Tau Kinetics in Neurons and the Human Central Nervous System

We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from hu...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 97; no. 6; pp. 1284 - 1298.e7
Main Authors Sato, Chihiro, Barthélemy, Nicolas R., Mawuenyega, Kwasi G., Patterson, Bruce W., Gordon, Brian A., Jockel-Balsarotti, Jennifer, Sullivan, Melissa, Crisp, Matthew J., Kasten, Tom, Kirmess, Kristopher M., Kanaan, Nicholas M., Yarasheski, Kevin E., Baker-Nigh, Alaina, Benzinger, Tammie L.S., Miller, Timothy M., Karch, Celeste M., Bateman, Randall J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.03.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. [Display omitted] •Multiple forms of tau exist in the human brain, CSF, and iPSC-derived neurons•Newly synthesized tau is truncated and actively released by human neurons•Fibrillogenic forms of tau have shorter half-lives than non-fibrillogenic forms•Tau production rate positively correlates with amyloid plaque burden Sato et al. show that stable isotope labeling kinetics enable measurement of tau in the CNS and in iPSC-derived neurons. Specific forms of tau are uniquely processed in neurons and tau production rates correlate with amyloid accumulation in human subjects.
AbstractList We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. [Display omitted] •Multiple forms of tau exist in the human brain, CSF, and iPSC-derived neurons•Newly synthesized tau is truncated and actively released by human neurons•Fibrillogenic forms of tau have shorter half-lives than non-fibrillogenic forms•Tau production rate positively correlates with amyloid plaque burden Sato et al. show that stable isotope labeling kinetics enable measurement of tau in the CNS and in iPSC-derived neurons. Specific forms of tau are uniquely processed in neurons and tau production rates correlate with amyloid accumulation in human subjects.
We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology.
We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology.We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology.
We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSCderived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Sato et al. show that stable isotope labeling kinetics enable measurement of tau in the CNS and in iPSC-derived neurons. Specific forms of tau are uniquely processed in neurons and tau production rates correlate with amyloid accumulation in human subjects.
SummaryWe developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer’s disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology.
Author Patterson, Bruce W.
Sullivan, Melissa
Kirmess, Kristopher M.
Bateman, Randall J.
Kanaan, Nicholas M.
Crisp, Matthew J.
Mawuenyega, Kwasi G.
Baker-Nigh, Alaina
Benzinger, Tammie L.S.
Miller, Timothy M.
Gordon, Brian A.
Karch, Celeste M.
Sato, Chihiro
Barthélemy, Nicolas R.
Jockel-Balsarotti, Jennifer
Kasten, Tom
Yarasheski, Kevin E.
AuthorAffiliation 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
4 Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine, Grand Rapids, MI 49503, USA
6 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
2 Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
5 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
7 Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
3 Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
8 These authors contributed equally
9 Lead Contact
AuthorAffiliation_xml – name: 9 Lead Contact
– name: 5 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 8 These authors contributed equally
– name: 2 Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 6 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 3 Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 1 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 7 Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 4 Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine, Grand Rapids, MI 49503, USA
Author_xml – sequence: 1
  givenname: Chihiro
  surname: Sato
  fullname: Sato, Chihiro
  email: satochihiro@wustl.edu
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 2
  givenname: Nicolas R.
  surname: Barthélemy
  fullname: Barthélemy, Nicolas R.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 3
  givenname: Kwasi G.
  surname: Mawuenyega
  fullname: Mawuenyega, Kwasi G.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 4
  givenname: Bruce W.
  surname: Patterson
  fullname: Patterson, Bruce W.
  organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 5
  givenname: Brian A.
  surname: Gordon
  fullname: Gordon, Brian A.
  organization: Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 6
  givenname: Jennifer
  surname: Jockel-Balsarotti
  fullname: Jockel-Balsarotti, Jennifer
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 7
  givenname: Melissa
  surname: Sullivan
  fullname: Sullivan, Melissa
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 8
  givenname: Matthew J.
  surname: Crisp
  fullname: Crisp, Matthew J.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 9
  givenname: Tom
  surname: Kasten
  fullname: Kasten, Tom
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 10
  givenname: Kristopher M.
  surname: Kirmess
  fullname: Kirmess, Kristopher M.
  organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 11
  givenname: Nicholas M.
  surname: Kanaan
  fullname: Kanaan, Nicholas M.
  organization: Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine, Grand Rapids, MI 49503, USA
– sequence: 12
  givenname: Kevin E.
  surname: Yarasheski
  fullname: Yarasheski, Kevin E.
  organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 13
  givenname: Alaina
  surname: Baker-Nigh
  fullname: Baker-Nigh, Alaina
  organization: Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 14
  givenname: Tammie L.S.
  surname: Benzinger
  fullname: Benzinger, Tammie L.S.
  organization: Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 15
  givenname: Timothy M.
  surname: Miller
  fullname: Miller, Timothy M.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 16
  givenname: Celeste M.
  surname: Karch
  fullname: Karch, Celeste M.
  email: karchc@wustl.edu
  organization: Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 17
  givenname: Randall J.
  surname: Bateman
  fullname: Bateman, Randall J.
  email: batemanr@wustl.edu
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29566794$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFDEUxYO02G31G4gM-OLLTJNMJtmIFGSxf2jRB-tzyCZ3bJaZpCaZhX57M92taB_0KYH7u4dzzzlGBz54QOgNwQ3BhJ9uGg9TDL6hmCwbTBtMuhdoQbAUNSNSHqAFXkpecyraI3Sc0gZjwjpJXqIjKjvOhWQL9PFWT9W185CdSZXz1ZdH0VRpb6t8B9XlNGpfrcDnqIcyjdswperbQ8owvkKHvR4SvN6_J-j7-efb1WV98_XiavXppjZMklz3zEqiO2yYaFvOqG3Xoi_f4tvSznZ63YtCcC4FZm2nObPYQK8tFwZoT9sTdLbTvZ_WI1izM6Puoxt1fFBBO_X3xLs79SNsFSetEHQWeL8XiOHnBCmr0SUDw6A9lHPUHCEmgglS0HfP0E2Yoi_nzZSgZEmwKNTbPx39tvIUbAE-7AATQ0oRemVc1tmF2aAbFMFqblFt1K7FRwsKU1VaLMvs2fKT_n_W9jFB6WLrIKpkHHgD1kUwWdng_i3wCx2Ut9Q
CitedBy_id crossref_primary_10_3389_fnmol_2020_590896
crossref_primary_10_1038_s41467_022_34129_4
crossref_primary_10_1021_jasms_2c00341
crossref_primary_10_1016_j_ijms_2019_116194
crossref_primary_10_3389_fnins_2019_00659
crossref_primary_10_1016_j_abb_2019_108218
crossref_primary_10_1016_j_celrep_2024_115013
crossref_primary_10_1016_j_mcn_2019_103409
crossref_primary_10_1038_s43587_024_00597_0
crossref_primary_10_1001_jama_2020_12134
crossref_primary_10_1001_jamaneurol_2019_4284
crossref_primary_10_2217_epi_2021_0288
crossref_primary_10_1016_j_bbih_2021_100242
crossref_primary_10_1016_j_neures_2023_03_002
crossref_primary_10_1016_j_trci_2019_02_004
crossref_primary_10_1016_j_neuropharm_2020_108104
crossref_primary_10_4103_2045_9912_324591
crossref_primary_10_1016_j_ebiom_2022_103936
crossref_primary_10_1212_WNL_0000000000010814
crossref_primary_10_1016_j_nbd_2020_105120
crossref_primary_10_1093_braincomms_fcaa039
crossref_primary_10_1021_acschemneuro_0c00069
crossref_primary_10_3390_bios12100879
crossref_primary_10_1074_jbc_RA120_015882
crossref_primary_10_1093_bib_bbab598
crossref_primary_10_1523_JNEUROSCI_1700_18_2018
crossref_primary_10_3233_JAD_180422
crossref_primary_10_1002_alz_14360
crossref_primary_10_1002_alz_13393
crossref_primary_10_1002_ana_26048
crossref_primary_10_1007_s00259_021_05258_7
crossref_primary_10_15252_emmm_202115098
crossref_primary_10_1016_S1474_4422_19_30139_5
crossref_primary_10_3390_jpm10030116
crossref_primary_10_1134_S0006297922080089
crossref_primary_10_3390_cells11081279
crossref_primary_10_1016_j_nbd_2021_105536
crossref_primary_10_1038_s41398_018_0319_z
crossref_primary_10_3233_ADR_220059
crossref_primary_10_1016_j_nbd_2023_106267
crossref_primary_10_1038_s41467_024_52075_1
crossref_primary_10_1002_alz_13119
crossref_primary_10_3233_JAD_201341
crossref_primary_10_1007_s00259_020_04758_2
crossref_primary_10_1042_EBC20210028
crossref_primary_10_1186_s13024_022_00521_3
crossref_primary_10_1186_s40478_024_01758_3
crossref_primary_10_1186_s12014_020_09285_8
crossref_primary_10_1186_s13195_020_00756_6
crossref_primary_10_3390_ijms232315230
crossref_primary_10_2174_1573405617666211126154101
crossref_primary_10_1093_brain_awaa395
crossref_primary_10_1080_14728214_2019_1609450
crossref_primary_10_3389_fnagi_2022_977999
crossref_primary_10_61186_nl_3_2_14
crossref_primary_10_1002_ana_25885
crossref_primary_10_1038_s41591_021_01455_x
crossref_primary_10_1038_s41598_018_36650_3
crossref_primary_10_1093_brain_awab481
crossref_primary_10_1007_s00401_020_02195_x
crossref_primary_10_1016_j_bbadis_2019_165584
crossref_primary_10_14283_jpad_2024_43
crossref_primary_10_1098_rstb_2023_0234
crossref_primary_10_1038_s42003_021_02272_1
crossref_primary_10_1016_j_seizure_2021_08_012
crossref_primary_10_3390_brainsci14090859
crossref_primary_10_1007_s10856_023_06711_9
crossref_primary_10_1038_s41591_020_0755_1
crossref_primary_10_1002_alz_14346
crossref_primary_10_1038_s41380_020_00923_z
crossref_primary_10_1186_s13024_022_00578_0
crossref_primary_10_14283_jpad_2019_14
crossref_primary_10_1080_19420862_2019_1574530
crossref_primary_10_1038_s41591_022_02075_9
crossref_primary_10_1091_mbc_E19_03_0183
crossref_primary_10_1007_s10072_023_07232_7
crossref_primary_10_1002_acn3_657
crossref_primary_10_1002_ana_26620
crossref_primary_10_1186_s13024_018_0301_5
crossref_primary_10_1016_j_neulet_2020_135392
crossref_primary_10_1038_s41398_022_02274_5
crossref_primary_10_1186_s13195_022_01142_0
crossref_primary_10_1016_j_ymthe_2020_10_007
crossref_primary_10_1016_S1474_4422_20_30071_5
crossref_primary_10_1002_mds_27546
crossref_primary_10_1002_mds_27788
crossref_primary_10_1038_s41582_019_0222_0
crossref_primary_10_1038_s41591_023_02505_2
crossref_primary_10_1126_sciadv_abn4437
crossref_primary_10_1126_science_abb8255
crossref_primary_10_1016_j_neurobiolaging_2022_12_006
crossref_primary_10_1093_brain_awac158
crossref_primary_10_1177_13872877251325757
crossref_primary_10_1002_ana_25702
crossref_primary_10_1093_brain_awaa098
crossref_primary_10_1002_cpe_4836
crossref_primary_10_1111_ane_13700
crossref_primary_10_1002_acn3_51435
crossref_primary_10_1038_s41380_020_0838_x
crossref_primary_10_1007_s00401_018_1948_2
crossref_primary_10_1186_s13195_020_00586_6
crossref_primary_10_3233_JAD_230419
crossref_primary_10_14283_jpad_2022_48
crossref_primary_10_1016_j_cell_2025_02_021
crossref_primary_10_1007_s00259_018_4242_6
crossref_primary_10_1016_S1474_4422_19_30161_9
crossref_primary_10_1002_acn3_51553
crossref_primary_10_1371_journal_pone_0314973
crossref_primary_10_1016_j_neuroscience_2023_01_032
crossref_primary_10_1007_s00259_021_05253_y
crossref_primary_10_1111_febs_15197
crossref_primary_10_1093_braincomms_fcad343
crossref_primary_10_3389_fpsyt_2022_872594
crossref_primary_10_1016_j_nbd_2019_104707
crossref_primary_10_3390_ijms21144920
crossref_primary_10_2967_jnmt_123_265502
crossref_primary_10_3390_ijms22179207
crossref_primary_10_1007_s00401_024_02729_7
crossref_primary_10_1007_s40265_021_01546_6
crossref_primary_10_3390_ijms21165858
crossref_primary_10_1002_trc2_12264
crossref_primary_10_3389_fnmol_2018_00454
crossref_primary_10_1016_j_neuron_2023_05_017
crossref_primary_10_1186_s40478_020_01019_z
crossref_primary_10_1038_s43587_023_00550_7
crossref_primary_10_1186_s40035_019_0161_0
crossref_primary_10_1016_j_neuron_2018_02_030
crossref_primary_10_3389_fnagi_2021_767322
crossref_primary_10_1016_j_arr_2024_102192
crossref_primary_10_1073_pnas_2320456121
crossref_primary_10_1186_s12987_021_00283_y
crossref_primary_10_1093_brain_awab163
crossref_primary_10_1016_j_ebiom_2022_104249
crossref_primary_10_1186_s13024_024_00707_x
crossref_primary_10_3390_ijms21228673
crossref_primary_10_1016_j_trci_2019_11_002
crossref_primary_10_1186_s40478_019_0823_2
crossref_primary_10_1039_D1SC03486C
crossref_primary_10_1038_s41380_020_0738_0
crossref_primary_10_1111_nan_12819
crossref_primary_10_3389_fnagi_2023_1129051
crossref_primary_10_1016_j_ebiom_2022_103836
crossref_primary_10_1016_j_nbd_2023_106175
crossref_primary_10_3233_JAD_200463
crossref_primary_10_1002_alz_12518
crossref_primary_10_1038_s41467_020_15436_0
crossref_primary_10_1001_jamaneurol_2021_4654
crossref_primary_10_1186_s40478_024_01744_9
crossref_primary_10_4103_1673_5374_391329
crossref_primary_10_1126_scitranslmed_adp2564
crossref_primary_10_4103_1673_5374_360166
crossref_primary_10_1038_s41531_021_00213_7
crossref_primary_10_1093_braincomms_fcaa054
crossref_primary_10_1373_jalm_2019_030080
crossref_primary_10_1002_dad2_12204
crossref_primary_10_3390_ijms22158196
crossref_primary_10_1074_jbc_REV119_008031
crossref_primary_10_1016_j_neurobiolaging_2018_08_019
crossref_primary_10_1021_acs_jafc_9b07022
crossref_primary_10_1038_s41598_018_35130_y
crossref_primary_10_1177_14690667231218912
crossref_primary_10_1038_s41591_024_03400_0
crossref_primary_10_1172_jci_insight_152012
crossref_primary_10_3390_biology10101047
crossref_primary_10_1016_j_ejmech_2023_115859
crossref_primary_10_1038_s41582_021_00541_5
crossref_primary_10_1212_WNL_0000000000012727
crossref_primary_10_15252_emmm_201911170
crossref_primary_10_3390_ijms24076528
crossref_primary_10_1001_jamanetworkopen_2019_17126
crossref_primary_10_1002_alz_13539
crossref_primary_10_1007_s10571_023_01390_0
crossref_primary_10_14283_jpad_2024_163
crossref_primary_10_3233_JAD_190504
crossref_primary_10_1016_j_celrep_2021_108843
crossref_primary_10_1186_s13024_020_00374_8
crossref_primary_10_1038_s41380_018_0342_8
crossref_primary_10_1007_s00401_021_02275_6
crossref_primary_10_1093_braincomms_fcac045
crossref_primary_10_1093_braincomms_fcac286
crossref_primary_10_1016_j_tibs_2022_08_011
crossref_primary_10_1126_sciadv_add2671
crossref_primary_10_1126_sciadv_aaz2387
crossref_primary_10_1186_s40478_024_01849_1
crossref_primary_10_4155_fmc_2021_0325
crossref_primary_10_1084_jem_20211275
crossref_primary_10_1007_s12035_023_03867_x
crossref_primary_10_1111_ene_15428
crossref_primary_10_15252_emmm_202012921
crossref_primary_10_3233_JAD_220351
crossref_primary_10_3233_JAD_221202
crossref_primary_10_1038_s41582_022_00665_2
crossref_primary_10_1007_s00401_021_02264_9
crossref_primary_10_1038_s43587_023_00526_7
crossref_primary_10_1038_s41582_018_0116_6
crossref_primary_10_1039_D1CS00127B
crossref_primary_10_1186_s13195_023_01180_2
crossref_primary_10_3233_JAD_230180
crossref_primary_10_1016_j_dadm_2018_10_003
crossref_primary_10_1074_mcp_RA119_001702
crossref_primary_10_3389_fnagi_2023_1199434
crossref_primary_10_1186_s12974_018_1331_1
crossref_primary_10_1016_j_praneu_2021_03_014
crossref_primary_10_1007_s00401_018_1911_2
crossref_primary_10_3233_JAD_191130
crossref_primary_10_1093_brain_awad151
crossref_primary_10_1186_s13195_020_00596_4
crossref_primary_10_3233_JAD_231238
crossref_primary_10_1038_s41598_022_20305_5
crossref_primary_10_1016_j_stem_2022_04_018
crossref_primary_10_1016_j_conb_2021_03_003
crossref_primary_10_52586_S550
crossref_primary_10_1186_s40478_018_0649_3
crossref_primary_10_3389_fnagi_2022_1055170
crossref_primary_10_1186_s40478_019_0682_x
crossref_primary_10_1002_1873_3468_70022
crossref_primary_10_1523_JNEUROSCI_0082_23_2023
crossref_primary_10_1021_acschembio_0c00380
crossref_primary_10_1136_jnnp_2018_319266
crossref_primary_10_1093_braincomms_fcac026
crossref_primary_10_61186_nl_3_2_8
crossref_primary_10_1016_j_nbd_2019_03_010
crossref_primary_10_1016_j_neurobiolaging_2021_09_013
crossref_primary_10_2174_0115680266292514240404040341
crossref_primary_10_3233_JAD_200544
crossref_primary_10_3390_cells12030420
crossref_primary_10_1002_pcn5_65
crossref_primary_10_1001_jamaneurol_2023_2338
crossref_primary_10_1096_fj_201901895
crossref_primary_10_1016_j_semcdb_2021_12_002
crossref_primary_10_1186_s13195_020_00713_3
crossref_primary_10_3390_bios15020085
crossref_primary_10_1038_s41591_020_0797_4
crossref_primary_10_1002_dad2_12001
crossref_primary_10_1093_protein_gzz010
crossref_primary_10_1002_alz_12321
crossref_primary_10_1002_dad2_12241
crossref_primary_10_1016_j_bcp_2022_114979
crossref_primary_10_1016_j_chroma_2021_462299
crossref_primary_10_1093_braincomms_fcae333
crossref_primary_10_1186_s13024_025_00822_3
crossref_primary_10_1016_j_nbd_2019_03_022
crossref_primary_10_14283_jpad_2019_21
crossref_primary_10_1016_j_nbd_2020_105031
crossref_primary_10_1080_14737159_2022_2104639
crossref_primary_10_1177_1756286419888819
crossref_primary_10_1186_s40478_023_01562_5
crossref_primary_10_1021_acs_jproteome_2c00822
crossref_primary_10_3390_diagnostics12051165
crossref_primary_10_1007_s11011_024_01371_2
crossref_primary_10_1038_s41467_023_39328_1
crossref_primary_10_3389_fphar_2022_867457
crossref_primary_10_1016_j_jare_2021_09_005
crossref_primary_10_1021_acs_jproteome_8b00920
crossref_primary_10_1002_alz_14317
crossref_primary_10_1126_science_adl2992
crossref_primary_10_1073_pnas_2402117122
crossref_primary_10_1126_scitranslmed_abb2639
crossref_primary_10_1371_journal_pcbi_1008267
crossref_primary_10_1016_j_cell_2019_09_001
crossref_primary_10_1002_alz_14550
crossref_primary_10_1093_brain_awaa373
crossref_primary_10_1016_j_biopsych_2019_09_019
crossref_primary_10_1038_s41591_023_02443_z
crossref_primary_10_1152_physiol_00015_2022
crossref_primary_10_3390_biomedicines10092261
crossref_primary_10_1016_j_mcn_2024_103982
crossref_primary_10_3390_molecules25071659
crossref_primary_10_1371_journal_pone_0269157
crossref_primary_10_1126_sciadv_aau3333
crossref_primary_10_3233_JAD_215639
crossref_primary_10_3233_JAD_200047
crossref_primary_10_4155_bio_2020_0147
crossref_primary_10_3143_geriatrics_61_28
crossref_primary_10_1002_alz_13907
crossref_primary_10_3389_fnins_2021_679199
crossref_primary_10_1001_jamaneurol_2022_4485
crossref_primary_10_1016_j_cell_2021_07_003
crossref_primary_10_1186_s13024_024_00741_9
crossref_primary_10_1016_j_stemcr_2019_09_006
crossref_primary_10_1002_trc2_12073
crossref_primary_10_1038_s41467_024_54878_8
crossref_primary_10_14283_jpad_2024_126
crossref_primary_10_1038_s41467_023_44374_w
crossref_primary_10_1073_pnas_2309221120
crossref_primary_10_1016_j_neurot_2024_e00499
crossref_primary_10_1084_jem_20200861
crossref_primary_10_1042_BST20230596
crossref_primary_10_3389_fnagi_2024_1380237
crossref_primary_10_3390_antiox11112287
crossref_primary_10_1177_25424823241289804
crossref_primary_10_3390_ijms252312916
crossref_primary_10_1038_s41582_023_00883_2
crossref_primary_10_1002_alz_14528
crossref_primary_10_1093_jnen_nlac026
crossref_primary_10_1016_j_slasd_2022_05_001
crossref_primary_10_3390_ijms21030703
crossref_primary_10_1021_acssensors_2c01804
crossref_primary_10_1038_s41380_023_02237_2
crossref_primary_10_1002_alz_12236
crossref_primary_10_3390_ijms22073521
crossref_primary_10_1007_s00421_022_04892_9
crossref_primary_10_3233_JAD_240150
crossref_primary_10_3389_fcell_2022_999061
crossref_primary_10_1016_j_arr_2024_102594
crossref_primary_10_1016_j_bja_2020_08_061
crossref_primary_10_1016_j_neurobiolaging_2018_06_014
crossref_primary_10_1055_s_0044_1779296
crossref_primary_10_3390_biom14070827
crossref_primary_10_1089_neu_2020_7130
crossref_primary_10_1038_s41380_023_02324_4
crossref_primary_10_1016_j_ymthe_2021_09_020
crossref_primary_10_1186_s13195_021_00834_3
crossref_primary_10_3390_ijms23137307
crossref_primary_10_1007_s00401_019_02087_9
crossref_primary_10_1186_s12883_020_01849_3
crossref_primary_10_1186_s40364_021_00325_5
crossref_primary_10_1093_jnen_nlab047
crossref_primary_10_1016_j_medj_2024_08_004
crossref_primary_10_1097_MD_0000000000031637
crossref_primary_10_1111_joim_13332
crossref_primary_10_1016_j_neurobiolaging_2019_03_016
crossref_primary_10_1038_s41591_021_01348_z
crossref_primary_10_3390_biom12111676
crossref_primary_10_3390_brainsci11020215
crossref_primary_10_3233_JAD_215662
crossref_primary_10_3390_bioengineering9110612
crossref_primary_10_1002_alz_12245
crossref_primary_10_3389_fnagi_2022_838223
crossref_primary_10_1016_j_reth_2024_12_009
crossref_primary_10_2174_1568026622666220907114443
crossref_primary_10_1016_j_arr_2023_102046
crossref_primary_10_1093_brain_awaa468
crossref_primary_10_1016_j_ymthe_2024_01_033
crossref_primary_10_1016_j_mcn_2020_103553
Cites_doi 10.1021/bi061325g
10.1038/nn.4328
10.1021/acs.jproteome.5b01001
10.1021/pr7008669
10.1038/nrn.2015.1
10.1016/0197-4580(95)00021-6
10.1002/ana.24454
10.1126/scitranslmed.3005615
10.1002/jnr.490340315
10.1007/s12031-011-9589-0
10.1371/journal.pone.0073377
10.1007/s00401-007-0237-2
10.1038/srep09659
10.1093/brain/aww139
10.1074/jbc.M117.784702
10.1038/embor.2013.15
10.1016/j.neuron.2011.11.033
10.1523/JNEUROSCI.2107-13.2013
10.1093/hmg/ddv246
10.1093/clinchem/47.10.1776
10.1016/j.bbadis.2004.06.017
10.1186/s13024-015-0052-5
10.1093/hmg/8.4.711
10.1016/j.nbd.2016.05.016
10.1523/JNEUROSCI.2642-12.2013
10.1373/clinchem.2013.216515
10.1016/j.exger.2009.10.010
10.1038/nm1438
10.1016/j.neurobiolaging.2007.05.009
10.1038/srep11161
10.1016/j.stemcr.2016.08.001
10.1007/s00401-013-1151-4
10.1084/jem.20131685
10.1074/jbc.M112.380642
10.1016/j.neurobiolaging.2003.04.007
10.1016/j.neurobiolaging.2014.09.007
10.1002/cm.970080303
10.1016/j.neurobiolaging.2004.09.019
10.1016/0896-6273(93)90279-Z
10.1126/scitranslmed.aag0481
10.1074/jbc.M109.008177
10.1016/j.cell.2006.07.024
10.1523/JNEUROSCI.0387-15.2015
10.1371/journal.pone.0031302
10.1074/jbc.M115.657924
10.1002/jnr.490340212
10.1172/JCI80705
10.1093/hmg/dds238
10.1074/jbc.271.51.32789
10.1007/s00401-017-1693-y
10.1073/pnas.92.22.10369
10.1074/jbc.M112.346072
10.1073/pnas.1006551107
10.1038/nature23002
10.1046/j.1471-4159.2003.02287.x
10.1074/jbc.M115.641902
10.1038/mp.2015.6
10.1126/scitranslmed.3007901
10.1126/scitranslmed.aaf2362
10.1016/j.stemcr.2015.06.001
10.1021/acs.analchem.5b04509
10.1371/journal.pone.0076523
10.1523/JNEUROSCI.11-02-00392.1991
10.1016/S0165-0173(00)00019-9
10.1074/jbc.M808759200
10.1016/S0896-6273(02)00569-X
10.1016/j.nbd.2012.05.021
10.1016/j.neuroimage.2014.11.058
10.1046/j.1471-4159.1998.71062465.x
10.1523/JNEUROSCI.1988-04.2004
10.1016/j.neuron.2014.04.047
10.1016/j.neuroimage.2017.07.050
10.1021/bi900602h
10.1056/NEJMoa1202753
10.1016/S0304-3940(00)01697-9
10.1016/j.neuropharm.2013.09.018
10.1073/pnas.1103509108
10.1523/JNEUROSCI.2569-11.2011
10.1016/j.neuron.2013.07.046
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
2018. Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: 2018. Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2018.02.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 1298.e7
ExternalDocumentID PMC6137722
29566794
10_1016_j_neuron_2018_02_015
S0896627318301363
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: K01 AG046374
– fundername: NINDS NIH HHS
  grantid: R01 NS095773
– fundername: NIGMS NIH HHS
  grantid: P41 GM103422
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NIA NIH HHS
