MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha)

The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population gene...

Full description

Saved in:
Bibliographic Details
Published inHeredity Vol. 104; no. 5; pp. 449 - 459
Main Authors Evans, M L, Neff, B D, Heath, D D
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2010
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0018-067X
1365-2540
1365-2540
DOI10.1038/hdy.2009.121

Cover

Loading…
Abstract The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon ( Oncorhynchus tshawytscha ) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G′ ST estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G′ ST values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
AbstractList The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels. [PUBLICATION ABSTRACT]
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon ( Oncorhynchus tshawytscha ) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G′ ST estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G′ ST values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G' sub(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G' sub(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
Author Heath, D D
Neff, B D
Evans, M L
Author_xml – sequence: 1
  givenname: M L
  surname: Evans
  fullname: Evans, M L
  organization: Department of Biology, University of Western Ontario
– sequence: 2
  givenname: B D
  surname: Neff
  fullname: Neff, B D
  email: bneff@uwo.ca
  organization: Department of Biology, University of Western Ontario
– sequence: 3
  givenname: D D
  surname: Heath
  fullname: Heath, D D
  organization: Great Lakes Institute of Environmental Research, University of Windsor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19773808$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFLHDEUh0NR6q7trWcJXlRwti_JzGRylEXdwhYvLfQWsknGGZ1N1iRj2f--0dUWROjpEd73Hi_fb4r2nHcWoS8EZgRY87Uz2xkFEDNCyQc0IayuClqVsIcmAKQpoOa_DtA0xjsAYJyKj-iACM5ZA80Eme-LOb61zqZe45jCqNMYLFbOYNM_2pBbOj918DHijd-Mg0q9dxH7Fs-73nl_j6Ma1t7h0xunfei2TndjxCl26vc2Rd2ps09ov1VDtJ9f6iH6eXX5Y74oljfX3-YXy0KXgqSipYRpXrW6NKZataZkjOhagOZgaNM0FaWMtGJVA1jOq9qWggrBtV3VitSasUN0stu7Cf5htDHJdR-1HQblrB-j5GXNoCop_z_Jskaa78nk8Rvyzo_B5W9IyrLRbJFk6OgFGldra-Qm9GsVtvLVcwboDngWGWwrdZ-eTaag-kESkE9hyhymfApT5jDz0Pmbob9738eLHR4z5m5t-Hfpu_wfu_ausw
CODEN HDTYAT
CitedBy_id crossref_primary_10_1007_s10592_010_0119_3
crossref_primary_10_1111_mec_12684
crossref_primary_10_1139_cjfas_2012_0415
crossref_primary_10_1002_ece3_650
crossref_primary_10_1111_jfb_13260
crossref_primary_10_1111_mec_12424
crossref_primary_10_7868_S0016675817110030
crossref_primary_10_1038_s41437_020_00369_7
crossref_primary_10_1134_S1022795417110035
crossref_primary_10_1093_evolut_qpac014
crossref_primary_10_2981_wlb_00093
crossref_primary_10_1038_s41437_020_00366_w
crossref_primary_10_1002_ece3_86
crossref_primary_10_3390_ijms12085168
crossref_primary_10_1186_s12862_016_0609_0
crossref_primary_10_1371_journal_pone_0032814
crossref_primary_10_1016_j_dci_2018_08_010
crossref_primary_10_1371_journal_pone_0057832
crossref_primary_10_1038_s41437_020_00402_9
crossref_primary_10_1111_mec_17365
crossref_primary_10_1371_journal_pone_0069402
crossref_primary_10_1038_hdy_2016_116
crossref_primary_10_1111_mec_12358
crossref_primary_10_1007_s00251_011_0539_3
crossref_primary_10_1016_j_mambio_2016_12_005
crossref_primary_10_1111_j_1365_294X_2012_05477_x
crossref_primary_10_1007_s00251_020_01176_4
crossref_primary_10_1093_cz_zoad043
crossref_primary_10_1111_mec_12949
crossref_primary_10_1134_S0032945212010043
crossref_primary_10_1016_j_fsi_2015_06_009
crossref_primary_10_2108_zsj_30_1092
crossref_primary_10_1111_j_1365_294X_2010_04823_x
crossref_primary_10_1111_are_15636
crossref_primary_10_1111_jeb_12926
crossref_primary_10_3390_ani13040593
Cites_doi 10.1073/pnas.95.7.3714
10.1046/j.1365-294X.2003.01906.x
10.1111/j.1365-294X.2007.03584.x
10.1093/genetics/151.3.1115
10.1139/f06-044
10.1186/1742-9994-2-16
10.1016/B978-012417540-2/50017-8
10.1046/j.1420-9101.2003.00519.x
10.1111/j.0014-3820.2002.tb00116.x
10.1016/j.humimm.2008.05.001
10.1007/s00251-003-0567-8
10.1038/352595a0
10.1146/annurev.genet.32.1.415
10.1098/rspb.2000.1378
10.1007/s00239-006-0222-8
10.1111/j.0014-3820.2003.tb00580.x
10.1111/j.1365-294X.2006.02843.x
10.1111/j.1365-294X.2007.03281.x
10.1046/j.1365-294X.2001.01383.x
10.1511/2001.3.220
10.1007/BF00172149
10.1046/j.1365-2052.1999.00436.x
10.1007/s10709-009-9402-y
10.1093/oxfordjournals.jhered.a111573
10.1038/sj.hdy.6800724
10.1111/j.1558-5646.2007.00178.x
10.1111/j.1365-294X.2006.02942.x
10.1577/T06-071.1
10.1046/j.1365-294x.1999.00822.x
10.1534/genetics.105.044917
10.1038/329512a0
10.1016/S0169-5347(02)02624-1
10.1007/BF00222467
10.1126/science.1323878
10.1093/genetics/145.2.421
10.1093/molbev/msp001
10.1007/s002510100352
10.1111/j.1601-5223.1997.00083.x
10.1007/s10592-007-9336-9
10.1046/j.1471-8286.2002.00315.x
10.1016/S0169-5347(02)02633-2
10.1017/S0016672300004535
10.1098/rspb.2008.1257
10.1046/j.1365-2540.1998.00321.x
10.1577/1548-8667(1998)010<0172:HJSSRI>2.0.CO;2
10.1038/335167a0
10.1093/molbev/msm092
10.1093/molbev/msl191
10.1111/j.1365-294X.2009.04374.x
10.1111/j.0014-3820.2005.tb01814.x
10.1073/pnas.88.15.6716
10.1038/256050a0
10.1038/326096a0
10.1046/j.1420-9101.2003.00531.x
10.1554/06-286.1
10.1016/0044-8486(91)90383-I
10.1139/f02-066
10.1023/A:1013716020351
10.1111/j.1365-294X.2005.02690.x
10.1038/hdy.2009.99
10.1017/S146479310300616X
10.1111/j.0014-3820.2004.tb01654.x
10.1023/B:EBFI.0000022874.48341.0f
10.1046/j.1365-294X.1997.00274.x
10.1093/genetics/16.2.97
10.1038/364033a0
10.1098/rstb.1994.0155
10.1111/j.1365-294X.2008.04015.x
10.1577/1548-8446(1991)016<0004:PSATCS>2.0.CO;2
10.1007/s10126-007-9080-7
10.1007/BF00222473
10.3382/ps.0730007
10.1111/j.1471-8286.2004.00684.x
10.1023/A:1026494212540
ContentType Journal Article
Copyright The Genetics Society 2010
Copyright Nature Publishing Group May 2010
Copyright_xml – notice: The Genetics Society 2010
– notice: Copyright Nature Publishing Group May 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7SS
7T7
7TK
7U9
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
7T5
F1W
H95
L.G
DOI 10.1038/hdy.2009.121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Science Database (subscription)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Immunology Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Immunology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
DatabaseTitleList Research Library Prep
MEDLINE
MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-2540
EndPage 459
ExternalDocumentID 2014440741
19773808
10_1038_hdy_2009_121
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations British Columbia Canada
Canada
Canada, British Columbia
GeographicLocations_xml – name: British Columbia Canada
– name: Canada
– name: Canada, British Columbia
GroupedDBID ---
-ET
-Q-
-~X
0R~
1OC
29I
2WC
31~
36B
39C
3O-
4.4
406
53G
5GY
5RE
70F
7X7
8-1
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AACDK
AAHBH
AAKAB
AANZL
AAOIN
AASML
AATNV
AAYZH
ABAKF
ABAWZ
ABBRH
ABCQX
ABDBE
ABDBF
ABFSG
ABJNI
ABLJU
ABRTQ
ABUWG
ABZZP
ACAOD
ACGFS
ACGOD
ACKTT
ACNCT
ACPRK
ACRQY
ACSTC
ACUHS
ACXQS
ACZOJ
ADBBV
ADXHL
AEFQL
AEJRE
AEMSY
AENEX
AESKC
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFNX
AFHIU
AFKRA
AFRAH
AFSHS
AFZJQ
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AHWEU
AI.
AIGIU
AILAN
AIXLP
AJAOE
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AOIJS
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HYE
H~9
IHE
IWAJR
JSO
JZLTJ
KQ8
L7B
LH4
LK8
LW6
M1P
M2O
M2P
M7P
MVM
NQJWS
OK1
OVD
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TN5
TR2
TUS
UKHRP
VH1
WH7
WHG
X7L
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
CITATION
3V.
88A
AAZLF
ABTAH
ADHDB
CGR
CUY
CVF
ECM
EIF
M0L
NAO
NPM
VXZ
7QL
7SN
7SS
7T7
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7T5
F1W
H95
L.G
ID FETCH-LOGICAL-c491t-f213c75fc4dd5bfd4331c690c70d288852231f9b600e7756e492997ceb6a16c33
IEDL.DBID 7X7
ISSN 0018-067X
1365-2540
IngestDate Mon Jul 21 11:27:40 EDT 2025
Thu Aug 07 14:31:04 EDT 2025
Sat Aug 23 14:05:20 EDT 2025
Wed Feb 19 01:56:25 EST 2025
Tue Jul 01 01:34:20 EDT 2025
Thu Apr 24 23:06:50 EDT 2025
Mon Jul 21 06:08:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords local adaptation
major histocompatibility complex
population genetic structure
selection
Chinook salmon
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-f213c75fc4dd5bfd4331c690c70d288852231f9b600e7756e492997ceb6a16c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/hdy2009121.pdf
PMID 19773808
PQID 230008081
PQPubID 36536
PageCount 11
ParticipantIDs proquest_miscellaneous_746305427
proquest_miscellaneous_733652213
proquest_journals_230008081
pubmed_primary_19773808
crossref_citationtrail_10_1038_hdy_2009_121
crossref_primary_10_1038_hdy_2009_121
springer_journals_10_1038_hdy_2009_121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: Cardiff
PublicationTitle Heredity
PublicationTitleAbbrev Heredity
PublicationTitleAlternate Heredity (Edinb)
PublicationYear 2010
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References DD Heath (BFhdy2009121_CR26) 2006; 63
BFhdy2009121_CR16
BFhdy2009121_CR17
U Grimholt (BFhdy2009121_CR23) 1993; 37
PH van Tienderen (BFhdy2009121_CR75) 2002; 17
MF Docker (BFhdy2009121_CR13) 2002; 2
A Aguilar (BFhdy2009121_CR1) 2006; 15
E Guimond (BFhdy2009121_CR25) 2006
C van Oosterhout (BFhdy2009121_CR74) 2006; 60
TJ Kim (BFhdy2009121_CR39) 1999; 151
A Vasemagi (BFhdy2009121_CR76) 2005; 14
KM Wegner (BFhdy2009121_CR78) 2003; 16
AVS Hill (BFhdy2009121_CR31) 1994; 346
C van Oosterhout (BFhdy2009121_CR73) 2004; 4
M Nei (BFhdy2009121_CR56) 1991
WA van Haeringen (BFhdy2009121_CR72) 1999; 30
RP Kean (BFhdy2009121_CR38) 1994; 73
TR Meyers (BFhdy2009121_CR49) 1998; 10
A Langefors (BFhdy2009121_CR44) 1998; 80
PW Hedrick (BFhdy2009121_CR29) 2005; 59
A Aguilar (BFhdy2009121_CR2) 2007; 65
BFhdy2009121_CR22
TE Pitcher (BFhdy2009121_CR62) 2006; 15
AL Hughes (BFhdy2009121_CR34) 1995; 41
M Dionne (BFhdy2009121_CR12) 2007; 61
AVS Hill (BFhdy2009121_CR30) 1991; 352
PC Doherty (BFhdy2009121_CR14) 1975; 256
DJ Wilson (BFhdy2009121_CR80) 2006; 172
M Raymond (BFhdy2009121_CR63) 1995; 86
JM Seddon (BFhdy2009121_CR65) 1999; 8
KM Miller (BFhdy2009121_CR53) 1997; 6
T Ohta (BFhdy2009121_CR57) 1991; 88
S Paterson (BFhdy2009121_CR59) 1998; 95
S Sommer (BFhdy2009121_CR68) 2005; 2
PJ Bjorkman (BFhdy2009121_CR6) 1987; 329
K Tamura (BFhdy2009121_CR70) 2007; 24
S Wright (BFhdy2009121_CR81) 1931; 16
SB Piertney (BFhdy2009121_CR61) 2006; 96
OD Solberg (BFhdy2009121_CR66) 2008; 69
AP Dempster (BFhdy2009121_CR11) 1977; 39
M Schierup (BFhdy2009121_CR64) 2000; 76
RS Waples (BFhdy2009121_CR77) 2004; 58
D Garrigan (BFhdy2009121_CR20) 2001; 53
AL Hughes (BFhdy2009121_CR36) 1998; 32
C Landry (BFhdy2009121_CR42) 2001; 10
PW Hedrick (BFhdy2009121_CR27) 1999; 104
M Matsumura (BFhdy2009121_CR47) 1992; 257
A Langefors (BFhdy2009121_CR43) 2001; 268
PS Levin (BFhdy2009121_CR45) 2001; 89
C Manwell (BFhdy2009121_CR46) 1970
KM Miller (BFhdy2009121_CR52) 1997; 127
LA Meyers (BFhdy2009121_CR48) 2002; 17
J Bryja (BFhdy2009121_CR9) 2007; 16
PW Hedrick (BFhdy2009121_CR28) 2002; 56
S Sommer (BFhdy2009121_CR67) 2003; 12
R Ekblom (BFhdy2009121_CR15) 2007; 16
NA Johnson (BFhdy2009121_CR37) 2008; 10
MK Oliver (BFhdy2009121_CR58) 2009; 18
AL Hughes (BFhdy2009121_CR35) 1988; 335
J Klein (BFhdy2009121_CR41) 1997
J Klein (BFhdy2009121_CR40) 1986
TD Beacham (BFhdy2009121_CR4) 2006; 135
T Miyake (BFhdy2009121_CR54) 2009; 26
EB Taylor (BFhdy2009121_CR71) 1991; 98
JH Brown (BFhdy2009121_CR8) 1993; 364
W Nehlsen (BFhdy2009121_CR55) 1991; 16
RE Hill (BFhdy2009121_CR32) 1987; 326
KD Arkush (BFhdy2009121_CR3) 2002; 59
Bonnie A. Fraser (BFhdy2009121_CR18) 2009; 138
B A Fraser (BFhdy2009121_CR19) 2009; 104
I Hordvik (BFhdy2009121_CR33) 1993; 37
U Grimholt (BFhdy2009121_CR24) 2003; 55
L Bernatchez (BFhdy2009121_CR5) 2003; 16
WM Boyce (BFhdy2009121_CR7) 1997; 145
D Garrigan (BFhdy2009121_CR21) 2003; 57
KM Miller (BFhdy2009121_CR50) 2001; 111
KM Miller (BFhdy2009121_CR51) 2004; 69
K Summers (BFhdy2009121_CR69) 2003; 78
BS Weir (BFhdy2009121_CR79) 1996
M-P Chapius (BFhdy2009121_CR10) 2007; 24
MB Peters (BFhdy2009121_CR60) 2008; 9
SE Yeates (BFhdy2009121_CR82) 2009; 276
References_xml – volume: 95
  start-page: 3714
  year: 1998
  ident: BFhdy2009121_CR59
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.7.3714
– volume: 12
  start-page: 2845
  year: 2003
  ident: BFhdy2009121_CR67
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294X.2003.01906.x
– start-page: 222
  volume-title: Evolution at the Molecular Level
  year: 1991
  ident: BFhdy2009121_CR56
– volume: 16
  start-page: 5084
  year: 2007
  ident: BFhdy2009121_CR9
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2007.03584.x
– volume: 151
  start-page: 1115
  year: 1999
  ident: BFhdy2009121_CR39
  publication-title: Genetics
  doi: 10.1093/genetics/151.3.1115
– volume: 63
  start-page: 1370
  year: 2006
  ident: BFhdy2009121_CR26
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/f06-044
– volume: 2
  start-page: 16
  year: 2005
  ident: BFhdy2009121_CR68
  publication-title: Front Zool
  doi: 10.1186/1742-9994-2-16
– start-page: 271
  volume-title: Molecular Systematics of Fishes
  year: 1997
  ident: BFhdy2009121_CR41
  doi: 10.1016/B978-012417540-2/50017-8
– volume: 16
  start-page: 224
  year: 2003
  ident: BFhdy2009121_CR78
  publication-title: J Evol Biol
  doi: 10.1046/j.1420-9101.2003.00519.x
– volume: 56
  start-page: 1902
  year: 2002
  ident: BFhdy2009121_CR28
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2002.tb00116.x
– volume: 69
  start-page: 443
  year: 2008
  ident: BFhdy2009121_CR66
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2008.05.001
– volume: 55
  start-page: 210
  year: 2003
  ident: BFhdy2009121_CR24
  publication-title: Immunogenetics
  doi: 10.1007/s00251-003-0567-8
– volume: 352
  start-page: 595
  year: 1991
  ident: BFhdy2009121_CR30
  publication-title: Nature
  doi: 10.1038/352595a0
– volume: 32
  start-page: 415
  year: 1998
  ident: BFhdy2009121_CR36
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.32.1.415
– volume: 268
  start-page: 479
  year: 2001
  ident: BFhdy2009121_CR43
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2000.1378
– volume-title: Natural History of the Major Histocompatibility Complex
  year: 1986
  ident: BFhdy2009121_CR40
– volume: 65
  start-page: 34
  year: 2007
  ident: BFhdy2009121_CR2
  publication-title: J Mol Evol
  doi: 10.1007/s00239-006-0222-8
– volume: 57
  start-page: 1707
  year: 2003
  ident: BFhdy2009121_CR21
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2003.tb00580.x
– volume: 15
  start-page: 923
  year: 2006
  ident: BFhdy2009121_CR1
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2006.02843.x
– volume: 16
  start-page: 1439
  year: 2007
  ident: BFhdy2009121_CR15
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2007.03281.x
– volume: 10
  start-page: 2525
  year: 2001
  ident: BFhdy2009121_CR42
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294X.2001.01383.x
– volume: 89
  start-page: 220
  year: 2001
  ident: BFhdy2009121_CR45
  publication-title: Am Sci
  doi: 10.1511/2001.3.220
– volume: 41
  start-page: 257
  year: 1995
  ident: BFhdy2009121_CR34
  publication-title: Immunogenetics
  doi: 10.1007/BF00172149
– volume: 30
  start-page: 169
  year: 1999
  ident: BFhdy2009121_CR72
  publication-title: Anim Genet
  doi: 10.1046/j.1365-2052.1999.00436.x
– volume: 138
  start-page: 273
  issue: 2
  year: 2009
  ident: BFhdy2009121_CR18
  publication-title: Genetica
  doi: 10.1007/s10709-009-9402-y
– volume: 86
  start-page: 248
  year: 1995
  ident: BFhdy2009121_CR63
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a111573
– volume: 39
  start-page: 1
  year: 1977
  ident: BFhdy2009121_CR11
  publication-title: J R Stat Soc B
– ident: BFhdy2009121_CR22
– volume: 96
  start-page: 7
  year: 2006
  ident: BFhdy2009121_CR61
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800724
– volume: 61
  start-page: 2154
  year: 2007
  ident: BFhdy2009121_CR12
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2007.00178.x
– volume: 15
  start-page: 2357
  year: 2006
  ident: BFhdy2009121_CR62
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2006.02942.x
– volume-title: Genetic Data Analysis II: Methods for Discrete Population Genetic Data
  year: 1996
  ident: BFhdy2009121_CR79
– volume: 135
  start-page: 1604
  year: 2006
  ident: BFhdy2009121_CR4
  publication-title: Trans Am Fish Soc
  doi: 10.1577/T06-071.1
– volume: 8
  start-page: 2071
  year: 1999
  ident: BFhdy2009121_CR65
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294x.1999.00822.x
– volume: 172
  start-page: 1411
  year: 2006
  ident: BFhdy2009121_CR80
  publication-title: Genetics
  doi: 10.1534/genetics.105.044917
– volume: 329
  start-page: 512
  year: 1987
  ident: BFhdy2009121_CR6
  publication-title: Nature
  doi: 10.1038/329512a0
– volume: 17
  start-page: 577
  year: 2002
  ident: BFhdy2009121_CR75
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(02)02624-1
– volume: 37
  start-page: 437
  year: 1993
  ident: BFhdy2009121_CR33
  publication-title: Immunogenetics
  doi: 10.1007/BF00222467
– volume: 257
  start-page: 927
  year: 1992
  ident: BFhdy2009121_CR47
  publication-title: Science
  doi: 10.1126/science.1323878
– volume: 145
  start-page: 421
  year: 1997
  ident: BFhdy2009121_CR7
  publication-title: Genetics
  doi: 10.1093/genetics/145.2.421
– volume: 26
  start-page: 843
  year: 2009
  ident: BFhdy2009121_CR54
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp001
– volume: 53
  start-page: 483
  year: 2001
  ident: BFhdy2009121_CR20
  publication-title: Immunogenetics
  doi: 10.1007/s002510100352
– ident: BFhdy2009121_CR17
– volume: 127
  start-page: 83
  year: 1997
  ident: BFhdy2009121_CR52
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1997.00083.x
– volume: 9
  start-page: 257
  year: 2008
  ident: BFhdy2009121_CR60
  publication-title: Conserv Genet
  doi: 10.1007/s10592-007-9336-9
– volume: 2
  start-page: 606
  year: 2002
  ident: BFhdy2009121_CR13
  publication-title: Mol Ecol Notes
  doi: 10.1046/j.1471-8286.2002.00315.x
– volume: 17
  start-page: 551
  year: 2002
  ident: BFhdy2009121_CR48
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(02)02633-2
– volume: 76
  start-page: 51
  year: 2000
  ident: BFhdy2009121_CR64
  publication-title: Genet Res
  doi: 10.1017/S0016672300004535
– volume: 276
  start-page: 559
  year: 2009
  ident: BFhdy2009121_CR82
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2008.1257
– volume: 80
  start-page: 568
  year: 1998
  ident: BFhdy2009121_CR44
  publication-title: Heredity
  doi: 10.1046/j.1365-2540.1998.00321.x
– volume: 10
  start-page: 172
  year: 1998
  ident: BFhdy2009121_CR49
  publication-title: J Aquat Anim Health
  doi: 10.1577/1548-8667(1998)010<0172:HJSSRI>2.0.CO;2
– volume: 335
  start-page: 167
  year: 1988
  ident: BFhdy2009121_CR35
  publication-title: Nature
  doi: 10.1038/335167a0
– volume: 24
  start-page: 1596
  year: 2007
  ident: BFhdy2009121_CR70
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– volume: 24
  start-page: 621
  year: 2007
  ident: BFhdy2009121_CR10
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msl191
– ident: BFhdy2009121_CR16
  doi: 10.1111/j.1365-294X.2009.04374.x
– volume: 59
  start-page: 1633
  year: 2005
  ident: BFhdy2009121_CR29
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2005.tb01814.x
– volume: 88
  start-page: 6716
  year: 1991
  ident: BFhdy2009121_CR57
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.88.15.6716
– volume: 256
  start-page: 50
  year: 1975
  ident: BFhdy2009121_CR14
  publication-title: Nature
  doi: 10.1038/256050a0
– volume: 326
  start-page: 96
  year: 1987
  ident: BFhdy2009121_CR32
  publication-title: Nature
  doi: 10.1038/326096a0
– volume: 16
  start-page: 363
  year: 2003
  ident: BFhdy2009121_CR5
  publication-title: J Evol Biol
  doi: 10.1046/j.1420-9101.2003.00531.x
– volume: 60
  start-page: 2562
  year: 2006
  ident: BFhdy2009121_CR74
  publication-title: Evolution
  doi: 10.1554/06-286.1
– volume: 98
  start-page: 185
  year: 1991
  ident: BFhdy2009121_CR71
  publication-title: Aquaculture
  doi: 10.1016/0044-8486(91)90383-I
– volume: 59
  start-page: 966
  year: 2002
  ident: BFhdy2009121_CR3
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/f02-066
– volume: 111
  start-page: 237
  year: 2001
  ident: BFhdy2009121_CR50
  publication-title: Genetica
  doi: 10.1023/A:1013716020351
– volume: 14
  start-page: 3623
  year: 2005
  ident: BFhdy2009121_CR76
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2005.02690.x
– volume: 104
  start-page: 155
  issue: 2
  year: 2009
  ident: BFhdy2009121_CR19
  publication-title: Heredity
  doi: 10.1038/hdy.2009.99
– volume: 78
  start-page: 639
  year: 2003
  ident: BFhdy2009121_CR69
  publication-title: Biol Rev
  doi: 10.1017/S146479310300616X
– volume: 58
  start-page: 386
  year: 2004
  ident: BFhdy2009121_CR77
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2004.tb01654.x
– volume: 69
  start-page: 307
  year: 2004
  ident: BFhdy2009121_CR51
  publication-title: Environ Biol Fishes
  doi: 10.1023/B:EBFI.0000022874.48341.0f
– volume: 6
  start-page: 937
  year: 1997
  ident: BFhdy2009121_CR53
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294X.1997.00274.x
– volume: 16
  start-page: 97
  year: 1931
  ident: BFhdy2009121_CR81
  publication-title: Genetics
  doi: 10.1093/genetics/16.2.97
– volume: 364
  start-page: 33
  year: 1993
  ident: BFhdy2009121_CR8
  publication-title: Nature
  doi: 10.1038/364033a0
– volume: 346
  start-page: 379
  year: 1994
  ident: BFhdy2009121_CR31
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.1994.0155
– volume: 18
  start-page: 80
  year: 2009
  ident: BFhdy2009121_CR58
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2008.04015.x
– volume: 16
  start-page: 4
  year: 1991
  ident: BFhdy2009121_CR55
  publication-title: Fisheries
  doi: 10.1577/1548-8446(1991)016<0004:PSATCS>2.0.CO;2
– volume-title: Molecular Biology and the Origin of Species
  year: 1970
  ident: BFhdy2009121_CR46
– volume: 10
  start-page: 429
  year: 2008
  ident: BFhdy2009121_CR37
  publication-title: Mar Biotechnol
  doi: 10.1007/s10126-007-9080-7
– volume: 37
  start-page: 469
  year: 1993
  ident: BFhdy2009121_CR23
  publication-title: Immunogenetics
  doi: 10.1007/BF00222473
– volume: 73
  start-page: 7
  year: 1994
  ident: BFhdy2009121_CR38
  publication-title: Poult Sci
  doi: 10.3382/ps.0730007
– volume-title: Puntledge River Summer Chinook DNA Analyses 2006
  year: 2006
  ident: BFhdy2009121_CR25
– volume: 4
  start-page: 535
  year: 2004
  ident: BFhdy2009121_CR73
  publication-title: Mol Ecol Notes
  doi: 10.1111/j.1471-8286.2004.00684.x
– volume: 104
  start-page: 207
  year: 1999
  ident: BFhdy2009121_CR27
  publication-title: Genetica
  doi: 10.1023/A:1026494212540
SSID ssj0003729
Score 2.1131895
Snippet The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 449
SubjectTerms Alleles
Animals
Biodiversity
Biogeography
Biomedical and Life Sciences
Biomedicine
Comparative studies
Cytogenetics
Ecology
Evolutionary Biology
Gene Frequency
Genes, MHC Class I
Genes, MHC Class II
Genetic diversity
Genetic Loci
Genetic structure
Genetic Variation
Genetics, Population
Human Genetics
Microsatellite Repeats
Oncorhynchus tshawytscha
original-article
Pathogens
Plant Genetics and Genomics
Population genetics
Population levels
Population structure
Salmon
Salmon - genetics
Title MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha)
URI https://link.springer.com/article/10.1038/hdy.2009.121
https://www.ncbi.nlm.nih.gov/pubmed/19773808
https://www.proquest.com/docview/230008081
https://www.proquest.com/docview/733652213
https://www.proquest.com/docview/746305427
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6ahEIuJWmbxEkbdGhKSxGxLNmyT6VZEpZC0hIS2JvRkz0s3k29S9h_n5FfoeRx8cUyesxo9I1n9A3Al1hZqX3iqcmUo8IaT1WeMWqYszrOjU90k21xlY1vxe9JOulyc-ourbK3iY2htnMT_pGfIlQO6CZnPxd3NBSNCsHVroLGBmwF5rLge8nJ4G_FISLVGuKcolGedHnvMc9Pp3bdclWyhP1_Ij2BmU9CpM3Jc7ED7zrISH61Mt6FN656D2_bIpLrD2AvxyOCahBuI5KWDnb1zxFVWWJD0kXDtklU0zlZDPW6ajL3JFTPRpRNajXDCZJvfwKr5XRdmemqJst6qu7XS3R_1fePcHtxfjMa0652AjWiYEvqE8aNTL0R1qba23AxyqAnbGRsE_R6EXZx5guNeMdJmWZOIE4qpHE6UywznO_BZjWv3AGQBL-zhSmYconQmdMF59JroUzhGU_jCH7061eajlg81LeYlU2Am-clrnYod1mUuNoRnAytFy2hxgvtjnpRlN22qstBCSIgw1vcDyHIoSo3X9VloHfEyTH-ShORoZUTiYxgv5Xx40gQDnPsIIKvvdAfe39umIevDvMItvtsg5h9gk3UAfcZQcxSHzeqis98xI5h6-z86u_1A2Yn858
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKtReKqCvQFt8gKpVZRE7zutQoWoBLeXRC0h7S_3UHlB2IbtC-VH9jx3nsauKx41zbNmZGY8_e8bfAOyG0qTKcUd1Ii0VRjsqs4RRzaxRYaYdV022xUUyvBK_RvFoBf72b2F8WmXvExtHbSba35HvI1T26CZjB9Mb6otG-eBqX0GjtYpTW9_hia36cXKI6t3j_PjocjCkXVEBqkXOZtRxFuk0dloYEytn_IshjUdEnYaG43EQ8UjEXK4QCNg0jRMrEEDkqbYqkSzR_v4TPf4L7JZ6qv5ssMwo8RGw1vFnFDeBUZdnH0bZ_tjULTcm4-z_HfAerL0Xkm12uuN1eN1BVPKztakNWLHlJqy1RSvrN2DOhwOCZudfP5KWfnZ-a4ksDTE-yaNh9ySyGZxMF_XBKjJxxFfrRlRPKnmNAiVff3sWzXFd6vG8IrNqLO_qGR635be3cPUsYn0Hq-WktB-AcOxncp0zablQiVU5ytopIXXuWBSHAXzv5Vfojsjc19O4LpqAepQVKG1fXjMvUNoB7C1aT1sCj0fabfeqKLplXBULowuALL7i-vNBFVnaybwqPJ0k_hyLnmgiEvSqgqcBvG91vJwJwu8IBwjgS6_05egPTXPryWnuwMvh5flZcXZycboNr_pMh5B9hFW0B_sJAdRMfW7MlsCf514n_wASoSy6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC1FQSAuiD1OWPpAEAhZ417stg8IoYTRhEDgQKS5mV41h8gzxDOK_Gn8HdXeIhTILWe31e1aX7mqqwBeJcpK7ZmPTaZcLKzxscozGhvqrE5y45luqy1Ostmp-DxP51vwe7gLE8oqB5vYGmq7NOEf-QShckA3OZ34viri--H0w-pXHAZIhUTrME2jk5Bj11xg9Fa_PzpEVu8zNv3042AW9wMGYiMKuo49o9zI1Bthbaq9DbeHDIaLRiaWYWiI2IRTX2gEBU7KNHMCwUQhjdOZopkJ_0LR-t-SHL0mqpKcj7FeErJhnRPIY3QI877mPuH5ZGGbrk8mZfRvb3gF4l5Jz7Zeb3of7vVwlXzs5OsBbLnqIdzuBlg2j8B-nR0QFMFwE5J0rWg3546oyhIbCj7aTp9EtZuT1TgrrCZLT8LkbkT4pFZnSFDy5lvoqLloKrPY1GRdL9RFs8bQW719DKc3QtYnsF0tK7cDhOF7tjAFVY4JnTldcC69FsoUnvI0ieDdQL_S9E3Nw2yNs7JNrvO8RGqHUZtFidSOYH9cveqaefxn3d7AirJX6bocBTACMj5FXQwJFlW55aYuQ2tJ_DjKr1kiMrSwgskInnY8vjwJQnGOG0TwemD65e7_Oubutcd8CXdQQ8ovRyfHe3B3KHpI6DPYRnFwzxFLrfWLVmoJ_LxpNfkDTugxHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHC+genetic+structure+and+divergence+across+populations+of+Chinook+salmon+%28Oncorhynchus+tshawytscha%29&rft.jtitle=Heredity&rft.au=Evans%2C+M+L&rft.au=Neff%2C+B+D&rft.au=Heath%2C+D+D&rft.date=2010-05-01&rft.issn=0018-067X&rft.volume=104&rft.issue=5&rft.spage=449&rft.epage=459&rft_id=info:doi/10.1038%2Fhdy.2009.121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-067X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-067X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-067X&client=summon