Biometric approximation of diaphragmatic contractility during sustained hyperpnea

Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and appl...

Full description

Saved in:
Bibliographic Details
Published inRespiratory physiology & neurobiology Vol. 176; no. 3; pp. 90 - 97
Main Authors Kabitz, Hans-Joachim, Walker, David Johannes, Schwoerer, Anja, Schlager, Daniel, Walterspacher, Stephan, Storre, Jan Hendrik, Roecker, Kai, Windisch, Wolfram, Vergès, Samuel, Spengler, Christina M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 31.05.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30–60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery −19 ± 17% and −30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay ( r 2 = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.
AbstractList Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30–60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery −19 ± 17% and −30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay ( r 2 = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.
Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.
Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.
Abstract Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30–60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery −19 ± 17% and −30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay ( r2 = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.
Author Schlager, Daniel
Walker, David Johannes
Walterspacher, Stephan
Schwoerer, Anja
Storre, Jan Hendrik
Vergès, Samuel
Roecker, Kai
Windisch, Wolfram
Kabitz, Hans-Joachim
Spengler, Christina M.
Author_xml – sequence: 1
  givenname: Hans-Joachim
  surname: Kabitz
  fullname: Kabitz, Hans-Joachim
  email: hans-joachim.kabitz@uniklinik-freiburg.de
  organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany
– sequence: 2
  givenname: David Johannes
  surname: Walker
  fullname: Walker, David Johannes
  organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany
– sequence: 3
  givenname: Anja
  surname: Schwoerer
  fullname: Schwoerer, Anja
  organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany
– sequence: 4
  givenname: Daniel
  surname: Schlager
  fullname: Schlager, Daniel
  organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany
– sequence: 5
  givenname: Stephan
  surname: Walterspacher
  fullname: Walterspacher, Stephan
  organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany
– sequence: 6
  givenname: Jan Hendrik
  surname: Storre
  fullname: Storre, Jan Hendrik
  organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany
– sequence: 7
  givenname: Kai
  surname: Roecker
  fullname: Roecker, Kai
  organization: Sports-Medicine, University Hospital Freiburg, Germany
– sequence: 8
  givenname: Wolfram
  surname: Windisch
  fullname: Windisch, Wolfram
  organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany
– sequence: 9
  givenname: Samuel
  surname: Vergès
  fullname: Vergès, Samuel
  organization: HP2 Laboratory (INSERM ERI17), Joseph Fourier University, Grenoble, France
– sequence: 10
  givenname: Christina M.
  surname: Spengler
  fullname: Spengler, Christina M.
  organization: Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24147814$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21295161$$D View this record in MEDLINE/PubMed
BookMark eNqFktuKFDEQhoOsuAd9AS-kb8SrHlPpQzoigi6eYEFEvQ6ZpLKbsSdpk7TsvP2mnVFhwRUKEorvr6Tqr1Ny5INHQh4DXQGF_vlmFTFNK0YBVnQJuEdOYOBDDR2Io3LvelEL2g7H5DSlDaXAgTcPyDEDJjro4YR8fuPCFnN0ulLTFMO126rsgq-CrYxT01VUl0tGVzr4HJXObnR5V5k5On9ZpTll5Tya6mo3YZw8qofkvlVjwkeH84x8e_f26_mH-uLT-4_nry9q3QrItTFWG1w3yESj-95ysF3XATea96Bbw4AK2-OarUVn7Jpj25ekoKxXoABtc0ae7euWX_-YMWW5dUnjOCqPYU5y6BkXDWdDIZ8cyHm9RSOnWJqMO_l7CgV4egBU0mq0UXnt0l-uhZYP0BaO7TkdQ0oR7R8EqFwskRu5WCIXSyRdYik-3BJpl3_NuIzTjXdLX-6lWOb402GUSTv0Go2LqLM0wd0tf3VLrkfnXenwO-4wbcIcfXFIgkxMUvllWZdlWwAopS1f-n3x7wL_e_0G5_bQ0w