  grantid: K01 AG053474
– fundername: NINDS NIH HHS
  grantid: P30 NS048056
– fundername: NIA NIH HHS
  grantid: P01 AG026276
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
– fundername: NIA NIH HHS
  grantid: P50 AG005681
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
AKRWK
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c491t-f4d91a50c4733642d3b7f733018d25d5abf7d9166970435a64d0cefad67ce2f23
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 13:42:36 EDT 2025
Thu Jul 10 23:36:40 EDT 2025
Fri Jul 25 11:13:31 EDT 2025
Thu Apr 03 07:02:24 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Tue Jul 01 01:16:17 EDT 2025
Sat Mar 30 16:19:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords SILK
amyloid
Alzheimer’s disease
induced pluripotent stem cell
stable isotope labeling kinetics
production rate
tau
positron emission tomography
phosphorylation
human
isoform
PET
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-f4d91a50c4733642d3b7f733018d25d5abf7d9166970435a64d0cefad67ce2f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
R.J.B., T.M.M., C.S., and C.M.K. conceived the project. R.J.B., C.S., M.J.C., T.M.M., J.J.-B., M.S., and B.W.P. designed the long-term labeling protocol. J.J.-B. and M.S. recruited the participants. C.S., N.R.B., K.G.M., T.K., and R.J.B. designed and developed the tau SILK method. B.W.P. designed and performed compartmental modeling. K.M.K., K.E.Y., A.B.-N., and B.W.P. conducted the plasma and CSF free 13C6-leucine quantitation. B.A.G. and T.L.S.B. obtained amyloid and tau PET imaging. N.M.K. generated Tau1, Tau12, Tau5, and Tau7 antibodies. C.M.K. generated the iPSC lines and C.S., C.M.K., and N.R.B. designed and performed iPSC-derived neuron SILK experiments. N.R.B. designed and performed MS experiments. N.R.B. and C.S. analyzed and interpreted data and prepared figures. C.S., R.J.B., N.R.B., C.M.K., K.G.M., B.W.P., N.M.K., T.K., T.M.M., and K.E.Y. wrote the paper.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627318301363
PMID 29566794
PQID 2017218107
PQPubID 2031076
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137722
proquest_miscellaneous_2018017471
proquest_journals_2017218107
pubmed_primary_29566794
crossref_citationtrail_10_1016_j_neuron_2018_02_015
crossref_primary_10_1016_j_neuron_2018_02_015
elsevier_sciencedirect_doi_10_1016_j_neuron_2018_02_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-21
PublicationDateYYYYMMDD 2018-03-21
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Potter, Patterson, Elbert, Ovod, Kasten, Sigurdson, Mawuenyega, Blazey, Goate, Chott (bib58) 2013; 5
Silva, Cheng, Mair, Almeida, Fong, Biswas, Zhang, Huang, Temple, Coppola (bib62) 2016; 7
Barthélemy, Fenaille, Hirtz, Sergeant, Schraen-Maschke, Vialaret, Buée, Gabelle, Junot, Lehmann, Becher (bib3) 2016; 15
Buée, Bussière, Buée-Scherrer, Delacourte, Hof (bib12) 2000; 33
DeVos, Goncharoff, Chen, Kebodeaux, Yamada, Stewart, Schuler, Maloney, Wozniak, Rigo (bib21) 2013; 33
Hanger, Betts, Loviny, Blackstock, Anderton (bib35) 1998; 71
Derisbourg, Leghay, Chiappetta, Fernandez-Gomez, Laurent, Demeyer, Carrier, Buée-Scherrer, Blum, Vinh (bib19) 2015; 5
McAvoy, Lassman, Spellman, Ke, Howell, Wong, Zhu, Tanen, Struyk, Laterza (bib49) 2014; 60
Papasozomenos, Binder (bib53) 1987; 8
Mandelkow, Stamer, Vogel, Thies, Mandelkow (bib48) 2003; 24
Dickson, Kouri, Murray, Josephs (bib23) 2011; 45
Hampel, Blennow, Shaw, Hoessler, Zetterberg, Trojanowski (bib34) 2010; 45
Yamada, Cirrito, Stewart, Jiang, Finn, Holmes, Binder, Mandelkow, Diamond, Lee, Holtzman (bib75) 2011; 31
Mair, Muntel, Tepper, Tang, Biernat, Seeley, Kosik, Mandelkow, Steen, Steen (bib47) 2016; 88
Cairns, Bigio, Mackenzie, Neumann, Lee, Hatanpaa, White, Schneider, Grinberg, Halliday (bib13) 2007; 114
DeVos, Miller, Schoch, Holmes, Kebodeaux, Wegener, Chen, Shen, Tran, Nichols (bib22) 2017; 9
Hesse, Rosengren, Andreasen, Davidsson, Vanderstichele, Vanmechelen, Blennow (bib36) 2001; 297
Brier, Gordon, Friedrichsen, McCarthy, Stern, Christensen, Owen, Aldea, Su, Hassenstab (bib10) 2016; 8
Meredith, Sankaranarayanan, Guss, Lanzetti, Berisha, Neely, Slemmon, Portelius, Zetterberg, Blennow (bib50) 2013; 8
LoPresti, Szuchet, Papasozomenos, Zinkowski, Binder (bib81) 1995; 92
Sun, Gamblin (bib68) 2009; 48
Trabzuni, Wray, Vandrovcova, Ramasamy, Walker, Smith, Luk, Gibbs, Dillman, Hernandez (bib72) 2012; 21
Toledo, Xie, Trojanowski, Shaw (bib71) 2013; 126
Liu, Moore, Williams, Hall, Yen (bib43) 1993; 34
Pooler, Phillips, Lau, Noble, Hanger (bib55) 2013; 14
Sjögren, Vanderstichele, Ågren, Zachrisson, Edsbagge, Wikkelsø, Skoog, Wallin, Wahlund, Marcusson (bib63) 2001; 47
Yanamandra, Kfoury, Jiang, Mahan, Ma, Maloney, Wozniak, Diamond, Holtzman (bib78) 2013; 80
Horowitz, Patterson, Guillozet-Bongaarts, Reynolds, Carroll, Weintraub, Bennett, Cryns, Berry, Binder (bib37) 2004; 24
Liu, Drouet, Wu, Witter, Small, Clelland, Duff (bib44) 2012; 7
Yamada, Holth, Liao, Stewart, Mahan, Jiang, Cirrito, Patel, Hochgräfe, Mandelkow, Holtzman (bib76) 2014; 211
Patterson, Elbert, Mawuenyega, Kasten, Ovod, Ma, Xiong, Chott, Yarasheski, Sigurdson (bib54) 2015; 78
Price, Guan, Burlingame, Prusiner, Ghaemmaghami (bib59) 2010; 107
Yamada, Patel, Hochgräfe, Mahan, Jiang, Stewart, Mandelkow, Holtzman (bib77) 2015; 10
Portelius, Hansson, Tran, Zetterberg, Grognet, Vanmechelen, Höglund, Brinkmalm, Westman-Brinkmalm, Nordhoff (bib57) 2008; 7
Wang, Mandelkow (bib73) 2016; 17
Liu, Song, Nisbet, Götz (bib45) 2016; 291
Braak, Braak (bib9) 1995; 16
Horowitz, LaPointe, Guillozet-Bongaarts, Berry, Binder (bib38) 2006; 45
Kfoury, Holmes, Jiang, Holtzman, Diamond (bib42) 2012; 287
Sposito, Preza, Mahoney, Setó-Salvia, Ryan, Morris, Arber, Devine, Houlden, Warner (bib64) 2015; 24
Mishra, Gordon, Su, Christensen, Friedrichsen, Jackson, Hornbeck, Balota, Cairns, Morris (bib51) 2017; 161
Sanders, Kaufman, DeVos, Sharma, Mirbaha, Li, Barker, Foley, Thorpe, Serpell (bib61) 2014; 82
Baker, Litvan, Houlden, Adamson, Dickson, Perez-Tur, Hardy, Lynch, Bigio, Hutton (bib1) 1999; 8
Ehrlich, Hallmann, Reinhardt, Araúzo-Bravo, Korr, Röpke, Psathaki, Ehling, Meuth, Oblak (bib24) 2015; 5
Biernat, Gustke, Drewes, Mandelkow, Mandelkow (bib7) 1993; 11
Crisp, Mawuenyega, Patterson, Reddy, Chott, Self, Weihl, Jockel-Balsarotti, Varadhachary, Bucelli (bib17) 2015; 125
de Calignon, Polydoro, Suárez-Calvet, William, Adamowicz, Kopeikina, Pitstick, Sahara, Ashe, Carlson (bib18) 2012; 73
Fagan, Xiong, Jasielec, Bateman, Goate, Benzinger, Ghetti, Martins, Masters, Mayeux (bib25) 2014; 6
Karch, Jeng, Goate (bib41) 2012; 287
Rousset, Ma, Evans (bib60) 1998; 39
Su, D’Angelo, Vlassenko, Zhou, Snyder, Marcus, Blazey, Christensen, Vora, Morris (bib66) 2013; 8
Combs, Hamel, Kanaan (bib16) 2016; 94
Borroni, Gardoni, Parnetti, Magno, Malinverno, Saggese, Calabresi, Spillantini, Padovani, Di Luca (bib8) 2009; 30
Stoothoff, Johnson (bib65) 2005; 1739
Barthélemy, Bateman, Marin, Becher, Sato, Lehmann, Gabelle (bib4) 2017
Guillozet-Bongaarts, Garcia-Sierra, Reynolds, Horowitz, Fu, Wang, Cahill, Bigio, Berry, Binder (bib32) 2005; 26
Takahashi, Yamanaka (bib70) 2006; 126
Bateman, Xiong, Benzinger, Fagan, Goate, Fox, Marcus, Cairns, Xie, Blazey (bib6) 2012; 367
Carmel, Mager, Binder, Kuret (bib14) 1996; 271
Pooler, Noble, Hanger (bib56) 2014; 76
Funk, Mirbaha, Jiang, Holtzman, Diamond (bib30) 2015; 290
Su, Blazey, Snyder, Raichle, Marcus, Ances, Bateman, Cairns, Aldea, Cash (bib67) 2015; 107
Bateman, Munsell, Morris, Swarm, Yarasheski, Holtzman (bib5) 2006; 12
Luo, Liu, Hu, Hanna, Caravaca, Paul (bib46) 2015; 5
Frost, Jacks, Diamond (bib29) 2009; 284
Desikan, Schork, Wang, Witoelar, Sharma, McEvoy, Holland, Brewer, Chen, Thompson (bib20) 2015; 20
Wu, Hussaini, Bastille, Rodriguez, Mrejeru, Rilett, Sanders, Cook, Fu, Boonen (bib74) 2016; 19
Ban, Nishishita, Fusaki, Tabata, Saeki, Shikamura, Takada, Inoue, Hasegawa, Kawamata, Nishikawa (bib2) 2011; 108
Szendrei, Lee, Otvos (bib69) 1993; 34
Yokoyama, Karch, Fan, Bonham, Kouri, Ross, Rademakers, Kim, Wang, Höglinger (bib79) 2017; 133
Ferreira, Caceres (bib26) 1991; 11
Iba, Guo, McBride, Zhang, Trojanowski, Lee (bib39) 2013; 33
Kanmert, Cantlon, Muratore, Jin, O’Malley, Lee, Young-Pearse, Selkoe, Walsh (bib40) 2015; 35
Haase, Stieler, Arendt, Holzer (bib33) 2004; 88
Fitzpatrick, Falcon, He, Murzin, Murshudov, Garringer, Crowther, Ghetti, Goedert, Scheres (bib28) 2017; 547
Gordon, Friedrichsen, Brier, Blazey, Su, Christensen, Aldea, McConathy, Holtzman, Cairns (bib31) 2016; 139
Morita, Sobue (bib52) 2009; 284
Zempel, Dennissen, Kumar, Luedtke, Biernat, Mandelkow, Mandelkow (bib80) 2017; 292
Bright, Hussain, Dang, Wright, Cooper, Byun, Ramos, Singh, Parry, Stagliano, Griswold-Prenner (bib11) 2015; 36
Chai, Dage, Citron (bib15) 2012; 48
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness (bib27) 2002; 33
Sjögren (10.1016/j.neuron.2018.02.015_bib63) 2001; 47
Yamada (10.1016/j.neuron.2018.02.015_bib77) 2015; 10
Su (10.1016/j.neuron.2018.02.015_bib66) 2013; 8
Bateman (10.1016/j.neuron.2018.02.015_bib5) 2006; 12
Kanmert (10.1016/j.neuron.2018.02.015_bib40) 2015; 35
Crisp (10.1016/j.neuron.2018.02.015_bib17) 2015; 125
Silva (10.1016/j.neuron.2018.02.015_bib62) 2016; 7
DeVos (10.1016/j.neuron.2018.02.015_bib21) 2013; 33
Wu (10.1016/j.neuron.2018.02.015_bib74) 2016; 19
Bright (10.1016/j.neuron.2018.02.015_bib11) 2015; 36
Hampel (10.1016/j.neuron.2018.02.015_bib34) 2010; 45
Hesse (10.1016/j.neuron.2018.02.015_bib36) 2001; 297
Price (10.1016/j.neuron.2018.02.015_bib59) 2010; 107
Iba (10.1016/j.neuron.2018.02.015_bib39) 2013; 33
Luo (10.1016/j.neuron.2018.02.015_bib46) 2015; 5
Mair (10.1016/j.neuron.2018.02.015_bib47) 2016; 88
Fagan (10.1016/j.neuron.2018.02.015_bib25) 2014; 6
Brier (10.1016/j.neuron.2018.02.015_bib10) 2016; 8
Cairns (10.1016/j.neuron.2018.02.015_bib13) 2007; 114
Ehrlich (10.1016/j.neuron.2018.02.015_bib24) 2015; 5
Horowitz (10.1016/j.neuron.2018.02.015_bib38) 2006; 45
Sanders (10.1016/j.neuron.2018.02.015_bib61) 2014; 82
Horowitz (10.1016/j.neuron.2018.02.015_bib37) 2004; 24
Fitzpatrick (10.1016/j.neuron.2018.02.015_bib28) 2017; 547
Pooler (10.1016/j.neuron.2018.02.015_bib55) 2013; 14
Toledo (10.1016/j.neuron.2018.02.015_bib71) 2013; 126
Bateman (10.1016/j.neuron.2018.02.015_bib6) 2012; 367
Mandelkow (10.1016/j.neuron.2018.02.015_bib48) 2003; 24
Morita (10.1016/j.neuron.2018.02.015_bib52) 2009; 284
Su (10.1016/j.neuron.2018.02.015_bib67) 2015; 107
Ferreira (10.1016/j.neuron.2018.02.015_bib26) 1991; 11
Liu (10.1016/j.neuron.2018.02.015_bib45) 2016; 291
Haase (10.1016/j.neuron.2018.02.015_bib33) 2004; 88
Zempel (10.1016/j.neuron.2018.02.015_bib80) 2017; 292
Desikan (10.1016/j.neuron.2018.02.015_bib20) 2015; 20
McAvoy (10.1016/j.neuron.2018.02.015_bib49) 2014; 60
Mishra (10.1016/j.neuron.2018.02.015_bib51) 2017; 161
DeVos (10.1016/j.neuron.2018.02.015_bib22) 2017; 9
Barthélemy (10.1016/j.neuron.2018.02.015_bib4) 2017
Sun (10.1016/j.neuron.2018.02.015_bib68) 2009; 48
Wang (10.1016/j.neuron.2018.02.015_bib73) 2016; 17
Yanamandra (10.1016/j.neuron.2018.02.015_bib78) 2013; 80
Yamada (10.1016/j.neuron.2018.02.015_bib75) 2011; 31
Borroni (10.1016/j.neuron.2018.02.015_bib8) 2009; 30
Stoothoff (10.1016/j.neuron.2018.02.015_bib65) 2005; 1739
Hanger (10.1016/j.neuron.2018.02.015_bib35) 1998; 71
Derisbourg (10.1016/j.neuron.2018.02.015_bib19) 2015; 5
Meredith (10.1016/j.neuron.2018.02.015_bib50) 2013; 8
Sposito (10.1016/j.neuron.2018.02.015_bib64) 2015; 24
Rousset (10.1016/j.neuron.2018.02.015_bib60) 1998; 39
Takahashi (10.1016/j.neuron.2018.02.015_bib70) 2006; 126
Karch (10.1016/j.neuron.2018.02.015_bib41) 2012; 287
Pooler (10.1016/j.neuron.2018.02.015_bib56) 2014; 76
Portelius (10.1016/j.neuron.2018.02.015_bib57) 2008; 7
Funk (10.1016/j.neuron.2018.02.015_bib30) 2015; 290
Yokoyama (10.1016/j.neuron.2018.02.015_bib79) 2017; 133
Buée (10.1016/j.neuron.2018.02.015_bib12) 2000; 33
Fischl (10.1016/j.neuron.2018.02.015_bib27) 2002; 33
Liu (10.1016/j.neuron.2018.02.015_bib44) 2012; 7
Patterson (10.1016/j.neuron.2018.02.015_bib54) 2015; 78
Chai (10.1016/j.neuron.2018.02.015_bib15) 2012; 48
Potter (10.1016/j.neuron.2018.02.015_bib58) 2013; 5
Trabzuni (10.1016/j.neuron.2018.02.015_bib72) 2012; 21
Barthélemy (10.1016/j.neuron.2018.02.015_bib3) 2016; 15
Biernat (10.1016/j.neuron.2018.02.015_bib7) 1993; 11
Carmel (10.1016/j.neuron.2018.02.015_bib14) 1996; 271
Guillozet-Bongaarts (10.1016/j.neuron.2018.02.015_bib32) 2005; 26
de Calignon (10.1016/j.neuron.2018.02.015_bib18) 2012; 73
LoPresti (10.1016/j.neuron.2018.02.015_bib81) 1995; 92
Baker (10.1016/j.neuron.2018.02.015_bib1) 1999; 8
Liu (10.1016/j.neuron.2018.02.015_bib43) 1993; 34
Szendrei (10.1016/j.neuron.2018.02.015_bib69) 1993; 34
Combs (10.1016/j.neuron.2018.02.015_bib16) 2016; 94
Kfoury (10.1016/j.neuron.2018.02.015_bib42) 2012; 287
Papasozomenos (10.1016/j.neuron.2018.02.015_bib53) 1987; 8
Braak (10.1016/j.neuron.2018.02.015_bib9) 1995; 16
Gordon (10.1016/j.neuron.2018.02.015_bib31) 2016; 139
Yamada (10.1016/j.neuron.2018.02.015_bib76) 2014; 211
Dickson (10.1016/j.neuron.2018.02.015_bib23) 2011; 45
Frost (10.1016/j.neuron.2018.02.015_bib29) 2009; 284
Ban (10.1016/j.neuron.2018.02.015_bib2) 2011; 108
29772204 - Neuron. 2018 May 16;98 (4):861-864
29566788 - Neuron. 2018 Mar 21;97(6):1202-1205
References_xml – volume: 133
  start-page: 825
  year: 2017
  end-page: 837
  ident: bib79
  article-title: Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia
  publication-title: Acta Neuropathol.
– volume: 8
  start-page: 210
  year: 1987
  end-page: 226
  ident: bib53
  article-title: Phosphorylation determines two distinct species of Tau in the central nervous system
  publication-title: Cell Motil. Cytoskeleton
– volume: 60
  start-page: 683
  year: 2014
  end-page: 689
  ident: bib49
  article-title: Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry
  publication-title: Clin. Chem.
– volume: 47
  start-page: 1776
  year: 2001
  end-page: 1781
  ident: bib63
  article-title: Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values
  publication-title: Clin. Chem.
– volume: 126
  start-page: 659
  year: 2013
  end-page: 670
  ident: bib71
  article-title: Longitudinal change in CSF Tau and Aβ biomarkers for up to 48 months in ADNI
  publication-title: Acta Neuropathol.
– volume: 21
  start-page: 4094
  year: 2012
  end-page: 4103
  ident: bib72
  article-title: MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies
  publication-title: Hum. Mol. Genet.
– volume: 125
  start-page: 2772
  year: 2015
  end-page: 2780
  ident: bib17
  article-title: In vivo kinetic approach reveals slow SOD1 turnover in the CNS
  publication-title: J. Clin. Invest.
– volume: 33
  start-page: 1024
  year: 2013
  end-page: 1037
  ident: bib39
  article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy
  publication-title: J. Neurosci.
– volume: 88
  start-page: 3704
  year: 2016
  end-page: 3714
  ident: bib47
  article-title: FLEXITau: quantifying post-translational modifications of Tau protein in vitro and in human disease
  publication-title: Anal. Chem.
– volume: 19
  start-page: 1085
  year: 2016
  end-page: 1092
  ident: bib74
  article-title: Neuronal activity enhances tau propagation and tau pathology
  publication-title: Nat. Neurosci.
– volume: 16
  start-page: 271
  year: 1995
  end-page: 278
  ident: bib9
  article-title: Staging of Alzheimer’s disease-related neurofibrillary changes
  publication-title: Neurobiol. Aging
– volume: 73
  start-page: 685
  year: 2012
  end-page: 697
  ident: bib18
  article-title: Propagation of tau pathology in a model of early Alzheimer’s disease
  publication-title: Neuron
– volume: 7
  start-page: 2114
  year: 2008
  end-page: 2120
  ident: bib57
  article-title: Characterization of tau in cerebrospinal fluid using mass spectrometry
  publication-title: J. Proteome Res.
