Comparative Analysis of Microbiological Profiles and Antibiotic Resistance Genes in Subjects with Colorectal Cancer and Healthy Individuals

Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation sequencing techniques, metagenomic sequencing, along with metabolic function and antibiotic-resistant gene analyses, has been used to investigate diff...

Full description

Saved in:
Bibliographic Details
Published inPolish journal of microbiology Vol. 74; no. 1; pp. 71 - 81
Main Authors Li, Jun, Zhu, Yanyun, Chang, Qing, Gong, Yuan, Wan, Jun, Xu, Shiping
Format Journal Article
LanguageEnglish
Published Poland Sciendo 01.03.2025
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation sequencing techniques, metagenomic sequencing, along with metabolic function and antibiotic-resistant gene analyses, has been used to investigate differences in GM between CRC patients and healthy controls. Fecal samples were obtained from seven CRC patients and six healthy subjects, and the sequencing data were analyzed for similarity, a-diversity, principal component analysis (PCA), and linear discriminant analyses (LDA). Regarding Actinobacteria, 3 orders, 5 families, 9 genera, and 19 species were identified with no differences between the CRC and control groups, while the levels of and were higher, and the level of was lower in the CRC group compared to the healthy controls ( = 0.053). Otherwise, 2 genera ( and ) and 7 species of bacteria ( , unclassified ) were found to be significantly differently distributed between CRC patients and healthy controls. PCA-LDA successfully classified these 2 groups with satisfactory accuracy (84.52% for metabolic function and 77.38% for resistant genes). These findings underscore the potential of GM as a diagnostic tool for CRC, offering a promising avenue for non-invasive screening and risk assessment. The identification of specific microbial signatures, particularly those linked to metabolic functions and resistance traits, could open new doors for understanding the role of the microbiome in CRC progression and treatment resistance.
AbstractList Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation sequencing techniques, metagenomic sequencing, along with metabolic function and antibiotic-resistant gene analyses, has been used to investigate differences in GM between CRC patients and healthy controls. Fecal samples were obtained from seven CRC patients and six healthy subjects, and the sequencing data were analyzed for similarity, a-diversity, principal component analysis (PCA), and linear discriminant analyses (LDA). Regarding Actinobacteria, 3 orders, 5 families, 9 genera, and 19 species were identified with no differences between the CRC and control groups, while the levels of and were higher, and the level of was lower in the CRC group compared to the healthy controls ( = 0.053). Otherwise, 2 genera ( and ) and 7 species of bacteria ( , unclassified ) were found to be significantly differently distributed between CRC patients and healthy controls. PCA-LDA successfully classified these 2 groups with satisfactory accuracy (84.52% for metabolic function and 77.38% for resistant genes). These findings underscore the potential of GM as a diagnostic tool for CRC, offering a promising avenue for non-invasive screening and risk assessment. The identification of specific microbial signatures, particularly those linked to metabolic functions and resistance traits, could open new doors for understanding the role of the microbiome in CRC progression and treatment resistance.
Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation sequencing techniques, metagenomic sequencing, along with metabolic function and antibiotic-resistant gene analyses, has been used to investigate differences in GM between CRC patients and healthy controls. Fecal samples were obtained from seven CRC patients and six healthy subjects, and the sequencing data were analyzed for similarity, a-diversity, principal component analysis (PCA), and linear discriminant analyses (LDA). Regarding Actinobacteria, 3 orders, 5 families, 9 genera, and 19 species were identified with no differences between the CRC and control groups, while the levels of Bifidobacterium bifidum and Bifidobacterium dentium were higher, and the level of Bifidobacterium breve was lower in the CRC group compared to the healthy controls (p = 0.053). Otherwise, 2 genera (Leuco-nostoc and Salmonella) and 7 species of bacteria (Parabacteroides merdae, Alistipes shahii, Alistipes finegoldii, Clostridium nexile, Salmonella enterica, unclassified Salmonella, Enterobacter cloacae) were found to be significantly differently distributed between CRC patients and healthy controls. PCA-LDA successfully classified these 2 groups with satisfactory accuracy (84.52% for metabolic function and 77.38% for resistant genes). These findings underscore the potential of GM as a diagnostic tool for CRC, offering a promising avenue for non-invasive screening and risk assessment. The identification of specific microbial signatures, particularly those linked to metabolic functions and resistance traits, could open new doors for understanding the role of the microbiome in CRC progression and treatment resistance.
Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation sequencing techniques, metagenomic sequencing, along with metabolic function and antibiotic-resistant gene analyses, has been used to investigate differences in GM between CRC patients and healthy controls. Fecal samples were obtained from seven CRC patients and six healthy subjects, and the sequencing data were analyzed for similarity, a-diversity, principal component analysis (PCA), and linear discriminant analyses (LDA). Regarding Actinobacteria, 3 orders, 5 families, 9 genera, and 19 species were identified with no differences between the CRC and control groups, while the levels of Bifidobacterium bifidum and Bifidobacterium dentium were higher, and the level of Bifidobacterium breve was lower in the CRC group compared to the healthy controls ( p = 0.053). Otherwise, 2 genera ( Leuco-nostoc and Salmonella ) and 7 species of bacteria ( Parabacteroides merdae, Alistipes shahii, Alistipes finegoldii, Clostridium nexile, Salmonella enterica , unclassified Salmonella, Enterobacter cloacae ) were found to be significantly differently distributed between CRC patients and healthy controls. PCA-LDA successfully classified these 2 groups with satisfactory accuracy (84.52% for metabolic function and 77.38% for resistant genes). These findings underscore the potential of GM as a diagnostic tool for CRC, offering a promising avenue for non-invasive screening and risk assessment. The identification of specific microbial signatures, particularly those linked to metabolic functions and resistance traits, could open new doors for understanding the role of the microbiome in CRC progression and treatment resistance.
Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation sequencing techniques, metagenomic sequencing, along with metabolic function and antibiotic-resistant gene analyses, has been used to investigate differences in GM between CRC patients and healthy controls. Fecal samples were obtained from seven CRC patients and six healthy subjects, and the sequencing data were analyzed for similarity, a-diversity, principal component analysis (PCA), and linear discriminant analyses (LDA). Regarding Actinobacteria, 3 orders, 5 families, 9 genera, and 19 species were identified with no differences between the CRC and control groups, while the levels of Bifidobacterium bifidum and Bifidobacterium dentium were higher, and the level of Bifidobacterium breve was lower in the CRC group compared to the healthy controls (p = 0.053). Otherwise, 2 genera (Leuco-nostoc and Salmonella) and 7 species of bacteria (Parabacteroides merdae, Alistipes shahii, Alistipes finegoldii, Clostridium nexile, Salmonella enterica, unclassified Salmonella, Enterobacter cloacae) were found to be significantly differently distributed between CRC patients and healthy controls. PCA-LDA successfully classified these 2 groups with satisfactory accuracy (84.52% for metabolic function and 77.38% for resistant genes). These findings underscore the potential of GM as a diagnostic tool for CRC, offering a promising avenue for non-invasive screening and risk assessment. The identification of specific microbial signatures, particularly those linked to metabolic functions and resistance traits, could open new doors for understanding the role of the microbiome in CRC progression and treatment resistance.Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation sequencing techniques, metagenomic sequencing, along with metabolic function and antibiotic-resistant gene analyses, has been used to investigate differences in GM between CRC patients and healthy controls. Fecal samples were obtained from seven CRC patients and six healthy subjects, and the sequencing data were analyzed for similarity, a-diversity, principal component analysis (PCA), and linear discriminant analyses (LDA). Regarding Actinobacteria, 3 orders, 5 families, 9 genera, and 19 species were identified with no differences between the CRC and control groups, while the levels of Bifidobacterium bifidum and Bifidobacterium dentium were higher, and the level of Bifidobacterium breve was lower in the CRC group compared to the healthy controls (p = 0.053). Otherwise, 2 genera (Leuco-nostoc and Salmonella) and 7 species of bacteria (Parabacteroides merdae, Alistipes shahii, Alistipes finegoldii, Clostridium nexile, Salmonella enterica, unclassified Salmonella, Enterobacter cloacae) were found to be significantly differently distributed between CRC patients and healthy controls. PCA-LDA successfully classified these 2 groups with satisfactory accuracy (84.52% for metabolic function and 77.38% for resistant genes). These findings underscore the potential of GM as a diagnostic tool for CRC, offering a promising avenue for non-invasive screening and risk assessment. The identification of specific microbial signatures, particularly those linked to metabolic functions and resistance traits, could open new doors for understanding the role of the microbiome in CRC progression and treatment resistance.
Author Li, Jun
Wan, Jun
Chang, Qing
Xu, Shiping
Gong, Yuan
Zhu, Yanyun
Author_xml – sequence: 1
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Department of Gastroenterology, Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
– sequence: 2
  givenname: Yanyun
  surname: Zhu
  fullname: Zhu, Yanyun
  organization: Department of Oncology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
– sequence: 3
  givenname: Qing
  surname: Chang
  fullname: Chang, Qing
  organization: Department of Gastroenterology, Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
– sequence: 4
  givenname: Yuan
  surname: Gong
  fullname: Gong, Yuan
  organization: Department of Gastroenterology, Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
– sequence: 5
  givenname: Jun
  surname: Wan
  fullname: Wan, Jun
  email: wanjun301@126.com
  organization: Department of Gastroenterology, Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
– sequence: 6
  givenname: Shiping
  surname: Xu
  fullname: Xu, Shiping
  email: xushiping@301hospital.com.cn
  organization: Department of Gastroenterology, Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40146796$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQQCNURD_gyBVZ4tJLwI4dO-GCqhW0KxWBoHfLscdbr7LxYidb7W_gTzO7W0qLONmeeX4ea-a0OBriAEXxmtF3nFPF36-Xq7KiVV1SKp8VJ1UtRCmkkEeP9sfFac5LSgUXDX9RHAvKhFStPCl-zeJqbZIZwwbIxWD6bQ6ZRE--BJtiF2IfF8GannxL0YceMjGDQ3AMmBuDJd8BL4xmsEAuYcB8GMiPqVuCHTO5C-MtmaEj4RElsx2X9oorMP14uyXzwYVNcJPp88viuccFXt2vZ8XN5083s6vy-uvlfHZxXVrRsrF0jlNppaBVJaVlbU1dU7mmVa1ndWeNU161wDj3XikqMdpVwjNruxpqK_lZMT9oXTRLvU5hZdJWRxP0PhDTQpuEX-tB-64yxktZo1e4TrW15M4rQ4F5wArQ9fHgWk_dCpyFYUymfyJ9mhnCrV7EjWasFS1vBBrO7w0p_pwgj3oVsoW-NwPEKWvOmkooJViF6Nt_0GWcEvZsT7GGM1XvhG8el_RQy5-eI1AeAGxwzgn8A8Ko3s-UxpnSu5nSOFPIfzjwd9gxSA4Wadri5u_r_72HJSvGfwPT0tR0
Cites_doi 10.3904/kjim.2022.112
10.3390/cancers11010038
10.3390/cancers12061406
10.1016/j.aca.2020.06.074
10.1016/j.molmed.2020.04.001
10.1146/annurev-micro-102215-095513
10.1097/NT.0000000000000167
10.1016/j.yclnex.2018.03.001
10.1093/bioinformatics/btw183
10.1093/bioinformatics/btv033
10.3389/fgene.2013.00041
10.1016/j.chom.2016.03.007
10.1136/gutjnl-2020-321153
10.1016/B978-0-12-809633-8.20178-7
10.1155/2019/7546047
10.3390/jcm7100346
10.3390/ijms20215295
10.1038/s41597-020-0427-5
10.3390/antibiotics10050483
10.1111/cas.15126
10.1371/journal.pone.0016393
10.1016/j.immuni.2014.05.015
10.1038/nmeth.3589
10.1016/j.cgh.2018.07.012
10.1038/s41575-019-0209-8
10.21037/tcr.2020.03.33
10.3390/md7020210
10.3390/cancers13050957
10.3390/cancers15061893
10.3389/fimmu.2022.1008975
10.1099/mic.0.000944
10.1073/pnas.1912129116
10.1007/s00394-017-1445-8
10.1038/nbt.3935
ContentType Journal Article
Copyright 2025 Jun Li et al., published by Sciendo.
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Jun Li et al., published by Sciendo 2025 Jun Li et al., published by Sciendo
Copyright_xml – notice: 2025 Jun Li et al., published by Sciendo.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Jun Li et al., published by Sciendo 2025 Jun Li et al., published by Sciendo
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
8FE
8FH
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.33073/pjm-2025-006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2544-4646
EndPage 81
ExternalDocumentID oai_doaj_org_article_fb2aaf6655bc4db79563df7a0e1fe640
PMC11949384
40146796
10_33073_pjm_2025_006
10_33073_pjm_2025_00674171
Genre Journal Article
Comparative Study
GroupedDBID ---
123
2WC
3EA
53G
9WM
AATOW
ABFKT
ABMXE
ADBBV
AENEX
AEUYN
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
INH
INR
M7P
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
QD8
RPM
SLJYH
TR2
Y2W
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
8FE
8FH
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c491t-dd306c6402266c1950d82d8979f15bcad7f79e133ff77069f1b24f1ccb5e5c63
IEDL.DBID DOA
ISSN 2544-4646
1733-1331
IngestDate Wed Aug 27 01:31:45 EDT 2025
Thu Aug 21 18:39:01 EDT 2025
Fri Jul 11 18:54:04 EDT 2025
Fri Jul 25 12:01:29 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Sun Jul 06 05:03:46 EDT 2025
Thu Jul 10 10:28:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Actinobacteria
antibiotic resistant genes
colorectal cancer
metagenomics
gut microbiota
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
http://creativecommons.org/licenses/by-nc-nd/4.0
2025 Jun Li et al., published by Sciendo.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-dd306c6402266c1950d82d8979f15bcad7f79e133ff77069f1b24f1ccb5e5c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Contributed equally to this study
OpenAccessLink https://doaj.org/article/fb2aaf6655bc4db79563df7a0e1fe640
PMID 40146796
PQID 3181831754
PQPubID 5029984
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_fb2aaf6655bc4db79563df7a0e1fe640
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11949384
proquest_miscellaneous_3182477412
proquest_journals_3181831754
pubmed_primary_40146796
crossref_primary_10_33073_pjm_2025_006
walterdegruyter_journals_10_33073_pjm_2025_00674171
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Poland
PublicationPlace_xml – name: Poland
– name: Warsaw
PublicationTitle Polish journal of microbiology
PublicationTitleAlternate Pol J Microbiol
PublicationYear 2025
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2025032723401141610_j_pjm-2025-006_ref_016
2025032723401141610_j_pjm-2025-006_ref_017
2025032723401141610_j_pjm-2025-006_ref_018
2025032723401141610_j_pjm-2025-006_ref_019
2025032723401141610_j_pjm-2025-006_ref_012
2025032723401141610_j_pjm-2025-006_ref_034
2025032723401141610_j_pjm-2025-006_ref_013
2025032723401141610_j_pjm-2025-006_ref_035
2025032723401141610_j_pjm-2025-006_ref_014
2025032723401141610_j_pjm-2025-006_ref_036
2025032723401141610_j_pjm-2025-006_ref_015
2025032723401141610_j_pjm-2025-006_ref_030
2025032723401141610_j_pjm-2025-006_ref_031
2025032723401141610_j_pjm-2025-006_ref_010
2025032723401141610_j_pjm-2025-006_ref_032
2025032723401141610_j_pjm-2025-006_ref_011
2025032723401141610_j_pjm-2025-006_ref_033
cr-split#-2025032723401141610_j_pjm-2025-006_ref_023.2
cr-split#-2025032723401141610_j_pjm-2025-006_ref_023.1
2025032723401141610_j_pjm-2025-006_ref_009
2025032723401141610_j_pjm-2025-006_ref_005
2025032723401141610_j_pjm-2025-006_ref_027
2025032723401141610_j_pjm-2025-006_ref_006
2025032723401141610_j_pjm-2025-006_ref_028
2025032723401141610_j_pjm-2025-006_ref_007
2025032723401141610_j_pjm-2025-006_ref_029
2025032723401141610_j_pjm-2025-006_ref_008
2025032723401141610_j_pjm-2025-006_ref_001
2025032723401141610_j_pjm-2025-006_ref_002
2025032723401141610_j_pjm-2025-006_ref_024
2025032723401141610_j_pjm-2025-006_ref_003
2025032723401141610_j_pjm-2025-006_ref_025
2025032723401141610_j_pjm-2025-006_ref_004
2025032723401141610_j_pjm-2025-006_ref_026
2025032723401141610_j_pjm-2025-006_ref_020
2025032723401141610_j_pjm-2025-006_ref_021
2025032723401141610_j_pjm-2025-006_ref_022
References_xml – ident: 2025032723401141610_j_pjm-2025-006_ref_033
  doi: 10.3904/kjim.2022.112
– ident: 2025032723401141610_j_pjm-2025-006_ref_028
  doi: 10.3390/cancers11010038
– ident: 2025032723401141610_j_pjm-2025-006_ref_022
  doi: 10.3390/cancers12061406
– ident: 2025032723401141610_j_pjm-2025-006_ref_035
  doi: 10.1016/j.aca.2020.06.074
– ident: 2025032723401141610_j_pjm-2025-006_ref_036
  doi: 10.1016/j.molmed.2020.04.001
– ident: 2025032723401141610_j_pjm-2025-006_ref_003
  doi: 10.1146/annurev-micro-102215-095513
– ident: 2025032723401141610_j_pjm-2025-006_ref_005
  doi: 10.1097/NT.0000000000000167
– ident: 2025032723401141610_j_pjm-2025-006_ref_001
  doi: 10.1016/j.yclnex.2018.03.001
– ident: 2025032723401141610_j_pjm-2025-006_ref_010
  doi: 10.1093/bioinformatics/btw183
– ident: 2025032723401141610_j_pjm-2025-006_ref_011
  doi: 10.1093/bioinformatics/btv033
– ident: 2025032723401141610_j_pjm-2025-006_ref_007
  doi: 10.3389/fgene.2013.00041
– ident: 2025032723401141610_j_pjm-2025-006_ref_015
  doi: 10.1016/j.chom.2016.03.007
– ident: 2025032723401141610_j_pjm-2025-006_ref_004
  doi: 10.1136/gutjnl-2020-321153
– ident: 2025032723401141610_j_pjm-2025-006_ref_009
  doi: 10.1016/B978-0-12-809633-8.20178-7
– ident: 2025032723401141610_j_pjm-2025-006_ref_031
  doi: 10.1155/2019/7546047
– ident: 2025032723401141610_j_pjm-2025-006_ref_030
  doi: 10.3390/jcm7100346
– ident: 2025032723401141610_j_pjm-2025-006_ref_002
  doi: 10.3390/ijms20215295
– ident: 2025032723401141610_j_pjm-2025-006_ref_014
  doi: 10.1038/s41597-020-0427-5
– ident: 2025032723401141610_j_pjm-2025-006_ref_006
  doi: 10.3390/antibiotics10050483
– ident: 2025032723401141610_j_pjm-2025-006_ref_021
  doi: 10.1111/cas.15126
– ident: #cr-split#-2025032723401141610_j_pjm-2025-006_ref_023.2
– ident: 2025032723401141610_j_pjm-2025-006_ref_025
  doi: 10.1371/journal.pone.0016393
– ident: 2025032723401141610_j_pjm-2025-006_ref_008
  doi: 10.1016/j.immuni.2014.05.015
– ident: 2025032723401141610_j_pjm-2025-006_ref_027
  doi: 10.1038/nmeth.3589
– ident: 2025032723401141610_j_pjm-2025-006_ref_026
  doi: 10.1016/j.cgh.2018.07.012
– ident: 2025032723401141610_j_pjm-2025-006_ref_029
  doi: 10.1038/s41575-019-0209-8
– ident: 2025032723401141610_j_pjm-2025-006_ref_012
  doi: 10.21037/tcr.2020.03.33
– ident: 2025032723401141610_j_pjm-2025-006_ref_016
  doi: 10.3390/md7020210
– ident: 2025032723401141610_j_pjm-2025-006_ref_034
  doi: 10.3390/cancers13050957
– ident: 2025032723401141610_j_pjm-2025-006_ref_013
  doi: 10.3390/cancers15061893
– ident: 2025032723401141610_j_pjm-2025-006_ref_019
– ident: 2025032723401141610_j_pjm-2025-006_ref_032
  doi: 10.3389/fimmu.2022.1008975
– ident: 2025032723401141610_j_pjm-2025-006_ref_017
  doi: 10.1099/mic.0.000944
– ident: 2025032723401141610_j_pjm-2025-006_ref_024
  doi: 10.1073/pnas.1912129116
– ident: 2025032723401141610_j_pjm-2025-006_ref_020
  doi: 10.1007/s00394-017-1445-8
– ident: #cr-split#-2025032723401141610_j_pjm-2025-006_ref_023.1
– ident: 2025032723401141610_j_pjm-2025-006_ref_018
  doi: 10.1038/nbt.3935
SSID ssj0043483
Score 2.3374567
Snippet Alteration of the gut microbiota (GM) is associated with various diseases, including colorectal cancer (CRC). With the development of next-generation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 71
SubjectTerms Actinobacteria
Aged
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
antibiotic resistant genes
Antibiotics
Bacteria - classification
Bacteria - drug effects
Bacteria - genetics
Bacteria - isolation & purification
Cancer
Case-Control Studies
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - microbiology
Comparative analysis
Drug Resistance, Bacterial - genetics
Drug Resistance, Microbial - genetics
Enterobacter cloacae
Feces
Feces - microbiology
Female
Gastrointestinal Microbiome - genetics
Genera
Genes
gut microbiota
Humans
Intestinal microflora
Male
Metabolism
Metagenomics
Microbiomes
Microbiota
Microorganisms
Middle Aged
Next-generation sequencing
Nostoc
Original Paper
Principal components analysis
Risk assessment
Salmonella
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0HedpkWF0pvJypIl61SaJSEtJISQQm5G1iPdQO3tepeyvyF_ujPyY7tt6NUW8ljzaUYzkr4h5IMFnydlzlPnRBZTN2kBwU_qtPEmWC29xbvDZ-fy9Jv4ep1f9wm3tj9WOdjEaKhdYzFHfgjYA_SBsxOf5j9TrBqFu6t9CY2HZBdMcAHB1-7R8fnF5WCLBReRiJMpzlOIxljHsskR2Ifz2x-AkSxPJ1ju6A-vFMn771tx_ntwcu9X3NR2_maxWi-HTdTom06ekL1-UUk_dyh4Sh74-hl51JWZXD8nd9MNxTcdWEhoE-jZbKRhQl3Ri66Ad0tN7aAhXidpoEt66VtcZgI-KNJUt3RWU7A4mMJpKWZy6RT6QNsJnUyx3SJ20d1xWtMv462v9gW5Ojm-mp6mfRGG1ArNlqBDCCqshDATXLnForGuyFyhlQ4sr6xxKijtYWxDUGoi4WmVicCsrXKfW8lfkp26qf1rQk3lueQTbYQMQhlbeOetcFJbVQRlQkI-Djoo5x3VRgkhSlRWCcoqUVklKCshR6ihsREyZMcHzeKm7CdcGarMmAAwBCGFqxTEgdzBZyaeBQ-_k5CDQb9lP23bcgOyhLwfX8OEw10UU_tmFdtkAhbNLEvIqw4OoyQCqXiUBgmLLaBsibr9pp59j6TejGmheQEf5n9haiPevaMBkii2__-_eUMed0jHs3MHZGe5WPm3sJhaVu_6GfMb1_kikA
  priority: 102
  providerName: ProQuest
Title Comparative Analysis of Microbiological Profiles and Antibiotic Resistance Genes in Subjects with Colorectal Cancer and Healthy Individuals
URI https://www.degruyter.com/doi/10.33073/pjm-2025-006
https://www.ncbi.nlm.nih.gov/pubmed/40146796
https://www.proquest.com/docview/3181831754
https://www.proquest.com/docview/3182477412
https://pubmed.ncbi.nlm.nih.gov/PMC11949384
https://doaj.org/article/fb2aaf6655bc4db79563df7a0e1fe640
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FKfRFtPZjrUqE0rfF20022TzqodiCImLBt5DNR3sF9-T2jnJ_Q__pziS3q9cKfenrJswO-U0mM_n4DSEfLax5QlQsd46XcesmryH5yZ0y3gSrhLf4dvjySlx85V_uqrsnpb7wTliiB04Ddxya0pgA4qrGctdIiOeZC9KMfBG84DFbhzWvT6aSD-aM1ywxajI04uOHH_dgD2WVj7C00ZMVKBL1Pxdd_n1JcutnPMB2_ttssZz3B6ZxHTrfJlurAJKeJMV3yAvfviYvU0nJ5S75NX6k86Y94widBno5GSiXEBd6nYp1d9S0Djri05EpiKQ3vsOQEmyBIiV1RyctBe-C2zUdxV1bOgYZ6CdByBj7zaKI9J5pST8PL7y6N-T2_Ox2fJGvCi7klqtiDnhBAmFhUCEmExYLxLq6dLWSKhQw_MbJIJWHrDYEKUcCvjYlD4W1TeUrK9hbstFOW_-eUNN4JthIGS4Cl8bW3nmATygrawAvZORTj4F-SLQaGtKRCJYGsDSCpQGsjJwiQkMnZMOOH8BG9MpG9L9sJCP7Pb56NUU7Dc4M3BlETzwjR0MzTC48MTGtny5in5JDgFyUGXmXzGHQhCPtjlSgYb1mKGuqrre0k--RwLsoFFeshh-zP2zqUb1nRwM0kcXe_xiSD-RVmg94m26fbMxnC38A4dW8OSSbp2dX1zeHcUb9BnO-Kq0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJwQvE_8JDDAS8BatiZ04fkCIlU0tW6tpKtLerMR_RpFIStNq6mfgs_AduXOalsLE215j63LJ_e58Z_vuCHmjYc1L04SFxvDYb92EGQQ_oZG5zZ2WqdWYOzwcpf0v_PNFcrFDfrW5MHitsrWJ3lCbSuMe-QFgD9AHix3_MP0RYtcoPF1tW2g0sDixyysI2er3g08g37dxfHw07vXDVVeBUHMZzYEp8JJ1CnETrE0au6CaLDaZFNJFSaFzI5yQFkI354TopvC0iLmLtC4Sm-iUAdlbZJcziGQ6ZPfwaHR23pp-zriv-xkJxkKgEDVFPRnq0cH023eAZJyEXeyu9Mci6HsFXOfg_ntPc-_Kn6EbezlbLOftma1fCo_vkb2VD0s_NqC7T3Zs-YDcbrpaLh-Sn71NRXHaFj2hlaPDybrqE0KDnjX9wmualwYmYvZKBSTpua3RqwU4UqyKXdNJScHA4Y5RTXHjmPaABppqINLDeTNPokmpWtLBOsmsfkTGNyGdx6RTVqV9SmheWJayrsx56rjIdWaN1dykUovMidwF5F0rAzVtKnsoiIi8sBQIS6GwFAgrIIcoofUkLMjtH1SzS7XSb-WKOM8doB6Y5KYQEHYyA6_p2shZ-JyA7LfyVSsrUasNpgPyej0M-o2HNnlpq4WfE3Pw0aM4IE8aOKw54Vj5R0jgMNsCyhar2yPl5KuvIR5FkkuWwYvZX5jasHft3wBORPTs_1_zitzpj4en6nQwOnlO7jaox2t7-6Qzny3sC_Dj5sXLlfZQom5YX38Dz4JejQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJxAvE_8pDDAS8Ba1SZw4fkCIdatWxqpqGtLeLMd_RpFIStNq6mfgE_HtuHOSlsLE215j63LJ_c53Z_vuCHmjwealaRIHxrDIb90EGQQ_gRHKKqdFajXmDp-O0-Mv7NNFcrFDfrW5MHitsl0T_UJtSo175D3AHqAPjB3rueZaxORw-GH2I8AOUnjS2rbTqCFyYldXEL5V70eHIOu3UTQ8Oh8cB02HgUAzES6AQfCYdQoxFNgpjR1RTRaZTHDhwiTXynDHhYUwzjnO-yk8zSPmQq3zxCY6jYHsLbLLISjqd8juwdF4ctaaARYzXwM05HEcAIWwLvAZo071Zt--AzyjJOhjp6U_DKLvG3Cds_vvnc29K3-ebuzlfLlatOe33iwO75G9xp-lH2sA3ic7tnhAbtcdLlcPyc_Bpro4bQug0NLR0-m6AhTChE7q3uEVVYWBiZjJUgJJemYr9HABmhQrZFd0WlBY7HD3qKK4iUwHQAOXbSAywHlzT6JOr1rR0TrhrHpEzm9COo9JpygL-5RQlds4jftCsdQxrnRmjdXMpELzzHHluuRdKwM5q6t8SIiOvLAkCEuisCQIq0sOUELrSVic2z8o55ey0XXp8kgpBxoATDKTcwhBYwOv6dvQWficLtlv5SubFaOSG3x3yev1MOg6HuCowpZLPydi4K-HUZc8qeGw5oRhFSAugMNsCyhbrG6PFNOvvp54GAom4gxeHP-FqQ171_4N4ISHz_7_Na_IHdBT-Xk0PnlO7tagxxt8-6SzmC_tC3DpFvnLRnkokTesrr8B85Niwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Microbiological+Profiles+and+Antibiotic+Resistance+Genes+in+Subjects+with+Colorectal+Cancer+and+Healthy+Individuals&rft.jtitle=Polish+journal+of+microbiology&rft.au=Li%2C+Jun&rft.au=Zhu%2C+Yanyun&rft.au=Chang%2C+Qing&rft.au=Gong%2C+Yuan&rft.date=2025-03-01&rft.pub=Sciendo&rft.eissn=2544-4646&rft.volume=74&rft.issue=1&rft.spage=71&rft.epage=81&rft_id=info:doi/10.33073%2Fpjm-2025-006&rft.externalDBID=n%2Fa&rft.externalDocID=10_33073_pjm_2025_00674171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2544-4646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2544-4646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2544-4646&client=summon