CitedBy_id crossref_primary_10_1016_j_resp_2016_01_006
crossref_primary_10_1371_journal_pone_0277131
crossref_primary_10_1016_j_resp_2011_05_007
crossref_primary_10_1159_000496028
crossref_primary_10_1249_MSS_0000000000000627
crossref_primary_10_1016_j_resp_2017_10_004
crossref_primary_10_1152_japplphysiol_00942_2017
Cites_doi 10.1183/09031936.02.00302702
10.1152/jappl.1987.62.3.1307
10.1152/ajpregu.00731.2007
10.1136/thx.49.12.1234
10.1016/0014-4886(83)90163-2
10.1113/jphysiol.2007.139477
10.1183/09031936.95.08091532
10.1183/09031936.05.00035005
10.1016/j.resp.2008.08.008
10.1164/rccm.166.4.518
10.1016/j.resp.2006.10.007
10.1016/j.resp.2007.11.003
10.1183/09031936.05.00034805
10.1016/0034-5687(85)90121-5
10.1152/jappl.1998.84.5.1692
10.1164/ajrccm.154.4.8887614
10.1378/chest.128.1.190
10.1016/S0034-5687(01)00327-9
10.1126/science.1101141
10.1007/s00421-003-0871-x
10.1152/jappl.1995.78.5.1710
10.1152/jappl.1964.19.2.207
10.1016/j.resp.2007.04.011
10.1152/jappl.1998.85.3.1103
10.1152/jappl.1997.82.6.2011
10.1164/ajrccm.149.3.8118645
10.1378/chest.119.3.926
10.1378/chest.09-2824
10.1183/09031936.05.00034505
10.1152/japplphysiol.01157.2007
10.1152/jappl.1988.65.5.2181
10.1378/chest.121.2.452
10.1152/jappl.1984.57.6.1742
10.1016/S0034-5687(99)00010-9
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Elsevier B.V.
2015 INIST-CNRS
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.resp.2011.01.011
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1878-1519
EndPage 97
ExternalDocumentID 21295161
24147814
10_1016_j_resp_2011_01_011
S1569904811000474
1_s2_0_S1569904811000474
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OHT
OI-
OU.
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSN
SSU
SSZ
T5K
UHS
Z5R
ZGI
~02
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c491t-ddfcdeb3e293c66f71f55517dc761c4d2109f6eb2b95dfb7e464d29026a1a1ef3
IEDL.DBID .~1
ISSN 1569-9048
1878-1519
IngestDate Thu Jul 10 22:17:42 EDT 2025
Mon Jul 21 05:55:15 EDT 2025
Mon Jul 21 09:15:38 EDT 2025
Tue Jul 01 03:30:38 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Fri Feb 23 02:33:53 EST 2024
Sun Feb 23 10:18:56 EST 2025
Tue Aug 26 16:31:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Respiratory muscle
Twitch transdiaphragmatic pressure
Diaphragmatic fatigue
Biometrics
Vertebrata
Mammalia
Contractility
Fatigue
Respiratory system
Hyperpnea
Pressure
Language English
License CC BY 4.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-ddfcdeb3e293c66f71f55517dc761c4d2109f6eb2b95dfb7e464d29026a1a1ef3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 21295161
PQID 862793728
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_862793728
pubmed_primary_21295161
pascalfrancis_primary_24147814
crossref_primary_10_1016_j_resp_2011_01_011
crossref_citationtrail_10_1016_j_resp_2011_01_011
elsevier_sciencedirect_doi_10_1016_j_resp_2011_01_011
elsevier_clinicalkeyesjournals_1_s2_0_S1569904811000474
elsevier_clinicalkey_doi_10_1016_j_resp_2011_01_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-31
PublicationDateYYYYMMDD 2011-05-31
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-31
  day: 31
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Respiratory physiology & neurobiology
PublicationTitleAlternate Respir Physiol Neurobiol
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References McKenzie, Allen, Butler, Gandevia (bib0090) 1997; 82
Laghi, Topeli, Tobin (bib0070) 1998; 85
Westerblad, Allen, Lannergren (bib0170) 2002; 17
Windisch, Kabitz, Sorichter (bib0175) 2005; 128
Miller, Crapo, Hankinson, Brusasco, Burgos, Casaburi, Coates, Enright, van der Grinten, Gustafsson, Jensen, Johnson, MacIntyre, McKay, Navajas, Pedersen, Pellegrino, Viegi (bib0100) 2005; 26
Dempsey, Sheel, St Croix, Morgan (bib0030) 2002; 130
Ward, Eidelman, Stubbing, Bellemare, Macklem (bib0165) 1988; 65
Qin, Steier, Jolley, Moxham, Zhong, Luo (bib0125) 2010; 138
ATS/ERS (bib0005) 2002; 166
Bai, Rabinovitch, Pardy (bib0015) 1984; 57
Sieck, Mazar, Belman (bib0145) 1985; 61
Babcock, Pegelow, McClaran, Suman, Dempsey (bib0010) 1995; 78
Bellemare, Bigland-Ritchie (bib0020) 1987; 62
Renggli, Verges, Notter, Spengler (bib0130) 2008; 164
Vandervoort, Quinlan, McComas (bib0155) 1983; 81
Jones, Wilkerson, DiMenna, Fulford, Poole (bib0050) 2008; 294
Romer, Polkey (bib0140) 2008; 104
Man, Luo, Mustfa, Rafferty, Glerant, Polkey, Moxham (bib0085) 2002; 20
Kabitz, Walker, Walterspacher, Windisch (bib0060) 2007; 1
Mills, Kyroussis, Hamnegard, Polkey, Green, Moxham (bib0110) 1996; 154
Gorman, McKenzie, Gandevia (bib0040) 1999; 115
Pedersen, Nielsen, Lamb, Stephenson (bib0115) 2004; 305
Milic-Emili, Mead, Turner, Glauser (bib0095) 1964; 19
Miller, Hankinson, Brusasco, Burgos, Casaburi, Coates, Crapo, Enright, van der Grinten, Gustafsson, Jensen, Johnson, MacIntyre, McKay, Navajas, Pedersen, Pellegrino, Viegi (bib0105) 2005; 26
Decorte, Lafaix, Millet, Wuyam, Verges (bib0025) 2010
Polkey, Moxham (bib0120) 2001; 119
Wragg, Hamnegard, Road, Kyroussis, Moran, Green, Moxham (bib0180) 1994; 49
Hamnegard, Wragg, Mills, Kyroussis, Road, Daskos, Bake, Moxham, Green (bib0045) 1995; 8
Kabitz, Walker, Walterspacher, Windisch (bib0055) 2007; 156
Mador, Magalang, Kufel (bib0080) 1994; 149
Enoka, Duchateau (bib0035) 2008; 586
Wanger, Clausen, Coates, Pedersen, Brusasco, Burgos, Casaburi, Crapo, Enright, van der Grinten, Gustafsson, Hankinson, Jensen, Johnson, Macintyre, McKay, Miller, Navajas (bib0160) 2005; 26
Kabitz, Walker, Walterspacher, Sonntag, Schwoerer, Roecker, Windisch (bib0065) 2008; 161
Rohrbach, Perret, Kayser, Boutellier, Spengler (bib0135) 2003; 90
Mador, Khan, Kufel (bib0075) 2002; 121
Similowski, Straus, Attali, Duguet, Derenne (bib0150) 1998; 84
Man (10.1016/j.resp.2011.01.011_bib0085) 2002; 20
Sieck (10.1016/j.resp.2011.01.011_bib0145) 1985; 61
Wanger (10.1016/j.resp.2011.01.011_bib0160) 2005; 26
McKenzie (10.1016/j.resp.2011.01.011_bib0090) 1997; 82
ATS/ERS (10.1016/j.resp.2011.01.011_bib0005) 2002; 166
Milic-Emili (10.1016/j.resp.2011.01.011_bib0095) 1964; 19
Romer (10.1016/j.resp.2011.01.011_bib0140) 2008; 104
Bellemare (10.1016/j.resp.2011.01.011_bib0020) 1987; 62
Gorman (10.1016/j.resp.2011.01.011_bib0040) 1999; 115
Mador (10.1016/j.resp.2011.01.011_bib0075) 2002; 121
Pedersen (10.1016/j.resp.2011.01.011_bib0115) 2004; 305
Kabitz (10.1016/j.resp.2011.01.011_bib0055) 2007; 156
Hamnegard (10.1016/j.resp.2011.01.011_bib0045) 1995; 8
Laghi (10.1016/j.resp.2011.01.011_bib0070) 1998; 85
Rohrbach (10.1016/j.resp.2011.01.011_bib0135) 2003; 90
Renggli (10.1016/j.resp.2011.01.011_bib0130) 2008; 164
Jones (10.1016/j.resp.2011.01.011_bib0050) 2008; 294
Mills (10.1016/j.resp.2011.01.011_bib0110) 1996; 154
Babcock (10.1016/j.resp.2011.01.011_bib0010) 1995; 78
Miller (10.1016/j.resp.2011.01.011_bib0105) 2005; 26
Windisch (10.1016/j.resp.2011.01.011_bib0175) 2005; 128
Enoka (10.1016/j.resp.2011.01.011_bib0035) 2008; 586
Mador (10.1016/j.resp.2011.01.011_bib0080) 1994; 149
Similowski (10.1016/j.resp.2011.01.011_bib0150) 1998; 84
Ward (10.1016/j.resp.2011.01.011_bib0165) 1988; 65
Vandervoort (10.1016/j.resp.2011.01.011_bib0155) 1983; 81
Westerblad (10.1016/j.resp.2011.01.011_bib0170) 2002; 17
Kabitz (10.1016/j.resp.2011.01.011_bib0065) 2008; 161
Qin (10.1016/j.resp.2011.01.011_bib0125) 2010; 138
Bai (10.1016/j.resp.2011.01.011_bib0015) 1984; 57
Dempsey (10.1016/j.resp.2011.01.011_bib0030) 2002; 130
Decorte (10.1016/j.resp.2011.01.011_bib0025) 2010
Wragg (10.1016/j.resp.2011.01.011_bib0180) 1994; 49
Miller (10.1016/j.resp.2011.01.011_bib0100) 2005; 26
Kabitz (10.1016/j.resp.2011.01.011_bib0060) 2007; 1
Polkey (10.1016/j.resp.2011.01.011_bib0120) 2001; 119
References_xml – volume: 20
  start-page: 577
  year: 2002
  end-page: 580
  ident: bib0085
  article-title: Postprandial effects on twitch transdiaphragmatic pressure
  publication-title: Eur. Respir. J.
– volume: 115
  start-page: 273
  year: 1999
  end-page: 286
  ident: bib0040
  article-title: Task failure, breathing discomfort and CO
  publication-title: Respir. Physiol.
– volume: 19
  start-page: 207
  year: 1964
  end-page: 211
  ident: bib0095
  article-title: Improved technique for estimating pleural pressure from esophageal balloons
  publication-title: J. Appl. Physiol.
– volume: 156
  start-page: 276
  year: 2007
  end-page: 282
  ident: bib0055
  article-title: Controlled twitch mouth pressure reliably predicts twitch esophageal pressure
  publication-title: Respir. Physiol. Neurobiol.
– volume: 149
  start-page: 739
  year: 1994
  end-page: 743
  ident: bib0080
  article-title: Twitch potentiation following voluntary diaphragmatic contraction
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 128
  start-page: 190
  year: 2005
  end-page: 195
  ident: bib0175
  article-title: Influence of different trigger techniques on twitch mouth pressure during bilateral anterior magnetic phrenic nerve stimulation
  publication-title: Chest
– volume: 84
  start-page: 1692
  year: 1998
  end-page: 1700
  ident: bib0150
  article-title: Cervical magnetic stimulation as a method to discriminate between diaphragm and rib cage muscle fatigue
  publication-title: J. Appl. Physiol.
– volume: 154
  start-page: 1099
  year: 1996
  end-page: 1105
  ident: bib0110
  article-title: Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 82
  start-page: 2011
  year: 1997
  end-page: 2019
  ident: bib0090
  article-title: Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects
  publication-title: J. Appl. Physiol.
– volume: 61
  start-page: 137
  year: 1985
  end-page: 152
  ident: bib0145
  article-title: Changes in diaphragmatic EMG spectra during hyperpneic loads
  publication-title: Respir. Physiol.
– volume: 57
  start-page: 1742
  year: 1984
  end-page: 1748
  ident: bib0015
  article-title: Near-maximal voluntary hyperpnea and ventilatory muscle function
  publication-title: J. Appl. Physiol.
– volume: 78
  start-page: 1710
  year: 1995
  end-page: 1719
  ident: bib0010
  article-title: Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue
  publication-title: J. Appl. Physiol.
– volume: 305
  start-page: 1144
  year: 2004
  end-page: 1147
  ident: bib0115
  article-title: Intracellular acidosis enhances the excitability of working muscle
  publication-title: Science
– volume: 85
  start-page: 1103
  year: 1998
  end-page: 1112
  ident: bib0070
  article-title: Does resistive loading decrease diaphragmatic contractility before task failure?
  publication-title: J. Appl. Physiol.
– volume: 138
  start-page: 1309
  year: 2010
  end-page: 1315
  ident: bib0125
  article-title: Efficiency of neural drive during exercise in patients with COPD and healthy subjects
  publication-title: Chest
– volume: 8
  start-page: 1532
  year: 1995
  end-page: 1536
  ident: bib0045
  article-title: The effect of lung volume on transdiaphragmatic pressure
  publication-title: Eur. Respir. J.
– volume: 81
  start-page: 141
  year: 1983
  end-page: 152
  ident: bib0155
  article-title: Twitch potentiation after voluntary contraction
  publication-title: Exp. Neurol.
– volume: 26
  start-page: 153
  year: 2005
  end-page: 161
  ident: bib0100
  article-title: General considerations for lung function testing
  publication-title: Eur. Respir. J.
– volume: 119
  start-page: 926
  year: 2001
  end-page: 939
  ident: bib0120
  article-title: Clinical aspects of respiratory muscle dysfunction in the critically ill
  publication-title: Chest
– volume: 164
  start-page: 366
  year: 2008
  end-page: 372
  ident: bib0130
  article-title: Development of respiratory muscle contractile fatigue in the course of hyperpnoea
  publication-title: Respir. Physiol. Neurobiol.
– volume: 130
  start-page: 3
  year: 2002
  end-page: 20
  ident: bib0030
  article-title: Respiratory influences on sympathetic vasomotor outflow in humans
  publication-title: Respir. Physiol. Neurobiol.
– volume: 26
  start-page: 511
  year: 2005
  end-page: 522
  ident: bib0160
  article-title: Standardisation of the measurement of lung volumes
  publication-title: Eur. Respir. J.
– volume: 586
  start-page: 11
  year: 2008
  end-page: 23
  ident: bib0035
  article-title: Muscle fatigue: what, why and how it influences muscle function
  publication-title: J. Physiol.
– volume: 121
  start-page: 452
  year: 2002
  end-page: 458
  ident: bib0075
  article-title: Bilateral anterolateral magnetic stimulation of the phrenic nerves can detect diaphragmatic fatigue
  publication-title: Chest
– volume: 166
  start-page: 518
  year: 2002
  end-page: 624
  ident: bib0005
  article-title: ATS/ERS statement on respiratory muscle testing
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 65
  start-page: 2181
  year: 1988
  end-page: 2189
  ident: bib0165
  article-title: Respiratory sensation and pattern of respiratory muscle activation during diaphragm fatigue
  publication-title: J. Appl. Physiol.
– volume: 17
  start-page: 17
  year: 2002
  end-page: 21
  ident: bib0170
  article-title: Muscle fatigue: lactic acid or inorganic phosphate the major cause?
  publication-title: News Physiol. Sci.
– volume: 1
  start-page: 88
  year: 2007
  end-page: 96
  ident: bib0060
  article-title: New physiological insights into exercise induced diaphragmatic dysfunction
  publication-title: Respir. Physiol. Neurobiol.
– volume: 90
  start-page: 405
  year: 2003
  end-page: 410
  ident: bib0135
  article-title: Task failure from inspiratory resistive loaded breathing: a role for inspiratory muscle fatigue?
  publication-title: Eur. J. Appl. Physiol.
– volume: 294
  start-page: R585
  year: 2008
  end-page: 593
  ident: bib0050
  article-title: Muscle metabolic responses to exercise above and below the ‘critical power’ assessed using 31P-MRS
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 26
  start-page: 319
  year: 2005
  end-page: 338
  ident: bib0105
  article-title: Standardisation of spirometry
  publication-title: Eur. Respir. J.
– volume: 62
  start-page: 1307
  year: 1987
  end-page: 1316
  ident: bib0020
  article-title: Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation
  publication-title: J. Appl. Physiol.
– year: 2010
  ident: bib0025
  article-title: Central and peripheral fatigue kinetics during exhaustive constant-load cycling
  publication-title: Scand. J. Med. Sci. Sports. Epub.
– volume: 104
  start-page: 879
  year: 2008
  end-page: 888
  ident: bib0140
  article-title: Exercise-induced respiratory muscle fatigue: implications for performance
  publication-title: J. Appl. Physiol.
– volume: 49
  start-page: 1234
  year: 1994
  end-page: 1237
  ident: bib0180
  article-title: Potentiation of diaphragmatic twitch after voluntary contraction in normal subjects
  publication-title: Thorax
– volume: 161
  start-page: 101
  year: 2008
  end-page: 110
  ident: bib0065
  article-title: Independence of exercise-induced diaphragmatic fatigue from ventilatory demands
  publication-title: Respir. Physiol. Neurobiol.
– volume: 20
  start-page: 577
  year: 2002
  ident: 10.1016/j.resp.2011.01.011_bib0085
  article-title: Postprandial effects on twitch transdiaphragmatic pressure
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.02.00302702
– volume: 62
  start-page: 1307
  year: 1987
  ident: 10.1016/j.resp.2011.01.011_bib0020
  article-title: Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1987.62.3.1307
– volume: 294
  start-page: R585
  year: 2008
  ident: 10.1016/j.resp.2011.01.011_bib0050
  article-title: Muscle metabolic responses to exercise above and below the ‘critical power’ assessed using 31P-MRS
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00731.2007
– volume: 49
  start-page: 1234
  year: 1994
  ident: 10.1016/j.resp.2011.01.011_bib0180
  article-title: Potentiation of diaphragmatic twitch after voluntary contraction in normal subjects
  publication-title: Thorax
  doi: 10.1136/thx.49.12.1234
– volume: 81
  start-page: 141
  year: 1983
  ident: 10.1016/j.resp.2011.01.011_bib0155
  article-title: Twitch potentiation after voluntary contraction
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(83)90163-2
– volume: 586
  start-page: 11
  year: 2008
  ident: 10.1016/j.resp.2011.01.011_bib0035
  article-title: Muscle fatigue: what, why and how it influences muscle function
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.139477
– volume: 8
  start-page: 1532
  year: 1995
  ident: 10.1016/j.resp.2011.01.011_bib0045
  article-title: The effect of lung volume on transdiaphragmatic pressure
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.95.08091532
– volume: 26
  start-page: 511
  year: 2005
  ident: 10.1016/j.resp.2011.01.011_bib0160
  article-title: Standardisation of the measurement of lung volumes
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.05.00035005
– volume: 164
  start-page: 366
  year: 2008
  ident: 10.1016/j.resp.2011.01.011_bib0130
  article-title: Development of respiratory muscle contractile fatigue in the course of hyperpnoea
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2008.08.008
– volume: 166
  start-page: 518
  year: 2002
  ident: 10.1016/j.resp.2011.01.011_bib0005
  article-title: ATS/ERS statement on respiratory muscle testing
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.166.4.518
– volume: 156
  start-page: 276
  year: 2007
  ident: 10.1016/j.resp.2011.01.011_bib0055
  article-title: Controlled twitch mouth pressure reliably predicts twitch esophageal pressure
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2006.10.007
– volume: 161
  start-page: 101
  year: 2008
  ident: 10.1016/j.resp.2011.01.011_bib0065
  article-title: Independence of exercise-induced diaphragmatic fatigue from ventilatory demands
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2007.11.003
– volume: 26
  start-page: 319
  year: 2005
  ident: 10.1016/j.resp.2011.01.011_bib0105
  article-title: Standardisation of spirometry
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.05.00034805
– volume: 61
  start-page: 137
  year: 1985
  ident: 10.1016/j.resp.2011.01.011_bib0145
  article-title: Changes in diaphragmatic EMG spectra during hyperpneic loads
  publication-title: Respir. Physiol.
  doi: 10.1016/0034-5687(85)90121-5
– volume: 17
  start-page: 17
  year: 2002
  ident: 10.1016/j.resp.2011.01.011_bib0170
  article-title: Muscle fatigue: lactic acid or inorganic phosphate the major cause?
  publication-title: News Physiol. Sci.
– volume: 84
  start-page: 1692
  year: 1998
  ident: 10.1016/j.resp.2011.01.011_bib0150
  article-title: Cervical magnetic stimulation as a method to discriminate between diaphragm and rib cage muscle fatigue
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1998.84.5.1692
– volume: 154
  start-page: 1099
  year: 1996
  ident: 10.1016/j.resp.2011.01.011_bib0110
  article-title: Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.154.4.8887614
– volume: 128
  start-page: 190
  year: 2005
  ident: 10.1016/j.resp.2011.01.011_bib0175
  article-title: Influence of different trigger techniques on twitch mouth pressure during bilateral anterior magnetic phrenic nerve stimulation
  publication-title: Chest
  doi: 10.1378/chest.128.1.190
– volume: 130
  start-page: 3
  year: 2002
  ident: 10.1016/j.resp.2011.01.011_bib0030
  article-title: Respiratory influences on sympathetic vasomotor outflow in humans
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/S0034-5687(01)00327-9
– volume: 305
  start-page: 1144
  year: 2004
  ident: 10.1016/j.resp.2011.01.011_bib0115
  article-title: Intracellular acidosis enhances the excitability of working muscle
  publication-title: Science
  doi: 10.1126/science.1101141
– volume: 90
  start-page: 405
  year: 2003
  ident: 10.1016/j.resp.2011.01.011_bib0135
  article-title: Task failure from inspiratory resistive loaded breathing: a role for inspiratory muscle fatigue?
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-003-0871-x
– volume: 78
  start-page: 1710
  year: 1995
  ident: 10.1016/j.resp.2011.01.011_bib0010
  article-title: Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1995.78.5.1710
– volume: 19
  start-page: 207
  year: 1964
  ident: 10.1016/j.resp.2011.01.011_bib0095
  article-title: Improved technique for estimating pleural pressure from esophageal balloons
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1964.19.2.207
– volume: 1
  start-page: 88
  year: 2007
  ident: 10.1016/j.resp.2011.01.011_bib0060
  article-title: New physiological insights into exercise induced diaphragmatic dysfunction
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2007.04.011
– volume: 85
  start-page: 1103
  year: 1998
  ident: 10.1016/j.resp.2011.01.011_bib0070
  article-title: Does resistive loading decrease diaphragmatic contractility before task failure?
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1998.85.3.1103
– volume: 82
  start-page: 2011
  year: 1997
  ident: 10.1016/j.resp.2011.01.011_bib0090
  article-title: Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1997.82.6.2011
– volume: 149
  start-page: 739
  year: 1994
  ident: 10.1016/j.resp.2011.01.011_bib0080
  article-title: Twitch potentiation following voluntary diaphragmatic contraction
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.149.3.8118645
– volume: 119
  start-page: 926
  year: 2001
  ident: 10.1016/j.resp.2011.01.011_bib0120
  article-title: Clinical aspects of respiratory muscle dysfunction in the critically ill
  publication-title: Chest
  doi: 10.1378/chest.119.3.926
– volume: 138
  start-page: 1309
  year: 2010
  ident: 10.1016/j.resp.2011.01.011_bib0125
  article-title: Efficiency of neural drive during exercise in patients with COPD and healthy subjects
  publication-title: Chest
  doi: 10.1378/chest.09-2824
– volume: 26
  start-page: 153
  year: 2005
  ident: 10.1016/j.resp.2011.01.011_bib0100
  article-title: General considerations for lung function testing
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.05.00034505
– volume: 104
  start-page: 879
  year: 2008
  ident: 10.1016/j.resp.2011.01.011_bib0140
  article-title: Exercise-induced respiratory muscle fatigue: implications for performance
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01157.2007
– volume: 65
  start-page: 2181
  year: 1988
  ident: 10.1016/j.resp.2011.01.011_bib0165
  article-title: Respiratory sensation and pattern of respiratory muscle activation during diaphragm fatigue
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1988.65.5.2181
– year: 2010
  ident: 10.1016/j.resp.2011.01.011_bib0025
  article-title: Central and peripheral fatigue kinetics during exhaustive constant-load cycling
  publication-title: Scand. J. Med. Sci. Sports. Epub.
– volume: 121
  start-page: 452
  year: 2002
  ident: 10.1016/j.resp.2011.01.011_bib0075
  article-title: Bilateral anterolateral magnetic stimulation of the phrenic nerves can detect diaphragmatic fatigue
  publication-title: Chest
  doi: 10.1378/chest.121.2.452
– volume: 57
  start-page: 1742
  year: 1984
  ident: 10.1016/j.resp.2011.01.011_bib0015
  article-title: Near-maximal voluntary hyperpnea and ventilatory muscle function
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1984.57.6.1742
– volume: 115
  start-page: 273
  year: 1999
  ident: 10.1016/j.resp.2011.01.011_bib0040
  article-title: Task failure, breathing discomfort and CO2 accumulation without fatigue during inspiratory resistive loading in humans
  publication-title: Respir. Physiol.
  doi: 10.1016/S0034-5687(99)00010-9
SSID ssj0017173
Score 2.0004745
Snippet Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off...
Abstract Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 90
SubjectTerms Adult
Biological and medical sciences
Biometry - methods
Diaphragm - physiology
Diaphragmatic fatigue
Fundamental and applied biological sciences. Psychology
Humans
Hyperventilation - physiopathology
Male
Medical Education
Muscle Contraction - physiology
Muscle Fatigue - physiology
Oxygen Consumption - physiology
Pulmonary/Respiratory
Respiratory Mechanics - physiology
Respiratory muscle
Time Factors
Twitch transdiaphragmatic pressure
Vertebrates: respiratory system
Young Adult
Title Biometric approximation of diaphragmatic contractility during sustained hyperpnea
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1569904811000474
https://www.clinicalkey.es/playcontent/1-s2.0-S1569904811000474
https://dx.doi.org/10.1016/j.resp.2011.01.011
https://www.ncbi.nlm.nih.gov/pubmed/21295161
https://www.proquest.com/docview/862793728
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5C8lIoJWl6bNoueih9Ke5aXsnH43Zp2F6hVyBvQtaRbkm8Jt5A-9Lf3hlL3hLapFAwLBiN7R2N5rDn-wTwtDB1TizlibWyToTnuOamQiaS-9TaVJeaE975_VG-OBZvTuTJFswHLAy1VUbfH3x6763jmUnU5qRdLiefsfJAVypKIj1LRUGcoEIUZOUvfm7aPHj8ykyDExodgTOhxwsr2jbSeNLBrwtOt1vdocp82Ovi-mS0D0qHu3AnZpNsFh54D7Zccxf2Zw1W0uc_2DPW93f2L8734eNLQtoTIT_ricS_LwNqka08QyPBSdWnPX8r69vXCfBAKToLQEbWBaSVs-wrlq4XbeP0PTg-fPVlvkjihgqJERVf43x4Y7F6dhjjTZ77gnuJGVNhTZFzIyyWf5XPsdauK2l9XTiR48kKyzTNNXd-eh-2m1XjHgLLylRnpbEY4o0wvKwyP_VllWI-wzEoyhHwQZPKRLZx2vTiTA1tZd8UaV-R9lVKBx_B841MG7g2bhw9HSZIDShS9HsKQ8GNUsXfpFwXl26nuOoylao_zGsEciN5xUL_ecfxFevZ_DXMnQjnixdmgzkpXNv0wUY3bnXZKaw2ib4wK0fwIJjZb2HM0yRm6wf_-VSP4FZ4O059EI9he31x6Z5gerWux_36GcPObP7p3Qf6ff12cfQL5g8l4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QGkCgEFujyKD4gLijbO2nkcl4pqS9uVEK3Um-X4AYsgGzVbCf49M7GzqIIWCSmnKJPHeDyPeL7PAK8LU-fEUp5YK-tEeI5zbipkIrlPrU11qTnhnU8X-fxcfLiQF1twMGBhqK0y-v7g03tvHc9MojYn7XI5-YSVB7pSURLpWSoKcQe2iZ1KjmB7dnQ8X2wWE-JCM12fkEDEzoQ2Lyxq28jkSQe_KT7ttLpDrfmw3cXN-Wgflw4fwP2YULJZeOeHsOWaR7A7a7CY_v6TvWF9i2f_73wXPr4jsD1x8rOeS_zHMgAX2coztBMcV_25p3BlfQc7YR4oS2cBy8i6ALZyln3B6vWybZx-DOeH788O5kncUyExouJrHBJvLBbQDsO8yXNfcC8xaSqsKXJuhMUKsPI5ltt1Ja2vCydyPFlhpaa55s5Pn8CoWTVuD1hWpjorjcUob4ThZZX5qS-rFFMajnFRjoEPmlQmEo7Tvhff1NBZ9lWR9hVpX6V08DG83ci0gW7j1qunwwCpAUiKrk9hNLhVqviblOvi7O0UV12mUvWHhY1BbiSvGek_n7h_zXo2n4bpE0F98cZsMCeF05vWbHTjVledwoKTGAyzcgxPg5n9FsZUTWLC_uw_3-oV3J2fnZ6ok6PF8XO4F36WU1vECxitL6_cS8y21vV-nE2_AKyOJv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+approximation+of+diaphragmatic+contractility+during+sustained+hyperpnea&rft.jtitle=Respiratory+physiology+%26+neurobiology&rft.au=Kabitz%2C+Hans-Joachim&rft.au=Walker%2C+David+Johannes&rft.au=Schwoerer%2C+Anja&rft.au=Schlager%2C+Daniel&rft.date=2011-05-31&rft.issn=1878-1519&rft.eissn=1878-1519&rft.volume=176&rft.issue=3&rft.spage=90&rft_id=info:doi/10.1016%2Fj.resp.2011.01.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15699048%2FS1569904811X00058%2Fcov150h.gif