– volume: 547
  start-page: 185
  year: 2017
  end-page: 190
  ident: bib28
  article-title: Cryo-EM structures of tau filaments from Alzheimer’s disease
  publication-title: Nature
– volume: 271
  start-page: 32789
  year: 1996
  end-page: 32795
  ident: bib14
  article-title: The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer’s disease pathology
  publication-title: J. Biol. Chem.
– volume: 35
  start-page: 10851
  year: 2015
  end-page: 10865
  ident: bib40
  article-title: C-terminally truncated forms of Tau, but not full-length Tau or its C-terminal fragments, are released from neurons independently of cell death
  publication-title: J. Neurosci.
– volume: 11
  start-page: 392
  year: 1991
  end-page: 400
  ident: bib26
  article-title: Estrogen-enhanced neurite growth: evidence for a selective induction of Tau and stable microtubules
  publication-title: J. Neurosci.
– volume: 1739
  start-page: 280
  year: 2005
  end-page: 297
  ident: bib65
  article-title: Tau phosphorylation: physiological and pathological consequences
  publication-title: Biochim. Biophys. Acta
– volume: 48
  start-page: 6002
  year: 2009
  end-page: 6011
  ident: bib68
  article-title: Pseudohyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization
  publication-title: Biochemistry
– volume: 39
  start-page: 904
  year: 1998
  end-page: 911
  ident: bib60
  article-title: Correction for partial volume effects in PET: principle and validation
  publication-title: J. Nucl. Med.
– volume: 12
  start-page: 856
  year: 2006
  end-page: 861
  ident: bib5
  article-title: Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo
  publication-title: Nat. Med.
– volume: 8
  start-page: 338ra66
  year: 2016
  ident: bib10
  article-title: Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease
  publication-title: Sci. Transl. Med.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib22
  article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy
  publication-title: Sci. Transl. Med.
– volume: 5
  start-page: 9659
  year: 2015
  ident: bib19
  article-title: Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms
  publication-title: Sci. Rep.
– volume: 284
  start-page: 12845
  year: 2009
  end-page: 12852
  ident: bib29
  article-title: Propagation of tau misfolding from the outside to the inside of a cell
  publication-title: J. Biol. Chem.
– volume: 82
  start-page: 1271
  year: 2014
  end-page: 1288
  ident: bib61
  article-title: Distinct tau prion strains propagate in cells and mice and define different tauopathies
  publication-title: Neuron
– volume: 7
  start-page: 325
  year: 2016
  end-page: 340
  ident: bib62
  article-title: Human iPSC-derived neuronal model of Tau-A152T frontotemporal dementia reveals Tau-mediated mechanisms of neuronal vulnerability
  publication-title: Stem Cell Reports
– volume: 14
  start-page: 389
  year: 2013
  end-page: 394
  ident: bib55
  article-title: Physiological release of endogenous tau is stimulated by neuronal activity
  publication-title: EMBO Rep.
– volume: 107
  start-page: 55
  year: 2015
  end-page: 64
  ident: bib67
  article-title: Partial volume correction in quantitative amyloid imaging
  publication-title: Neuroimage
– year: 2017
  ident: bib4
  article-title: Tau hyperphosphorylation on T217 in cerebrospinal fluid is specifically associated to amyloid-β pathology
  publication-title: bioRxiv
– volume: 291
  start-page: 8173
  year: 2016
  end-page: 8188
  ident: bib45
  article-title: Co-immunoprecipitation with Tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N Tau in disease
  publication-title: J. Biol. Chem.
– volume: 92
  start-page: 10369
  year: 1995
  end-page: 10373
  ident: bib81
  article-title: Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 161
  start-page: 171
  year: 2017
  end-page: 178
  ident: bib51
  article-title: AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure
  publication-title: Neuroimage
– volume: 45
  start-page: 30
  year: 2010
  end-page: 40
  ident: bib34
  article-title: Total and phosphorylated tau protein as biological markers of Alzheimer’s disease
  publication-title: Exp. Gerontol.
– volume: 80
  start-page: 402
  year: 2013
  end-page: 414
  ident: bib78
  article-title: Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo
  publication-title: Neuron
– volume: 10
  start-page: 55
  year: 2015
  ident: bib77
  article-title: Analysis of in vivo turnover of tau in a mouse model of tauopathy
  publication-title: Mol. Neurodegener.
– volume: 5
  start-page: 83
  year: 2015
  end-page: 96
  ident: bib24
  article-title: Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein
  publication-title: Stem Cell Reports
– volume: 8
  start-page: e73377
  year: 2013
  ident: bib66
  article-title: Quantitative analysis of PiB-PET with FreeSurfer ROIs
  publication-title: PLoS ONE
– volume: 139
  start-page: 2249
  year: 2016
  end-page: 2260
  ident: bib31
  article-title: The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging
  publication-title: Brain
– volume: 108
  start-page: 14234
  year: 2011
  end-page: 14239
  ident: bib2
  article-title: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: e76523
  year: 2013
  ident: bib50
  article-title: Characterization of novel CSF Tau and ptau biomarkers for Alzheimer’s disease
  publication-title: PLoS ONE
– volume: 20
  start-page: 1588
  year: 2015
  end-page: 1595
  ident: bib20
  article-title: Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus
  publication-title: Mol. Psychiatry
– volume: 45
  start-page: 384
  year: 2011
  end-page: 389
  ident: bib23
  article-title: Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau)
  publication-title: J. Mol. Neurosci.
– volume: 24
  start-page: 7895
  year: 2004
  end-page: 7902
  ident: bib37
  article-title: Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease
  publication-title: J. Neurosci.
– volume: 33
  start-page: 95
  year: 2000
  end-page: 130
  ident: bib12
  article-title: Tau protein isoforms, phosphorylation and role in neurodegenerative disorders
  publication-title: Brain Res. Brain Res. Rev.
– volume: 6
  start-page: 226ra30
  year: 2014
  ident: bib25
  article-title: Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease
  publication-title: Sci. Transl. Med.
– volume: 30
  start-page: 34
  year: 2009
  end-page: 40
  ident: bib8
  article-title: Pattern of Tau forms in CSF is altered in progressive supranuclear palsy
  publication-title: Neurobiol. Aging
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib27
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 24
  start-page: 5260
  year: 2015
  end-page: 5269
  ident: bib64
  article-title: Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT
  publication-title: Hum. Mol. Genet.
– volume: 114
  start-page: 5
  year: 2007
  end-page: 22
  ident: bib13
  article-title: Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration
  publication-title: Acta Neuropathol.
– volume: 284
  start-page: 27734
  year: 2009
  end-page: 27745
  ident: bib52
  article-title: Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 14508
  year: 2010
  end-page: 14513
  ident: bib59
  article-title: Analysis of proteome dynamics in the mouse brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 711
  year: 1999
  end-page: 715
  ident: bib1
  article-title: Association of an extended haplotype in the tau gene with progressive supranuclear palsy
  publication-title: Hum. Mol. Genet.
– volume: 34
  start-page: 243
  year: 1993
  end-page: 249
  ident: bib69
  article-title: Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location
  publication-title: J. Neurosci. Res.
– volume: 292
  start-page: 12192
  year: 2017
  end-page: 12207
  ident: bib80
  article-title: Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture
  publication-title: J. Biol. Chem.
– volume: 94
  start-page: 18
  year: 2016
  end-page: 31
  ident: bib16
  article-title: Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies
  publication-title: Neurobiol. Dis.
– volume: 17
  start-page: 5
  year: 2016
  end-page: 21
  ident: bib73
  article-title: Tau in physiology and pathology
  publication-title: Nat. Rev. Neurosci.
– volume: 33
  start-page: 12887
  year: 2013
  end-page: 12897
  ident: bib21
  article-title: Antisense reduction of tau in adult mice protects against seizures
  publication-title: J. Neurosci.
– volume: 15
  start-page: 667
  year: 2016
  end-page: 676
  ident: bib3
  article-title: Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity
  publication-title: J. Proteome Res.
– volume: 78
  start-page: 439
  year: 2015
  end-page: 453
  ident: bib54
  article-title: Age and amyloid effects on human central nervous system amyloid-beta kinetics
  publication-title: Ann. Neurol.
– volume: 34
  start-page: 371
  year: 1993
  end-page: 376
  ident: bib43
  article-title: Application of synthetic phospho- and unphospho- peptides to identify phosphorylation sites in a subregion of the tau molecule, which is modified in Alzheimer’s disease
  publication-title: J. Neurosci. Res.
– volume: 297
  start-page: 187
  year: 2001
  end-page: 190
  ident: bib36
  article-title: Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke
  publication-title: Neurosci. Lett.
– volume: 5
  start-page: 11161
  year: 2015
  ident: bib46
  article-title: Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody
  publication-title: Sci. Rep.
– volume: 290
  start-page: 21652
  year: 2015
  end-page: 21662
  ident: bib30
  article-title: Distinct therapeutic mechanisms of Tau antibodies: promoting microglial clearance versus blocking neuronal uptake
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: e31302
  year: 2012
  ident: bib44
  article-title: Trans-synaptic spread of tau pathology in vivo
  publication-title: PLoS ONE
– volume: 211
  start-page: 387
  year: 2014
  end-page: 393
  ident: bib76
  article-title: Neuronal activity regulates extracellular tau in vivo
  publication-title: J. Exp. Med.
– volume: 36
  start-page: 693
  year: 2015
  end-page: 709
  ident: bib11
  article-title: Human secreted tau increases amyloid-beta production
  publication-title: Neurobiol. Aging
– volume: 45
  start-page: 12859
  year: 2006
  end-page: 12866
  ident: bib38
  article-title: N-terminal fragments of tau inhibit full-length tau polymerization in vitro
  publication-title: Biochemistry
– volume: 24
  start-page: 1079
  year: 2003
  end-page: 1085
  ident: bib48
  article-title: Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses
  publication-title: Neurobiol. Aging
– volume: 88
  start-page: 1509
  year: 2004
  end-page: 1520
  ident: bib33
  article-title: Pseudophosphorylation of tau protein alters its ability for self-aggregation
  publication-title: J. Neurochem.
– volume: 367
  start-page: 795
  year: 2012
  end-page: 804
  ident: bib6
  article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease
  publication-title: N. Engl. J. Med.
– volume: 5
  start-page: 189ra77
  year: 2013
  ident: bib58
  article-title: Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers
  publication-title: Sci. Transl. Med.
– volume: 48
  start-page: 356
  year: 2012
  end-page: 366
  ident: bib15
  article-title: Constitutive secretion of tau protein by an unconventional mechanism
  publication-title: Neurobiol. Dis.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib70
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 71
  start-page: 2465
  year: 1998
  end-page: 2476
  ident: bib35
  article-title: New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry
  publication-title: J. Neurochem.
– volume: 287
  start-page: 19440
  year: 2012
  end-page: 19451
  ident: bib42
  article-title: Trans-cellular propagation of Tau aggregation by fibrillar species
  publication-title: J. Biol. Chem.
– volume: 76
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib56
  article-title: A role for tau at the synapse in Alzheimer’s disease pathogenesis
  publication-title: Neuropharmacology
– volume: 26
  start-page: 1015
  year: 2005
  end-page: 1022
  ident: bib32
  article-title: Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease
  publication-title: Neurobiol. Aging
– volume: 31
  start-page: 13110
  year: 2011
  end-page: 13117
  ident: bib75
  article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice
  publication-title: J. Neurosci.
– volume: 287
  start-page: 42751
  year: 2012
  end-page: 42762
  ident: bib41
  article-title: Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 153
  year: 1993
  end-page: 163
  ident: bib7
  article-title: Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding
  publication-title: Neuron
– volume: 45
  start-page: 12859
  year: 2006
  ident: 10.1016/j.neuron.2018.02.015_bib38
  article-title: N-terminal fragments of tau inhibit full-length tau polymerization in vitro
  publication-title: Biochemistry
  doi: 10.1021/bi061325g
– volume: 19
  start-page: 1085
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib74
  article-title: Neuronal activity enhances tau propagation and tau pathology in vivo
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4328
– volume: 15
  start-page: 667
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib3
  article-title: Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b01001
– volume: 7
  start-page: 2114
  year: 2008
  ident: 10.1016/j.neuron.2018.02.015_bib57
  article-title: Characterization of tau in cerebrospinal fluid using mass spectrometry
  publication-title: J. Proteome Res.
  doi: 10.1021/pr7008669
– volume: 17
  start-page: 5
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib73
  article-title: Tau in physiology and pathology
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2015.1
– volume: 16
  start-page: 271
  year: 1995
  ident: 10.1016/j.neuron.2018.02.015_bib9
  article-title: Staging of Alzheimer’s disease-related neurofibrillary changes
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(95)00021-6
– volume: 78
  start-page: 439
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib54
  article-title: Age and amyloid effects on human central nervous system amyloid-beta kinetics
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24454
– volume: 5
  start-page: 189ra77
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib58
  article-title: Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005615
– volume: 34
  start-page: 371
  year: 1993
  ident: 10.1016/j.neuron.2018.02.015_bib43
  article-title: Application of synthetic phospho- and unphospho- peptides to identify phosphorylation sites in a subregion of the tau molecule, which is modified in Alzheimer’s disease
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.490340315
– volume: 45
  start-page: 384
  year: 2011
  ident: 10.1016/j.neuron.2018.02.015_bib23
  article-title: Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau)
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-011-9589-0
– volume: 8
  start-page: e73377
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib66
  article-title: Quantitative analysis of PiB-PET with FreeSurfer ROIs
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073377
– volume: 114
  start-page: 5
  year: 2007
  ident: 10.1016/j.neuron.2018.02.015_bib13
  article-title: Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-007-0237-2
– volume: 5
  start-page: 9659
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib19
  article-title: Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms
  publication-title: Sci. Rep.
  doi: 10.1038/srep09659
– volume: 139
  start-page: 2249
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib31
  article-title: The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging
  publication-title: Brain
  doi: 10.1093/brain/aww139
– volume: 292
  start-page: 12192
  year: 2017
  ident: 10.1016/j.neuron.2018.02.015_bib80
  article-title: Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.784702
– volume: 14
  start-page: 389
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib55
  article-title: Physiological release of endogenous tau is stimulated by neuronal activity
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.15
– volume: 73
  start-page: 685
  year: 2012
  ident: 10.1016/j.neuron.2018.02.015_bib18
  article-title: Propagation of tau pathology in a model of early Alzheimer’s disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.033
– volume: 33
  start-page: 12887
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib21
  article-title: Antisense reduction of tau in adult mice protects against seizures
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2107-13.2013
– volume: 24
  start-page: 5260
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib64
  article-title: Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv246
– volume: 47
  start-page: 1776
  year: 2001
  ident: 10.1016/j.neuron.2018.02.015_bib63
  article-title: Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/47.10.1776
– volume: 1739
  start-page: 280
  year: 2005
  ident: 10.1016/j.neuron.2018.02.015_bib65
  article-title: Tau phosphorylation: physiological and pathological consequences
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2004.06.017
– volume: 10
  start-page: 55
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib77
  article-title: Analysis of in vivo turnover of tau in a mouse model of tauopathy
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-015-0052-5
– volume: 8
  start-page: 711
  year: 1999
  ident: 10.1016/j.neuron.2018.02.015_bib1
  article-title: Association of an extended haplotype in the tau gene with progressive supranuclear palsy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.4.711
– volume: 94
  start-page: 18
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib16
  article-title: Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2016.05.016
– volume: 33
  start-page: 1024
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib39
  article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2642-12.2013
– volume: 60
  start-page: 683
  year: 2014
  ident: 10.1016/j.neuron.2018.02.015_bib49
  article-title: Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2013.216515
– volume: 45
  start-page: 30
  year: 2010
  ident: 10.1016/j.neuron.2018.02.015_bib34
  article-title: Total and phosphorylated tau protein as biological markers of Alzheimer’s disease
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2009.10.010
– volume: 12
  start-page: 856
  year: 2006
  ident: 10.1016/j.neuron.2018.02.015_bib5
  article-title: Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo
  publication-title: Nat. Med.
  doi: 10.1038/nm1438
– volume: 30
  start-page: 34
  year: 2009
  ident: 10.1016/j.neuron.2018.02.015_bib8
  article-title: Pattern of Tau forms in CSF is altered in progressive supranuclear palsy
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.05.009
– volume: 5
  start-page: 11161
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib46
  article-title: Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody
  publication-title: Sci. Rep.
  doi: 10.1038/srep11161
– volume: 7
  start-page: 325
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib62
  article-title: Human iPSC-derived neuronal model of Tau-A152T frontotemporal dementia reveals Tau-mediated mechanisms of neuronal vulnerability
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2016.08.001
– volume: 126
  start-page: 659
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib71
  article-title: Longitudinal change in CSF Tau and Aβ biomarkers for up to 48 months in ADNI
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-013-1151-4
– volume: 211
  start-page: 387
  year: 2014
  ident: 10.1016/j.neuron.2018.02.015_bib76
  article-title: Neuronal activity regulates extracellular tau in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20131685
– volume: 287
  start-page: 42751
  year: 2012
  ident: 10.1016/j.neuron.2018.02.015_bib41
  article-title: Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.380642
– volume: 24
  start-page: 1079
  year: 2003
  ident: 10.1016/j.neuron.2018.02.015_bib48
  article-title: Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2003.04.007
– volume: 36
  start-page: 693
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib11
  article-title: Human secreted tau increases amyloid-beta production
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.09.007
– volume: 8
  start-page: 210
  year: 1987
  ident: 10.1016/j.neuron.2018.02.015_bib53
  article-title: Phosphorylation determines two distinct species of Tau in the central nervous system
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/cm.970080303
– volume: 26
  start-page: 1015
  year: 2005
  ident: 10.1016/j.neuron.2018.02.015_bib32
  article-title: Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2004.09.019
– volume: 11
  start-page: 153
  year: 1993
  ident: 10.1016/j.neuron.2018.02.015_bib7
  article-title: Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding
  publication-title: Neuron
  doi: 10.1016/0896-6273(93)90279-Z
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuron.2018.02.015_bib22
  article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aag0481
– volume: 284
  start-page: 27734
  year: 2009
  ident: 10.1016/j.neuron.2018.02.015_bib52
  article-title: Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.008177
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.neuron.2018.02.015_bib70
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 35
  start-page: 10851
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib40
  article-title: C-terminally truncated forms of Tau, but not full-length Tau or its C-terminal fragments, are released from neurons independently of cell death
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0387-15.2015
– volume: 7
  start-page: e31302
  year: 2012
  ident: 10.1016/j.neuron.2018.02.015_bib44
