobiol. Aging – volume: 73 start-page: 685 year: 2012 end-page: 697 ident: bib18 article-title: Propagation of tau pathology in a model of early Alzheimer’s disease publication-title: Neuron – volume: 7 start-page: 2114 year: 2008 end-page: 2120 ident: bib57 article-title: Characterization of tau in cerebrospinal fluid using mass spectrometry publication-title: J. Proteome Res. – volume: 547 start-page: 185 year: 2017 end-page: 190 ident: bib28 article-title: Cryo-EM structures of tau filaments from Alzheimer’s disease publication-title: Nature – volume: 271 start-page: 32789 year: 1996 end-page: 32795 ident: bib14 article-title: The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer’s disease pathology publication-title: J. Biol. Chem. – volume: 35 start-page: 10851 year: 2015 end-page: 10865 ident: bib40 article-title: C-terminally truncated forms of Tau, but not full-length Tau or its C-terminal fragments, are released from neurons independently of cell death publication-title: J. Neurosci. – volume: 11 start-page: 392 year: 1991 end-page: 400 ident: bib26 article-title: Estrogen-enhanced neurite growth: evidence for a selective induction of Tau and stable microtubules publication-title: J. Neurosci. – volume: 1739 start-page: 280 year: 2005 end-page: 297 ident: bib65 article-title: Tau phosphorylation: physiological and pathological consequences publication-title: Biochim. Biophys. Acta – volume: 48 start-page: 6002 year: 2009 end-page: 6011 ident: bib68 article-title: Pseudohyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization publication-title: Biochemistry – volume: 39 start-page: 904 year: 1998 end-page: 911 ident: bib60 article-title: Correction for partial volume effects in PET: principle and validation publication-title: J. Nucl. Med. – volume: 12 start-page: 856 year: 2006 end-page: 861 ident: bib5 article-title: Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo publication-title: Nat. Med. – volume: 8 start-page: 338ra66 year: 2016 ident: bib10 article-title: Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease publication-title: Sci. Transl. Med. – volume: 9 start-page: 1 year: 2017 end-page: 10 ident: bib22 article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy publication-title: Sci. Transl. Med. – volume: 5 start-page: 9659 year: 2015 ident: bib19 article-title: Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms publication-title: Sci. Rep. – volume: 284 start-page: 12845 year: 2009 end-page: 12852 ident: bib29 article-title: Propagation of tau misfolding from the outside to the inside of a cell publication-title: J. Biol. Chem. – volume: 82 start-page: 1271 year: 2014 end-page: 1288 ident: bib61 article-title: Distinct tau prion strains propagate in cells and mice and define different tauopathies publication-title: Neuron – volume: 7 start-page: 325 year: 2016 end-page: 340 ident: bib62 article-title: Human iPSC-derived neuronal model of Tau-A152T frontotemporal dementia reveals Tau-mediated mechanisms of neuronal vulnerability publication-title: Stem Cell Reports – volume: 14 start-page: 389 year: 2013 end-page: 394 ident: bib55 article-title: Physiological release of endogenous tau is stimulated by neuronal activity publication-title: EMBO Rep. – volume: 107 start-page: 55 year: 2015 end-page: 64 ident: bib67 article-title: Partial volume correction in quantitative amyloid imaging publication-title: Neuroimage – year: 2017 ident: bib4 article-title: Tau hyperphosphorylation on T217 in cerebrospinal fluid is specifically associated to amyloid-β pathology publication-title: bioRxiv – volume: 291 start-page: 8173 year: 2016 end-page: 8188 ident: bib45 article-title: Co-immunoprecipitation with Tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N Tau in disease publication-title: J. Biol. Chem. – volume: 92 start-page: 10369 year: 1995 end-page: 10373 ident: bib81 article-title: Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes publication-title: Proc. Natl. Acad. Sci. USA – volume: 161 start-page: 171 year: 2017 end-page: 178 ident: bib51 article-title: AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure publication-title: Neuroimage – volume: 45 start-page: 30 year: 2010 end-page: 40 ident: bib34 article-title: Total and phosphorylated tau protein as biological markers of Alzheimer’s disease publication-title: Exp. Gerontol. – volume: 80 start-page: 402 year: 2013 end-page: 414 ident: bib78 article-title: Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo publication-title: Neuron – volume: 10 start-page: 55 year: 2015 ident: bib77 article-title: Analysis of in vivo turnover of tau in a mouse model of tauopathy publication-title: Mol. Neurodegener. – volume: 5 start-page: 83 year: 2015 end-page: 96 ident: bib24 article-title: Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein publication-title: Stem Cell Reports – volume: 8 start-page: e73377 year: 2013 ident: bib66 article-title: Quantitative analysis of PiB-PET with FreeSurfer ROIs publication-title: PLoS ONE – volume: 139 start-page: 2249 year: 2016 end-page: 2260 ident: bib31 article-title: The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging publication-title: Brain – volume: 108 start-page: 14234 year: 2011 end-page: 14239 ident: bib2 article-title: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: e76523 year: 2013 ident: bib50 article-title: Characterization of novel CSF Tau and ptau biomarkers for Alzheimer’s disease publication-title: PLoS ONE – volume: 20 start-page: 1588 year: 2015 end-page: 1595 ident: bib20 article-title: Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus publication-title: Mol. Psychiatry – volume: 45 start-page: 384 year: 2011 end-page: 389 ident: bib23 article-title: Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau) publication-title: J. Mol. Neurosci. – volume: 24 start-page: 7895 year: 2004 end-page: 7902 ident: bib37 article-title: Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease publication-title: J. Neurosci. – volume: 33 start-page: 95 year: 2000 end-page: 130 ident: bib12 article-title: Tau protein isoforms, phosphorylation and role in neurodegenerative disorders publication-title: Brain Res. Brain Res. Rev. – volume: 6 start-page: 226ra30 year: 2014 ident: bib25 article-title: Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease publication-title: Sci. Transl. Med. – volume: 30 start-page: 34 year: 2009 end-page: 40 ident: bib8 article-title: Pattern of Tau forms in CSF is altered in progressive supranuclear palsy publication-title: Neurobiol. Aging – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib27 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 24 start-page: 5260 year: 2015 end-page: 5269 ident: bib64 article-title: Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT publication-title: Hum. Mol. Genet. – volume: 114 start-page: 5 year: 2007 end-page: 22 ident: bib13 article-title: Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration publication-title: Acta Neuropathol. – volume: 284 start-page: 27734 year: 2009 end-page: 27745 ident: bib52 article-title: Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway publication-title: J. Biol. Chem. – volume: 107 start-page: 14508 year: 2010 end-page: 14513 ident: bib59 article-title: Analysis of proteome dynamics in the mouse brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 711 year: 1999 end-page: 715 ident: bib1 article-title: Association of an extended haplotype in the tau gene with progressive supranuclear palsy publication-title: Hum. Mol. Genet. – volume: 34 start-page: 243 year: 1993 end-page: 249 ident: bib69 article-title: Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location publication-title: J. Neurosci. Res. – volume: 292 start-page: 12192 year: 2017 end-page: 12207 ident: bib80 article-title: Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture publication-title: J. Biol. Chem. – volume: 94 start-page: 18 year: 2016 end-page: 31 ident: bib16 article-title: Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies publication-title: Neurobiol. Dis. – volume: 17 start-page: 5 year: 2016 end-page: 21 ident: bib73 article-title: Tau in physiology and pathology publication-title: Nat. Rev. Neurosci. – volume: 33 start-page: 12887 year: 2013 end-page: 12897 ident: bib21 article-title: Antisense reduction of tau in adult mice protects against seizures publication-title: J. Neurosci. – volume: 15 start-page: 667 year: 2016 end-page: 676 ident: bib3 article-title: Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity publication-title: J. Proteome Res. – volume: 78 start-page: 439 year: 2015 end-page: 453 ident: bib54 article-title: Age and amyloid effects on human central nervous system amyloid-beta kinetics publication-title: Ann. Neurol. – volume: 34 start-page: 371 year: 1993 end-page: 376 ident: bib43 article-title: Application of synthetic phospho- and unphospho- peptides to identify phosphorylation sites in a subregion of the tau molecule, which is modified in Alzheimer’s disease publication-title: J. Neurosci. Res. – volume: 297 start-page: 187 year: 2001 end-page: 190 ident: bib36 article-title: Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke publication-title: Neurosci. Lett. – volume: 5 start-page: 11161 year: 2015 ident: bib46 article-title: Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody publication-title: Sci. Rep. – volume: 290 start-page: 21652 year: 2015 end-page: 21662 ident: bib30 article-title: Distinct therapeutic mechanisms of Tau antibodies: promoting microglial clearance versus blocking neuronal uptake publication-title: J. Biol. Chem. – volume: 7 start-page: e31302 year: 2012 ident: bib44 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS ONE – volume: 211 start-page: 387 year: 2014 end-page: 393 ident: bib76 article-title: Neuronal activity regulates extracellular tau in vivo publication-title: J. Exp. Med. – volume: 36 start-page: 693 year: 2015 end-page: 709 ident: bib11 article-title: Human secreted tau increases amyloid-beta production publication-title: Neurobiol. Aging – volume: 45 start-page: 12859 year: 2006 end-page: 12866 ident: bib38 article-title: N-terminal fragments of tau inhibit full-length tau polymerization in vitro publication-title: Biochemistry – volume: 24 start-page: 1079 year: 2003 end-page: 1085 ident: bib48 article-title: Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses publication-title: Neurobiol. Aging – volume: 88 start-page: 1509 year: 2004 end-page: 1520 ident: bib33 article-title: Pseudophosphorylation of tau protein alters its ability for self-aggregation publication-title: J. Neurochem. – volume: 367 start-page: 795 year: 2012 end-page: 804 ident: bib6 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease publication-title: N. Engl. J. Med. – volume: 5 start-page: 189ra77 year: 2013 ident: bib58 article-title: Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers publication-title: Sci. Transl. Med. – volume: 48 start-page: 356 year: 2012 end-page: 366 ident: bib15 article-title: Constitutive secretion of tau protein by an unconventional mechanism publication-title: Neurobiol. Dis. – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib70 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 71 start-page: 2465 year: 1998 end-page: 2476 ident: bib35 article-title: New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry publication-title: J. Neurochem. – volume: 287 start-page: 19440 year: 2012 end-page: 19451 ident: bib42 article-title: Trans-cellular propagation of Tau aggregation by fibrillar species publication-title: J. Biol. Chem. – volume: 76 start-page: 1 year: 2014 end-page: 8 ident: bib56 article-title: A role for tau at the synapse in Alzheimer’s disease pathogenesis publication-title: Neuropharmacology – volume: 26 start-page: 1015 year: 2005 end-page: 1022 ident: bib32 article-title: Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease publication-title: Neurobiol. Aging – volume: 31 start-page: 13110 year: 2011 end-page: 13117 ident: bib75 article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice publication-title: J. Neurosci. – volume: 287 start-page: 42751 year: 2012 end-page: 42762 ident: bib41 article-title: Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies publication-title: J. Biol. Chem. – volume: 11 start-page: 153 year: 1993 end-page: 163 ident: bib7 article-title: Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding publication-title: Neuron – volume: 45 start-page: 12859 year: 2006 ident: 10.1016/j.neuron.2018.02.015_bib38 article-title: N-terminal fragments of tau inhibit full-length tau polymerization in vitro publication-title: Biochemistry doi: 10.1021/bi061325g – volume: 19 start-page: 1085 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib74 article-title: Neuronal activity enhances tau propagation and tau pathology in vivo publication-title: Nat. Neurosci. doi: 10.1038/nn.4328 – volume: 15 start-page: 667 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib3 article-title: Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b01001 – volume: 7 start-page: 2114 year: 2008 ident: 10.1016/j.neuron.2018.02.015_bib57 article-title: Characterization of tau in cerebrospinal fluid using mass spectrometry publication-title: J. Proteome Res. doi: 10.1021/pr7008669 – volume: 17 start-page: 5 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib73 article-title: Tau in physiology and pathology publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2015.1 – volume: 16 start-page: 271 year: 1995 ident: 10.1016/j.neuron.2018.02.015_bib9 article-title: Staging of Alzheimer’s disease-related neurofibrillary changes publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(95)00021-6 – volume: 78 start-page: 439 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib54 article-title: Age and amyloid effects on human central nervous system amyloid-beta kinetics publication-title: Ann. Neurol. doi: 10.1002/ana.24454 – volume: 5 start-page: 189ra77 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib58 article-title: Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005615 – volume: 34 start-page: 371 year: 1993 ident: 10.1016/j.neuron.2018.02.015_bib43 article-title: Application of synthetic phospho- and unphospho- peptides to identify phosphorylation sites in a subregion of the tau molecule, which is modified in Alzheimer’s disease publication-title: J. Neurosci. Res. doi: 10.1002/jnr.490340315 – volume: 45 start-page: 384 year: 2011 ident: 10.1016/j.neuron.2018.02.015_bib23 article-title: Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau) publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-011-9589-0 – volume: 8 start-page: e73377 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib66 article-title: Quantitative analysis of PiB-PET with FreeSurfer ROIs publication-title: PLoS ONE doi: 10.1371/journal.pone.0073377 – volume: 114 start-page: 5 year: 2007 ident: 10.1016/j.neuron.2018.02.015_bib13 article-title: Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration publication-title: Acta Neuropathol. doi: 10.1007/s00401-007-0237-2 – volume: 5 start-page: 9659 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib19 article-title: Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms publication-title: Sci. Rep. doi: 10.1038/srep09659 – volume: 139 start-page: 2249 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib31 article-title: The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging publication-title: Brain doi: 10.1093/brain/aww139 – volume: 292 start-page: 12192 year: 2017 ident: 10.1016/j.neuron.2018.02.015_bib80 article-title: Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.784702 – volume: 14 start-page: 389 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib55 article-title: Physiological release of endogenous tau is stimulated by neuronal activity publication-title: EMBO Rep. doi: 10.1038/embor.2013.15 – volume: 73 start-page: 685 year: 2012 ident: 10.1016/j.neuron.2018.02.015_bib18 article-title: Propagation of tau pathology in a model of early Alzheimer’s disease publication-title: Neuron doi: 10.1016/j.neuron.2011.11.033 – volume: 33 start-page: 12887 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib21 article-title: Antisense reduction of tau in adult mice protects against seizures publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2107-13.2013 – volume: 24 start-page: 5260 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib64 article-title: Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv246 – volume: 47 start-page: 1776 year: 2001 ident: 10.1016/j.neuron.2018.02.015_bib63 article-title: Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values publication-title: Clin. Chem. doi: 10.1093/clinchem/47.10.1776 – volume: 1739 start-page: 280 year: 2005 ident: 10.1016/j.neuron.2018.02.015_bib65 article-title: Tau phosphorylation: physiological and pathological consequences publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2004.06.017 – volume: 10 start-page: 55 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib77 article-title: Analysis of in vivo turnover of tau in a mouse model of tauopathy publication-title: Mol. Neurodegener. doi: 10.1186/s13024-015-0052-5 – volume: 8 start-page: 711 year: 1999 ident: 10.1016/j.neuron.2018.02.015_bib1 article-title: Association of an extended haplotype in the tau gene with progressive supranuclear palsy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.4.711 – volume: 94 start-page: 18 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib16 article-title: Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2016.05.016 – volume: 33 start-page: 1024 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib39 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2642-12.2013 – volume: 60 start-page: 683 year: 2014 ident: 10.1016/j.neuron.2018.02.015_bib49 article-title: Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry publication-title: Clin. Chem. doi: 10.1373/clinchem.2013.216515 – volume: 45 start-page: 30 year: 2010 ident: 10.1016/j.neuron.2018.02.015_bib34 article-title: Total and phosphorylated tau protein as biological markers of Alzheimer’s disease publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2009.10.010 – volume: 12 start-page: 856 year: 2006 ident: 10.1016/j.neuron.2018.02.015_bib5 article-title: Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo publication-title: Nat. Med. doi: 10.1038/nm1438 – volume: 30 start-page: 34 year: 2009 ident: 10.1016/j.neuron.2018.02.015_bib8 article-title: Pattern of Tau forms in CSF is altered in progressive supranuclear palsy publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.05.009 – volume: 5 start-page: 11161 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib46 article-title: Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody publication-title: Sci. Rep. doi: 10.1038/srep11161 – volume: 7 start-page: 325 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib62 article-title: Human iPSC-derived neuronal model of Tau-A152T frontotemporal dementia reveals Tau-mediated mechanisms of neuronal vulnerability publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2016.08.001 – volume: 126 start-page: 659 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib71 article-title: Longitudinal change in CSF Tau and Aβ biomarkers for up to 48 months in ADNI publication-title: Acta Neuropathol. doi: 10.1007/s00401-013-1151-4 – volume: 211 start-page: 387 year: 2014 ident: 10.1016/j.neuron.2018.02.015_bib76 article-title: Neuronal activity regulates extracellular tau in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20131685 – volume: 287 start-page: 42751 year: 2012 ident: 10.1016/j.neuron.2018.02.015_bib41 article-title: Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.380642 – volume: 24 start-page: 1079 year: 2003 ident: 10.1016/j.neuron.2018.02.015_bib48 article-title: Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2003.04.007 – volume: 36 start-page: 693 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib11 article-title: Human secreted tau increases amyloid-beta production publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.09.007 – volume: 8 start-page: 210 year: 1987 ident: 10.1016/j.neuron.2018.02.015_bib53 article-title: Phosphorylation determines two distinct species of Tau in the central nervous system publication-title: Cell Motil. Cytoskeleton doi: 10.1002/cm.970080303 – volume: 26 start-page: 1015 year: 2005 ident: 10.1016/j.neuron.2018.02.015_bib32 article-title: Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.09.019 – volume: 11 start-page: 153 year: 1993 ident: 10.1016/j.neuron.2018.02.015_bib7 article-title: Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding publication-title: Neuron doi: 10.1016/0896-6273(93)90279-Z – volume: 9 start-page: 1 year: 2017 ident: 10.1016/j.neuron.2018.02.015_bib22 article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aag0481 – volume: 284 start-page: 27734 year: 2009 ident: 10.1016/j.neuron.2018.02.015_bib52 article-title: Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.008177 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.neuron.2018.02.015_bib70 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 35 start-page: 10851 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib40 article-title: C-terminally truncated forms of Tau, but not full-length Tau or its C-terminal fragments, are released from neurons independently of cell death publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0387-15.2015 – volume: 7 start-page: e31302 year: 2012 ident: 10.1016/j.neuron.2018.02.015_bib44 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS ONE doi: 10.1371/journal.pone.0031302 – volume: 290 start-page: 21652 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib30 article-title: Distinct therapeutic mechanisms of Tau antibodies: promoting microglial clearance versus blocking neuronal uptake publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.657924 – volume: 34 start-page: 243 year: 1993 ident: 10.1016/j.neuron.2018.02.015_bib69 article-title: Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location publication-title: J. Neurosci. Res. doi: 10.1002/jnr.490340212 – volume: 125 start-page: 2772 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib17 article-title: In vivo kinetic approach reveals slow SOD1 turnover in the CNS publication-title: J. Clin. Invest. doi: 10.1172/JCI80705 – volume: 21 start-page: 4094 year: 2012 ident: 10.1016/j.neuron.2018.02.015_bib72 article-title: MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds238 – volume: 271 start-page: 32789 year: 1996 ident: 10.1016/j.neuron.2018.02.015_bib14 article-title: The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer’s disease pathology publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.51.32789 – volume: 133 start-page: 825 year: 2017 ident: 10.1016/j.neuron.2018.02.015_bib79 article-title: Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1693-y – volume: 92 start-page: 10369 year: 1995 ident: 10.1016/j.neuron.2018.02.015_bib81 article-title: Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.22.10369 – volume: 287 start-page: 19440 year: 2012 ident: 10.1016/j.neuron.2018.02.015_bib42 article-title: Trans-cellular propagation of Tau aggregation by fibrillar species publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.346072 – volume: 107 start-page: 14508 year: 2010 ident: 10.1016/j.neuron.2018.02.015_bib59 article-title: Analysis of proteome dynamics in the mouse brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1006551107 – volume: 547 start-page: 185 year: 2017 ident: 10.1016/j.neuron.2018.02.015_bib28 article-title: Cryo-EM structures of tau filaments from Alzheimer’s disease publication-title: Nature doi: 10.1038/nature23002 – volume: 88 start-page: 1509 year: 2004 ident: 10.1016/j.neuron.2018.02.015_bib33 article-title: Pseudophosphorylation of tau protein alters its ability for self-aggregation publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.02287.x – volume: 291 start-page: 8173 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib45 article-title: Co-immunoprecipitation with Tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N Tau in disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.641902 – volume: 20 start-page: 1588 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib20 article-title: Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus publication-title: Mol. Psychiatry doi: 10.1038/mp.2015.6 – volume: 6 start-page: 226ra30 year: 2014 ident: 10.1016/j.neuron.2018.02.015_bib25 article-title: Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007901 – volume: 8 start-page: 338ra66 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib10 article-title: Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf2362 – volume: 5 start-page: 83 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib24 article-title: Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2015.06.001 – volume: 88 start-page: 3704 year: 2016 ident: 10.1016/j.neuron.2018.02.015_bib47 article-title: FLEXITau: quantifying post-translational modifications of Tau protein in vitro and in human disease publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04509 – volume: 8 start-page: e76523 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib50 article-title: Characterization of novel CSF Tau and ptau biomarkers for Alzheimer’s disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0076523 – volume: 11 start-page: 392 year: 1991 ident: 10.1016/j.neuron.2018.02.015_bib26 article-title: Estrogen-enhanced neurite growth: evidence for a selective induction of Tau and stable microtubules publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.11-02-00392.1991 – volume: 33 start-page: 95 year: 2000 ident: 10.1016/j.neuron.2018.02.015_bib12 article-title: Tau protein isoforms, phosphorylation and role in neurodegenerative disorders publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/S0165-0173(00)00019-9 – volume: 284 start-page: 12845 year: 2009 ident: 10.1016/j.neuron.2018.02.015_bib29 article-title: Propagation of tau misfolding from the outside to the inside of a cell publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808759200 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuron.2018.02.015_bib27 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 48 start-page: 356 year: 2012 ident: 10.1016/j.neuron.2018.02.015_bib15 article-title: Constitutive secretion of tau protein by an unconventional mechanism publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2012.05.021 – volume: 107 start-page: 55 year: 2015 ident: 10.1016/j.neuron.2018.02.015_bib67 article-title: Partial volume correction in quantitative amyloid imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.058 – volume: 71 start-page: 2465 year: 1998 ident: 10.1016/j.neuron.2018.02.015_bib35 article-title: New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1998.71062465.x – volume: 24 start-page: 7895 year: 2004 ident: 10.1016/j.neuron.2018.02.015_bib37 article-title: Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1988-04.2004 – volume: 82 start-page: 1271 year: 2014 ident: 10.1016/j.neuron.2018.02.015_bib61 article-title: Distinct tau prion strains propagate in cells and mice and define different tauopathies publication-title: Neuron doi: 10.1016/j.neuron.2014.04.047 – volume: 161 start-page: 171 year: 2017 ident: 10.1016/j.neuron.2018.02.015_bib51 article-title: AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.050 – year: 2017 ident: 10.1016/j.neuron.2018.02.015_bib4 article-title: Tau hyperphosphorylation on T217 in cerebrospinal fluid is specifically associated to amyloid-β pathology publication-title: bioRxiv – volume: 48 start-page: 6002 year: 2009 ident: 10.1016/j.neuron.2018.02.015_bib68 article-title: Pseudohyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization publication-title: Biochemistry doi: 10.1021/bi900602h – volume: 367 start-page: 795 year: 2012 ident: 10.1016/j.neuron.2018.02.015_bib6 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1202753 – volume: 297 start-page: 187 year: 2001 ident: 10.1016/j.neuron.2018.02.015_bib36 article-title: Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(00)01697-9 – volume: 76 start-page: 1 issue: Pt A year: 2014 ident: 10.1016/j.neuron.2018.02.015_bib56 article-title: A role for tau at the synapse in Alzheimer’s disease pathogenesis publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2013.09.018 – volume: 108 start-page: 14234 year: 2011 ident: 10.1016/j.neuron.2018.02.015_bib2 article-title: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1103509108 – volume: 31 start-page: 13110 year: 2011 ident: 10.1016/j.neuron.2018.02.015_bib75 article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2569-11.2011 – volume: 39 start-page: 904 year: 1998 ident: 10.1016/j.neuron.2018.02.015_bib60 article-title: Correction for partial volume effects in PET: principle and validation publication-title: J. Nucl. Med. – volume: 80 start-page: 402 year: 2013 ident: 10.1016/j.neuron.2018.02.015_bib78 article-title: Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo publication-title: Neuron doi: 10.1016/j.neuron.2013.07.046 – reference: 29772204 - Neuron. 2018 May 16;98 (4):861-864 – reference: 29566788 - Neuron. 2018 Mar 21;97(6):1202-1205 |
SSID | ssj0014591 |
Score | 2.6654537 |
Snippet | We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central... SummaryWe developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1284 |
SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Amino Acid Sequence amyloid Biomarkers - cerebrospinal fluid Brain Brain - metabolism Brain - pathology Cell Line Cells, Cultured Central nervous system Central Nervous System - metabolism Central Nervous System - pathology Dementia Female human Humans Immunoglobulins induced pluripotent stem cell Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - pathology isoform Isoforms Kinetics Labeling Male Mass spectroscopy Middle Aged Neurons Pathology Peptides PET phosphorylation Physiology Pluripotency positron emission tomography production rate Proteins Senile plaques SILK stable isotope labeling kinetics Stem cells tau Tau protein tau Proteins - cerebrospinal fluid tau Proteins - metabolism |
Title | Tau Kinetics in Neurons and the Human Central Nervous System |
URI | https://dx.doi.org/10.1016/j.neuron.2018.02.015 https://www.ncbi.nlm.nih.gov/pubmed/29566794 https://www.proquest.com/docview/2017218107 https://www.proquest.com/docview/2018017471 https://pubmed.ncbi.nlm.nih.gov/PMC6137722 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5EEfayrI91x1WJsOytme50HjPgZRRFHPSwqzi3kEmncUSjODML_vutSj9wVBC8dXcqTVJ51Jek8hXAr0zxVKa-TFypLC5QnEoQtcoEBxeib-wQStMF5_MLdXolzkZytARHzV0Ycqus5_5qTo-zdf2lW2uz-ziZdP-mvT6xl1OnJOIxYvzMRS9e4hsdticJQlZR81A4Ienm-lz08YqckcSCmvUicycFx33fPL2Fn6-9KF-YpZNv8LXGk2xQFXkNlnxYh41BwLX0_TP7zaKHZ9w6X4fVKvDk8wYcXNo5GyLAJJJmNgkscnSEKbOhYAgJWdzbZ_XWL6Y-_XuYT1lFb74JVyfHl0enSR1HIXGin82SUhT9zMrUCeI-FLzIx7rER6x1wWUh7bjUKKFUX6eInqwSRep8aQulneclz7_DcngI_gcwp72iwLG5E1J4K9G-We7yjHPizVOiA3mjPuNqknGKdXFnGm-yW1Mp3ZDSTcoNKr0DSZvrsSLZ-EBeNy1jFjqLQTvwQc6dpiFNPVinlK4J6aS6A_ttMg4zOjuxwaOC4z9QDE15B7aqdm-LynGNqXBew2It9IhWgCi8F1PC5CZSeSsifOR8-9MV-glf6I284ni2A8uzp7nfRZg0G-_BymD453q4F8fDfzHgEB0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_UIvoirR_ttVojFN-W283mwwNfrChn_XjpCfcWctksnrRRvDvB_74z2Q96Kgi-LTuzSzL5mF-SyW8AfmSKpzL1ZeJKZXGB4lSCqFUmOLgQfWOHUJouOF9eqf61-DWUwwU4bu7CUFhlPfdXc3qcres33dqa3fvxuPs7PegRezl1SiIeyxfhA6IBTfkbzoY_26MEIau0eaidkHpzfy4GeUXSSKJBzQ4idSdlx33dP73En8_DKP_zS6cfYa0GlOyoKvMnWPBhHTaOAi6m_z6xfRZDPOPe-TosV5knnzbgcGBn7BwRJrE0s3FgkaQjTJgNBUNMyOLmPqv3flH68Hg3m7CK33wTrk9PBsf9pE6kkDjRy6ZJKYpeZmXqBJEfCl7kI13iI9a64LKQdlRq1FCqp1OET1aJInW-tIXSzvOS51uwFO6C_wLMaa8oc2zuhBTeSnRwlrs845yI85ToQN6Yz7iaZZySXfwxTTjZramMbsjoJuUGjd6BpP3qvmLZeENfNy1j5nqLQUfwxpfbTUOaerROSK4J6qS6A3utGMcZHZ7Y4NHA8R-ohr68A5-rdm-LynGRqXBiw2LN9YhWgTi85yVhfBO5vBUxPnL-9d0V2oWV_uDywlycXZ1_g1WSUIgcz7Zhafow8zuImaaj73FM_ANM5BGZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tau+Kinetics+in+Neurons+and+the+Human+Central+Nervous+System&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Sato%2C+Chihiro&rft.au=Barth%C3%A9lemy%2C+Nicolas+R.&rft.au=Mawuenyega%2C+Kwasi+G.&rft.au=Patterson%2C+Bruce+W.&rft.date=2018-03-21&rft.issn=0896-6273&rft.volume=97&rft.issue=6&rft.spage=1284&rft.epage=1298.e7&rft_id=info:doi/10.1016%2Fj.neuron.2018.02.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2018_02_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |