Biometric approximation of diaphragmatic contractility during sustained hyperpnea
Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and appl...
Saved in:
Published in | Respiratory physiology & neurobiology Vol. 176; no. 3; pp. 90 - 97 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
31.05.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6
min warm up/II:9
min/III:task failure 28.6
±
11.5
min; mean
±
SD) at maximal voluntary ventilation fractions (I:30–60%/II:70%/III:70%), followed by recovery periods (I:18
min/II:6
min/III:30
min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery −19
±
17% and −30
±
16%, both
p
<
0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (
r
2
=
0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea. |
---|---|
AbstractList | Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6
min warm up/II:9
min/III:task failure 28.6
±
11.5
min; mean
±
SD) at maximal voluntary ventilation fractions (I:30–60%/II:70%/III:70%), followed by recovery periods (I:18
min/II:6
min/III:30
min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery −19
±
17% and −30
±
16%, both
p
<
0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (
r
2
=
0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea. Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea.Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea. Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30-60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery -19 ± 17% and -30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay (r(2) = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea. Abstract Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off following the initial decrease. This study assessed the progression of diaphragmatic contractility during sustained normocapnic hyperpnea and applied a biometric approximation (hypothesis: non-linear decay). Ten healthy subjects performed three consecutive hyperpnea bouts (I:6 min warm up/II:9 min/III:task failure 28.6 ± 11.5 min; mean ± SD) at maximal voluntary ventilation fractions (I:30–60%/II:70%/III:70%), followed by recovery periods (I:18 min/II:6 min/III:30 min). Twitch transdiaphragmatic pressure (TwPdi) was assessed throughout the protocol. Bouts II and III induced diaphragmatic fatigue (TwPdi baseline vs. Recovery −19 ± 17% and −30 ± 16%, both p < 0.05 RM-ANOVA) while bout I did not. During sustained hyperpnea (II/III), TwPdi followed an exponential decay ( r2 = 0.91). The reduction in diaphragmatic contractility closely follows a non-linear function with an early loss in diaphragmatic contractility during sustained hyperpnea, levels off thereafter, and is independent of task failure. Thus, reasons other than diaphragmatic fatigue are likely to be responsible for task failure during sustained hyperpnea. |
Author | Schlager, Daniel Walker, David Johannes Walterspacher, Stephan Schwoerer, Anja Storre, Jan Hendrik Vergès, Samuel Roecker, Kai Windisch, Wolfram Kabitz, Hans-Joachim Spengler, Christina M. |
Author_xml | – sequence: 1 givenname: Hans-Joachim surname: Kabitz fullname: Kabitz, Hans-Joachim email: hans-joachim.kabitz@uniklinik-freiburg.de organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany – sequence: 2 givenname: David Johannes surname: Walker fullname: Walker, David Johannes organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany – sequence: 3 givenname: Anja surname: Schwoerer fullname: Schwoerer, Anja organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany – sequence: 4 givenname: Daniel surname: Schlager fullname: Schlager, Daniel organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany – sequence: 5 givenname: Stephan surname: Walterspacher fullname: Walterspacher, Stephan organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany – sequence: 6 givenname: Jan Hendrik surname: Storre fullname: Storre, Jan Hendrik organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany – sequence: 7 givenname: Kai surname: Roecker fullname: Roecker, Kai organization: Sports-Medicine, University Hospital Freiburg, Germany – sequence: 8 givenname: Wolfram surname: Windisch fullname: Windisch, Wolfram organization: Department of Pneumology, University Hospital Freiburg, Killianstrasse 5 D, 79106, Germany – sequence: 9 givenname: Samuel surname: Vergès fullname: Vergès, Samuel organization: HP2 Laboratory (INSERM ERI17), Joseph Fourier University, Grenoble, France – sequence: 10 givenname: Christina M. surname: Spengler fullname: Spengler, Christina M. organization: Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Switzerland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24147814$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21295161$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktuKFDEQhoOsuAd9AS-kb8SrHlPpQzoigi6eYEFEvQ6ZpLKbsSdpk7TsvP2mnVFhwRUKEorvr6Tqr1Ny5INHQh4DXQGF_vlmFTFNK0YBVnQJuEdOYOBDDR2Io3LvelEL2g7H5DSlDaXAgTcPyDEDJjro4YR8fuPCFnN0ulLTFMO126rsgq-CrYxT01VUl0tGVzr4HJXObnR5V5k5On9ZpTll5Tya6mo3YZw8qofkvlVjwkeH84x8e_f26_mH-uLT-4_nry9q3QrItTFWG1w3yESj-95ysF3XATea96Bbw4AK2-OarUVn7Jpj25ekoKxXoABtc0ae7euWX_-YMWW5dUnjOCqPYU5y6BkXDWdDIZ8cyHm9RSOnWJqMO_l7CgV4egBU0mq0UXnt0l-uhZYP0BaO7TkdQ0oR7R8EqFwskRu5WCIXSyRdYik-3BJpl3_NuIzTjXdLX-6lWOb402GUSTv0Go2LqLM0wd0tf3VLrkfnXenwO-4wbcIcfXFIgkxMUvllWZdlWwAopS1f-n3x7wL_e_0G5_bQ0w |
CitedBy_id | crossref_primary_10_1016_j_resp_2016_01_006 crossref_primary_10_1371_journal_pone_0277131 crossref_primary_10_1016_j_resp_2011_05_007 crossref_primary_10_1159_000496028 crossref_primary_10_1249_MSS_0000000000000627 crossref_primary_10_1016_j_resp_2017_10_004 crossref_primary_10_1152_japplphysiol_00942_2017 |
Cites_doi | 10.1183/09031936.02.00302702 10.1152/jappl.1987.62.3.1307 10.1152/ajpregu.00731.2007 10.1136/thx.49.12.1234 10.1016/0014-4886(83)90163-2 10.1113/jphysiol.2007.139477 10.1183/09031936.95.08091532 10.1183/09031936.05.00035005 10.1016/j.resp.2008.08.008 10.1164/rccm.166.4.518 10.1016/j.resp.2006.10.007 10.1016/j.resp.2007.11.003 10.1183/09031936.05.00034805 10.1016/0034-5687(85)90121-5 10.1152/jappl.1998.84.5.1692 10.1164/ajrccm.154.4.8887614 10.1378/chest.128.1.190 10.1016/S0034-5687(01)00327-9 10.1126/science.1101141 10.1007/s00421-003-0871-x 10.1152/jappl.1995.78.5.1710 10.1152/jappl.1964.19.2.207 10.1016/j.resp.2007.04.011 10.1152/jappl.1998.85.3.1103 10.1152/jappl.1997.82.6.2011 10.1164/ajrccm.149.3.8118645 10.1378/chest.119.3.926 10.1378/chest.09-2824 10.1183/09031936.05.00034505 10.1152/japplphysiol.01157.2007 10.1152/jappl.1988.65.5.2181 10.1378/chest.121.2.452 10.1152/jappl.1984.57.6.1742 10.1016/S0034-5687(99)00010-9 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Elsevier B.V. 2015 INIST-CNRS Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.resp.2011.01.011 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1878-1519 |
EndPage | 97 |
ExternalDocumentID | 21295161 24147814 10_1016_j_resp_2011_01_011 S1569904811000474 1_s2_0_S1569904811000474 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OI- OU. OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPCBC SSH SSN SSU SSZ T5K UHS Z5R ZGI ~02 ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AJBFU DOVZS EFLBG LCYCR ZA5 AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c491t-ddfcdeb3e293c66f71f55517dc761c4d2109f6eb2b95dfb7e464d29026a1a1ef3 |
IEDL.DBID | .~1 |
ISSN | 1569-9048 1878-1519 |
IngestDate | Thu Jul 10 22:17:42 EDT 2025 Mon Jul 21 05:55:15 EDT 2025 Mon Jul 21 09:15:38 EDT 2025 Tue Jul 01 03:30:38 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Fri Feb 23 02:33:53 EST 2024 Sun Feb 23 10:18:56 EST 2025 Tue Aug 26 16:31:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Respiratory muscle Twitch transdiaphragmatic pressure Diaphragmatic fatigue Biometrics Vertebrata Mammalia Contractility Fatigue Respiratory system Hyperpnea Pressure |
Language | English |
License | CC BY 4.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c491t-ddfcdeb3e293c66f71f55517dc761c4d2109f6eb2b95dfb7e464d29026a1a1ef3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 21295161 |
PQID | 862793728 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_862793728 pubmed_primary_21295161 pascalfrancis_primary_24147814 crossref_primary_10_1016_j_resp_2011_01_011 crossref_citationtrail_10_1016_j_resp_2011_01_011 elsevier_sciencedirect_doi_10_1016_j_resp_2011_01_011 elsevier_clinicalkeyesjournals_1_s2_0_S1569904811000474 elsevier_clinicalkey_doi_10_1016_j_resp_2011_01_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-31 |
PublicationDateYYYYMMDD | 2011-05-31 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Respiratory physiology & neurobiology |
PublicationTitleAlternate | Respir Physiol Neurobiol |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | McKenzie, Allen, Butler, Gandevia (bib0090) 1997; 82 Laghi, Topeli, Tobin (bib0070) 1998; 85 Westerblad, Allen, Lannergren (bib0170) 2002; 17 Windisch, Kabitz, Sorichter (bib0175) 2005; 128 Miller, Crapo, Hankinson, Brusasco, Burgos, Casaburi, Coates, Enright, van der Grinten, Gustafsson, Jensen, Johnson, MacIntyre, McKay, Navajas, Pedersen, Pellegrino, Viegi (bib0100) 2005; 26 Dempsey, Sheel, St Croix, Morgan (bib0030) 2002; 130 Ward, Eidelman, Stubbing, Bellemare, Macklem (bib0165) 1988; 65 Qin, Steier, Jolley, Moxham, Zhong, Luo (bib0125) 2010; 138 ATS/ERS (bib0005) 2002; 166 Bai, Rabinovitch, Pardy (bib0015) 1984; 57 Sieck, Mazar, Belman (bib0145) 1985; 61 Babcock, Pegelow, McClaran, Suman, Dempsey (bib0010) 1995; 78 Bellemare, Bigland-Ritchie (bib0020) 1987; 62 Renggli, Verges, Notter, Spengler (bib0130) 2008; 164 Vandervoort, Quinlan, McComas (bib0155) 1983; 81 Jones, Wilkerson, DiMenna, Fulford, Poole (bib0050) 2008; 294 Romer, Polkey (bib0140) 2008; 104 Man, Luo, Mustfa, Rafferty, Glerant, Polkey, Moxham (bib0085) 2002; 20 Kabitz, Walker, Walterspacher, Windisch (bib0060) 2007; 1 Mills, Kyroussis, Hamnegard, Polkey, Green, Moxham (bib0110) 1996; 154 Gorman, McKenzie, Gandevia (bib0040) 1999; 115 Pedersen, Nielsen, Lamb, Stephenson (bib0115) 2004; 305 Milic-Emili, Mead, Turner, Glauser (bib0095) 1964; 19 Miller, Hankinson, Brusasco, Burgos, Casaburi, Coates, Crapo, Enright, van der Grinten, Gustafsson, Jensen, Johnson, MacIntyre, McKay, Navajas, Pedersen, Pellegrino, Viegi (bib0105) 2005; 26 Decorte, Lafaix, Millet, Wuyam, Verges (bib0025) 2010 Polkey, Moxham (bib0120) 2001; 119 Wragg, Hamnegard, Road, Kyroussis, Moran, Green, Moxham (bib0180) 1994; 49 Hamnegard, Wragg, Mills, Kyroussis, Road, Daskos, Bake, Moxham, Green (bib0045) 1995; 8 Kabitz, Walker, Walterspacher, Windisch (bib0055) 2007; 156 Mador, Magalang, Kufel (bib0080) 1994; 149 Enoka, Duchateau (bib0035) 2008; 586 Wanger, Clausen, Coates, Pedersen, Brusasco, Burgos, Casaburi, Crapo, Enright, van der Grinten, Gustafsson, Hankinson, Jensen, Johnson, Macintyre, McKay, Miller, Navajas (bib0160) 2005; 26 Kabitz, Walker, Walterspacher, Sonntag, Schwoerer, Roecker, Windisch (bib0065) 2008; 161 Rohrbach, Perret, Kayser, Boutellier, Spengler (bib0135) 2003; 90 Mador, Khan, Kufel (bib0075) 2002; 121 Similowski, Straus, Attali, Duguet, Derenne (bib0150) 1998; 84 Man (10.1016/j.resp.2011.01.011_bib0085) 2002; 20 Sieck (10.1016/j.resp.2011.01.011_bib0145) 1985; 61 Wanger (10.1016/j.resp.2011.01.011_bib0160) 2005; 26 McKenzie (10.1016/j.resp.2011.01.011_bib0090) 1997; 82 ATS/ERS (10.1016/j.resp.2011.01.011_bib0005) 2002; 166 Milic-Emili (10.1016/j.resp.2011.01.011_bib0095) 1964; 19 Romer (10.1016/j.resp.2011.01.011_bib0140) 2008; 104 Bellemare (10.1016/j.resp.2011.01.011_bib0020) 1987; 62 Gorman (10.1016/j.resp.2011.01.011_bib0040) 1999; 115 Mador (10.1016/j.resp.2011.01.011_bib0075) 2002; 121 Pedersen (10.1016/j.resp.2011.01.011_bib0115) 2004; 305 Kabitz (10.1016/j.resp.2011.01.011_bib0055) 2007; 156 Hamnegard (10.1016/j.resp.2011.01.011_bib0045) 1995; 8 Laghi (10.1016/j.resp.2011.01.011_bib0070) 1998; 85 Rohrbach (10.1016/j.resp.2011.01.011_bib0135) 2003; 90 Renggli (10.1016/j.resp.2011.01.011_bib0130) 2008; 164 Jones (10.1016/j.resp.2011.01.011_bib0050) 2008; 294 Mills (10.1016/j.resp.2011.01.011_bib0110) 1996; 154 Babcock (10.1016/j.resp.2011.01.011_bib0010) 1995; 78 Miller (10.1016/j.resp.2011.01.011_bib0105) 2005; 26 Windisch (10.1016/j.resp.2011.01.011_bib0175) 2005; 128 Enoka (10.1016/j.resp.2011.01.011_bib0035) 2008; 586 Mador (10.1016/j.resp.2011.01.011_bib0080) 1994; 149 Similowski (10.1016/j.resp.2011.01.011_bib0150) 1998; 84 Ward (10.1016/j.resp.2011.01.011_bib0165) 1988; 65 Vandervoort (10.1016/j.resp.2011.01.011_bib0155) 1983; 81 Westerblad (10.1016/j.resp.2011.01.011_bib0170) 2002; 17 Kabitz (10.1016/j.resp.2011.01.011_bib0065) 2008; 161 Qin (10.1016/j.resp.2011.01.011_bib0125) 2010; 138 Bai (10.1016/j.resp.2011.01.011_bib0015) 1984; 57 Dempsey (10.1016/j.resp.2011.01.011_bib0030) 2002; 130 Decorte (10.1016/j.resp.2011.01.011_bib0025) 2010 Wragg (10.1016/j.resp.2011.01.011_bib0180) 1994; 49 Miller (10.1016/j.resp.2011.01.011_bib0100) 2005; 26 Kabitz (10.1016/j.resp.2011.01.011_bib0060) 2007; 1 Polkey (10.1016/j.resp.2011.01.011_bib0120) 2001; 119 |
References_xml | – volume: 20 start-page: 577 year: 2002 end-page: 580 ident: bib0085 article-title: Postprandial effects on twitch transdiaphragmatic pressure publication-title: Eur. Respir. J. – volume: 115 start-page: 273 year: 1999 end-page: 286 ident: bib0040 article-title: Task failure, breathing discomfort and CO publication-title: Respir. Physiol. – volume: 19 start-page: 207 year: 1964 end-page: 211 ident: bib0095 article-title: Improved technique for estimating pleural pressure from esophageal balloons publication-title: J. Appl. Physiol. – volume: 156 start-page: 276 year: 2007 end-page: 282 ident: bib0055 article-title: Controlled twitch mouth pressure reliably predicts twitch esophageal pressure publication-title: Respir. Physiol. Neurobiol. – volume: 149 start-page: 739 year: 1994 end-page: 743 ident: bib0080 article-title: Twitch potentiation following voluntary diaphragmatic contraction publication-title: Am. J. Respir. Crit. Care Med. – volume: 128 start-page: 190 year: 2005 end-page: 195 ident: bib0175 article-title: Influence of different trigger techniques on twitch mouth pressure during bilateral anterior magnetic phrenic nerve stimulation publication-title: Chest – volume: 84 start-page: 1692 year: 1998 end-page: 1700 ident: bib0150 article-title: Cervical magnetic stimulation as a method to discriminate between diaphragm and rib cage muscle fatigue publication-title: J. Appl. Physiol. – volume: 154 start-page: 1099 year: 1996 end-page: 1105 ident: bib0110 article-title: Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach publication-title: Am. J. Respir. Crit. Care Med. – volume: 82 start-page: 2011 year: 1997 end-page: 2019 ident: bib0090 article-title: Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects publication-title: J. Appl. Physiol. – volume: 61 start-page: 137 year: 1985 end-page: 152 ident: bib0145 article-title: Changes in diaphragmatic EMG spectra during hyperpneic loads publication-title: Respir. Physiol. – volume: 57 start-page: 1742 year: 1984 end-page: 1748 ident: bib0015 article-title: Near-maximal voluntary hyperpnea and ventilatory muscle function publication-title: J. Appl. Physiol. – volume: 78 start-page: 1710 year: 1995 end-page: 1719 ident: bib0010 article-title: Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue publication-title: J. Appl. Physiol. – volume: 305 start-page: 1144 year: 2004 end-page: 1147 ident: bib0115 article-title: Intracellular acidosis enhances the excitability of working muscle publication-title: Science – volume: 85 start-page: 1103 year: 1998 end-page: 1112 ident: bib0070 article-title: Does resistive loading decrease diaphragmatic contractility before task failure? publication-title: J. Appl. Physiol. – volume: 138 start-page: 1309 year: 2010 end-page: 1315 ident: bib0125 article-title: Efficiency of neural drive during exercise in patients with COPD and healthy subjects publication-title: Chest – volume: 8 start-page: 1532 year: 1995 end-page: 1536 ident: bib0045 article-title: The effect of lung volume on transdiaphragmatic pressure publication-title: Eur. Respir. J. – volume: 81 start-page: 141 year: 1983 end-page: 152 ident: bib0155 article-title: Twitch potentiation after voluntary contraction publication-title: Exp. Neurol. – volume: 26 start-page: 153 year: 2005 end-page: 161 ident: bib0100 article-title: General considerations for lung function testing publication-title: Eur. Respir. J. – volume: 119 start-page: 926 year: 2001 end-page: 939 ident: bib0120 article-title: Clinical aspects of respiratory muscle dysfunction in the critically ill publication-title: Chest – volume: 164 start-page: 366 year: 2008 end-page: 372 ident: bib0130 article-title: Development of respiratory muscle contractile fatigue in the course of hyperpnoea publication-title: Respir. Physiol. Neurobiol. – volume: 130 start-page: 3 year: 2002 end-page: 20 ident: bib0030 article-title: Respiratory influences on sympathetic vasomotor outflow in humans publication-title: Respir. Physiol. Neurobiol. – volume: 26 start-page: 511 year: 2005 end-page: 522 ident: bib0160 article-title: Standardisation of the measurement of lung volumes publication-title: Eur. Respir. J. – volume: 586 start-page: 11 year: 2008 end-page: 23 ident: bib0035 article-title: Muscle fatigue: what, why and how it influences muscle function publication-title: J. Physiol. – volume: 121 start-page: 452 year: 2002 end-page: 458 ident: bib0075 article-title: Bilateral anterolateral magnetic stimulation of the phrenic nerves can detect diaphragmatic fatigue publication-title: Chest – volume: 166 start-page: 518 year: 2002 end-page: 624 ident: bib0005 article-title: ATS/ERS statement on respiratory muscle testing publication-title: Am. J. Respir. Crit. Care Med. – volume: 65 start-page: 2181 year: 1988 end-page: 2189 ident: bib0165 article-title: Respiratory sensation and pattern of respiratory muscle activation during diaphragm fatigue publication-title: J. Appl. Physiol. – volume: 17 start-page: 17 year: 2002 end-page: 21 ident: bib0170 article-title: Muscle fatigue: lactic acid or inorganic phosphate the major cause? publication-title: News Physiol. Sci. – volume: 1 start-page: 88 year: 2007 end-page: 96 ident: bib0060 article-title: New physiological insights into exercise induced diaphragmatic dysfunction publication-title: Respir. Physiol. Neurobiol. – volume: 90 start-page: 405 year: 2003 end-page: 410 ident: bib0135 article-title: Task failure from inspiratory resistive loaded breathing: a role for inspiratory muscle fatigue? publication-title: Eur. J. Appl. Physiol. – volume: 294 start-page: R585 year: 2008 end-page: 593 ident: bib0050 article-title: Muscle metabolic responses to exercise above and below the ‘critical power’ assessed using 31P-MRS publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 26 start-page: 319 year: 2005 end-page: 338 ident: bib0105 article-title: Standardisation of spirometry publication-title: Eur. Respir. J. – volume: 62 start-page: 1307 year: 1987 end-page: 1316 ident: bib0020 article-title: Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation publication-title: J. Appl. Physiol. – year: 2010 ident: bib0025 article-title: Central and peripheral fatigue kinetics during exhaustive constant-load cycling publication-title: Scand. J. Med. Sci. Sports. Epub. – volume: 104 start-page: 879 year: 2008 end-page: 888 ident: bib0140 article-title: Exercise-induced respiratory muscle fatigue: implications for performance publication-title: J. Appl. Physiol. – volume: 49 start-page: 1234 year: 1994 end-page: 1237 ident: bib0180 article-title: Potentiation of diaphragmatic twitch after voluntary contraction in normal subjects publication-title: Thorax – volume: 161 start-page: 101 year: 2008 end-page: 110 ident: bib0065 article-title: Independence of exercise-induced diaphragmatic fatigue from ventilatory demands publication-title: Respir. Physiol. Neurobiol. – volume: 20 start-page: 577 year: 2002 ident: 10.1016/j.resp.2011.01.011_bib0085 article-title: Postprandial effects on twitch transdiaphragmatic pressure publication-title: Eur. Respir. J. doi: 10.1183/09031936.02.00302702 – volume: 62 start-page: 1307 year: 1987 ident: 10.1016/j.resp.2011.01.011_bib0020 article-title: Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1987.62.3.1307 – volume: 294 start-page: R585 year: 2008 ident: 10.1016/j.resp.2011.01.011_bib0050 article-title: Muscle metabolic responses to exercise above and below the ‘critical power’ assessed using 31P-MRS publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00731.2007 – volume: 49 start-page: 1234 year: 1994 ident: 10.1016/j.resp.2011.01.011_bib0180 article-title: Potentiation of diaphragmatic twitch after voluntary contraction in normal subjects publication-title: Thorax doi: 10.1136/thx.49.12.1234 – volume: 81 start-page: 141 year: 1983 ident: 10.1016/j.resp.2011.01.011_bib0155 article-title: Twitch potentiation after voluntary contraction publication-title: Exp. Neurol. doi: 10.1016/0014-4886(83)90163-2 – volume: 586 start-page: 11 year: 2008 ident: 10.1016/j.resp.2011.01.011_bib0035 article-title: Muscle fatigue: what, why and how it influences muscle function publication-title: J. Physiol. doi: 10.1113/jphysiol.2007.139477 – volume: 8 start-page: 1532 year: 1995 ident: 10.1016/j.resp.2011.01.011_bib0045 article-title: The effect of lung volume on transdiaphragmatic pressure publication-title: Eur. Respir. J. doi: 10.1183/09031936.95.08091532 – volume: 26 start-page: 511 year: 2005 ident: 10.1016/j.resp.2011.01.011_bib0160 article-title: Standardisation of the measurement of lung volumes publication-title: Eur. Respir. J. doi: 10.1183/09031936.05.00035005 – volume: 164 start-page: 366 year: 2008 ident: 10.1016/j.resp.2011.01.011_bib0130 article-title: Development of respiratory muscle contractile fatigue in the course of hyperpnoea publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2008.08.008 – volume: 166 start-page: 518 year: 2002 ident: 10.1016/j.resp.2011.01.011_bib0005 article-title: ATS/ERS statement on respiratory muscle testing publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.166.4.518 – volume: 156 start-page: 276 year: 2007 ident: 10.1016/j.resp.2011.01.011_bib0055 article-title: Controlled twitch mouth pressure reliably predicts twitch esophageal pressure publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2006.10.007 – volume: 161 start-page: 101 year: 2008 ident: 10.1016/j.resp.2011.01.011_bib0065 article-title: Independence of exercise-induced diaphragmatic fatigue from ventilatory demands publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2007.11.003 – volume: 26 start-page: 319 year: 2005 ident: 10.1016/j.resp.2011.01.011_bib0105 article-title: Standardisation of spirometry publication-title: Eur. Respir. J. doi: 10.1183/09031936.05.00034805 – volume: 61 start-page: 137 year: 1985 ident: 10.1016/j.resp.2011.01.011_bib0145 article-title: Changes in diaphragmatic EMG spectra during hyperpneic loads publication-title: Respir. Physiol. doi: 10.1016/0034-5687(85)90121-5 – volume: 17 start-page: 17 year: 2002 ident: 10.1016/j.resp.2011.01.011_bib0170 article-title: Muscle fatigue: lactic acid or inorganic phosphate the major cause? publication-title: News Physiol. Sci. – volume: 84 start-page: 1692 year: 1998 ident: 10.1016/j.resp.2011.01.011_bib0150 article-title: Cervical magnetic stimulation as a method to discriminate between diaphragm and rib cage muscle fatigue publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1998.84.5.1692 – volume: 154 start-page: 1099 year: 1996 ident: 10.1016/j.resp.2011.01.011_bib0110 article-title: Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.154.4.8887614 – volume: 128 start-page: 190 year: 2005 ident: 10.1016/j.resp.2011.01.011_bib0175 article-title: Influence of different trigger techniques on twitch mouth pressure during bilateral anterior magnetic phrenic nerve stimulation publication-title: Chest doi: 10.1378/chest.128.1.190 – volume: 130 start-page: 3 year: 2002 ident: 10.1016/j.resp.2011.01.011_bib0030 article-title: Respiratory influences on sympathetic vasomotor outflow in humans publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/S0034-5687(01)00327-9 – volume: 305 start-page: 1144 year: 2004 ident: 10.1016/j.resp.2011.01.011_bib0115 article-title: Intracellular acidosis enhances the excitability of working muscle publication-title: Science doi: 10.1126/science.1101141 – volume: 90 start-page: 405 year: 2003 ident: 10.1016/j.resp.2011.01.011_bib0135 article-title: Task failure from inspiratory resistive loaded breathing: a role for inspiratory muscle fatigue? publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-003-0871-x – volume: 78 start-page: 1710 year: 1995 ident: 10.1016/j.resp.2011.01.011_bib0010 article-title: Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1995.78.5.1710 – volume: 19 start-page: 207 year: 1964 ident: 10.1016/j.resp.2011.01.011_bib0095 article-title: Improved technique for estimating pleural pressure from esophageal balloons publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1964.19.2.207 – volume: 1 start-page: 88 year: 2007 ident: 10.1016/j.resp.2011.01.011_bib0060 article-title: New physiological insights into exercise induced diaphragmatic dysfunction publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2007.04.011 – volume: 85 start-page: 1103 year: 1998 ident: 10.1016/j.resp.2011.01.011_bib0070 article-title: Does resistive loading decrease diaphragmatic contractility before task failure? publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1998.85.3.1103 – volume: 82 start-page: 2011 year: 1997 ident: 10.1016/j.resp.2011.01.011_bib0090 article-title: Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1997.82.6.2011 – volume: 149 start-page: 739 year: 1994 ident: 10.1016/j.resp.2011.01.011_bib0080 article-title: Twitch potentiation following voluntary diaphragmatic contraction publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.149.3.8118645 – volume: 119 start-page: 926 year: 2001 ident: 10.1016/j.resp.2011.01.011_bib0120 article-title: Clinical aspects of respiratory muscle dysfunction in the critically ill publication-title: Chest doi: 10.1378/chest.119.3.926 – volume: 138 start-page: 1309 year: 2010 ident: 10.1016/j.resp.2011.01.011_bib0125 article-title: Efficiency of neural drive during exercise in patients with COPD and healthy subjects publication-title: Chest doi: 10.1378/chest.09-2824 – volume: 26 start-page: 153 year: 2005 ident: 10.1016/j.resp.2011.01.011_bib0100 article-title: General considerations for lung function testing publication-title: Eur. Respir. J. doi: 10.1183/09031936.05.00034505 – volume: 104 start-page: 879 year: 2008 ident: 10.1016/j.resp.2011.01.011_bib0140 article-title: Exercise-induced respiratory muscle fatigue: implications for performance publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01157.2007 – volume: 65 start-page: 2181 year: 1988 ident: 10.1016/j.resp.2011.01.011_bib0165 article-title: Respiratory sensation and pattern of respiratory muscle activation during diaphragm fatigue publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1988.65.5.2181 – year: 2010 ident: 10.1016/j.resp.2011.01.011_bib0025 article-title: Central and peripheral fatigue kinetics during exhaustive constant-load cycling publication-title: Scand. J. Med. Sci. Sports. Epub. – volume: 121 start-page: 452 year: 2002 ident: 10.1016/j.resp.2011.01.011_bib0075 article-title: Bilateral anterolateral magnetic stimulation of the phrenic nerves can detect diaphragmatic fatigue publication-title: Chest doi: 10.1378/chest.121.2.452 – volume: 57 start-page: 1742 year: 1984 ident: 10.1016/j.resp.2011.01.011_bib0015 article-title: Near-maximal voluntary hyperpnea and ventilatory muscle function publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1984.57.6.1742 – volume: 115 start-page: 273 year: 1999 ident: 10.1016/j.resp.2011.01.011_bib0040 article-title: Task failure, breathing discomfort and CO2 accumulation without fatigue during inspiratory resistive loading in humans publication-title: Respir. Physiol. doi: 10.1016/S0034-5687(99)00010-9 |
SSID | ssj0017173 |
Score | 2.0004745 |
Snippet | Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels off... Abstract Imposing load on respiratory muscles results in a loss of diaphragmatic contractility that develops early, is independent of task failure, and levels... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 90 |
SubjectTerms | Adult Biological and medical sciences Biometry - methods Diaphragm - physiology Diaphragmatic fatigue Fundamental and applied biological sciences. Psychology Humans Hyperventilation - physiopathology Male Medical Education Muscle Contraction - physiology Muscle Fatigue - physiology Oxygen Consumption - physiology Pulmonary/Respiratory Respiratory Mechanics - physiology Respiratory muscle Time Factors Twitch transdiaphragmatic pressure Vertebrates: respiratory system Young Adult |
Title | Biometric approximation of diaphragmatic contractility during sustained hyperpnea |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1569904811000474 https://www.clinicalkey.es/playcontent/1-s2.0-S1569904811000474 https://dx.doi.org/10.1016/j.resp.2011.01.011 https://www.ncbi.nlm.nih.gov/pubmed/21295161 https://www.proquest.com/docview/862793728 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5C8lIoJWl6bNoueih9Ke5aXsnH43Zp2F6hVyBvQtaRbkm8Jt5A-9Lf3hlL3hLapFAwLBiN7R2N5rDn-wTwtDB1TizlibWyToTnuOamQiaS-9TaVJeaE975_VG-OBZvTuTJFswHLAy1VUbfH3x6763jmUnU5qRdLiefsfJAVypKIj1LRUGcoEIUZOUvfm7aPHj8ykyDExodgTOhxwsr2jbSeNLBrwtOt1vdocp82Ovi-mS0D0qHu3AnZpNsFh54D7Zccxf2Zw1W0uc_2DPW93f2L8734eNLQtoTIT_ricS_LwNqka08QyPBSdWnPX8r69vXCfBAKToLQEbWBaSVs-wrlq4XbeP0PTg-fPVlvkjihgqJERVf43x4Y7F6dhjjTZ77gnuJGVNhTZFzIyyWf5XPsdauK2l9XTiR48kKyzTNNXd-eh-2m1XjHgLLylRnpbEY4o0wvKwyP_VllWI-wzEoyhHwQZPKRLZx2vTiTA1tZd8UaV-R9lVKBx_B841MG7g2bhw9HSZIDShS9HsKQ8GNUsXfpFwXl26nuOoylao_zGsEciN5xUL_ecfxFevZ_DXMnQjnixdmgzkpXNv0wUY3bnXZKaw2ib4wK0fwIJjZb2HM0yRm6wf_-VSP4FZ4O059EI9he31x6Z5gerWux_36GcPObP7p3Qf6ff12cfQL5g8l4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QGkCgEFujyKD4gLijbO2nkcl4pqS9uVEK3Um-X4AYsgGzVbCf49M7GzqIIWCSmnKJPHeDyPeL7PAK8LU-fEUp5YK-tEeI5zbipkIrlPrU11qTnhnU8X-fxcfLiQF1twMGBhqK0y-v7g03tvHc9MojYn7XI5-YSVB7pSURLpWSoKcQe2iZ1KjmB7dnQ8X2wWE-JCM12fkEDEzoQ2Lyxq28jkSQe_KT7ttLpDrfmw3cXN-Wgflw4fwP2YULJZeOeHsOWaR7A7a7CY_v6TvWF9i2f_73wXPr4jsD1x8rOeS_zHMgAX2coztBMcV_25p3BlfQc7YR4oS2cBy8i6ALZyln3B6vWybZx-DOeH788O5kncUyExouJrHBJvLBbQDsO8yXNfcC8xaSqsKXJuhMUKsPI5ltt1Ja2vCydyPFlhpaa55s5Pn8CoWTVuD1hWpjorjcUob4ThZZX5qS-rFFMajnFRjoEPmlQmEo7Tvhff1NBZ9lWR9hVpX6V08DG83ci0gW7j1qunwwCpAUiKrk9hNLhVqviblOvi7O0UV12mUvWHhY1BbiSvGek_n7h_zXo2n4bpE0F98cZsMCeF05vWbHTjVledwoKTGAyzcgxPg5n9FsZUTWLC_uw_3-oV3J2fnZ6ok6PF8XO4F36WU1vECxitL6_cS8y21vV-nE2_AKyOJv0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+approximation+of+diaphragmatic+contractility+during+sustained+hyperpnea&rft.jtitle=Respiratory+physiology+%26+neurobiology&rft.au=Kabitz%2C+Hans-Joachim&rft.au=Walker%2C+David+Johannes&rft.au=Schwoerer%2C+Anja&rft.au=Schlager%2C+Daniel&rft.date=2011-05-31&rft.issn=1878-1519&rft.eissn=1878-1519&rft.volume=176&rft.issue=3&rft.spage=90&rft_id=info:doi/10.1016%2Fj.resp.2011.01.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15699048%2FS1569904811X00058%2Fcov150h.gif |