  article-title: Trans-synaptic spread of tau pathology in vivo
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031302
– volume: 290
  start-page: 21652
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib30
  article-title: Distinct therapeutic mechanisms of Tau antibodies: promoting microglial clearance versus blocking neuronal uptake
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.657924
– volume: 34
  start-page: 243
  year: 1993
  ident: 10.1016/j.neuron.2018.02.015_bib69
  article-title: Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.490340212
– volume: 125
  start-page: 2772
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib17
  article-title: In vivo kinetic approach reveals slow SOD1 turnover in the CNS
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI80705
– volume: 21
  start-page: 4094
  year: 2012
  ident: 10.1016/j.neuron.2018.02.015_bib72
  article-title: MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds238
– volume: 271
  start-page: 32789
  year: 1996
  ident: 10.1016/j.neuron.2018.02.015_bib14
  article-title: The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer’s disease pathology
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.51.32789
– volume: 133
  start-page: 825
  year: 2017
  ident: 10.1016/j.neuron.2018.02.015_bib79
  article-title: Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-017-1693-y
– volume: 92
  start-page: 10369
  year: 1995
  ident: 10.1016/j.neuron.2018.02.015_bib81
  article-title: Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.22.10369
– volume: 287
  start-page: 19440
  year: 2012
  ident: 10.1016/j.neuron.2018.02.015_bib42
  article-title: Trans-cellular propagation of Tau aggregation by fibrillar species
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.346072
– volume: 107
  start-page: 14508
  year: 2010
  ident: 10.1016/j.neuron.2018.02.015_bib59
  article-title: Analysis of proteome dynamics in the mouse brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1006551107
– volume: 547
  start-page: 185
  year: 2017
  ident: 10.1016/j.neuron.2018.02.015_bib28
  article-title: Cryo-EM structures of tau filaments from Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/nature23002
– volume: 88
  start-page: 1509
  year: 2004
  ident: 10.1016/j.neuron.2018.02.015_bib33
  article-title: Pseudophosphorylation of tau protein alters its ability for self-aggregation
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2003.02287.x
– volume: 291
  start-page: 8173
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib45
  article-title: Co-immunoprecipitation with Tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N Tau in disease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.641902
– volume: 20
  start-page: 1588
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib20
  article-title: Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2015.6
– volume: 6
  start-page: 226ra30
  year: 2014
  ident: 10.1016/j.neuron.2018.02.015_bib25
  article-title: Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007901
– volume: 8
  start-page: 338ra66
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib10
  article-title: Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf2362
– volume: 5
  start-page: 83
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib24
  article-title: Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2015.06.001
– volume: 88
  start-page: 3704
  year: 2016
  ident: 10.1016/j.neuron.2018.02.015_bib47
  article-title: FLEXITau: quantifying post-translational modifications of Tau protein in vitro and in human disease
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04509
– volume: 8
  start-page: e76523
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib50
  article-title: Characterization of novel CSF Tau and ptau biomarkers for Alzheimer’s disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0076523
– volume: 11
  start-page: 392
  year: 1991
  ident: 10.1016/j.neuron.2018.02.015_bib26
  article-title: Estrogen-enhanced neurite growth: evidence for a selective induction of Tau and stable microtubules
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.11-02-00392.1991
– volume: 33
  start-page: 95
  year: 2000
  ident: 10.1016/j.neuron.2018.02.015_bib12
  article-title: Tau protein isoforms, phosphorylation and role in neurodegenerative disorders
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(00)00019-9
– volume: 284
  start-page: 12845
  year: 2009
  ident: 10.1016/j.neuron.2018.02.015_bib29
  article-title: Propagation of tau misfolding from the outside to the inside of a cell
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808759200
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuron.2018.02.015_bib27
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 48
  start-page: 356
  year: 2012
  ident: 10.1016/j.neuron.2018.02.015_bib15
  article-title: Constitutive secretion of tau protein by an unconventional mechanism
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2012.05.021
– volume: 107
  start-page: 55
  year: 2015
  ident: 10.1016/j.neuron.2018.02.015_bib67
  article-title: Partial volume correction in quantitative amyloid imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.058
– volume: 71
  start-page: 2465
  year: 1998
  ident: 10.1016/j.neuron.2018.02.015_bib35
  article-title: New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1998.71062465.x
– volume: 24
  start-page: 7895
  year: 2004
  ident: 10.1016/j.neuron.2018.02.015_bib37
  article-title: Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1988-04.2004
– volume: 82
  start-page: 1271
  year: 2014
  ident: 10.1016/j.neuron.2018.02.015_bib61
  article-title: Distinct tau prion strains propagate in cells and mice and define different tauopathies
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.047
– volume: 161
  start-page: 171
  year: 2017
  ident: 10.1016/j.neuron.2018.02.015_bib51
  article-title: AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.050
– year: 2017
  ident: 10.1016/j.neuron.2018.02.015_bib4
  article-title: Tau hyperphosphorylation on T217 in cerebrospinal fluid is specifically associated to amyloid-β pathology
  publication-title: bioRxiv
– volume: 48
  start-page: 6002
  year: 2009
  ident: 10.1016/j.neuron.2018.02.015_bib68
  article-title: Pseudohyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization
  publication-title: Biochemistry
  doi: 10.1021/bi900602h
– volume: 367
  start-page: 795
  year: 2012
  ident: 10.1016/j.neuron.2018.02.015_bib6
  article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1202753
– volume: 297
  start-page: 187
  year: 2001
  ident: 10.1016/j.neuron.2018.02.015_bib36
  article-title: Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(00)01697-9
– volume: 76
  start-page: 1
  issue: Pt A
  year: 2014
  ident: 10.1016/j.neuron.2018.02.015_bib56
  article-title: A role for tau at the synapse in Alzheimer’s disease pathogenesis
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2013.09.018
– volume: 108
  start-page: 14234
  year: 2011
  ident: 10.1016/j.neuron.2018.02.015_bib2
  article-title: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1103509108
– volume: 31
  start-page: 13110
  year: 2011
  ident: 10.1016/j.neuron.2018.02.015_bib75
  article-title: In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2569-11.2011
– volume: 39
  start-page: 904
  year: 1998
  ident: 10.1016/j.neuron.2018.02.015_bib60
  article-title: Correction for partial volume effects in PET: principle and validation
  publication-title: J. Nucl. Med.
– volume: 80
  start-page: 402
  year: 2013
  ident: 10.1016/j.neuron.2018.02.015_bib78
  article-title: Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.046
– reference: 29772204 - Neuron. 2018 May 16;98 (4):861-864
– reference: 29566788 - Neuron. 2018 Mar 21;97(6):1202-1205
SSID ssj0014591
Score 2.6654537
Snippet We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central...
SummaryWe developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1284
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Amino Acid Sequence
amyloid
Biomarkers - cerebrospinal fluid
Brain
Brain - metabolism
Brain - pathology
Cell Line
Cells, Cultured
Central nervous system
Central Nervous System - metabolism
Central Nervous System - pathology
Dementia
Female
human
Humans
Immunoglobulins
induced pluripotent stem cell
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
isoform
Isoforms
Kinetics
Labeling
Male
Mass spectroscopy
Middle Aged
Neurons
Pathology
Peptides
PET
phosphorylation
Physiology
Pluripotency
positron emission tomography
production rate
Proteins
Senile plaques
SILK
stable isotope labeling kinetics
Stem cells
tau
Tau protein
tau Proteins - cerebrospinal fluid
tau Proteins - metabolism
Title Tau Kinetics in Neurons and the Human Central Nervous System
URI https://dx.doi.org/10.1016/j.neuron.2018.02.015
https://www.ncbi.nlm.nih.gov/pubmed/29566794
https://www.proquest.com/docview/2017218107
https://www.proquest.com/docview/2018017471
https://pubmed.ncbi.nlm.nih.gov/PMC6137722
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5EEfayrI91x1WJsOytme50HjPgZRRFHPSwqzi3kEmncUSjODML_vutSj9wVBC8dXcqTVJ51Jek8hXAr0zxVKa-TFypLC5QnEoQtcoEBxeib-wQStMF5_MLdXolzkZytARHzV0Ycqus5_5qTo-zdf2lW2uz-ziZdP-mvT6xl1OnJOIxYvzMRS9e4hsdticJQlZR81A4Ienm-lz08YqckcSCmvUicycFx33fPL2Fn6-9KF-YpZNv8LXGk2xQFXkNlnxYh41BwLX0_TP7zaKHZ9w6X4fVKvDk8wYcXNo5GyLAJJJmNgkscnSEKbOhYAgJWdzbZ_XWL6Y-_XuYT1lFb74JVyfHl0enSR1HIXGin82SUhT9zMrUCeI-FLzIx7rER6x1wWUh7bjUKKFUX6eInqwSRep8aQulneclz7_DcngI_gcwp72iwLG5E1J4K9G-We7yjHPizVOiA3mjPuNqknGKdXFnGm-yW1Mp3ZDSTcoNKr0DSZvrsSLZ-EBeNy1jFjqLQTvwQc6dpiFNPVinlK4J6aS6A_ttMg4zOjuxwaOC4z9QDE15B7aqdm-LynGNqXBew2It9IhWgCi8F1PC5CZSeSsifOR8-9MV-glf6I284ni2A8uzp7nfRZg0G-_BymD453q4F8fDfzHgEB0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_UIvoirR_ttVojFN-W283mwwNfrChn_XjpCfcWctksnrRRvDvB_74z2Q96Kgi-LTuzSzL5mF-SyW8AfmSKpzL1ZeJKZXGB4lSCqFUmOLgQfWOHUJouOF9eqf61-DWUwwU4bu7CUFhlPfdXc3qcres33dqa3fvxuPs7PegRezl1SiIeyxfhA6IBTfkbzoY_26MEIau0eaidkHpzfy4GeUXSSKJBzQ4idSdlx33dP73En8_DKP_zS6cfYa0GlOyoKvMnWPBhHTaOAi6m_z6xfRZDPOPe-TosV5knnzbgcGBn7BwRJrE0s3FgkaQjTJgNBUNMyOLmPqv3flH68Hg3m7CK33wTrk9PBsf9pE6kkDjRy6ZJKYpeZmXqBJEfCl7kI13iI9a64LKQdlRq1FCqp1OET1aJInW-tIXSzvOS51uwFO6C_wLMaa8oc2zuhBTeSnRwlrs845yI85ToQN6Yz7iaZZySXfwxTTjZramMbsjoJuUGjd6BpP3qvmLZeENfNy1j5nqLQUfwxpfbTUOaerROSK4J6qS6A3utGMcZHZ7Y4NHA8R-ohr68A5-rdm-LynGRqXBiw2LN9YhWgTi85yVhfBO5vBUxPnL-9d0V2oWV_uDywlycXZ1_g1WSUIgcz7Zhafow8zuImaaj73FM_ANM5BGZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tau+Kinetics+in+Neurons+and+the+Human+Central+Nervous+System&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Sato%2C+Chihiro&rft.au=Barth%C3%A9lemy%2C+Nicolas+R.&rft.au=Mawuenyega%2C+Kwasi+G.&rft.au=Patterson%2C+Bruce+W.&rft.date=2018-03-21&rft.issn=0896-6273&rft.volume=97&rft.issue=6&rft.spage=1284&rft.epage=1298.e7&rft_id=info:doi/10.1016%2Fj.neuron.2018.02.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2018_02_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon