Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without TiO2
Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 b...
Saved in:
Published in | Water research (Oxford) Vol. 47; no. 15; pp. 5607 - 5613 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm2 resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm2 of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2.
[Display omitted]
•We evaluated the inactivation kinetics of MS2 and MNV by UV-A and –B with/without TiO2.•UV-A effectively inactivated the tested viruses when used in combination with TiO2.•UV-B alone effectively inactivated both MS2 and MNV.•When these treatments were applied to field water, the results were generally consistent. |
---|---|
AbstractList | Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm(2) resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm(2) of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2. Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm2 resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm2 of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2. Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm(2) resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm(2) of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2.Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm(2) resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm(2) of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2. Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm2 resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm2 of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2. [Display omitted] •We evaluated the inactivation kinetics of MS2 and MNV by UV-A and –B with/without TiO2.•UV-A effectively inactivated the tested viruses when used in combination with TiO2.•UV-B alone effectively inactivated both MS2 and MNV.•When these treatments were applied to field water, the results were generally consistent. |
Author | Lee, Jung Eun Ko, GwangPyo |
Author_xml | – sequence: 1 givenname: Jung Eun surname: Lee fullname: Lee, Jung Eun organization: Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Gyeonggi Province 476-823, Republic of Korea – sequence: 2 givenname: GwangPyo surname: Ko fullname: Ko, GwangPyo email: gko@snu.ac.kr organization: Department of Environmental Health and Institute of Health and Environment, School of Public Health, Seoul National University, 1st Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27770347$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23871257$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS3Uik4L_wChbJDYJL1-xQkLpFJRqFTaBS1by-PcCA-ZuLWdqfj39TwoEgva1X3oO3dxzzkke6MfkZA3FCoKtD5eVPcmBYwVA8orqCvg8gWZ0Ua1JROi2SMzAMFLyqU4IIcxLgCAMd6-JAeMN4oyqWbk8tIHv3JhioUZu-Lbd1a40djkViY5Pxa_3IjJ2Vj4vrj5UZ5sqNx8Ku5d-rmZ1o2fUnHtrtgrst-bIeLrXT0iN2efr0-_lhdXX85PTy5KK1qaSmxboL1EpSRA2_VCqTl2Uiomac3bjs5pX_eWIwhphcobzg0wKSwq0fUNPyLvt3dvg7-bMCa9dNHiMJgR_RQ1rWteAxM1fQ4KwBvRwDNQofJPgbdPo4LLRrL85Iy-3aHTfImdvg1uacJv_ceEDLzbASZaM_TBjNbFv5xSCrhYc2LL2eBjDNg_IhT0OhN6obeZ0OtMaKh1zkSWffhHZl3auJuCccNT4o9bMWY3Vw6DjtbhaLFzAW3SnXf_P_AA2f3PoQ |
CODEN | WATRAG |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2018_05_163 crossref_primary_10_1021_acs_est_4c02659 crossref_primary_10_2166_wh_2017_305 crossref_primary_10_1016_j_cej_2015_04_117 crossref_primary_10_1186_s11671_015_1023_z crossref_primary_10_1039_d0pp00221f crossref_primary_10_1016_j_jcis_2017_02_059 crossref_primary_10_1016_j_watres_2016_10_009 crossref_primary_10_3390_molecules25204620 crossref_primary_10_3389_fsufs_2018_00089 crossref_primary_10_1016_j_cej_2018_08_158 crossref_primary_10_3390_catal12111298 crossref_primary_10_1021_acs_est_1c03092 crossref_primary_10_1186_s11671_017_2007_y crossref_primary_10_1186_s11671_015_0753_2 crossref_primary_10_1289_ehp_1509764 crossref_primary_10_1007_s12393_020_09221_4 crossref_primary_10_1016_j_watres_2015_05_018 crossref_primary_10_1038_s41598_017_15565_5 crossref_primary_10_1038_s41598_022_11643_5 crossref_primary_10_3389_fviro_2022_994842 crossref_primary_10_1016_j_cej_2020_126540 crossref_primary_10_1021_acs_est_3c06680 crossref_primary_10_1371_journal_pone_0141050 crossref_primary_10_1016_j_watres_2017_08_062 crossref_primary_10_1111_1750_3841_14022 crossref_primary_10_1016_j_watres_2016_06_052 crossref_primary_10_1007_s12560_024_09614_2 crossref_primary_10_1016_j_chemosphere_2015_04_083 crossref_primary_10_1089_apb_20_0051 crossref_primary_10_1016_j_watres_2020_116554 crossref_primary_10_1016_j_chemosphere_2017_12_122 crossref_primary_10_3390_foods13101527 crossref_primary_10_1016_j_coesh_2020_08_003 crossref_primary_10_1016_j_jhazmat_2018_07_100 crossref_primary_10_1021_acsabm_2c00153 crossref_primary_10_1016_j_cej_2016_05_049 crossref_primary_10_1016_j_jhazmat_2016_11_005 crossref_primary_10_1016_j_watres_2024_121242 crossref_primary_10_1111_php_12223 crossref_primary_10_1016_j_cej_2019_123687 crossref_primary_10_1111_jam_12870 |
Cites_doi | 10.1128/AEM.01955-09 10.3201/eid1810.120833 10.1016/j.watres.2005.06.013 10.1128/AEM.01059-12 10.1128/AEM.65.9.4094-4098.1999 10.4269/ajtmh.2012.11-0370 10.1128/AEM.69.1.350-357.2003 10.1016/j.watres.2010.06.030 10.1371/journal.pbio.0020432 10.1111/j.1365-2672.2007.03658.x 10.1128/AEM.70.8.4538-4543.2004 10.1111/j.1751-1097.2008.00418.x 10.1016/j.fm.2010.11.012 10.1111/j.1365-2672.2009.04179.x 10.1016/S0968-4328(01)00011-7 10.3201/eid1101.040426 10.1128/AEM.02839-06 10.4315/0362-028X.JFP-11-199 10.1128/AEM.01784-07 10.1021/es1001924 10.1128/aem.59.5.1318-1324.1993 10.1016/j.jphotobiol.2011.10.012 10.1021/es3029473 10.1128/AEM.71.1.270-275.2005 10.1128/AEM.01106-06 10.1128/AEM.69.1.577-582.2003 10.1186/1471-2334-9-107 10.1016/j.watres.2008.11.016 10.1128/AEM.02148-07 10.1016/S0014-2565(06)72851-X 10.1016/j.watres.2007.10.037 10.1128/AEM.02442-07 10.1128/aem.60.1.344-347.1994 10.1016/S0195-6701(99)90037-3 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QH 7ST 7T2 7U9 7UA C1K F1W H94 H96 H97 L.G SOI 7QQ 7SR 8FD FR3 JG9 KR7 7S9 L.6 |
DOI | 10.1016/j.watres.2013.06.035 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Aqualine Environment Abstracts Health and Safety Science Abstracts (Full archive) Virology and AIDS Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Health & Safety Science Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Ceramic Abstracts Engineering Research Database Technology Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-2448 |
EndPage | 5613 |
ExternalDocumentID | 23871257 27770347 10_1016_j_watres_2013_06_035 S0043135413005265 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMA HMC HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ABTAH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QH 7ST 7T2 7U9 7UA C1K F1W H94 H96 H97 L.G SOI 7QQ 7SR 8FD FR3 JG9 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c491t-e9901f5e775009df477bed557251639d1b1f6fc3e045c4739d33a0254ce74df83 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 15:58:40 EDT 2025 Thu Jul 10 18:55:43 EDT 2025 Tue Aug 05 10:16:17 EDT 2025 Fri Jul 11 05:04:35 EDT 2025 Mon Jul 21 06:05:40 EDT 2025 Wed Apr 02 07:25:09 EDT 2025 Tue Jul 01 03:53:38 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Fri Feb 23 02:26:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | UV-A inactivation Norovirus Murine norovirus Titanium dioxide UV-B inactivation MS2 phage Titanium IV Oxides Microbiology Picornaviridae Phage MS2 Disinfection Enterovirus Virus Ultraviolet radiation Levivirus Pathogenic Metabolic inactivation Leviviridae Kinetics Titanium oxide Biological contamination Comparative study Phage Ground water |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-e9901f5e775009df477bed557251639d1b1f6fc3e045c4739d33a0254ce74df83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23871257 |
PQID | 1435852125 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1663602461 proquest_miscellaneous_1660038480 proquest_miscellaneous_1647004039 proquest_miscellaneous_1435852125 pubmed_primary_23871257 pascalfrancis_primary_27770347 crossref_primary_10_1016_j_watres_2013_06_035 crossref_citationtrail_10_1016_j_watres_2013_06_035 elsevier_sciencedirect_doi_10_1016_j_watres_2013_06_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | King, Hoefel, Daminato, Fanok, Monis (bib17) 2008; 104 Hewitt, Rivera-Aban, Greening (bib14) 2009; 107 Leon, Lyon, Abdulhafid, Dowd, Hsiao, Liu, Wrammert, Ahmed, Schwab, Moe (bib20) 2007 Doultree, Druce, Birch, Bowden, Marshall (bib8) 1999; 41 Wegelin, Canonica, Mechsner, Fleischmann, Pesaro, Metzler (bib36) 1994; 43 Widdowson, Sulka, Bulens, Beard, Chaves, Hammond, Salehi, Swanson, Totaro, Woron, Mead, Bresee, Monroe, Glass (bib37) 2005; 11 Hollosy (bib15) 2002; 33 Sang, Phan, Sugihara, Yagyu, Okitsu, Maneekarn, Muller, Ushijima (bib29) 2007; 53 Thurston-Enriquez, Haas, Jacangelo, Riley, Gerba (bib34) 2003; 69 de Abreu Corrêa, Carratala, Barardi, Calvo, Girones, Bofill-Mas (bib7) 2012; 78 Schiave, Pedroso, Candido, Roberts, Braga (bib30) 2009; 85 Abbaszadegan, Huber, Gerba, Pepper (bib1) 1993; 59 Jean, Morales-Rayas, Anoman, Lamhoujeb (bib16) 2011; 28 USEPA (bib35) 2001 Godoy, Nuin, Alseda, Llovet, Mazana, Dominguez (bib11) 2006; 206 Lim, Kim, Lee, Ko (bib21) 2010; 76 Wigginton, Pecson, Sigstam, Bosshard, Kohn (bib38) 2012; 46 Simonet, Gantzer (bib32) 2006; 72 Sjogren, Sierka (bib33) 1994; 60 Ryu, Gerrity, Crittenden, Abbaszadegan (bib28) 2008; 42 Wobus, Karst, Thackray, Chang, Sosnovtsev, Belliot, Krug, Mackenzie, Green, Virgin (bib39) 2004; 2 Duizer, Bijkerk, Rockx, De Groot, Twisk, Koopmans (bib9) 2004; 70 Lee, Zoh, Ko (bib19) 2008; 74 Hall, Eisenbart, Etingüe, Gould, Lopman, Parashar (bib12) 2012; 18 Nuanualsuwan, Cliver (bib26) 2003; 69 Buckow, Isbarn, Knorr, Heinz, Lehmacher (bib3) 2008; 74 Belliot, Lavaux, Souihel, Agnello, Pothier (bib2) 2008; 74 CDC (bib4) 2013; 62 Harding, Schwab (bib13) 2012; 86 Maness, Smolinski, Blake, Huang, Wolfrum, Jacoby (bib24) 1999; 65 Cho, Chung, Choi, Yoon (bib5) 2005; 71 Ko, Cromeans, Sobsey (bib18) 2005; 39 Misstear, Gill (bib25) 2012; 107 Magulski, Paulmann, Bischoff, Becker, Steinmann, Steinmann, Goroncy-Bermes (bib23) 2009; 9 Park, Boston, Kase, Sampson, Sobsey (bib27) 2007; 73 Seo, Lee, Lim, Ko (bib31) 2012; 75 Girones, Ferrús, Alonso, Rodriguez-Manzano, Calgua, de Abreu Corrêa, Hundesa, Carratala, Bofill-Mas (bib10) 2010; 44 Davies, Roser, Feitz, Ashbolt (bib6) 2009; 43 Love, Silverman, Nelson (bib22) 2010; 44 Sang (10.1016/j.watres.2013.06.035_bib29) 2007; 53 Misstear (10.1016/j.watres.2013.06.035_bib25) 2012; 107 Cho (10.1016/j.watres.2013.06.035_bib5) 2005; 71 CDC (10.1016/j.watres.2013.06.035_bib4) 2013; 62 Nuanualsuwan (10.1016/j.watres.2013.06.035_bib26) 2003; 69 Love (10.1016/j.watres.2013.06.035_bib22) 2010; 44 Maness (10.1016/j.watres.2013.06.035_bib24) 1999; 65 Ko (10.1016/j.watres.2013.06.035_bib18) 2005; 39 Doultree (10.1016/j.watres.2013.06.035_bib8) 1999; 41 Wigginton (10.1016/j.watres.2013.06.035_bib38) 2012; 46 Hall (10.1016/j.watres.2013.06.035_bib12) 2012; 18 Wobus (10.1016/j.watres.2013.06.035_bib39) 2004; 2 Hewitt (10.1016/j.watres.2013.06.035_bib14) 2009; 107 Hollosy (10.1016/j.watres.2013.06.035_bib15) 2002; 33 King (10.1016/j.watres.2013.06.035_bib17) 2008; 104 Abbaszadegan (10.1016/j.watres.2013.06.035_bib1) 1993; 59 de Abreu Corrêa (10.1016/j.watres.2013.06.035_bib7) 2012; 78 Jean (10.1016/j.watres.2013.06.035_bib16) 2011; 28 Godoy (10.1016/j.watres.2013.06.035_bib11) 2006; 206 Duizer (10.1016/j.watres.2013.06.035_bib9) 2004; 70 Girones (10.1016/j.watres.2013.06.035_bib10) 2010; 44 Leon (10.1016/j.watres.2013.06.035_bib20) 2007 Buckow (10.1016/j.watres.2013.06.035_bib3) 2008; 74 Widdowson (10.1016/j.watres.2013.06.035_bib37) 2005; 11 Simonet (10.1016/j.watres.2013.06.035_bib32) 2006; 72 USEPA (10.1016/j.watres.2013.06.035_bib35) 2001 Park (10.1016/j.watres.2013.06.035_bib27) 2007; 73 Seo (10.1016/j.watres.2013.06.035_bib31) 2012; 75 Lim (10.1016/j.watres.2013.06.035_bib21) 2010; 76 Ryu (10.1016/j.watres.2013.06.035_bib28) 2008; 42 Lee (10.1016/j.watres.2013.06.035_bib19) 2008; 74 Davies (10.1016/j.watres.2013.06.035_bib6) 2009; 43 Schiave (10.1016/j.watres.2013.06.035_bib30) 2009; 85 Harding (10.1016/j.watres.2013.06.035_bib13) 2012; 86 Magulski (10.1016/j.watres.2013.06.035_bib23) 2009; 9 Wegelin (10.1016/j.watres.2013.06.035_bib36) 1994; 43 Sjogren (10.1016/j.watres.2013.06.035_bib33) 1994; 60 Thurston-Enriquez (10.1016/j.watres.2013.06.035_bib34) 2003; 69 Belliot (10.1016/j.watres.2013.06.035_bib2) 2008; 74 |
References_xml | – volume: 104 start-page: 1311 year: 2008 end-page: 1323 ident: bib17 article-title: Solar UV reduces publication-title: Journal of Applied Microbiology – volume: 74 start-page: 2111 year: 2008 end-page: 2117 ident: bib19 article-title: Inactivation and UV disinfection of murine norovirus with TiO publication-title: Applied and Environmental Microbiology – volume: 75 start-page: 533 year: 2012 end-page: 540 ident: bib31 article-title: Effect of temperature, pH, and NaCl on the inactivation kinetics of murine norovirus publication-title: Journal of Food Protection – volume: 43 start-page: 154 year: 1994 end-page: 169 ident: bib36 article-title: Solar water disinfection: scope of the process and analysis of radiation experiments publication-title: Journal of Water Supply: Research and Technology-Aqua – volume: 70 start-page: 4538 year: 2004 end-page: 4543 ident: bib9 article-title: Inactivation of caliciviruses publication-title: Applied and Environmental Microbiology – volume: 46 start-page: 12069 year: 2012 end-page: 12078 ident: bib38 article-title: Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity publication-title: Environmental Science and Technology – volume: 9 start-page: 107 year: 2009 end-page: 113 ident: bib23 article-title: Inactivation of murine norovirus by chemical biocides on stainless steel publication-title: BMC Infectious Diseases – volume: 76 start-page: 1120 year: 2010 end-page: 1124 ident: bib21 article-title: Characterization of ozone disinfection of murine norovirus publication-title: Applied and Environmental Microbiology – year: 2007 ident: bib20 article-title: Norovirus Human Infectivity Persists in Groundwater for Over Two Months – volume: 44 start-page: 6965 year: 2010 end-page: 6970 ident: bib22 article-title: Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a Southern California beach publication-title: Environmental Science and Technology – volume: 107 start-page: 1 year: 2012 end-page: 8 ident: bib25 article-title: The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis publication-title: Journal of Photochemistry and Photobiology B: Biology – volume: 11 start-page: 95 year: 2005 end-page: 102 ident: bib37 article-title: Norovirus and foodborne disease, United States, 1991–2000 publication-title: Emerging Infectious Diseases – volume: 206 start-page: 435 year: 2006 end-page: 437 ident: bib11 article-title: Waterborne outbreak of gastroenteritis caused by Norovirus transmitted through drinking water publication-title: Revista Clinica Espanola – volume: 18 start-page: 1566 year: 2012 end-page: 1573 ident: bib12 article-title: Epidemiology of foodborne norovirus outbreaks, United States, 2001–2008 publication-title: Emerging Infectious Diseases – volume: 74 start-page: 1030 year: 2008 end-page: 1038 ident: bib3 article-title: Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure? publication-title: Applied and Environmental Microbiology – volume: 39 start-page: 3643 year: 2005 end-page: 3649 ident: bib18 article-title: UV inactivation of adenovirus type 41 measured by cell culture mRNA RT-PCR publication-title: Water Research – volume: 69 start-page: 350 year: 2003 end-page: 357 ident: bib26 article-title: Capsid functions of inactivated human picornaviruses and feline calicivirus publication-title: Applied and Environmental Microbiology – volume: 41 start-page: 51 year: 1999 end-page: 57 ident: bib8 article-title: Inactivation of feline calicivirus, a Norwalk virus surrogate publication-title: Journal of Hospital Infection – volume: 28 start-page: 568 year: 2011 end-page: 572 ident: bib16 article-title: Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses) publication-title: Food Microbiology – volume: 53 start-page: 413 year: 2007 end-page: 421 ident: bib29 article-title: Photocatalytic inactivation of diarrheal viruses by visible-light-catalytic titanium dioxide publication-title: Clinical Laboratory – volume: 85 start-page: 205 year: 2009 end-page: 213 ident: bib30 article-title: Variability in UVB tolerances of melanized and nonmelanized cells of publication-title: Photochemistry and Photobiology – volume: 2 start-page: 2076 year: 2004 end-page: 2084 ident: bib39 article-title: Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages publication-title: PLoS Biology – volume: 71 start-page: 270 year: 2005 end-page: 275 ident: bib5 article-title: Different inactivation behaviors of MS-2 phage and publication-title: Applied and Environmental Microbiology – volume: 86 start-page: 566 year: 2012 end-page: 572 ident: bib13 article-title: Using limes and synthetic psoralens to enhance solar disinfection of water (SODIS): a laboratory evaluation with norovirus, publication-title: The American Journal of Tropical Medicine and Hygiene – volume: 72 start-page: 7671 year: 2006 end-page: 7677 ident: bib32 article-title: Inactivation of poliovirus 1 and F-specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers publication-title: Applied and Environmental Microbiology – year: 2001 ident: bib35 article-title: Methods 1602. Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL) Procedure – volume: 78 start-page: 6450 year: 2012 end-page: 6457 ident: bib7 article-title: Comparative inactivation of murine norovirus, human adenovirus, and human JC polyomavirus by chlorine in seawater publication-title: Applied and Environmental Microbiology – volume: 44 start-page: 4325 year: 2010 end-page: 4339 ident: bib10 article-title: Molecular detection of pathogens in water–the pros and cons of molecular techniques publication-title: Water Research – volume: 73 start-page: 4463 year: 2007 end-page: 4468 ident: bib27 article-title: Evaluation of liquid-and fog-based application of publication-title: Applied and Environmental Microbiology – volume: 65 start-page: 4094 year: 1999 end-page: 4098 ident: bib24 article-title: Bactericidal activity of photocatalytic TiO publication-title: Applied and Environmental Microbiology – volume: 107 start-page: 65 year: 2009 end-page: 71 ident: bib14 article-title: Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies publication-title: Journal of Applied Microbiology – volume: 62 start-page: 41 year: 2013 end-page: 47 ident: bib4 article-title: Surveillance for foodborne disease outbreaks – United States, 2009–2010 publication-title: Morbidity and Mortality Weekly Report (MMWR) – volume: 33 start-page: 179 year: 2002 end-page: 197 ident: bib15 article-title: Effects of ultraviolet radiation on plant cells publication-title: Micron – volume: 59 start-page: 1318 year: 1993 end-page: 1324 ident: bib1 article-title: Detection of enteroviruses in groundwater with the polymerase chain reaction publication-title: Applied and Environmental Microbiology – volume: 60 start-page: 344 year: 1994 end-page: 347 ident: bib33 article-title: Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis publication-title: Applied and Environmental Microbiology – volume: 42 start-page: 1523 year: 2008 end-page: 1530 ident: bib28 article-title: Photocatalytic inactivation of publication-title: Water Research – volume: 69 start-page: 577 year: 2003 end-page: 582 ident: bib34 article-title: Inactivation of feline calicivirus and adenovirus type 40 by UV radiation publication-title: Applied and Environmental Microbiology – volume: 43 start-page: 643 year: 2009 end-page: 652 ident: bib6 article-title: Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration publication-title: Water Research – volume: 74 start-page: 3315 year: 2008 end-page: 3318 ident: bib2 article-title: Use of murine norovirus as a surrogate to evaluate resistance of human norovirus to disinfectants publication-title: Applied and Environmental Microbiology – volume: 76 start-page: 1120 issue: 4 year: 2010 ident: 10.1016/j.watres.2013.06.035_bib21 article-title: Characterization of ozone disinfection of murine norovirus publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01955-09 – volume: 18 start-page: 1566 issue: 10 year: 2012 ident: 10.1016/j.watres.2013.06.035_bib12 article-title: Epidemiology of foodborne norovirus outbreaks, United States, 2001–2008 publication-title: Emerging Infectious Diseases doi: 10.3201/eid1810.120833 – year: 2001 ident: 10.1016/j.watres.2013.06.035_bib35 – volume: 39 start-page: 3643 issue: 15 year: 2005 ident: 10.1016/j.watres.2013.06.035_bib18 article-title: UV inactivation of adenovirus type 41 measured by cell culture mRNA RT-PCR publication-title: Water Research doi: 10.1016/j.watres.2005.06.013 – volume: 78 start-page: 6450 issue: 18 year: 2012 ident: 10.1016/j.watres.2013.06.035_bib7 article-title: Comparative inactivation of murine norovirus, human adenovirus, and human JC polyomavirus by chlorine in seawater publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01059-12 – volume: 65 start-page: 4094 issue: 9 year: 1999 ident: 10.1016/j.watres.2013.06.035_bib24 article-title: Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.65.9.4094-4098.1999 – volume: 86 start-page: 566 issue: 4 year: 2012 ident: 10.1016/j.watres.2013.06.035_bib13 article-title: Using limes and synthetic psoralens to enhance solar disinfection of water (SODIS): a laboratory evaluation with norovirus, Escherichia coli, and MS2 publication-title: The American Journal of Tropical Medicine and Hygiene doi: 10.4269/ajtmh.2012.11-0370 – volume: 69 start-page: 350 issue: 1 year: 2003 ident: 10.1016/j.watres.2013.06.035_bib26 article-title: Capsid functions of inactivated human picornaviruses and feline calicivirus publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.69.1.350-357.2003 – volume: 44 start-page: 4325 issue: 15 year: 2010 ident: 10.1016/j.watres.2013.06.035_bib10 article-title: Molecular detection of pathogens in water–the pros and cons of molecular techniques publication-title: Water Research doi: 10.1016/j.watres.2010.06.030 – volume: 2 start-page: 2076 issue: 12 year: 2004 ident: 10.1016/j.watres.2013.06.035_bib39 article-title: Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages publication-title: PLoS Biology doi: 10.1371/journal.pbio.0020432 – volume: 104 start-page: 1311 issue: 5 year: 2008 ident: 10.1016/j.watres.2013.06.035_bib17 article-title: Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters publication-title: Journal of Applied Microbiology doi: 10.1111/j.1365-2672.2007.03658.x – volume: 70 start-page: 4538 issue: 8 year: 2004 ident: 10.1016/j.watres.2013.06.035_bib9 article-title: Inactivation of caliciviruses publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.70.8.4538-4543.2004 – volume: 85 start-page: 205 issue: 1 year: 2009 ident: 10.1016/j.watres.2013.06.035_bib30 article-title: Variability in UVB tolerances of melanized and nonmelanized cells of Cryptococcus neoformans and C. laurentii publication-title: Photochemistry and Photobiology doi: 10.1111/j.1751-1097.2008.00418.x – volume: 28 start-page: 568 issue: 3 year: 2011 ident: 10.1016/j.watres.2013.06.035_bib16 article-title: Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses) publication-title: Food Microbiology doi: 10.1016/j.fm.2010.11.012 – volume: 53 start-page: 413 issue: 7–8 year: 2007 ident: 10.1016/j.watres.2013.06.035_bib29 article-title: Photocatalytic inactivation of diarrheal viruses by visible-light-catalytic titanium dioxide publication-title: Clinical Laboratory – volume: 107 start-page: 65 issue: 1 year: 2009 ident: 10.1016/j.watres.2013.06.035_bib14 article-title: Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies publication-title: Journal of Applied Microbiology doi: 10.1111/j.1365-2672.2009.04179.x – volume: 62 start-page: 41 issue: 3 year: 2013 ident: 10.1016/j.watres.2013.06.035_bib4 article-title: Surveillance for foodborne disease outbreaks – United States, 2009–2010 publication-title: Morbidity and Mortality Weekly Report (MMWR) – volume: 33 start-page: 179 issue: 2 year: 2002 ident: 10.1016/j.watres.2013.06.035_bib15 article-title: Effects of ultraviolet radiation on plant cells publication-title: Micron doi: 10.1016/S0968-4328(01)00011-7 – volume: 11 start-page: 95 issue: 1 year: 2005 ident: 10.1016/j.watres.2013.06.035_bib37 article-title: Norovirus and foodborne disease, United States, 1991–2000 publication-title: Emerging Infectious Diseases doi: 10.3201/eid1101.040426 – volume: 73 start-page: 4463 issue: 14 year: 2007 ident: 10.1016/j.watres.2013.06.035_bib27 article-title: Evaluation of liquid-and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02839-06 – volume: 75 start-page: 533 issue: 3 year: 2012 ident: 10.1016/j.watres.2013.06.035_bib31 article-title: Effect of temperature, pH, and NaCl on the inactivation kinetics of murine norovirus publication-title: Journal of Food Protection doi: 10.4315/0362-028X.JFP-11-199 – volume: 74 start-page: 1030 issue: 4 year: 2008 ident: 10.1016/j.watres.2013.06.035_bib3 article-title: Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure? publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01784-07 – volume: 44 start-page: 6965 issue: 18 year: 2010 ident: 10.1016/j.watres.2013.06.035_bib22 article-title: Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a Southern California beach publication-title: Environmental Science and Technology doi: 10.1021/es1001924 – volume: 59 start-page: 1318 issue: 5 year: 1993 ident: 10.1016/j.watres.2013.06.035_bib1 article-title: Detection of enteroviruses in groundwater with the polymerase chain reaction publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.59.5.1318-1324.1993 – volume: 107 start-page: 1 year: 2012 ident: 10.1016/j.watres.2013.06.035_bib25 article-title: The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis publication-title: Journal of Photochemistry and Photobiology B: Biology doi: 10.1016/j.jphotobiol.2011.10.012 – volume: 46 start-page: 12069 issue: 21 year: 2012 ident: 10.1016/j.watres.2013.06.035_bib38 article-title: Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity publication-title: Environmental Science and Technology doi: 10.1021/es3029473 – volume: 71 start-page: 270 issue: 1 year: 2005 ident: 10.1016/j.watres.2013.06.035_bib5 article-title: Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.71.1.270-275.2005 – volume: 72 start-page: 7671 issue: 12 year: 2006 ident: 10.1016/j.watres.2013.06.035_bib32 article-title: Inactivation of poliovirus 1 and F-specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01106-06 – volume: 69 start-page: 577 issue: 1 year: 2003 ident: 10.1016/j.watres.2013.06.035_bib34 article-title: Inactivation of feline calicivirus and adenovirus type 40 by UV radiation publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.69.1.577-582.2003 – volume: 9 start-page: 107 year: 2009 ident: 10.1016/j.watres.2013.06.035_bib23 article-title: Inactivation of murine norovirus by chemical biocides on stainless steel publication-title: BMC Infectious Diseases doi: 10.1186/1471-2334-9-107 – volume: 43 start-page: 643 issue: 3 year: 2009 ident: 10.1016/j.watres.2013.06.035_bib6 article-title: Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration publication-title: Water Research doi: 10.1016/j.watres.2008.11.016 – volume: 74 start-page: 3315 issue: 10 year: 2008 ident: 10.1016/j.watres.2013.06.035_bib2 article-title: Use of murine norovirus as a surrogate to evaluate resistance of human norovirus to disinfectants publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02148-07 – volume: 206 start-page: 435 issue: 9 year: 2006 ident: 10.1016/j.watres.2013.06.035_bib11 article-title: Waterborne outbreak of gastroenteritis caused by Norovirus transmitted through drinking water publication-title: Revista Clinica Espanola doi: 10.1016/S0014-2565(06)72851-X – volume: 42 start-page: 1523 issue: 6–7 year: 2008 ident: 10.1016/j.watres.2013.06.035_bib28 article-title: Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation publication-title: Water Research doi: 10.1016/j.watres.2007.10.037 – volume: 43 start-page: 154 issue: 4 year: 1994 ident: 10.1016/j.watres.2013.06.035_bib36 article-title: Solar water disinfection: scope of the process and analysis of radiation experiments publication-title: Journal of Water Supply: Research and Technology-Aqua – volume: 74 start-page: 2111 issue: 7 year: 2008 ident: 10.1016/j.watres.2013.06.035_bib19 article-title: Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02442-07 – year: 2007 ident: 10.1016/j.watres.2013.06.035_bib20 – volume: 60 start-page: 344 issue: 1 year: 1994 ident: 10.1016/j.watres.2013.06.035_bib33 article-title: Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.60.1.344-347.1994 – volume: 41 start-page: 51 issue: 1 year: 1999 ident: 10.1016/j.watres.2013.06.035_bib8 article-title: Inactivation of feline calicivirus, a Norwalk virus surrogate publication-title: Journal of Hospital Infection doi: 10.1016/S0195-6701(99)90037-3 |
SSID | ssj0002239 |
Score | 2.3233159 |
Snippet | Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5607 |
SubjectTerms | Applied sciences Bacteriophages Bacteriophages - drug effects Bacteriophages - radiation effects Disinfection Effectiveness Exact sciences and technology Groundwater Human humans Inactivation Kinetics MS2 phage Murine norovirus Norovirus Norovirus - drug effects Norovirus - radiation effects Pollution Reduction Titanium - pharmacology Titanium dioxide ultraviolet radiation Ultraviolet Rays UV-A inactivation UV-B inactivation Viruses Water treatment and pollution |
Title | Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without TiO2 |
URI | https://dx.doi.org/10.1016/j.watres.2013.06.035 https://www.ncbi.nlm.nih.gov/pubmed/23871257 https://www.proquest.com/docview/1435852125 https://www.proquest.com/docview/1647004039 https://www.proquest.com/docview/1660038480 https://www.proquest.com/docview/1663602461 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9K99IxxrrPbGtQYa9anUiyrMesrKQdTR_WjL4JWx-QbdihSdjb_vbdyXY_YEthb7Y5Y3GS737S3e8O4EOBkDZI4bnzI8FlzCtuihi5HleVji4qnbgw57N8OpdnV-pqB457LgylVXa2v7XpyVp3T446bR4tFwvi-KLzE4qsMBUtIaK5lJpW-cfft2ke6P5MH2Um6Z4-l3K8fpVEyKAEL5GqeKamb391T0-W5QqVFttuF_-Go8ktnTyDpx2eZJN2yPuwE-rn8PhOlcEXMJs1dG5wvVmxsvbs_OuYLWriM7SnsewHilKxZtZENv_GJ0kKLz4xOqRNd3TRbNbscnExfgnzk8-Xx1PetVHgTprRmgcKfUUVNIKDzPgota6CV0ojtEF84kfVKObRiYDozkmNT4QoiSTvgpY-FuIV7NZNHd4AM5kTPmSljpryQ03lTKhU5gvaYnuTD0D02rOuqzFOrS5-2j6Z7LttdW5J55Zy6oQaAL95a9nW2HhAXvcTY--tFYtu4IE3h_fm8eZzY63R9Ek9gMN-Yi3-ZxQ8KevQbFaWcGVBRGe1RSaX1C0gE2abTE7RWFlkW2VEnlGlvwG8blfX7UgFbnHRzr79byW8gz26azMS38Pu-noTDhBZrath-nWG8Ghy-mU6-wNHaSAi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9AAIId6ERzESV6ub2F6vj6GiSmmzHEhQb9auH1IK2o2aRPx9ZvYRqASpxG3XO9ZaY3vms-cF8CFDSBuk8Nz5keAypiU3WYxcj8tSRxeVbmJhZnk6XcjPl-ryAE76WBhyq-xkfyvTG2ndtRx33DxeLZcU44vKTyiSwpS0RN2BQ8pOpQZwODk7n-Y7gYwa0PSGZurQR9A1bl4_C4rJIB8v0STybOq-_VVDPVgVa-RbbAte_BuRNprp9BE87CAlm7SjfgwHoXoC9_9INPgU8rymq4Pr7ZoVlWezr2O2rCikob2QZd-RlPI1szqyxTc-aajw4SOje9rmjR7q7YbNl1_Gz2Bx-ml-MuVdJQXupBlteCDrV1RBIz5IjI9S6zJ4pTSiG4QoflSOYhqdCAjwnNTYIkRBcfIuaOljJp7DoKqr8BKYSZzwISl01OQiakpnQqkSn9Ep25t0CKLnnnVdmnGqdvHD9v5kV7bluSWeW3KrE2oIfNdr1abZuIVe9xNjbywXi5rglp5HN-Zx97ux1ij9pB7C-35iLW41sp8UVai3a0vQMqNYZ7WHJpVUMCARZh9NSgZZmSV7aUSaULK_IbxoV9fvkQo85aKoffXfTHgHd6fz2YW9OMvPX8M9-tI6KL6BweZ6G94i0NqUR91G-gUZ5CLT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Norovirus+and+MS2+inactivation+kinetics+of+UV-A+and+UV-B+with+and+without+TiO2&rft.jtitle=Water+research+%28Oxford%29&rft.au=Lee%2C+Jung+Eun&rft.au=Ko%2C+GwangPyo&rft.date=2013-10-01&rft.issn=0043-1354&rft.volume=47&rft.issue=15&rft.spage=5607&rft.epage=5613&rft_id=info:doi/10.1016%2Fj.watres.2013.06.035&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |