MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha)
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population gene...
Saved in:
Published in | Heredity Vol. 104; no. 5; pp. 449 - 459 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2010
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0018-067X 1365-2540 1365-2540 |
DOI | 10.1038/hdy.2009.121 |
Cover
Loading…
Abstract | The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (
Oncorhynchus tshawytscha
) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G′
ST
estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G′
ST
values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels. |
---|---|
AbstractList | The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels. [PUBLICATION ABSTRACT] The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels. The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels. The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon ( Oncorhynchus tshawytscha ) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G′ ST estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G′ ST values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels. The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G' sub(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G' sub(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels. |
Author | Heath, D D Neff, B D Evans, M L |
Author_xml | – sequence: 1 givenname: M L surname: Evans fullname: Evans, M L organization: Department of Biology, University of Western Ontario – sequence: 2 givenname: B D surname: Neff fullname: Neff, B D email: bneff@uwo.ca organization: Department of Biology, University of Western Ontario – sequence: 3 givenname: D D surname: Heath fullname: Heath, D D organization: Great Lakes Institute of Environmental Research, University of Windsor |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19773808$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFLHDEUh0NR6q7trWcJXlRwti_JzGRylEXdwhYvLfQWsknGGZ1N1iRj2f--0dUWROjpEd73Hi_fb4r2nHcWoS8EZgRY87Uz2xkFEDNCyQc0IayuClqVsIcmAKQpoOa_DtA0xjsAYJyKj-iACM5ZA80Eme-LOb61zqZe45jCqNMYLFbOYNM_2pBbOj918DHijd-Mg0q9dxH7Fs-73nl_j6Ma1t7h0xunfei2TndjxCl26vc2Rd2ps09ov1VDtJ9f6iH6eXX5Y74oljfX3-YXy0KXgqSipYRpXrW6NKZataZkjOhagOZgaNM0FaWMtGJVA1jOq9qWggrBtV3VitSasUN0stu7Cf5htDHJdR-1HQblrB-j5GXNoCop_z_Jskaa78nk8Rvyzo_B5W9IyrLRbJFk6OgFGldra-Qm9GsVtvLVcwboDngWGWwrdZ-eTaag-kESkE9hyhymfApT5jDz0Pmbob9738eLHR4z5m5t-Hfpu_wfu_ausw |
CODEN | HDTYAT |
CitedBy_id | crossref_primary_10_1007_s10592_010_0119_3 crossref_primary_10_1111_mec_12684 crossref_primary_10_1139_cjfas_2012_0415 crossref_primary_10_1002_ece3_650 crossref_primary_10_1111_jfb_13260 crossref_primary_10_1111_mec_12424 crossref_primary_10_7868_S0016675817110030 crossref_primary_10_1038_s41437_020_00369_7 crossref_primary_10_1134_S1022795417110035 crossref_primary_10_1093_evolut_qpac014 crossref_primary_10_2981_wlb_00093 crossref_primary_10_1038_s41437_020_00366_w crossref_primary_10_1002_ece3_86 crossref_primary_10_3390_ijms12085168 crossref_primary_10_1186_s12862_016_0609_0 crossref_primary_10_1371_journal_pone_0032814 crossref_primary_10_1016_j_dci_2018_08_010 crossref_primary_10_1371_journal_pone_0057832 crossref_primary_10_1038_s41437_020_00402_9 crossref_primary_10_1111_mec_17365 crossref_primary_10_1371_journal_pone_0069402 crossref_primary_10_1038_hdy_2016_116 crossref_primary_10_1111_mec_12358 crossref_primary_10_1007_s00251_011_0539_3 crossref_primary_10_1016_j_mambio_2016_12_005 crossref_primary_10_1111_j_1365_294X_2012_05477_x crossref_primary_10_1007_s00251_020_01176_4 crossref_primary_10_1093_cz_zoad043 crossref_primary_10_1111_mec_12949 crossref_primary_10_1134_S0032945212010043 crossref_primary_10_1016_j_fsi_2015_06_009 crossref_primary_10_2108_zsj_30_1092 crossref_primary_10_1111_j_1365_294X_2010_04823_x crossref_primary_10_1111_are_15636 crossref_primary_10_1111_jeb_12926 crossref_primary_10_3390_ani13040593 |
Cites_doi | 10.1073/pnas.95.7.3714 10.1046/j.1365-294X.2003.01906.x 10.1111/j.1365-294X.2007.03584.x 10.1093/genetics/151.3.1115 10.1139/f06-044 10.1186/1742-9994-2-16 10.1016/B978-012417540-2/50017-8 10.1046/j.1420-9101.2003.00519.x 10.1111/j.0014-3820.2002.tb00116.x 10.1016/j.humimm.2008.05.001 10.1007/s00251-003-0567-8 10.1038/352595a0 10.1146/annurev.genet.32.1.415 10.1098/rspb.2000.1378 10.1007/s00239-006-0222-8 10.1111/j.0014-3820.2003.tb00580.x 10.1111/j.1365-294X.2006.02843.x 10.1111/j.1365-294X.2007.03281.x 10.1046/j.1365-294X.2001.01383.x 10.1511/2001.3.220 10.1007/BF00172149 10.1046/j.1365-2052.1999.00436.x 10.1007/s10709-009-9402-y 10.1093/oxfordjournals.jhered.a111573 10.1038/sj.hdy.6800724 10.1111/j.1558-5646.2007.00178.x 10.1111/j.1365-294X.2006.02942.x 10.1577/T06-071.1 10.1046/j.1365-294x.1999.00822.x 10.1534/genetics.105.044917 10.1038/329512a0 10.1016/S0169-5347(02)02624-1 10.1007/BF00222467 10.1126/science.1323878 10.1093/genetics/145.2.421 10.1093/molbev/msp001 10.1007/s002510100352 10.1111/j.1601-5223.1997.00083.x 10.1007/s10592-007-9336-9 10.1046/j.1471-8286.2002.00315.x 10.1016/S0169-5347(02)02633-2 10.1017/S0016672300004535 10.1098/rspb.2008.1257 10.1046/j.1365-2540.1998.00321.x 10.1577/1548-8667(1998)010<0172:HJSSRI>2.0.CO;2 10.1038/335167a0 10.1093/molbev/msm092 10.1093/molbev/msl191 10.1111/j.1365-294X.2009.04374.x 10.1111/j.0014-3820.2005.tb01814.x 10.1073/pnas.88.15.6716 10.1038/256050a0 10.1038/326096a0 10.1046/j.1420-9101.2003.00531.x 10.1554/06-286.1 10.1016/0044-8486(91)90383-I 10.1139/f02-066 10.1023/A:1013716020351 10.1111/j.1365-294X.2005.02690.x 10.1038/hdy.2009.99 10.1017/S146479310300616X 10.1111/j.0014-3820.2004.tb01654.x 10.1023/B:EBFI.0000022874.48341.0f 10.1046/j.1365-294X.1997.00274.x 10.1093/genetics/16.2.97 10.1038/364033a0 10.1098/rstb.1994.0155 10.1111/j.1365-294X.2008.04015.x 10.1577/1548-8446(1991)016<0004:PSATCS>2.0.CO;2 10.1007/s10126-007-9080-7 10.1007/BF00222473 10.3382/ps.0730007 10.1111/j.1471-8286.2004.00684.x 10.1023/A:1026494212540 |
ContentType | Journal Article |
Copyright | The Genetics Society 2010 Copyright Nature Publishing Group May 2010 |
Copyright_xml | – notice: The Genetics Society 2010 – notice: Copyright Nature Publishing Group May 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7SS 7T7 7TK 7U9 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 7T5 F1W H95 L.G |
DOI | 10.1038/hdy.2009.121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Science Database (subscription) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Immunology Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Immunology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources |
DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-2540 |
EndPage | 459 |
ExternalDocumentID | 2014440741 19773808 10_1038_hdy_2009_121 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | British Columbia Canada Canada Canada, British Columbia |
GeographicLocations_xml | – name: British Columbia Canada – name: Canada – name: Canada, British Columbia |
GroupedDBID | --- -ET -Q- -~X 0R~ 1OC 29I 2WC 31~ 36B 39C 3O- 4.4 406 53G 5GY 5RE 70F 7X7 8-1 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AACDK AAHBH AAKAB AANZL AAOIN AASML AATNV AAYZH ABAKF ABAWZ ABBRH ABCQX ABDBE ABDBF ABFSG ABJNI ABLJU ABRTQ ABUWG ABZZP ACAOD ACGFS ACGOD ACKTT ACNCT ACPRK ACRQY ACSTC ACUHS ACXQS ACZOJ ADBBV ADXHL AEFQL AEJRE AEMSY AENEX AESKC AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFFNX AFHIU AFKRA AFRAH AFSHS AFZJQ AGAYW AGHAI AGQEE AHMBA AHSBF AHWEU AI. AIGIU AILAN AIXLP AJAOE AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DWQXO E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HYE H~9 IHE IWAJR JSO JZLTJ KQ8 L7B LH4 LK8 LW6 M1P M2O M2P M7P MVM NQJWS OK1 OVD P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TEORI TN5 TR2 TUS UKHRP VH1 WH7 WHG X7L ZGI ZXP ZY4 ~8M ~KM AAYXX CITATION 3V. 88A AAZLF ABTAH ADHDB CGR CUY CVF ECM EIF M0L NAO NPM VXZ 7QL 7SN 7SS 7T7 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7T5 F1W H95 L.G |
ID | FETCH-LOGICAL-c491t-f213c75fc4dd5bfd4331c690c70d288852231f9b600e7756e492997ceb6a16c33 |
IEDL.DBID | 7X7 |
ISSN | 0018-067X 1365-2540 |
IngestDate | Mon Jul 21 11:27:40 EDT 2025 Thu Aug 07 14:31:04 EDT 2025 Sat Aug 23 14:05:20 EDT 2025 Wed Feb 19 01:56:25 EST 2025 Tue Jul 01 01:34:20 EDT 2025 Thu Apr 24 23:06:50 EDT 2025 Mon Jul 21 06:08:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | local adaptation major histocompatibility complex population genetic structure selection Chinook salmon |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-f213c75fc4dd5bfd4331c690c70d288852231f9b600e7756e492997ceb6a16c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/hdy2009121.pdf |
PMID | 19773808 |
PQID | 230008081 |
PQPubID | 36536 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_746305427 proquest_miscellaneous_733652213 proquest_journals_230008081 pubmed_primary_19773808 crossref_citationtrail_10_1038_hdy_2009_121 crossref_primary_10_1038_hdy_2009_121 springer_journals_10_1038_hdy_2009_121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: Cardiff |
PublicationTitle | Heredity |
PublicationTitleAbbrev | Heredity |
PublicationTitleAlternate | Heredity (Edinb) |
PublicationYear | 2010 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | DD Heath (BFhdy2009121_CR26) 2006; 63 BFhdy2009121_CR16 BFhdy2009121_CR17 U Grimholt (BFhdy2009121_CR23) 1993; 37 PH van Tienderen (BFhdy2009121_CR75) 2002; 17 MF Docker (BFhdy2009121_CR13) 2002; 2 A Aguilar (BFhdy2009121_CR1) 2006; 15 E Guimond (BFhdy2009121_CR25) 2006 C van Oosterhout (BFhdy2009121_CR74) 2006; 60 TJ Kim (BFhdy2009121_CR39) 1999; 151 A Vasemagi (BFhdy2009121_CR76) 2005; 14 KM Wegner (BFhdy2009121_CR78) 2003; 16 AVS Hill (BFhdy2009121_CR31) 1994; 346 C van Oosterhout (BFhdy2009121_CR73) 2004; 4 M Nei (BFhdy2009121_CR56) 1991 WA van Haeringen (BFhdy2009121_CR72) 1999; 30 RP Kean (BFhdy2009121_CR38) 1994; 73 TR Meyers (BFhdy2009121_CR49) 1998; 10 A Langefors (BFhdy2009121_CR44) 1998; 80 PW Hedrick (BFhdy2009121_CR29) 2005; 59 A Aguilar (BFhdy2009121_CR2) 2007; 65 BFhdy2009121_CR22 TE Pitcher (BFhdy2009121_CR62) 2006; 15 AL Hughes (BFhdy2009121_CR34) 1995; 41 M Dionne (BFhdy2009121_CR12) 2007; 61 AVS Hill (BFhdy2009121_CR30) 1991; 352 PC Doherty (BFhdy2009121_CR14) 1975; 256 DJ Wilson (BFhdy2009121_CR80) 2006; 172 M Raymond (BFhdy2009121_CR63) 1995; 86 JM Seddon (BFhdy2009121_CR65) 1999; 8 KM Miller (BFhdy2009121_CR53) 1997; 6 T Ohta (BFhdy2009121_CR57) 1991; 88 S Paterson (BFhdy2009121_CR59) 1998; 95 S Sommer (BFhdy2009121_CR68) 2005; 2 PJ Bjorkman (BFhdy2009121_CR6) 1987; 329 K Tamura (BFhdy2009121_CR70) 2007; 24 S Wright (BFhdy2009121_CR81) 1931; 16 SB Piertney (BFhdy2009121_CR61) 2006; 96 OD Solberg (BFhdy2009121_CR66) 2008; 69 AP Dempster (BFhdy2009121_CR11) 1977; 39 M Schierup (BFhdy2009121_CR64) 2000; 76 RS Waples (BFhdy2009121_CR77) 2004; 58 D Garrigan (BFhdy2009121_CR20) 2001; 53 AL Hughes (BFhdy2009121_CR36) 1998; 32 C Landry (BFhdy2009121_CR42) 2001; 10 PW Hedrick (BFhdy2009121_CR27) 1999; 104 M Matsumura (BFhdy2009121_CR47) 1992; 257 A Langefors (BFhdy2009121_CR43) 2001; 268 PS Levin (BFhdy2009121_CR45) 2001; 89 C Manwell (BFhdy2009121_CR46) 1970 KM Miller (BFhdy2009121_CR52) 1997; 127 LA Meyers (BFhdy2009121_CR48) 2002; 17 J Bryja (BFhdy2009121_CR9) 2007; 16 PW Hedrick (BFhdy2009121_CR28) 2002; 56 S Sommer (BFhdy2009121_CR67) 2003; 12 R Ekblom (BFhdy2009121_CR15) 2007; 16 NA Johnson (BFhdy2009121_CR37) 2008; 10 MK Oliver (BFhdy2009121_CR58) 2009; 18 AL Hughes (BFhdy2009121_CR35) 1988; 335 J Klein (BFhdy2009121_CR41) 1997 J Klein (BFhdy2009121_CR40) 1986 TD Beacham (BFhdy2009121_CR4) 2006; 135 T Miyake (BFhdy2009121_CR54) 2009; 26 EB Taylor (BFhdy2009121_CR71) 1991; 98 JH Brown (BFhdy2009121_CR8) 1993; 364 W Nehlsen (BFhdy2009121_CR55) 1991; 16 RE Hill (BFhdy2009121_CR32) 1987; 326 KD Arkush (BFhdy2009121_CR3) 2002; 59 Bonnie A. Fraser (BFhdy2009121_CR18) 2009; 138 B A Fraser (BFhdy2009121_CR19) 2009; 104 I Hordvik (BFhdy2009121_CR33) 1993; 37 U Grimholt (BFhdy2009121_CR24) 2003; 55 L Bernatchez (BFhdy2009121_CR5) 2003; 16 WM Boyce (BFhdy2009121_CR7) 1997; 145 D Garrigan (BFhdy2009121_CR21) 2003; 57 KM Miller (BFhdy2009121_CR50) 2001; 111 KM Miller (BFhdy2009121_CR51) 2004; 69 K Summers (BFhdy2009121_CR69) 2003; 78 BS Weir (BFhdy2009121_CR79) 1996 M-P Chapius (BFhdy2009121_CR10) 2007; 24 MB Peters (BFhdy2009121_CR60) 2008; 9 SE Yeates (BFhdy2009121_CR82) 2009; 276 |
References_xml | – volume: 95 start-page: 3714 year: 1998 ident: BFhdy2009121_CR59 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.7.3714 – volume: 12 start-page: 2845 year: 2003 ident: BFhdy2009121_CR67 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2003.01906.x – start-page: 222 volume-title: Evolution at the Molecular Level year: 1991 ident: BFhdy2009121_CR56 – volume: 16 start-page: 5084 year: 2007 ident: BFhdy2009121_CR9 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2007.03584.x – volume: 151 start-page: 1115 year: 1999 ident: BFhdy2009121_CR39 publication-title: Genetics doi: 10.1093/genetics/151.3.1115 – volume: 63 start-page: 1370 year: 2006 ident: BFhdy2009121_CR26 publication-title: Can J Fish Aquat Sci doi: 10.1139/f06-044 – volume: 2 start-page: 16 year: 2005 ident: BFhdy2009121_CR68 publication-title: Front Zool doi: 10.1186/1742-9994-2-16 – start-page: 271 volume-title: Molecular Systematics of Fishes year: 1997 ident: BFhdy2009121_CR41 doi: 10.1016/B978-012417540-2/50017-8 – volume: 16 start-page: 224 year: 2003 ident: BFhdy2009121_CR78 publication-title: J Evol Biol doi: 10.1046/j.1420-9101.2003.00519.x – volume: 56 start-page: 1902 year: 2002 ident: BFhdy2009121_CR28 publication-title: Evolution doi: 10.1111/j.0014-3820.2002.tb00116.x – volume: 69 start-page: 443 year: 2008 ident: BFhdy2009121_CR66 publication-title: Hum Immunol doi: 10.1016/j.humimm.2008.05.001 – volume: 55 start-page: 210 year: 2003 ident: BFhdy2009121_CR24 publication-title: Immunogenetics doi: 10.1007/s00251-003-0567-8 – volume: 352 start-page: 595 year: 1991 ident: BFhdy2009121_CR30 publication-title: Nature doi: 10.1038/352595a0 – volume: 32 start-page: 415 year: 1998 ident: BFhdy2009121_CR36 publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.32.1.415 – volume: 268 start-page: 479 year: 2001 ident: BFhdy2009121_CR43 publication-title: Proc Biol Sci doi: 10.1098/rspb.2000.1378 – volume-title: Natural History of the Major Histocompatibility Complex year: 1986 ident: BFhdy2009121_CR40 – volume: 65 start-page: 34 year: 2007 ident: BFhdy2009121_CR2 publication-title: J Mol Evol doi: 10.1007/s00239-006-0222-8 – volume: 57 start-page: 1707 year: 2003 ident: BFhdy2009121_CR21 publication-title: Evolution doi: 10.1111/j.0014-3820.2003.tb00580.x – volume: 15 start-page: 923 year: 2006 ident: BFhdy2009121_CR1 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.02843.x – volume: 16 start-page: 1439 year: 2007 ident: BFhdy2009121_CR15 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2007.03281.x – volume: 10 start-page: 2525 year: 2001 ident: BFhdy2009121_CR42 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2001.01383.x – volume: 89 start-page: 220 year: 2001 ident: BFhdy2009121_CR45 publication-title: Am Sci doi: 10.1511/2001.3.220 – volume: 41 start-page: 257 year: 1995 ident: BFhdy2009121_CR34 publication-title: Immunogenetics doi: 10.1007/BF00172149 – volume: 30 start-page: 169 year: 1999 ident: BFhdy2009121_CR72 publication-title: Anim Genet doi: 10.1046/j.1365-2052.1999.00436.x – volume: 138 start-page: 273 issue: 2 year: 2009 ident: BFhdy2009121_CR18 publication-title: Genetica doi: 10.1007/s10709-009-9402-y – volume: 86 start-page: 248 year: 1995 ident: BFhdy2009121_CR63 publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a111573 – volume: 39 start-page: 1 year: 1977 ident: BFhdy2009121_CR11 publication-title: J R Stat Soc B – ident: BFhdy2009121_CR22 – volume: 96 start-page: 7 year: 2006 ident: BFhdy2009121_CR61 publication-title: Heredity doi: 10.1038/sj.hdy.6800724 – volume: 61 start-page: 2154 year: 2007 ident: BFhdy2009121_CR12 publication-title: Evolution doi: 10.1111/j.1558-5646.2007.00178.x – volume: 15 start-page: 2357 year: 2006 ident: BFhdy2009121_CR62 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.02942.x – volume-title: Genetic Data Analysis II: Methods for Discrete Population Genetic Data year: 1996 ident: BFhdy2009121_CR79 – volume: 135 start-page: 1604 year: 2006 ident: BFhdy2009121_CR4 publication-title: Trans Am Fish Soc doi: 10.1577/T06-071.1 – volume: 8 start-page: 2071 year: 1999 ident: BFhdy2009121_CR65 publication-title: Mol Ecol doi: 10.1046/j.1365-294x.1999.00822.x – volume: 172 start-page: 1411 year: 2006 ident: BFhdy2009121_CR80 publication-title: Genetics doi: 10.1534/genetics.105.044917 – volume: 329 start-page: 512 year: 1987 ident: BFhdy2009121_CR6 publication-title: Nature doi: 10.1038/329512a0 – volume: 17 start-page: 577 year: 2002 ident: BFhdy2009121_CR75 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(02)02624-1 – volume: 37 start-page: 437 year: 1993 ident: BFhdy2009121_CR33 publication-title: Immunogenetics doi: 10.1007/BF00222467 – volume: 257 start-page: 927 year: 1992 ident: BFhdy2009121_CR47 publication-title: Science doi: 10.1126/science.1323878 – volume: 145 start-page: 421 year: 1997 ident: BFhdy2009121_CR7 publication-title: Genetics doi: 10.1093/genetics/145.2.421 – volume: 26 start-page: 843 year: 2009 ident: BFhdy2009121_CR54 publication-title: Mol Biol Evol doi: 10.1093/molbev/msp001 – volume: 53 start-page: 483 year: 2001 ident: BFhdy2009121_CR20 publication-title: Immunogenetics doi: 10.1007/s002510100352 – ident: BFhdy2009121_CR17 – volume: 127 start-page: 83 year: 1997 ident: BFhdy2009121_CR52 publication-title: Hereditas doi: 10.1111/j.1601-5223.1997.00083.x – volume: 9 start-page: 257 year: 2008 ident: BFhdy2009121_CR60 publication-title: Conserv Genet doi: 10.1007/s10592-007-9336-9 – volume: 2 start-page: 606 year: 2002 ident: BFhdy2009121_CR13 publication-title: Mol Ecol Notes doi: 10.1046/j.1471-8286.2002.00315.x – volume: 17 start-page: 551 year: 2002 ident: BFhdy2009121_CR48 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(02)02633-2 – volume: 76 start-page: 51 year: 2000 ident: BFhdy2009121_CR64 publication-title: Genet Res doi: 10.1017/S0016672300004535 – volume: 276 start-page: 559 year: 2009 ident: BFhdy2009121_CR82 publication-title: Proc Biol Sci doi: 10.1098/rspb.2008.1257 – volume: 80 start-page: 568 year: 1998 ident: BFhdy2009121_CR44 publication-title: Heredity doi: 10.1046/j.1365-2540.1998.00321.x – volume: 10 start-page: 172 year: 1998 ident: BFhdy2009121_CR49 publication-title: J Aquat Anim Health doi: 10.1577/1548-8667(1998)010<0172:HJSSRI>2.0.CO;2 – volume: 335 start-page: 167 year: 1988 ident: BFhdy2009121_CR35 publication-title: Nature doi: 10.1038/335167a0 – volume: 24 start-page: 1596 year: 2007 ident: BFhdy2009121_CR70 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm092 – volume: 24 start-page: 621 year: 2007 ident: BFhdy2009121_CR10 publication-title: Mol Biol Evol doi: 10.1093/molbev/msl191 – ident: BFhdy2009121_CR16 doi: 10.1111/j.1365-294X.2009.04374.x – volume: 59 start-page: 1633 year: 2005 ident: BFhdy2009121_CR29 publication-title: Evolution doi: 10.1111/j.0014-3820.2005.tb01814.x – volume: 88 start-page: 6716 year: 1991 ident: BFhdy2009121_CR57 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.88.15.6716 – volume: 256 start-page: 50 year: 1975 ident: BFhdy2009121_CR14 publication-title: Nature doi: 10.1038/256050a0 – volume: 326 start-page: 96 year: 1987 ident: BFhdy2009121_CR32 publication-title: Nature doi: 10.1038/326096a0 – volume: 16 start-page: 363 year: 2003 ident: BFhdy2009121_CR5 publication-title: J Evol Biol doi: 10.1046/j.1420-9101.2003.00531.x – volume: 60 start-page: 2562 year: 2006 ident: BFhdy2009121_CR74 publication-title: Evolution doi: 10.1554/06-286.1 – volume: 98 start-page: 185 year: 1991 ident: BFhdy2009121_CR71 publication-title: Aquaculture doi: 10.1016/0044-8486(91)90383-I – volume: 59 start-page: 966 year: 2002 ident: BFhdy2009121_CR3 publication-title: Can J Fish Aquat Sci doi: 10.1139/f02-066 – volume: 111 start-page: 237 year: 2001 ident: BFhdy2009121_CR50 publication-title: Genetica doi: 10.1023/A:1013716020351 – volume: 14 start-page: 3623 year: 2005 ident: BFhdy2009121_CR76 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02690.x – volume: 104 start-page: 155 issue: 2 year: 2009 ident: BFhdy2009121_CR19 publication-title: Heredity doi: 10.1038/hdy.2009.99 – volume: 78 start-page: 639 year: 2003 ident: BFhdy2009121_CR69 publication-title: Biol Rev doi: 10.1017/S146479310300616X – volume: 58 start-page: 386 year: 2004 ident: BFhdy2009121_CR77 publication-title: Evolution doi: 10.1111/j.0014-3820.2004.tb01654.x – volume: 69 start-page: 307 year: 2004 ident: BFhdy2009121_CR51 publication-title: Environ Biol Fishes doi: 10.1023/B:EBFI.0000022874.48341.0f – volume: 6 start-page: 937 year: 1997 ident: BFhdy2009121_CR53 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.1997.00274.x – volume: 16 start-page: 97 year: 1931 ident: BFhdy2009121_CR81 publication-title: Genetics doi: 10.1093/genetics/16.2.97 – volume: 364 start-page: 33 year: 1993 ident: BFhdy2009121_CR8 publication-title: Nature doi: 10.1038/364033a0 – volume: 346 start-page: 379 year: 1994 ident: BFhdy2009121_CR31 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.1994.0155 – volume: 18 start-page: 80 year: 2009 ident: BFhdy2009121_CR58 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2008.04015.x – volume: 16 start-page: 4 year: 1991 ident: BFhdy2009121_CR55 publication-title: Fisheries doi: 10.1577/1548-8446(1991)016<0004:PSATCS>2.0.CO;2 – volume-title: Molecular Biology and the Origin of Species year: 1970 ident: BFhdy2009121_CR46 – volume: 10 start-page: 429 year: 2008 ident: BFhdy2009121_CR37 publication-title: Mar Biotechnol doi: 10.1007/s10126-007-9080-7 – volume: 37 start-page: 469 year: 1993 ident: BFhdy2009121_CR23 publication-title: Immunogenetics doi: 10.1007/BF00222473 – volume: 73 start-page: 7 year: 1994 ident: BFhdy2009121_CR38 publication-title: Poult Sci doi: 10.3382/ps.0730007 – volume-title: Puntledge River Summer Chinook DNA Analyses 2006 year: 2006 ident: BFhdy2009121_CR25 – volume: 4 start-page: 535 year: 2004 ident: BFhdy2009121_CR73 publication-title: Mol Ecol Notes doi: 10.1111/j.1471-8286.2004.00684.x – volume: 104 start-page: 207 year: 1999 ident: BFhdy2009121_CR27 publication-title: Genetica doi: 10.1023/A:1026494212540 |
SSID | ssj0003729 |
Score | 2.1131895 |
Snippet | The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 449 |
SubjectTerms | Alleles Animals Biodiversity Biogeography Biomedical and Life Sciences Biomedicine Comparative studies Cytogenetics Ecology Evolutionary Biology Gene Frequency Genes, MHC Class I Genes, MHC Class II Genetic diversity Genetic Loci Genetic structure Genetic Variation Genetics, Population Human Genetics Microsatellite Repeats Oncorhynchus tshawytscha original-article Pathogens Plant Genetics and Genomics Population genetics Population levels Population structure Salmon Salmon - genetics |
Title | MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha) |
URI | https://link.springer.com/article/10.1038/hdy.2009.121 https://www.ncbi.nlm.nih.gov/pubmed/19773808 https://www.proquest.com/docview/230008081 https://www.proquest.com/docview/733652213 https://www.proquest.com/docview/746305427 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6ahEIuJWmbxEkbdGhKSxGxLNmyT6VZEpZC0hIS2JvRkz0s3k29S9h_n5FfoeRx8cUyesxo9I1n9A3Al1hZqX3iqcmUo8IaT1WeMWqYszrOjU90k21xlY1vxe9JOulyc-ourbK3iY2htnMT_pGfIlQO6CZnPxd3NBSNCsHVroLGBmwF5rLge8nJ4G_FISLVGuKcolGedHnvMc9Pp3bdclWyhP1_Ij2BmU9CpM3Jc7ED7zrISH61Mt6FN656D2_bIpLrD2AvxyOCahBuI5KWDnb1zxFVWWJD0kXDtklU0zlZDPW6ajL3JFTPRpRNajXDCZJvfwKr5XRdmemqJst6qu7XS3R_1fePcHtxfjMa0652AjWiYEvqE8aNTL0R1qba23AxyqAnbGRsE_R6EXZx5guNeMdJmWZOIE4qpHE6UywznO_BZjWv3AGQBL-zhSmYconQmdMF59JroUzhGU_jCH7061eajlg81LeYlU2Am-clrnYod1mUuNoRnAytFy2hxgvtjnpRlN22qstBCSIgw1vcDyHIoSo3X9VloHfEyTH-ShORoZUTiYxgv5Xx40gQDnPsIIKvvdAfe39umIevDvMItvtsg5h9gk3UAfcZQcxSHzeqis98xI5h6-z86u_1A2Yn858 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKtReKqCvQFt8gKpVZRE7zutQoWoBLeXRC0h7S_3UHlB2IbtC-VH9jx3nsauKx41zbNmZGY8_e8bfAOyG0qTKcUd1Ii0VRjsqs4RRzaxRYaYdV022xUUyvBK_RvFoBf72b2F8WmXvExtHbSba35HvI1T26CZjB9Mb6otG-eBqX0GjtYpTW9_hia36cXKI6t3j_PjocjCkXVEBqkXOZtRxFuk0dloYEytn_IshjUdEnYaG43EQ8UjEXK4QCNg0jRMrEEDkqbYqkSzR_v4TPf4L7JZ6qv5ssMwo8RGw1vFnFDeBUZdnH0bZ_tjULTcm4-z_HfAerL0Xkm12uuN1eN1BVPKztakNWLHlJqy1RSvrN2DOhwOCZudfP5KWfnZ-a4ksDTE-yaNh9ySyGZxMF_XBKjJxxFfrRlRPKnmNAiVff3sWzXFd6vG8IrNqLO_qGR635be3cPUsYn0Hq-WktB-AcOxncp0zablQiVU5ytopIXXuWBSHAXzv5Vfojsjc19O4LpqAepQVKG1fXjMvUNoB7C1aT1sCj0fabfeqKLplXBULowuALL7i-vNBFVnaybwqPJ0k_hyLnmgiEvSqgqcBvG91vJwJwu8IBwjgS6_05egPTXPryWnuwMvh5flZcXZycboNr_pMh5B9hFW0B_sJAdRMfW7MlsCf514n_wASoSy6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC1FQSAuiD1OWPpAEAhZ417stg8IoYTRhEDgQKS5mV41h8gzxDOK_Gn8HdXeIhTILWe31e1aX7mqqwBeJcpK7ZmPTaZcLKzxscozGhvqrE5y45luqy1Ostmp-DxP51vwe7gLE8oqB5vYGmq7NOEf-QShckA3OZ34viri--H0w-pXHAZIhUTrME2jk5Bj11xg9Fa_PzpEVu8zNv3042AW9wMGYiMKuo49o9zI1Bthbaq9DbeHDIaLRiaWYWiI2IRTX2gEBU7KNHMCwUQhjdOZopkJ_0LR-t-SHL0mqpKcj7FeErJhnRPIY3QI877mPuH5ZGGbrk8mZfRvb3gF4l5Jz7Zeb3of7vVwlXzs5OsBbLnqIdzuBlg2j8B-nR0QFMFwE5J0rWg3546oyhIbCj7aTp9EtZuT1TgrrCZLT8LkbkT4pFZnSFDy5lvoqLloKrPY1GRdL9RFs8bQW719DKc3QtYnsF0tK7cDhOF7tjAFVY4JnTldcC69FsoUnvI0ieDdQL_S9E3Nw2yNs7JNrvO8RGqHUZtFidSOYH9cveqaefxn3d7AirJX6bocBTACMj5FXQwJFlW55aYuQ2tJ_DjKr1kiMrSwgskInnY8vjwJQnGOG0TwemD65e7_Oubutcd8CXdQQ8ovRyfHe3B3KHpI6DPYRnFwzxFLrfWLVmoJ_LxpNfkDTugxHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHC+genetic+structure+and+divergence+across+populations+of+Chinook+salmon+%28Oncorhynchus+tshawytscha%29&rft.jtitle=Heredity&rft.au=Evans%2C+M+L&rft.au=Neff%2C+B+D&rft.au=Heath%2C+D+D&rft.date=2010-05-01&rft.issn=0018-067X&rft.volume=104&rft.issue=5&rft.spage=449&rft.epage=459&rft_id=info:doi/10.1038%2Fhdy.2009.121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-067X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-067X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-067X&client=summon |